
Visibility-Guided Simplification

Eugene Zhang and Greg Turk

GVU Center and College of Computing, Georgia Institute of Technology

ABSTRACT
For some graphics applications, object interiors and hard-to-
see regions contribute little to the final images and need not
be processed. In this paper, we define a view-independent
visibility measure on mesh surfaces based on the visibility
function between the surfaces and a surrounding sphere of
cameras. We demonstrate the usefulness of this measure
with a visibility-guided simplification algorithm.

Mesh simplification reduces the polygon counts of 3D
models and speeds up the rendering process. Many mesh
simplification algorithms are based on sequences of edge
collapses that minimize geometric and attribute errors. By
combining the surface visibility measure with a geometric
error measure, we obtain simplified models with improve-
ment proportional to the amount of low visibility regions in
the original models.

Keywords: Visualization, Visibility, Mesh Simplification,
Rendering

1 INTRODUCTION
Visibility is important and has been well-studied in com-
puter graphics. In general, visibility refers to determining
which surfaces are unoccluded from certain camera posi-
tions in an environment.

In this paper, we are primarily interested in describing
how some surface points are difficult to see due to object
self-occlusions. For instance, the interiors of an object are
invisible from any outside viewpoint. Some exterior regions
are more difficult to see than others. To describe this view-
independent property, we define a surface visibility measure
which depends on the visibility function between the surface
and a surrounding sphere of cameras (camera space). To
calculate the surface-camera visibility function, we render
the object from a dense set of camera poses in the camera
space. For a point on the surface, the visibility measure is
the percentage of the camera space from which this point is
visible, and the camera space is weighted by the dot product
between the point’s surface normal and the viewing direc-
tions. We use this measure to help mesh simplification.

Mesh simplification algorithms reduce the polygon count
of a model while maintain its overall shape and appearance.
This is important for reducing the model storage cost and
subsequent processing time. Many mesh simplification al-
gorithms are based on a sequence of edge collapses. At each
step, one edge is collapsed into a vertex, reducing the poly-
gon count by two. The sequence of the edge collapse op-
erations is designed to minimize geometric and appearance
errors. In our study, we observe that many CAD models
and medical imaging data sets contain large interiors and
concavities, which contribute little to the final images from

e-mail:{zhange,turk}@cc.gatech.edu

any outside viewpoint when being rendered as opaque ob-
jects. In these regions, our visibility-guided algorithm al-
lows greater geometric and attributes errors.

The remainder of the paper is organized as follows. In
Section 2 we review existing methods for visibility calcu-
lation and mesh simplification algorithms. We present the
definition of our surface visibility measure in Section 3 and
then describe how we calculate this measure in Section 4. In
Section 5 we present our visibility-guided simplification al-
gorithm, which combines the surface visibility measure with
a well-know geometric measure, the quadric measure. Sec-
tion 6 provides a summary and discuss some future work.

2 PREVIOUS WORK
In this section, we review previous work in visibility and
mesh simplification.

2.1 Visibility
Visibility issues appear in many aspects of graphics. Here,
we review some areas that are related to our work.

Visible Surface Determination Problem: The Visible
Surface Determination Problem(VSD), also called theHid-
den Surface Removal Problem, is the task of deciding which
parts of the opaque objects in a scene are visible from a
given viewpoint. In their 1974 survey [22], Sutherland et
al classify existing VSD algorithms into those that perform
calculations inobject-space, those that perform calculations
in image-space, and those that work partly in both,list-
priority. They further point out these algorithms differ in
how they perform sorting and what local coherence informa-
tion is used to reduce the recalculation cost. The local coher-
ence information used may include: face coherence [20, 24],
scan line coherence and edge coherence [2, 25], depth coher-
ence [24], etc. Catmull develops the depth-buffer or z-buffer
image-precision algorithm which uses depth coherence [3].
Myers later incorporates the depth-buffer algorithm with the
scan-line algorithm [16]. Fuchs et al use BSP tree to estab-
lish scene visibility [7]. Appel [1], Weiler and Atherton [27],
and Whitted [28] develop ray tracing algorithm which trans-
forms the VSD into ray-object intersection tests.

Aspect Graph: The visibility of a static scene often re-
mains constant if viewpoints are restricted to be inside a
limited region. This has led Koenderink and Van Doorn to
propose theaspect graphto record where visibility changes
occur [13]. In this graph, each node represents a general
view as seen from a region of viewpoint space. Two neigh-
boring nodes are linked by an edge to represent avisual
event(visibility change) when the viewpoint moves from
one region to another. Algorithms have been developed for
computing the aspect graph for 3D convex objects using or-
thographic views [18] and perspective views [21, 26]. Gi-
gus et al propose algorithms for computing the aspect graph
for 3D polyhedra under orthographic views [9]. Unfortu-
nately, computing aspect graphes is expensive. For general
polyhedra withn supporting planes, the complexity of com-
puting the aspect graph using orthographic views isO(n6).
One often uses sampling techniques to generate approxima-
tions [6, 10]. However, the sampling rate is difficult to set.



Figure 1: An object (left) and itsvisibility diagramF (p, c)
(right). In the visibility diagram, white indicates surface
point p and camera posec are mutually occluded. Green
indicates they are mutually visible. The intensity of green-
ness is related to the dot product between the surface normal
at p and the viewing direction ofc. Head-on views are in
lighter greens and side views are in darker greens. For in-
stance, pointp is visible from bothc1 andc2, but occluded
from c3. Furthermore,c1 has a better viewing angle for the
surface nearp than thatc2 does.

2.2 Mesh Simplification
Mesh simplification, too, is a well-studied problem in com-
puter graphics. Since the literature in this area is extensive,
we review only a few of the most relevant methods. Hoppe
proposes the framework of the progressive mesh [11] repre-
sentation to address the issues of progressive transmission,
selective refinement and geomorphing. Under this scheme,
the polygon count is reduced by a sequence of edge col-
lapses. All edges are put on a priority queue, which is sorted
by some error measure. At each step, the edge with the least
error is collapsed into a single vertex, therefore removing
two polygons. The location of the new vertex and the choice
of the error measure are the keys to determining the quality
of the simplified models.

Ronfard and Rossignac [19] measure the geometric errors
by using the maximum distance of the new vertex location to
the supporting planes of the original edge’s 1-neighborhood.
Garland and Heckbert use similar geometry information,
namely, the quadric measure [8] as their error measure. In
this measure, determining the location of the new vertex is
internally linked to the error measure, defined as the squared
sum of the distances of the new vertex location to the sup-
porting planes that contain at least one triangle incident to
the edge. The quadric measure is a geometry-based error.
Hoppe later extends this to handle attributes such as colors
and texture coordinates [12]. The original quadric measure
does not use visibility information.

Lindstrom and Turk define a different type of error mea-
sure, namely, the image-driven measure [15]. Instead of
measuring the geometric deviation caused by the edge col-
lapse operations, they measure the image deviation, that is,
the visual differences between the model before and after a
certain edge collapse. By creating images of both the orig-
inal and partially simplified models from a number of dif-
ferent camera poses (such as the center of the faces of an
icosahedron) the method determines the order of the edges
based on the visual difference that these edges contribute.
This measure indirectly takes into account which portions
of an object are visible, and it greatly reduces the number
of polygons used to represent interior details. However, the
processing time required for calculating the image deviation
is substantially more than that for the geometric deviation.

3 VISIBILITY MEASURE DEFINITION
Due to scene occlusions, a pointp is not always visible from
a camera posec. Figure 1 illustrates this object-camera vis-
ibility function. In the left image, an objectM consisting of
line segments is observed from inward-looking orthographic
cameras on a surrounding circleS with infinite radius. The
center ofS coincides with the center of the bounding box of
M . Note, to draw bothM andS in the same image, their
relative size are distorted. The cameras are drawn as small
line segments pointing toward the center of the circle.p is a
point onM . c1, c2 andc3 are camera poses on the circle.
p is visible from bothc1 andc2, and invisible fromc3 due
to self-occlusion.c1 has a head-on view of the region near
p while c2 views the same region at a poor angle.

The right image in Figure 1 is a visualization ofF (p, c),
which we call thevisibility diagramof M . Thex-axis rep-
resents points on the perimeter of the shape, as traversed
counter-clockwise. They-axis represents camera poses on
the surrounding circle, also traversed counter-clockwise. In
thevisibility diagram, the color at point(p, c) encodes the
visibility between pointp on the objectM and camera pose
c. Green means they are mutually visible, and white means
they are mutually occluded. The intensity of greenness is
proportional to the dot product betweenN(p) and R(c),
the surface normal atp and the viewing direction ofc, re-
spectively. Lighter green indicates better views. The overall
visibility of p from outside views is defined as:

V (p) =

∫
S

F (p, c) (R (c) ·N (p)) dc∫
S

(R (c) ·N (p)) dc
(3.1)

V (p) measures the percentage of camera space that can
“see” p, giving more weight to views at better angles. The
portion of S over which we integrate is actually a half-
sphere, based on the surface normal atp. V (p) is between
0 and1. For example, any point on a convex object achieves
the maximum value. Using the terms from radiosity [5]
and under the assumption that there is no scattering or en-
ergy loss during light transport,F (p, c) (R (c) ·N (p)) is
the form factor between an infinitesimal surface aroundp
and an infinitesimal surface aroundc, i.e., the fraction of
light which leavesc that reachesp. Therefore,V (p) mea-
sures the fraction of light which leave a sphere infinitely
away from the object that can directly reachp. Further-
more, V (p) is related to the measure used by Nooruddin
and Turk[17] for surface interior/exterior classification and
visualization. For their applications, their measure is a bi-
nary measure and all camera views are weighted equally.

Figure 2 shows the measureV (p) for some of our test
models. The color coding is as follows: 0-1/3 (interpolating
between white and red), 1/3-2/3 (interpolating between red
and yellow), 2/3-1 (interpolating between yellow and green).
The overall visibility of meshM is defined as:

V (M) =

∫
M

V (p) dp∫
M

dp
(3.2)

This measure is1 for convex objects. Table 1 shows the
overall surface visibility of some test models. The Stanford
Bunny model has a large convex body with the ears and other
parts that are attached. This model has a high overall visi-
bility. The Motor and Blade models contain large numbers
of interior polygons, resulting in a low overall visibility.

4 VISIBILITY MEASURE CALCULATION
Calculating the exact mesh visibility function for large mod-
els is computationally prohibitive. Nooruddin and Turk [17]



Figure 2: This image illustrates the visibility measures for some test models: the Utah Teapot, a foot bone model, Happy
Buddha, Dragon, and a CAD model of three interlocking tori.

have used a sampling approach in both the object spaceM
and the camera spaceS for interior/exterior classification.
Here, we use a similar approach. First, we subdivide the
mesh surface until all triangles are small. Next, we choose a
finite number of camera positions that are evenly distributed
in the camera space. Finally, we renderM from each of
these camera positions with the help of graphics hardware
to quickly compute a table of visibility between the camera
positions and the surface triangles. This table is a discrete
version of thevisibility diagram(Figure 1).

To obtain uniformly spaced camera poses, we construct a
tessellation of the camera spaceS by subdividing the faces
of an octahedron three times and placing sample cameras
at every vertex of the resulting mesh. We assume a camera
posev sees a trianglet if and only if at least part oft is
visible fromv. We now adapt all our definitions in Section 3
as follows.F (t,v) is defined as0 if t is entirely invisible
from v, and1 otherwise.N(t) is the normal oft, andR(v)
is the viewing direction ofv. We assume the tessellation of
the camera space is even. Thus,area(v) is the same for all
v.

V (t) =

∑
v∈S

F (t,v) ∗ (R (v) ·N (t)) ∗ area(v)∑
v∈S

(R (v) ·N (t)) ∗ area(v)
(4.3)

Here, we make the assumption that the visibility between
a trianglet and a view trianglev is constant across botht
andv. In general this is not true. However, when trian-
gles in bothM andS are small enough, the error introduced
in the above formula becomes negligible. From each view-
pointv, we render the mesh object with a color-encoding of
the polygon ID using graphics hardware. Then we record
F (t,v) = 1 if at least one pixel has colort in the color

Surface Visibility Measure
Model Size Visibility Processing
(# polygons) Time (mm:ss)

Bunny 69,451 0.958 6:07
Teapot 28,744 0.890 4:58
Dragon 871,414 0.804 24:38
Buddha 1,087,416 0.764 30:14

Locking Tori 9,708 0.728 4:35
Foot Bone 8,790 0.724 4:33

Blade 1,688,933 0.466 58:19
Skull 1,169,608 0.444 37:44
Motor 140,113 0.264 10:56

Table 1: This table shows the surface visibility measure for
several models along with the processing time. The tim-
ing measurements were taken on a SGI Octane of 195 MHz
CPU.

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

Motor (140000 polygons)
Buddha (1087123 polygons)

Figure 3: This diagram shows the tradeoff between the vis-
ibility errors and the number of cameras (calculation time)
for the Motor and the Buddha models. The visibility is cal-
culated with6, 18, 66, 258, 1026 cameras, and is compared
to the visibility calculated with4096 cameras. TheX-axis
represents the number of cameras used for visibility calcula-
tion, and theY-axis represents the visibility error.

buffer.
This approach has two problems that need attention: tri-

angles that are too large, and triangles that are too small
or sliver-shaped. Large triangles increase the error since
F (t,v) is far away from being constant. Small triangles
result in aliasing, or so-called popping effect. When being
viewed from rather poor angles, depending on how the scan-
conversion is done in the rendering system, the presence of
pixels for a particular triangle in the image is not consistent.

To handle triangles that are too large, we subdivide them
such that the length of the longest edge of each triangle after
subdivision is limited by a thresholdl. l is calculated based
on the aspect ratio and worst viewing angle (we use75 de-
grees, where the dot product between the surface normal and
light rays is0.25). To perform the subdivision, we add ver-
tices to the middle of any edge that is longer thanl. For each
triangle, based on the number of the new vertices added to
its edges, we divide it into sub-triangles. This process is re-
peated until all mesh edges are shorter thanl.

While mesh subdivision removes large triangles, it main-
tains or even creates small and sliver triangles, which are
subject to sampling problems. This affects the accuracy of
F (t,v) more for the side views than then the head-on views.
SinceV (t) is defined to favor the head-on views, it is less
sensitive to the sampling problems. Nonetheless, we alle-
viate t he situation by storing a depth buffer along with the
color buffer for each camera pose. To determineF (t,v) for
a small trianglet, we compare the depths of its vertices to



the depths of their respective neighbor pixels. Even without
pixels in the color buffer indicatingt is visible, our algo-
rithm considers it visible if the depth at any of its vertices
is within a tolerance to the depth of a neighbor pixel. With
this method, we are able to use a relatively low resolution
(480× 480) during the rendering process.

The accuracy of our algorithm depends on the sampling
pattern in the camera space. In general, more cameras means
more accurate results. On the other hand, more cameras
means longer calculation time. Figure 3 shows the rela-
tion between the visibility errors with respect to the number
of cameras used for the Motor and Happy Buddha models.
Here, we subdivide an octahedron up to 5 times to generate
6 camera sampling patterns, namely, 6, 18, 66, 258, 1026
and 4098 cameras evenly spaced on a sphere. Assuming the
visibility is accurate using 4098 cameras, we obtain the vis-
ibility errors for the other sampling patterns by calculating
the area-weighted average of the visibility difference. As
one can see, the visibility errors quickly converge, and we
find that 258 cameras seem to be a good comprise between
time and accuracy for all test models.

5 VISIBILITY -GUIDED SIMPLIFICATION

5.1 Algorithm
We observe that many applications do not require process-
ing invisible and low visibility concavity regions. We can
be less concerned with the geometry errors at those parts of
the surface. To put this into practice, we combine our sur-
face visibility measure with a well-known geometric error
measure called the quadric measure [8], which is defined for
each edge in the mesh object. Lete be the next edge to
collapse into a pointv, represented in homogeneous coordi-
nates as(x0, y0, z0, 1)T . LetT be all the triangles inM that
are adjacent to at least one vertex ofe, i.e.,T is the union of
the 1-ring neighborhoods of both vertices of edgee, allow-
ing the triangles in both neighborhoods to be counted twice.
Each trianglet has a plane equation

Atx + Bty + Ctz + Dt = 0 (5.4)

The quadric measure is then defined as

Eq (e) =
∑
t∈T

(distance (v, t))2 (5.5)

i.e.,

Eq (e) =
∑
t∈T

(Atx0 + Bty0 + Ctz0 + Dt)
2 = vT Qv

(5.6)
where

Q =
∑
t∈T




A2
t AtBt AtCt AtDt

AtBt B2
t BtCt BtDt

AtCt BtCt C2
t CtDt

AtDt BtDt CtDt D2
t


 (5.7)

To combine our visibility measure with the quadric measure
we note that the quadric measure is the sum of the squared
distance from a point to many planes. If edgee is adjacent
to some triangles with low visibility, then the distance from
v to this plane makes less visual impact than the distances
from v to high visibility triangles if the geometric errors are
the same. Our visibility-guided error measure is defined as

Ev (e) =
∑
t∈T

(distance (v, t) V (t))2 (5.8)

Ev(e) guides which edges are collapsed, that is, this mea-
sure is used to order the priority queue.

Recall the meaning ofV (t) as the weighted sum of dot
products between a triangle’s normal with incoming ray di-
rections, our visibility-guided error measure for one triangle
is the weighted average projected distance from all viewing
directions. This means edges with higher geometric errors
can be chosen for removal if they situate in extremely low
visibility regions, such as interiors and creases. We use the
original quadric matrix to select the best new vertex location
for the collapsed edge as described in [8]. For computa-
tional purpose, our measure is written as

Ev (e) = vT Qvv (5.9)

where

Qv =
∑
t∈T







A2
t AtBt AtCt AtDt

AtBt B2
t BtCt BtDt

AtCt BtCt C2
t CtDt

AtDt BtDt CtDt D2
t


V 2 (t)




(5.10)

5.2 Results
To compare the quality of the two simplification meth-
ods, we select the following image-based root-mean-squared
(RMS) error, based on the method of Lindstrom and
Turk [15]. For the original modelM0 and the simplified
modelMi, we render both models from the twenty vertices
of a surrounding dodecahedron using flat shading. The RMS
“image” error between the images is calculated as:

RMS (Mi, M0) =

√√√√
20∑

n=1

Dn
i (5.11)

Here,Dn
i is the squared sum of pixel-wise intensity differ-

ence between then-th image ofMi andM0. Essentially we
are evaluating how similar the original and simplified mod-
els appear when rendered.

For each of the six test model, we select seven target
polygon counts, and apply both the quadric-based (QB)
method [8] and our visibility-guided (VG) method. Figure 4
shows the comparisons between the image errors and the ge-
ometric errors obtained using the Metro program [4] for the
simplified models of the same polygon counts. Results ob-
tained for the QB method are painted using blue lines, and
those for the VG method are painted using red lines. The im-
age errors are painted using regular lines with diamonds, and
the geometric errors are painted using wider lines. This fig-
ure shows that the VG method in general generates smaller
image errors but incurs greater geometric errors than the QB
method. The greater geometric errors occur in low visibility
regions.

Figure 5 shows the visual comparisons for the Motor
model, a car engine model with 140,113 polygons (middle).
This model has a large number of invisible polygons with
high curvatures occluded by its main exterior feature, a box.
The exterior also contains several mechanical parts. For the
simplified models (QB on the left, and VG on the right)
with the same polygon count of 15,000, the VG method has
51.77% less image error as the QB method. In fact, the
image error for the VG method of polygon count 12,000 is
about equal to that for the QB method of 27,000 polygons
(Figure 4). This is not surprising since the quadric errors
for the original Motor model’s interior edges are higher than
that of most exterior features. When the regions with low



9000150002100027000

0.02

0.04

0.06

Motor

9000150002100027000

2

4

6

5000150002500035000

0.02

0.03

0.04

Skull

5000150002500035000

2

3

4

5000150002500035000
0.025

0.03

0.035

0.04

0.045
Blade

5000150002500035000

3

3.5

4

4.5

5000150002500035000

0.02

0.04

Locomotive

Image(QB)
Image(VG)
Geom(QB)
Geom(VG)

5000150002500035000

1.5

2

5000150002500035000

0.02

0.03

Dragon

5000150002500035000

1.5

2

5000150002500035000

0.02

Budda

5000150002500035000
0.8

0.9

Figure 4: Image error (diamond) and geometric error (wider line) comparisons between the quadric simplification method
(blue) and our visibility-guided method (red) at 7 levels in the progressive meshes. TheX-axis represents the numbers of
polygons for each level. The leftY-axis represents represents the image error and the rightY-axis represents the geometric
error. Motor, Skull, Blade and Locomotive models show significant improvement due to the large percentage of interiors.
Buddha and Dragon models show small but noticeable improvement due to the large percentage of low visibility regions.

Simplification comparisons
(running time in minutes:seconds)

Model Size Visibility Time Calculating Time Simplification Less Image Error Incurred with VG
(# polygons) Visibility (quadric and visibility) than with QB under Flat Shading

Motor 140,113 0.264 10:56 0:24 51.77%
Skull 1,169,608 0.444 37:44 4:18 11.51%
Blade 1,688,933 0.446 58:19 6:36 10.22%

Locomotive 183,450 0.538 11:14 0:32 7.41%
Dragon 871,414 0.804 24:38 2:31 2.44%
Buddha 1,087,416 0.764 30:14 3:06 2.12%

Table 2: This table shows the comparison between six test models, with their polygon counts, visibility measure, image error,
and the calculation time the visibility measure as well as processing time for simplification. The timing measurements were
taken on a SGI Octane with a 195 MHz CPU.

quadric errors have been simplified, the QB method starts
simplifying the exterior features. The VG method simpli-
fies the interior regions despite their relatively high quadric
errors.

Also shown in Figure 6 is the Blade model created from
CT data of an actual turbine blade (middle: original model
with 1,688,933 polygons, left: QB method, and right: VG
method, both with 15,000 polygons). It also contains a large
number of interior polygons. Again, the VG method per-
forms better than the QB method. Note the difference at the
letters on the base (bottom row) and the features along both
sides of the blade (both rows).

Medical imaging data sets often contain large interiors
and concavities. The Skull model, created from 124 CT
scan slices, is shown in Figure 7 (middle: the original model
with 1,169,608 polygons, left: QB method, and right: VG
method, both with 10,000 polygons). To remove the contour
lines that are artifacts of the reconstruction algorithm, we
performed Taubin’s smoothing method [23] before simplifi-
cation. This model does not have many invisible polygons,
but it has a large number of polygons with low visibility.

The VG method maintains better triangulations than the QB
method around the regions of the teeth and their roots, as
well as the forehead.

To understand the range of applicability of our method,
we tested our method against models that has a relatively
small amount of low visibility regions. The Buddha model
and the Dragon model (not shown), created using range
scan and surface reconstruction, belong to this category. As
shown in Figure 4, the visibility-guided method consistently
perform better although the improvement is less than that
of other models. Figure 8 shows the visual comparisons
for the Buddha model (bottom middle: original model with
1,087,416 polygons, bottom left: QB method, and bottom
right: VG method, both with 20,000 polygons). The main
difference is mainly around the face. Note the features in
this regions are better maintained using our VG method than
using the QB method.

From the analysis above, it appears that the amount of
improvement is related to the overall visibility measure of
the surface, see Table 2. The last column lists the average of
the percentage differences in the image errors incurred using



VG method than using the QB method for the seven levels.
The table also lists the processing time for each test model,
including the time to calculate the visibility measure, and the
time to perform visibility-guided simplification. Note that
the time required for the QB method and the VG method
differ very little (< 1%). Therefore, if a model’s visibility
measure has been pre-computed, the visibility-guided sim-
plification does not require more time than that is needed by
other edge-collapse mesh simplification algorithms.

6 CONCLUSION AND FUTURE WORK
In this paper, we defined a view-independent visibility mea-
sure to classify mesh surface regions based on how easy they
are to see from the outside. This visibility measure depends
on the visibility function between the mesh surface and a
surrounding sphere of cameras. We combined our visibility
measure with the quadric measure to perform mesh simpli-
fication. The visibility-guided method produces improve-
ments (measured according to image differences) that are
related to the amount of low-visibility regions in the mesh.

As a possible next step, we would like to find algorithms
to calculate the visibility function more accurately. One pos-
sibility is to allow the visibility function to have values be-
tween0 and1 as a probability for views at poor angles or
insufficient resolutions. Also, we would like to perform out-
of-core visibility calculations for large models such as those
obtained through the digital Michelangelo project [14].

We are also exploring other applications for our visibility
measure, including shape matching and texture mapping.

The visibility function and the visibility measure describe
the self-occlusion properties of mesh objects. Therefore, it
is possible that the distribution of the visibility measure can
be used in shape matching and feature recognition.

In texture mapping, the surface of an object is often di-
vided into patches. Every patch is independently unfolded
onto a plane before all the patches are packed into the tex-
ture map. Since mesh interiors do not contribute the final
images for opaque objects, we do not need to assign space
for them. Also, regions with low visibility measure will be
viewed from poor angles, allowing us to be less concerned
about their stretch during the texture unfolding process.

7 ACKNOWLEDGEMENT
We would like to thank the following people and groups for
the 3D models they provided: Will Schroeder, Ken Martin,
Bill Lorensen, Bruce Teeter, Terry Yoo, Mark Levoy and
the Stanford Graphics Group. Also, we would like to thank
Michael Garland for the QSlim code. Finally, we thank the
anonymous reviewers for their excellent suggestions.

This work is funded by NSF grant ACI 0083836.

REFERENCES
[1] APPEL, A., Some Techniques for Shading Machine Renderings of

Solids ,SJCC, 1968, pp. 37-45.

[2] BOUKNIGHT, W.J., A procedure for Generation of Three-
Dimensional Half-toned Computer Graphics Representations,Comm,
ACM 13, 9, September 1969.

[3] CATMULL , E., A Subdivision Algorithm for Computer Display of
Curved Surfaces,Ph.D Thesis, Report UTEC-CSc-74-133, Computer
Science Department, University of Utah, Salt Lake City, UT, Decem-
ber 1974.

[4] CIGNONI, P., ROCCHINI, C., andSCOPIGNO, R., Metro: measuring
error on simplified surfaces,Computer Graphics Forum, vol. 17, no.
2, pp. 167-174, June 1998.

[5] COHEN, M.F., andGREENBERG, D.P., The Hemi-Cube: A Radios-
ity Solution for Complex Environments,Computer Graphics Proceed-
ings, vol. 19, no. 3, pp. 31-40, 1985.

[6] FEKETE, G., andDAVIS , L.S., Property spheres: a new representation
for 3-D object recognition,Proceedings of the Workshop on Computer
Vision: Representation and Control, Annapolis, MD, April 30-May
2, 1984, pp. 192-201.

[7] FUCHS, H., KEDEM, Z.M., andNAYLOR , B.F., On Visible Surface
Generation by A Priori Tree Structures,SIGGRAPH 80, 1980, pp. 124-
133.

[8] GARLAND , M. and HECKBERT, P.S., Surface Simplification using
Quadric Error Metrics,Computer Graphics Proceedings, Annual Con-
ference Series (SIGGRAPH 97), pp. 209-216.

[9] GIGUS, Z., andMALIK , J., Computing the aspect graph for the line
drawings of polyhedral objects,IEEE Trans. on Pat. Matching &
Mach. Intelligence, February 1990, 12(2).

[10] HEBERT, M., andKANADE , T., The 3-D profile method for object
recognition,Proceedings, CVPR ’85 (IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition), San Francisco,
CA, June 1985, pp. 458-463.

[11] HOPPE, H., Progressive Meshes,Computer Graphics, (SIGGRAPH
1996 Proceedings), pages 99-108.

[12] HOPPE, H., New quadric metric for simplifying meshes with appear-
ance attributes,IEEE Visualization 1999, October 1999, pp. 59-66.

[13] KOENDERINK, J.J., andVAN DOORN, A.J., The singularities of the
visual mapping,BioCyber, 1976, 24(1), pp. 51-59.

[14] LEVOY, M., PULLI , K., CURLESS, B., RUSKINKIEWICZ , S.,
KOLLER, D., PEREIRA, L., GINZTON, M., ANDERSON, S., DAVIS ,
J., GINSBERG, J., SHADE, J., andFULK , D., The Digital Michelan-
gelo Project: 3D Scanning of Large Statues ,SIGGRAPH Proceedings
2000, 2000, pp. 131-144.

[15] L INDSTROM, P. and TURK, G., Image-Driven Simplification,ACM
Transactions on Graphics, 19(3), July 2000, pp. 204-241.

[16] MYERS, A.J., An Efficient Visible Surface Program,Report to Na-
tional Science Foundation, Computer Graphics Research Group, Ohio
State University, Columbus, OH, July 1975.

[17] NOORUDDIN, F.S, andTURK, G., Interior/Exterior Classification of
Polygonal Models,Visualization 2000 Conference, Salt Lake City,
Utah, Oct. 8-13, 2000, pp. 415-422.

[18] PLANTINGA , W.H., andDYER, C.R., An algorithm for constructing
the aspect graph,27th Annual Symposium on Foundations of Computer
Science, Los Angeles, Ca., USA, October 1986, pp. 123-131.

[19] RONFARD, R., and ROSSIGNAC, J., Full-range approximations of
triangulated polyhedra,Proceedings of Eurographics96, Computer
Graphics Forum, pp. C-67, Vol. 15, No. 3, August 1996.

[20] SCHUMACKER, R.A., BRAND, B., GILLILAND , M., andSHARP, W.,
Study for Applying Computer Generated Images to Visual Simula-
tion, AFHRL-TR-69-14, US Air Force Human Resources Laboratory,
September 1969.

[21] STEWMAN , J., andBOWYER, K., Direct construction of the perspec-
tive projection aspect graph of convex polyhedra,Computer Vision,
Graphics and Image Processing, July 1990, 51(1), pp. 20-37.

[22] SUTHERLAND, I.E., SPROULL, R.F. and SCHUMACKER, R.A., A
characterization of ten hidden-surface algorithms,ACM Computing
Survey, 6(1), March 1974, pp. 1-55.

[23] TAUBIN , G., A signal Processing Approach to Fail Surface Design,
Computer Graphics Proceedings, (SIGGRAPH 1995 Proceedings)
August 1995, pp. 351-358.

[24] WARNOCK, J.E., A Hidden-Surface Algorithm for Computer-
Generated Halftone Pictures,Computer Science Department, Univer-
sity of Utah, TR 4-15, June 1969.

[25] WATKINS , G.S., A Real-Time Visible Surface Algorithm,Computer
Science Department, University of Utah, UTECH-CSC-70-101, June
1970.

[26] WATTS, N.A., Calculating the principle views of polyhedron,
Ninth International Conference on Pattern Recognition, Rome, Italy,
November 1988, pp. 316-322.

[27] WEILER, K., and ATHERTON, P., Hidden Surface Removal Using
Polygon Area Sorting,SIGGRAPH 77, pp. 214-222.

[28] WHITTED, T., An Improved Illumination Model for Shaded Display,
ACAM, 23(6), June 1980, pp. 343-349.



Figure 5: Visual comparisons between the original Motor model (Middle, 140,113 polygons), and the simplified versions using
the quadric-only method (Left, 15,000 polygons) and the visibility-guided method (Right, 15,000 polygons). All images are
rendered using flat shading. Compare the overall shape of the trunk and mechanical parts.

Figure 6: Visual comparisons between the original Blade model (Middle, 1,688,933 polygons), and the simplified versions
using the quadric-only method (Left, 15,000 polygons) and the visibility-guided method (Right, 15,000 polygons). All images
are rendered using flat shading. Compare features such as the letters on the base (bottom row), the column of rectangular vents
along the right edge, and the small holes along the left edge (both rows).



Figure 7: Visual comparisons between the original Skull model (Middle, 1,169,608 polygons), and the simplified versions using
both the quadric-only method (Left, 10,000 polygons) and the visibility-guided method (Right, 10,000 polygons). All images
are rendered using flat shading. Compare features such as the teeth and forehead.

Figure 8: Visual comparisons between the original Buddha model (Bottom Middle, 1,087,416 polygons), and the simplified
versions using the quadric-only method (Bottom Left, 20,000 polygons) and the visibility-guided method (Bottom Right, 20,000
polygons). All images are rendered using flat shading. The top row images use the red channel to encode image differences
between the bottom row images. Note that the top left image (difference between the bottom center image and the bottom left
image) has more areas of red than the top right image (difference between the bottom center image and the bottom right image).


