
Texture Synthesis on Surfaces

Greg Turk

GVU Center, College of Computing
Georgia Institute of Technology

Abstract

Many natural and man-made surface patterns are created by inter-
actions between texture elements and surface geometry. We believe
that the best way to create such patterns is to synthesize a texture
directly on the surface of the model. Given a texture sample in the
form of an image, we create a similar texture over an irregular mesh
hierarchy that has been placed on a given surface.

Our method draws upon texture synthesis methods that use im-
age pyramids, and we use a mesh hierarchy to serve in place of such
pyramids. First, we create a hierarchy of points from low to high
density over a given surface, and we connect these points to form a
hierarchy of meshes. Next, the user specifies a vector field over the
surface that indicates the orientation of the texture. The mesh ver-
tices on the surface are then sorted in such a way that visiting the
points in order will follow the vector field and will sweep across
the surface from one end to the other. Each point is then visited in
turn to determine its color. The color of a particular point is found
by examining the color of neighboring points and finding the best
match to a similar pixel neighborhood in the given texture sample.
The color assignment is done in a coarse-to-fine manner using the
mesh hierarchy. A texture created this way fits the surface naturally
and seamlessly.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—display algorithms; I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling—surfaces and object
representations

Keywords: Texture synthesis, texture mapping.

1 Introduction

There are a wide variety of natural and artificial textures that are in-
fluenced by the surfaces on which they appear. We will use the term
surface textureto describe such geometry-influenced textures and
to distinguish them fromsolid textures[17, 15]. Natural examples
of surface textures include the pattern of bark on a tree, spots and
stripes on a wide variety of animals (mammals, fish, birds, etc.),
the placement of hair and scales on an animal, and the pattern of
flowers and trees on a hillside. Human-made textures that are tai-
lored to the surface geometry include the fabric pattern on furni-
ture, the stone patterns on walls and buildings, and the marks of
a chisel on a sculpture. Most techniques in computer graphics for
making surface textures have concentrated either on the placement
of an already existing texture on a given surface or on the synthe-
sis of texture on a regular 2D array of pixels. The texture synthesis

turk@cc.gatech.edu

method presented in this paper is guided by our belief that these two
tasks, texture synthesis and texture placement, should be performed
simultaneously to create surface textures.

An ideal texture creation system would allow a user to provide
a 3D model to be textured, a sample of the texture to be placed on
the model, and a guide to the orientation of the texture. To texture
a leopard, for example, the user should be able to scan an image
of leopard spots and then give this image (thetexture sample) to
the texturing system. The system would then make similar look-
ing spots all over the surface of a polygonal cat model, guided by
orientation hints from the user. Many methods exist that will cre-
ate an arbitrary amount of additional texture from a given texture
sample, and we refer to these astexture-from-samplemethods. Un-
fortunately, all such methods that have been published create the
new texture over a regular lattice of pixels. The user is still left with
the burden of wrapping this texture over a model.

In this paper we use ideas that are adapted from texture-from-
sample methods to directly synthesizing texture on a polygonal sur-
face. We first create a hierarchy of meshes over the surface, and we
use this mesh hierarchy much like an image pyramid [1]. Each point
in the mesh hierarchy is eventually given a color, and the collection
of colored points form the final texture. We create the new tex-
ture by performing operations on these surface points in a way that
mimics image processing operations used in several texture-from-
sample methods. The main challenge is adapting the 2D pixel grid
operations to similar operations on a mesh hierarchy. The specific
approach that we use is to color a point based on finding a close
match between neighboring points in the mesh that have already
been colored and similar 2D pixel neighborhoods in the given sam-
ple texture. The distance metric used for matching is the sum of the
squared differences between the color components. A key aspect
of performing such matches is to visit the points in such an order
so that when a given point is visited, all of the points to one side of
this point have already been assigned a color. We achieve this by
sweeping across all of the points according to a user-defined vector
field, and this vector field determines the orientation of the texture.

2 Previous Work

2.1 Texture Placement

There are many ways in which to take an existing texture from
a rectangular pixel array and wrap it onto a surface. The goals
of these methods are to avoid noticeable seams between texture
patches and to minimize the amount of stretching and distortion
of the pattern. Maillot et al. used a deformation tensor to describe
an energy measure of distortion that they minimized over a surface
made up of triangles [13]. They also use an atlas to piece together
a final texture from several patches. A similar energy-guided ap-
proach was taken by Levy and Mallet [12]. Their energy term
penalizes distortions, but also incorporates additional constraints
such as user-defined curves and cuts in the surface. Related to
these energy-minimizing methods is the texture pelting approach
of Piponi and Borshukov [18]. This method treats the surface of
a model like the skin of an animal that is opened at the belly and
then stretched onto a circular rack. Pedersen described a way of
allowing a user to interactively position texture patches on implicit
surfaces with low distortion [16].

The lapped texture technique of Praun et al. takes one or more
irregularly shaped texture patches and place many copies of the
patches in an overlapping fashion over a surface [19]. These
patches are oriented according to a user-defined vector field and
they are mapped in a way that minimizes distortion. For many
textures this method produces excellent results, the nature of the
overlapping patches is often unnoticeable.

2.2 Procedural Texture Synthesis

We describe here a few of the many methods that have been
proposed for creating textures by procedural means. Perlin and
Peachey independently invented the solid texture – a function that
returns a color value at any given point in 3-space [17, 15]. Solid
textures are ideal for simulating surfaces that have been carved out
of a block of material such as wood or marble. Perlin also intro-
duced the 3D noise function, which can be used to create patterns
such as water waves, wood grain and marble. Worley created a cel-
lular noise function, a variant of 3D noise that has discontinuities,
and this function is useful for creating patterns such as waves and
stones [29]. Neyret and Cani have developed a novel method of
generating a small number of triangular tiles (typically four) that
can be used to texture a surface [14]. Each of the tiles is created in
such a way that its edge matches the edge of other tiles so that the
texture appears to be seamless when the tiles are placed adjacent to
one another.

Reaction-diffusion is a chemical process that builds up patterns
of spots and stripes, and this process can be simulated to create tex-
tures. Witkin and Kass demonstrated that a wide variety of patterns
can be created using variations of one basic reaction-diffusion equa-
tion [27]. Turk demonstrated that a simulation of reaction-diffusion
can be performed on an array of cells that have been placed over
a polygonal surface [23]. Because the simulation proceeds directly
on the surface, the spot and stripe patterns of this method are undis-
torted and without seams. Fleischer et al. demonstrated how inter-
acting texture elements on a surface can be used to create texture
geometry such as scales and thorns on a surface [5]. Walter and
Fournier showed that another biological mechanism, cell cloning,
can be simulated on a collection of cells to produce a variety of
patterns found on animals [24].

2.3 Texture Synthesis from Samples

Many people have noted the limitations of the procedural texture
synthesis approach, namely that creating a new texture requires a
programmer to write and test code until the result has the right
“look”. A different approach to texture synthesis is to allow the
user to supply a small patch of the desired texture and to create
more texture that looks similar to this sample.

Simoncelli and Portilla make use of statistics that summarize re-
lations between samples in a steerable pyramid in order to synthe-
size a texture [20]. Their method is a very successful example of the
parametric method of analysis and synthesis, where image statistics
are used to describe the texture and to create more texture. We refer
the interested reader to their bibliography for many other parametric
approaches. Heeger and Bergen make use of Laplacian and steer-
able pyramid analysis of a texture sample to create more texture [8].
They initialize a pyramid with white noise, create a pyramid from
the texture sample, and then modify the noise so that its histogram
matches the histograms of the color samples at each level in the
sample texture’s pyramid. Collapsing the pyramid gives a new im-
age, and repeated application of this entire process creates a texture
similar to the original. DeBonet also makes use of a multi-scale
pyramid analysis to perform synthesis [2]. He makes use of two
Laplacian pyramids (one for analysis and one for synthesis) as well
as edge and line filters to analyze the texture. He visits the levels of
the synthesis pyramid from top to bottom, and the “ancestor” sam-
ples of a pixel to be synthesized are matched against the analysis
pyramid. The new pixel is selected randomly from among the best
matches.

Figure 1: Vertex colors on three levels in the mesh hierarchy. The
orientation field for this example flows from left to right on the
sphere, and the texture used is the same as on the ray in Figure 5.
Mesh vertices are rendered as flattened spheres to show their colors.

Efros and Leung make a more direct use of the texture sam-
ple [4]. They first create a tiny seed image by copying a few pix-
els from the texture sample, and then they visit pixels surrounding
this seed in a spiral pattern. They examine the pixels in a large
square patch surrounding a given pixel, and look for the best few
matches to this patch in the texture sample. They randomly select
from among these matches, and this is the new color for the syn-
thesized pixel. Wei and Levoy use a similar method to synthesize
texture, but they visit the pixels in a raster scan order and they also
use a multi-scale framework [25]. Instead of matching neighbor-
hood pixels from a single image, they perform the matching based
on two adjacent levels in Gaussian pyramids. They use vector quan-
tization to dramatically speed up this matching process.

The texture creation method of our paper combines the textures-
from-samples method of Wei and Levoy and the surface synthesis
approach exemplified by [23, 5]. We have recently learned that
other researchers have also extended texture-from-sample methods
to surfaces and have produced wonderful results [26, 30].

3 Creating a Mesh Hierarchy

Our own work adapts ideas from the texture-from-sample methods
to the task of creating a texture that is made specifically for a given
polygonal surface. Unfortunately all of these methods assume that
one is working with a regular grid of pixels, and there is no way
to create such a regular grid over an arbitrary surface. Instead, we
create a set of points that evenly cover the surface but that are not in
a strictly regular arrangement. Because hierarchical synthesis tech-
niques produce high-quality results, we make use of a hierarchy of
points. The highest level of the hierarchy is a set of points that
sparsely covers the model. The next level of the hierarchy contains
four times this number of points, and this pattern repeats down to
the finest level of the point hierarchy. A mesh is formed for each
level of the hierarchy, and each mesh specifies the connectivity be-
tween points within a given level.

Given a polygonal model of an object to be textured, why don’t
we just use a texture synthesis method that operates directly on the
vertices of the original mesh of polygons? For the simple reason
that we have no guarantees about the density of these original ver-
tices. We do not know if there are enough of these vertices to create
a detailed texture once each is assigned a color. Furthermore, the
vertex density may vary a good deal from one location to the next,
and these density variations will cause problems during synthesis.
Given that we need to create our own mesh over the surface, there
are still choices to be made. We can attempt to re-mesh the surface
so that we have a semi-regular mesh structure (like the polygons
created from subdivision surfaces), or we can use an irregular mesh
structure. In this paper we have opted for an irregular mesh struc-
ture, although we believe that similar methods to our own can be
applied to semi-regular meshes as well.

Our goal in creating a mesh hierarchy is to match the basic struc-
ture of a Gaussian pyramid [1]. For a Gaussian pyramidG(I), we
will call G1(I) the highest resolution level of the pyramid, and

G2(I), G3(I) and so on are successively lower resolution levels
in the pyramid. Each pyramid levelGk+1(I) has one-quarter the
number of pixels than in the higher resolution levelGk(I). A pixel
Gk(i, j) at level k can be said to be thechild of its parent pixel
Gk+1(bi/2c,b j/2c) in the lower resolution levelk+1, and this child
pixel is one of four pixels that share the same parent. Another way
to view an image pyramid is that some pixels are present in more
than one level in the pyramid, and that these pixels have a color as-
sociated with each level in which they are present. From the highest
resolution level of the pyramid (G1, the original image), one out of
four pixels is also retained in the next levelG2. One fourth ofthese
pixels are also present inG3, and so on. We wish to retain this same
structure in our mesh hierarchy.

3.1 Point Placement and Connectivity

Assume we are building anm-level mesh hierarchy, and that at each
levelk of the hierarchy is a meshMk = (Vk,Tk) described by its ver-
ticesVk and its trianglesTk. We create such a hierarchy by placing
n points on the surface, connecting these to form a mesh, placing
3n additional points on the surface, creating a second mesh that
contains all 4n points, adding more points to make a total of 16n
points, and so on. We place the originaln points on the surface
at random, then use repulsion between points to spread them out
evenly over the surface. There are several published methods that
place points on surfaces using repulsion [23, 28, 5, 11], and we
use the method of Turk [23]. These firstn points will become the
mesh verticesVm at the lowest resolution level of the hierarchy. Af-
ter these firstn points have been evenly placed, their positions are
fixed, 3n more point are put on the surface, and these new points
are repelled by one another and by then original points. The re-
sult is two sets of points that together evenly cover the surface. The
union of these two sets of points form the verticesVm−1 of mesh
Mm−1. Note that all of the points inVm are also inVm−1, much like
when a pixel is present in several levels of the Gaussian pyramid.
The point placement process is performedm times, and the union
of all points that have been placed on the surface are the verticesV1
of the most detailed meshM1. Figure 1 shows the vertices from a
three-level mesh hierarchy on a sphere. These vertices are rendered
as flattened spheres to show their texture color, and the method of
arriving at these colors will be described later.

Once all the points have been placed on the surface, the mesh
connectivity must be calculated for each level of the mesh hierar-
chy. We connect a point by projecting nearby points to a tangent
plane and performing Delaunay triangulation, and this determines
which other points should be connected to the point in question.
This projection method can on rare occasions cause nearby points
to disagree on whether or not they should be connected, in which
case we force the two points to be connected to one another.

3.2 Operations on Mesh Hierarchy

While performing texture synthesis we will make use of several
quantities that are stored at the mesh vertices, including colorC(v),
a vectorO(v) for texture orientation, and a scalar values(v) that we
call thesweep distancefrom the synthesis initiation point. In order
to perform texture synthesis, we make use of several operations on
a mesh that act on these quantities:

• Interpolation

• Low-pass filtering

• Downsampling

• Upsampling

As it turns out, only the first two of these, interpolation and low-
pass filtering, are absolutely necessary for the method of this paper.
Upsampling and downsampling are useful for accelerating some
portions of the method. We describe our implementation of these
four operations below, and we will use color as the quantity being

operated on with the understanding that operations on other quanti-
ties are similar.

Interpolation on a mesh is the process of determining the color
at a given positionp on the surface, wherep might not be at a mesh
vertex. To perform color interpolation, we use weighted averages
of the colors at nearby mesh vertices. This method finds all of the
mesh verticesv1,v2, . . . ,vt within a particular radiusr of the point
p. The value of the colorC(p) is then:

C(p) =
∑t

i=1 w(|p−vi |/r)C(vi)
∑t

i=1 w(|p−vi |/r)
(1)

We usew(x) = 2 f 3−3 f 2 + 1 for the weighting function, which
has the propertiesw(0) = 1 andw(1) = 0. Mesh vertices nearpgive
the largest contribution, and their contributions fall off smoothly as
their distances approachr.

Another important operation that we use is to low-pass filter
(blur) the colors at the mesh vertices. Here we borrow techniques
from mesh smoothing [22, 3, 7]. The basic step in mesh smoothing
is to move a vertex from its old positionvold to a new positionvnew
that is influenced by then vertices that are directly connected to the
vertex on the mesh:

vnew= vold + t
n

∑
i=1

wi(vi −vold) (2)

In the above equation, the value oft must be fairly small (e.g.t =
0.1) to guarantee stability. This equation is applied repeatedly to all
the vertices in order to smooth a mesh. The valueswi in the above
equation weight the contribution of the vertexvi , and we weight
according to inverse edge length (normalized by the sum of all the
weights), as suggested in [22] and [3]. Similarly to Equation 2,
we can calculate the new color at a vertexv based on the colors of
adjacent mesh vertices:

Cnew(v) = Cold(v)+ t
n

∑
i=1

wi(C(vi)−Cold(v)) (3)

We can define valuesα andβi and re-group the terms to write
this in a slightly simpler form:

Cnew(v) = αCold(v)+
n

∑
i=1

βiC(vi) (4)

We perform low-pass filtering of the colors on a mesh by re-
peated application of Equation 4.

The two other mesh operations (upsampling and downsampling)
can be implemented directly from the first two. Downsampling is
the operation used to create a Gaussian pyramid. It is the process
of taking the colors at one pyramid level, blurring them, and then
dropping every other pixel horizontally and vertically to make a
four-to-one reduction in image size. These new pixels then make
up the next lower resolution level in the pyramid. We can perform
a similar operation on meshes. For a vertexv that appear in more
than one level in a mesh hierarchy, we keep a separate colorCk(v)
for each levelk on which the vertex appears. We downsample from
meshMk to the lower-resolution meshMk+1 by blurring the colors
on meshMk and then inheriting the colorCk+1(v) at a vertexv in
meshMk+1 from its blurred color value in meshMk.

The other between-level operation, upsampling, is also simple
to implement on a mesh hierarchy. On pyramids, upsampling is the
process of enlarging an image on levelk+1 to produce a new image
for level k that has four times as many pixels. We upsample from
levelk+1 to levelk by taking the position of a vertexv in meshMk
and interpolating the color at that position using weighted average
mesh interpolation on the less-detailed meshMk+1.

With these four operations in hand, we have the necessary tools
to accomplish our first task in texture synthesis: specifying the ori-
entation of the texture over the surface.

Figure 2: User’s orientation input (left), the interpolated orientation field (middle), and the sweep values shown using color cycling (right).

4 Vector Fields and Surface Sweeping

Many natural and man-made textures have a strong directional com-
ponent to them. In order to preserve the directional nature of tex-
tures, an orientation field must be specified over the surface to be
textured. We do this by allowing a user to pick the direction of the
texture at several locations and then interpolating the vectors over
the remainder of the surface. We typically used roughly a dozen
user-defined vectors for the examples shown in this paper. Several
methods have been presented that interpolate vectors over a surface,
including [19, 9]. We present a fast new method of performing vec-
tor interpolation that uses our mesh hierarchy.

4.1 Vector Field Creation

Our vector field interpolation method is inspired by the pull/push
sparse interpolation method of Gortler et al. [6]. First, each vertex
in the meshM1 is assigned a zero length vector except where the
user has specified a direction. We perform a number of downsam-
pling operations, and this “pulls” the user-defined vector values up
to the coarsest meshMm. Many of the vertices on this mesh still
have zero length vectors, so we need to perform interpolation over
this mesh. We fix the non-zero vector values, and then diffuse the
vector values over the rest of the surface using Equation 4 (adapted
to vector values). At each diffusion step we project the vectors
onto the surface’s tangent plane. Once all vertices on this coarse
mesh are non-zero, we then upsample the vector values to the mesh
Mm−1, Mm−2 and so on until we arrive at meshM1. We normalize
the vectors after each upsampling. After the final upsampling step,
all of the vertices of the finest mesh have a vector value. Figure 2
(left and middle images) demonstrates the creation of a vector field
by this method. The method is fast, typically less than 30 seconds
for a four-level mesh hierarchy with 256,000 vertices.

4.2 Surface Sweeping

Once we have created an orientation field, we then use it to define
an ordering to the points on the surface. Our goal is to use this
ordering to make a sweep across the surface that follows the vector
field. Such a sweep over the surface will mimic sweeping down the
scanlines of a raster image.

We begin the ordering process by randomly selecting an anchor
vertexA on the surface from which we will measure distances along
the vector field. We have found that the choice of anchor vertex is
not important to the results of our method. Our task is then to assign
a scalar values(v) that we call thesweep distanceto each vertex
v that will measure distance along the vector field fromA. The
further downstream a vertex is from the anchor vertex, the larger
its values(v) will be, and vertices upstream from the anchor will
take on negative sweep distances. If we rotate our vector field by

90 degrees, then the sweep distance resembles astream functionfor
2D incompressible fluid flow [10].

We calculate the valuess(v) on a mesh using a modified diffu-
sion process. Initially the anchor pointA is given a values(A) of
zero, and the values fors(v) for all other vertices are derived from
this. Similar to diffusion of color values (described in Section 3.2),
the new values(v) for a vertex is given by a weighted sum of the
values that the neighboring vertices believe thatv should take on.
Consider a vertexw that is adjacent tov (that is, they share an edge
of the mesh). We will calculate how much further along the vector
field v is thanw, and we measure these distances in the direction
of the local orientation of the vector field. We calculate the con-
sensus orientation of the vector field near the two vertices by av-
eraging their orientations(O(v)+O(w))/2, and then by projecting
this vector onto the tangent plane of the surface and normalizing it.
Call this consensus orientationOvw. We project the positionsv and
w of the two vertices onto this consensus orientation and take the
difference: ∆w = v ·Ovw−w ·Ovw (see Figure 3). This value∆w
measures how much further downstreamv is from w, sow believes
thats(v) should be equal tos(w) + ∆w. We calculate the new value
for s(v) as a weighted average of the values that its neighboring
vertices believe it should have:

snew(v) = αs(v)+
n

∑
i=1

βi(s(vi)+∆vi) (5)

Propagating the valuess(v) across the mesh consists of repeated
application of Equation 5 at each mesh point, with one additional
modification. Each vertex of the mesh is in one of two states,as-
signedor unassigned, and each vertexv also has a current approxi-
mation fors(v). Initially only the anchor pointA is in the assigned
state. When Equation 5 is used to calculate the value ofs(v) at a
given vertex, only those vertices that have already been assigned are
allowed to contribute to the weighted sum, and the values forα and
βi are adjusted accordingly. A vertex changes its state from unas-
signed to assigned when at least one of its neighbors contributes to
the sum in Equation 5.

Figure 3: Relative distance along vector field of verticesv andw.

(a) Full square (b) Wei-Levoy causal (c) Half square

Figure 4: Three different pixel neighborhoods.

Just as with vector field creation, we calculate the values fors(v)
first on the coarsest meshMm, then on the next finer mesh and so on
down to the finest meshM1. At this point, all of the vertices of this
most detailed mesh have a values(v) assigned to them. The coarse-
to-fine approach makes calculating the sweep distance fast. Once
we know each values(v), we sort the vertices in increasing order
of s(v), and this defines an order in which to visit the mesh points.
Figure 2 (right image) illustrates the valuess(v) on a topologically
complex surface using color that repeatedly cycles ass increases. It
requires 45 seconds to calculate thes values on our most complex
mesh hierarchies with 256,000 vertices.

5 Textures from Neighborhood Colors

The heart of our texture synthesis method is determining the color
of a mesh vertex based on the colors that have already been assigned
to nearby mesh vertices. Our method is inspired by the texture syn-
thesis methods of Efros and Leung [4] and Wei and Levoy [25]. In
both these methods, the pixel color being chosen in the synthesized
image,S(i, j), is assigned the color of a best-match pixel fromI .
The quality of a match is determined by calculating the (possibly
weighted) sum of squared differences between the already colored
pixels aroundS(i, j) and the pixels surrounding a candidate pixel
I(a,b). The color of the candidate pixelI(a,b) whose neighbor-
hood give the smallest value is copied to the output pixelS(i, j). If
the input texture is non-periodic, no comparisons are done with the
neighborhoods that are at the edges of the imageI . Notice that the
first few pixels that are synthesized will have few or no neighboring
pixels with colors that have already been assigned. These methods
initialize the colors in the output image with values which act as a
“seed” for the texture synthesis process.

The size and shape of a pixel’s neighborhood affect the quality of
the synthesis results, and larger neighborhoods usually give higher
quality results. Figure 4 illustrates three pixel neighborhoods: (a)
a fully populated 5×5 neighborhood, (b) Wei and Levoy’s causal
5×5 neighborhood, and (c) a half-square 5×5 neighborhood. The
circles in this figure mark the pixel whose color is to be determined,
and this pixel’s color is not used in neighborhood matching. Wei
and Levoy point out that a neighborhood like that of (a) uses many
pixels that have not yet been assigned a color, and this produces
poor synthesis results. They use neighborhood (b) because only
those pixels that have already been given a value inS are used if
the pixels are visited in raster scan order. We use neighborhoods (a)
and (c), and we will discuss these more later.

When a neighborhoodN containsk pixels, we can think of the
neighborhood as a flat array of 3k values taken from the pixel col-
ors: N = {r1,g1,b1, . . . rk,gk,bk}. All of the color components are
treated exactly the same, so the distinction between the colors can
be dropped from the notation. The match valueD(M ,N) between
two neighborhoodsM = {m1, . . .m3k} andN = {n1, . . .n3k} is the
component-by-component sum of the squared differences.

This method of using neighborhood comparisons to determine a
pixel color is based on the Markov Random Field (MRF) model for
textures. This model assumes that the color of a pixel is based on
a probability distribution that is given by neighboring pixel values.
Clearly there is a chicken-and-egg problem: pixelA andB may be
in each other’s neighborhoods, so the probability distribution forA
depends on the color ofB and vice-versa. There are several ways

to approximately satisfy the MRF model, and one way is to simply
assign the color of one before the other, as we do in our method. Us-
ing a hierarchical approach (described later) gets around this mutual
dependency between pixel colors to some extent. Finding the best
match between neighborhoods is one way of sampling a probability
distribution for the current pixel.

5.1 Synthesis on a Mesh

A non-hierarchical version of our texture synthesis method on a
mesh proceeds as follows. We make a pass through all of the ver-
tices in the mesh, ordered by their valuess(v), and pick a color for
this vertex from the pixel that has the best match to the vertex’s
neighborhood.

When both the input and output images are regular grids of pix-
els, performing neighborhood matching is straightforward. In the
case of texture synthesis on a surface, however, mesh vertices on
the surface are not arrayed in nearly as regular a pattern as pixels.
We need to define what it means to compare neighborhood colors
on a mesh with pixel colors in an image. The ingredients we need
to do this are the mesh interpolation operator from Section 3.2 and
the vector field on the surface. The vector field gives us a local
frame of reference to orient our movements near each vertex on the
mesh. We can move over the surface either along the vector field
in the directionO(v), or perpendicular to it alongP(v), which we
define to beO(v) rotated 90 degrees counter-clockwise about the
surface normal. The vector fieldsO andP provide us with a local
coordinate system, and allow us to treat the region surrounding a
point as if it was a piece of the plane. We move in units ofr over
the surface, wherer is the average distance between mesh vertices.

We will adopt the convention that pixel locations(i, j) in an im-
age increase ini as we move right, and increase inj as we move
down the image. Similarly, we will move over a surface in the
direction P(v) when we move to the “right” of a vertex, and we
will move in the O(v) direction when we want to move “down”
on the surface. Suppose we wish to compare the neighborhood at
mesh vertexv with the pixel neighborhood at pixelI(a,b). As an
example, let us find the corresponding mesh location for the pixel
I(a+1,b) that is directly to the right of pixelI(a,b). Call the values
(1,0) thepixel offsetfor this neighboring pixel. We find the corre-
sponding point on the mesh by starting atv and traveling a distance
r in the directionP(v). In general, for a pixel offset of(i, j), we
find the corresponding point on the surface by starting on the sur-
face atv, traveling a distanceir in the directionP(v), and then a
distancejr in the directionO(v). We use color interpolation to find
the color at this point on the mesh, and this mesh color is then used
in the neighborhood matching. The task of traveling in the direction
of O(v) or P(v) over the surface is accomplished as is done during
point repelling, by moving over a polygon until an edge is reached
and then folding the path onto the next polygon.

Note that at any given vertex, we only need to calculate its neigh-
borhood colorsN(v) just once. These colors are then compared
against the neighborhood colors of all pixels in the sample imageI
in order to find the best match. The vertex in question gets its new
colorCbestfrom the pixel of the sample textureI that has the closest
neighborhood match. Here is pseudo-code for our texture synthesis
method for an input imageI :

For each vertex v on mesh
C(v) = color of random pixel from I

For each vertex v on mesh (ordered by s(v))
construct neighborhood colors N(v)
smallestmatch= BIG
For each pixel (a,b) in I

construct neighborhood colors M(a,b)
newmatch= D(N(v),M(a,b))
If (newmatch< smallestmatch)

smallestmatch= newmatch
Cbest= I(a,b)

C(v) = Cbest

5.2 Multi-Level Synthesis

The texture synthesis method as described above produces pat-
terned surfaces, but the patterns are not always a good match to
the input texture. In order to produce higher-quality textures we
adopt a multi-level synthesis approach similar to that of Wei and
Levoy [25]. Our method is a coarse-to-fine approach, and we make
use of a Gaussian pyramid of the sample texture and our multi-level
mesh hierarchy. The colors used for the neighborhood matching
are taken from either one or two levels of these hierarchies, and we
make use of several kinds of neighborhoods. Before describing the
full multi-level process, some notation will be useful.

Figure 4 (a) and (c) show the two neighborhoods we use, called
the full-squareandhalf-squareneighborhoods, respectively. Con-
sider a neighborhood of a pixelGk(a,b) on levelk in a Gaussian
pyramidG(I). The notationF(n,0) refers to a full-square neighbor-
hood ofn×n pixels that uses colors from the nearby pixels to the
current pixelGk(a,b). Similarly, H(n,0) is a neighborhood made
of nearby pixel colors in a half-square pattern, withn pixels on its
longest side. The notationF(n,1) refers to a square neighborhood
that gets its colors from pixels at the next lower resolution pyramid
level, and it is centered at pixelGk+1(ba/2c,bb/2c). Each of these
neighborhoods has a similar meaning on a mesh hierarchy. Recall
that many of the vertices are present in several levels of the hier-
archy, and that each vertexv stores a separate colorCk(v) for each
levelk in the hierarchy. The neighborhoodsF(n,0) andH(n,0) at a
vertex take their colors by interpolation of vertex colors at the cur-
rent levelk. The locations of these colors are found by moving over
the mesh in steps of lengthr2k−1. TheF(n,1) neighborhood takes
its colors from mesh levelk+1, and the locations for neighborhood
colors are found by moving in steps of lengthr2k over the surface.

Our best texture results come from making multiple sweeps over
the surface, alternating between two types of neighborhoods that
can be though of as anextrapolatingneighborhood and afeature
refinementneighborhood. The extrapolating neighborhood we use
is F(n,1), and it has the effect of creating colors at levelk solely
based on colors from levelsk + 1. Because mesh levelk+ 1 has
fewer vertices than levelk, this extrapolation produces a low-detail
pattern relative to the mesh density on levelk. Thus we use a second
pass to add more details, and this is done by making use of the more
detailed color information available on the current levelk, as well
as color samples fromk+ 1. Our feature refinement neighborhood
is the concatenation of the two full-square neighborhoodsF(n,0)
andF(bn/2c,1).

The final ingredient needed for texture synthesis on a mesh is
to seed the texture creation process. We first color the vertices at
level k of the mesh from randomly selected pixels on levelk of the
Gaussian pyramidGk(I). Then we use the neighborhoodH(n,0) to
create an initial pattern on levelk from these random colors. We use
this half-square neighborhood to create the initial pattern because
only those vertices to one side of the current vertex have been as-
signed meaningful color values, due to the way in which we sweep
over the surface. Notice that this is the only synthesis step that does
not make use of color values from higher up in the hierarchy. We
have found that the quality of the pattern after this initial synthesis
pass is key to the quality of the final texture. This is the reason we
synthesize the texture in the sweep order – we have found that this
gives us the best coarse initial pattern.

To create a detailed texture, we perform synthesis using several
passes at three or four levels in the mesh hierarchy (see Table 1).
Here are the meshes and neighborhood sizes that we use for three-
level synthesis:

M3 with H(7,0) Create initial pattern
M2 with F(7,1) Extrapolate
M2 with F(7,0)+F(3,1) Refine
M1 with F(7,1) Extrapolate
M1 with F(7,0)+F(3,1) Refine

Figure 1 shows texture creation at three stages of hierarchical
synthesis. The left image shows the results after the first pass on
the low-resolution meshM3. The middle image shows how more
detail is added on the intermediate resolution mesh, and the right
image shows the finished texture on the high resolution mesh. For
textures with especially large features we use four mesh levels, but
we keep the same neighborhood sizes as given above.

6 Displaying the Texture

We are ready to display the texture on the surface once we have
determined a color for every vertex on the finest mesh in the hi-
erarchy. One possibility is to use per-vertex color and display the
detailed meshM1. Because this mesh can be overly detailed, we
choose instead to display the texture on the original user-provided
mesh. We use the approach of Soucy et al. [21] to make a tradi-
tional 2D texture mapT from the synthesized texture. For each
triangle in the original mesh, we map it to a corresponding triangle
in T. The triangles inT are colored using interpolation of the syn-
thesized texture colors. The triangles inT that we use are 45 degree
right triangles of uniform size, but it is also possible to use triangles
that are better fit to the mesh triangle shape and size. The resulting
texture can be rendered on the surface at interactive rates. The im-
ages in Figure 5 were all rendered in this manner using 2048×2048
textures on an SGI Onyx with InfiniteReality graphics. Our input
models are composed of between 10,000 and 20,000 triangles, and
these render with textures at real-time frame rates.

7 Results
Figure 5 show our synthesis results on complex models. The syn-
thesis times varies from a few minutes for simple models to more
than an hour when the texture sample is large (Table 1). We used
meshes with 256,000 vertices for most models.

The stingray is textured using a wiggly checker image that has
been used by a number of researchers in texture synthesis [2, 4, 25].
The vector field spreads out from a point on the ray’s snout, and the
texture must spread out as well to match the user’s desired orienta-
tion. Nevertheless, the created pattern is comparable in quality to
2D synthesis results. The octopus model shows that the synthesis
method has no trouble creating a pattern on branching surfaces (in
this case, eight ways). The middle left image shows scales that we
have placed on the bunny model. The sample image of the scales
is non-periodic (does not tile), yet the synthesis algorithm is able to
create as much texture as it needs. Notice that the rows of scales
can be followed all the way from the ears down to the tail. The
high degree of order of this texture is a result of visiting the mesh
vertices in sweep order during the coarse-level synthesis stage.

The middle right image shows a texture made of interlocking di-
agonal strands of hooks that has been synthesized on the a model
with complex topology, namely three blended tori. The original
texture is periodic, and this periodicity is respected on the created
surface pattern. The strands wrap themselves all the way around the
tubes of the model, and the strands come together in a reasonable
manner where four tubes join. The zebra model has been textured
using a sample image of English text. This texture shows that fine
features such as letter forms can be captured by our approach. The

Model Mesh Points Levels Used Texture Size Time
Ray 64,000 3 64×64 7
Octopus 256,000 3 64×64 34
Bunny 256,000 3 128×128 80
Tori 256,000 4 64×64 23
Zebra 256,000 4 256×256 108
Elephant 256,000 4 64×64 29

Table 1: Models, mesh levels used, sample textures and synthesis
times (in minutes) on an SGI Octane2 with a 360 MHz R12000.

Figure 5: Results of our texture synthesis method on six models. Input textures are shown at the right.

puzzle pieces on the elephant show that the method creates plausi-
ble shapes even when the created pattern doesn’t replicate the input
texture exactly.

It is worth considering whether other existing methods can create
similar results to those in Figure 5. The reaction-diffusion [23, 27]
and the clonal mosaic methods [24] are really the only previous
synthesismethods that tailor a texture to a given surface. Neither of
these approaches can generate the kinds of textures that we show.
Probably the highest-quality texturemappingmethod to date is the
lapped texture work of Praun et al. [19]. Their paper shows a pat-

tern of scales over a complex model, but close examination of the
published images show artifacts where the patch borders blend to-
gether. Moreover, they note in their paper that textures that are
highly structured or that have strong low-frequency components
will cause patch seams to be noticeable when using their method.
The textures we show on the stingray, tori and elephant have these
characteristics, and thus would be poor candidates for using the
lapped texture approach.

8 Conclusion and Future Work
We have presented a method of synthesizing texture that is specif-
ically made for a given surface. The user provides a sample image
and specifies the orientation of the texture over the surface, and the
rest of the process is entirely automatic. The technique may be used
for surfaces of any topology, and the texture that our method pro-
duces follows a surface naturally and does not suffer from distortion
or seams. Key to our approach is the ability to perform image pro-
cessing operations on an irregular mesh hierarchy.

There are several directions for future work. One possibility is
to use the vector quantization approach of Wei and Levoy to speed
up the texture creation process. Another is to adapt other image
processing operations such as edge and line detection to irregular
meshes, and this may lead to even better texture synthesis results.
Another intriguing possibility is to use synthesis methods to pro-
duce appearance changes other than color, such as creating normal
and displacement maps. Finally, the approach we have taken is to
use a 2D image as the input texture, but it should be possible to
extend this method to taking patterns directly from other surfaces.
Imagine being able to “lift” the color, bumps and ridges from one
model and place them onto another surface.

9 Acknowledgements

This work was funded in part by NSF CAREER award CCR–
9703265. Much thanks is due to Ron Metoyer, Jonathan Shaw and
Victor Zordan for help making the video. We also thank the review-
ers for their suggestions for improvements to this paper.

References

[1] Burt, Peter J. and Edward H. Adelson, “The Laplacian Pyramid as a
Compact Image Code,”IEEE Transactions on Communications, Vol.
COM-31, No. 4, April 1983, pp. 532–540.

[2] De Bonet, Jeremy S., “Multiresolution Sampling Procedure for Anal-
ysis and Synthesis of Texture Images,”Computer Graphics Proceed-
ings, Annual Conference Series (SIGGRAPH 97), August 1997, pp.
361–368.

[3] Desbrun, Mathieu, Mark Meyer, Peter Schroder and Alan H. Barr,
“Implicit Fairing of Irregular Meshes using Diffusion and Curvature
Flow,” Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 99), August 1999, pp. 317–324.

[4] Efros, A. and T. Leung, “Texture Synthesis by Non-Parametric Sam-
pling,” International Conference on Computer Vision, Vol. 2, Sept.
1999, pp. 1033–1038.

[5] Fleischer, Kurt, David Laidlaw, Bena Currin and Alan Barr, “Cellular
Texture Generation,”Computer Graphics Proceedings, Annual Con-
ference Series (SIGGRAPH 95), August 1995, pp. 239–248.

[6] Gortler, Steven J., Radek Grzeszczuk, Richard Szeliski and Michael
F. Cohen, “The Lumigraph,”Computer Graphics Proceedings, An-
nual Conference Series (SIGGRAPH 96), August 1996, pp. 43–54.

[7] Guskov, Igor, Wim Sweldens and Peter Schroder, “Multiresolution
Signal Processing for Meshes,”Computer Graphics Proceedings, An-
nual Conference Series (SIGGRAPH 99), August 1999, pp. 325–334.

[8] Heeger, David J. and James R. Bergen, “Pyramid-Based Texture
Analysis/Synthesis,”Computer Graphics Proceedings, Annual Con-
ference Series (SIGGRAPH 95), August 1995, pp. 229–238.

[9] Hertzmann, Aaron and Denis Zorin, “Illustrating Smooth Surfaces,”
Computer Graphics Proceedings, Annual Conference Series (SIG-
GRAPH 2000), July 2000, pp. 517–526.

[10] Kundu, Pijushi K.,Fluid Mechanics, Academic Press, San Diego,
1990.

[11] Lee, Aaron W., David Dobkin, Wim Sweldens and Peter Schroder,
“Multiresolution Mesh Morphing,”Computer Graphics Proceedings,
Annual Conference Series (SIGGRAPH 99), August 1999, pp. 343–
350.

[12] Levy, Bruno and Jean-Laurent Mallet, “Non-Distortion Texture Map-
ping For Sheared Triangulated Meshes,”Computer Graphics Pro-
ceedings, Annual Conference Series (SIGGRAPH 98), July 1998, pp.
343–352.

[13] Maillot, Jerome, Hussein Yahia and Anne Verroust, “Interactive Tex-
ture Mapping,”Computer Graphics Proceedings, Annual Conference
Series (SIGGRAPH 93), August 1993, pp. 27–34.

[14] Neyret, Fabrice and Marie-Paule Cani, “Pattern-Based Texturing Re-
visited,” Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 99), August 1999, pp. 235–242.

[15] Peachey, Darwyn R., “Solid Texturing of Complex Surfaces,”Com-
puter Graphics, Vol. 19, No. 3, (SIGGRAPH 85), July 1985, pp. 279–
286.

[16] Pedersen, Hans Kohling, “Decorating Implicit Surfaces,”Computer
Graphics Proceedings, Annual Conference Series (SIGGRAPH 95),
August 1995, pp. 291–300.

[17] Perlin, Ken, “An Image Synthesizer,”Computer Graphics, Vol. 19,
No. 3, (SIGGRAPH 85), July 1985, pp. 287–296.

[18] Piponi, Dan and George Borshukov, “Seamless Texture Mapping of
Subdivision Surfaces by Model Pelting and Texture Blending,”Com-
puter Graphics Proceedings, Annual Conference Series (SIGGRAPH
2000), July 2000, pp. 471–478.

[19] Praun, Emil, Adam Finkelstein, and Hugues Hoppe, “Lapped Tex-
tures,” Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 2000), July 2000, pp. 465–470.

[20] Simoncelli, Eero and Javier Portilla, “Texture Characterization via
Joint Statistics of Wavelet Coefficient Magnitudes,”Fifth Interna-
tional Conference on Image Processing, Vol. 1, Oct. 1998, pp. 62–66.

[21] Soucy, Marc, Guy Godin and Marc Rioux, “A Texture-Mapping Ap-
proach for the Compression of Colored 3D triangulations,”The Visual
Computer, Vol. 12, No. 10, 1996, pp. 503–514.

[22] Taubin, Gabriel, “A Signal Processing Approach to Fair Surface De-
sign,” Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 95), August 1995, pp. 351–358.

[23] Turk, Greg, “Generating Textures on Arbitrary Surfaces Using
Reaction-Diffusion,” Computer Graphics, Vol. 25, No. 4, (SIG-
GRAPH 91), July 1991, pp. 289–298.

[24] Walter, Marcelo and Alain Fournier, “Clonal Mosaic Model for the
Synthesis of Mammalian Coat Patterns,”Proceedings of Graphics In-
terface, Vancouver, BC, Canada, June 1998, pp. 82–91.

[25] Wei, Li-Yi and Marc Levoy, “Fast Texture Synthesis using Tree-
structured Vector Quantization,”Computer Graphics Proceedings,
Annual Conference Series (SIGGRAPH 2000), July 2000, pp. 479–
488.

[26] Wei, Li-Yi and Marc Levoy, “Texture Synthesis Over Arbitrary Mani-
fold Surfaces,”Computer Graphics Proceedings, Annual Conference
Series (SIGGRAPH 2001), August 2001 (these proceedings).

[27] Witkin, Andrew and Michael Kass, “Reaction-Diffusion Textures,”
Computer Graphics, Vol. 25, No. 4, (SIGGRAPH 91), July 1991, pp.
299–308.

[28] Witkin, Andrew P. and Paul S. Heckbert, “Using Particles to Sample
and Control Implicit Surfaces,”Computer Graphics Proceedings, An-
nual Conference Series (SIGGRAPH 1994), July 1994, pp. 269–277.

[29] Worley, Steven, “A Cellular Texture Basis Function,”Computer
Graphics Proceedings, Annual Conference Series (SIGGRAPH 96),
August 1996, pp. 291–294.

[30] Ying, Lexing, Aaron Hertzmann, Henning Biermann, Denis Zorin,
“Texture and Shape Synthesis on Surfaces,” submitted for review.

