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Abstract

We introduce new techniques for modelling withinterpolating im-
plicit surfaces. This form of implicit surface was first used for prob-
lems of surface reconstruction [24] and shape transformation [30],
but the emphasis of our work is on model creation. These implicit
surfaces are described by specifying locations in 3D through which
the surface should pass, and also identifying locations that are in-
terior or exterior to the surface. A 3D implicit function is created
from these constraints using a variational scattered data interpola-
tion approach, and the iso-surface of this function describes a sur-
face. Like other implicit surface descriptions, these surfaces can be
used for CSG and interference detection, may be interactively ma-
nipulated, are readily approximated by polygonal tilings, and are
easy to ray trace. A key strength for model creation is that inter-
polating implicit surfaces allow the direct specification of both the
location of points on the surface and the surface normals. These are
two important manipulation techniques that are difficult to achieve
using other implicit surface representations such as sums of spher-
ical or ellipsoidal Gaussian functions (“blobbies”). We show that
these properties make this form of implicit surface particularly at-
tractive for interactive sculpting using the particle sampling tech-
nique introduced by Witkin and Heckbert in [32]. Our formulation
also yields a simple method for converting a polygonal model to a
smooth implicit model, as well as a new way to form blends be-
tween objects.

1 Introduction

The computer graphics, computer-aided design and computer vi-
sion literatures are filled with an amazingly diverse array of ap-
proaches to surface description. The reason for this variety is that
there is no single representation of surfaces that satisfies the needs
of every problem in every application area. This paper is about
modelling withinterpolating implicit surfaces, a surface represen-
tation that we believe will be useful in several areas in 3D mod-
eling. These implicit surfaces are smooth, exactly pass through a
set of given constraint points, and can describe closed surfaces of
arbitrary topology.

In order to illustrate our basic approach, Figure 1 (left) shows
an interpolating implicit curve, the 2D analog of an interpolating
implicit surface. The small open circles in this figure indicate the
location of constraints where the 2D implicit function must take
on the value of zero. The single plus sign corresponds to an addi-
tional constraint where the implicit function must take on the value
of some arbitrary positive constant, which for this example is one.
These constraints are passed along to a scattered data interpolation
routine that generates a smooth 2D function meeting the given con-
straints. The desired curve is defined to be the locus of points at
which the function takes on the value of zero. The curve exactly
passes through each of the zero-value constraints, and its defining
function is positive inside this curve and negative outside. For this
2D example, we use a variational technique that minimizes the ag-
gregate curvature of the function that it creates, and this technique

for creating a function is often referred to as thin-plate interpola-
tion.

We can create surfaces in 3D in exactly the same way as the 2D
curves in Figure 1. Zero-valued constraints are defined by the mod-
eler at 3D locations, and positive values are specified at one or more
places that are to be interior to the surface. A variational interpola-
tion technique is then invoked that creates a scalar-valued function
over a 3D domain. The desired surface is simply the set of all points
at which this scalar function takes on the value zero. Figure 2 (left)
shows a surface that was created in this fashion by placing four
zero-valued constraints at the vertices of a regular tetrahedron and
placing a single positive constraint in the center of the tetrahedron.
The result is a nearly spherical surface. More complex surfaces
such as the branching shape in Figure 2 (right) can be defined sim-
ply by specifying more constraints. Figure 3 show an example of
an interpolating implicit surface created from polygonal data.

The remainder of this paper is organized as follows. In Sec-
tion 2 we examine related work, including implicit surfaces and
thin-plate interpolation techniques. We describe in Section 3 the
mathematical framework for solving variational problems using ra-
dial basis functions. Section 4 presents three strategies that may
be used together with variational methods to create implicit sur-
faces. These strategies differ in where they place the non-zero con-
straints. In Section 5 we show that interpolating implicit surfaces
are well suited for interactive sculpting. In Section 6 we present a
new method of creating soft blends between objects, based on in-
terpolating implicits. Section 7 describes two rendering techniques,
one that relies on polygonal tiling and another based on ray tracing.
In Section 8 we compare interpolating implicit surfaces with tradi-
tional thin-plate surface modeling and with implicit functions that
are created using ellipsoidal Gaussian functions. Finally, Section 9
indicates potential applications and directions for future research.

Figure 1: Curves defined using interpolating implicit functions.
The curve on the left is defined by four zero-valued and one positive
constraint. This curve is refined by adding three new zero-valued
constraints (shown in red at right).
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Figure 2: Surfaces defined by interpolating implicit functions. The left surface is defined by zero-valued constraints at the corners of a
tetrahedron and one positive constraint in its center. The branching surface at the right was created using constraints from the vertices of the
inset polygonal object.

2 Background and Related Work

Interpolating implicit surfaces draw upon two areas of modeling:
implicit surfaces and thin-plate interpolation. In this section we
briefly review work in these two sub-areas. Interpolating implicit
surfaces are not new to graphics, and at the close of this section we
describe earlier published methods of creating interpolating implicit
surfaces.

2.1 Implicit Surfaces

An implicit surface is defined by an implicit function, a continuous
scalar-valued function over the domainR3. The implicit surface of
such a function is the locus of points at which the function takes on
the value zero. For example, a unit sphere may be defined using the
implicit function f (x) = 1� jxj, for pointsx 2 R3. Points on the
sphere are those locations at whichf (x) = 0. This implicit function
takes on positive values inside the sphere and is negative outside the
surface, as will be the convention in this paper.

An important class of implicit surfaces are theblobbyor meta-
ball surfaces[2, 20]. The implicit functions of these surfaces are the
sum of radially symmetric functions that have a Gaussian profile.
Here is the general form of such an implicit function:

f (x) =�t+
n

∑
i=1

gi(x) (1)

In the above equation, a single functiongi describes the profile of
a “blobby sphere” (a Gaussian function) that has a particular center
and standard deviation. The bold letterx represents a point in the
domain of our implicit function, and in this paper we will use bold
letters to represent such points, both in 2D and 3D. The valuet is the
iso-surface threshold, and it specifies one particular surface from a
family of nested surfaces that are defined by the sum of Gaussians.
When the centers of two blobby spheres are close enough to one
another, the implicit surface appears as though the two spheres have

melted together. A typical form for a blobby sphere functiongi is
the following:

gi(x) = ejx�ci j
2=σ2

i (2)

In this equation, the constantσi specifies the standard deviation
of the Gaussian function, and thus is the control over the radius of a
blobby sphere. The center of a blobby sphere is given byci . Eval-
uating an exponential function is computationally expensive, so
some authors have used piecewise polynomial expressions instead
of exponentials to define these blobby sphere functions [20, 33]. A
greater variety of shapes can be created with the blobby approach
by using ellipsoidal rather than spherical functions.

Another important class of implicit surfaces are the algebraic
surfaces. These are surfaces that are described by polynomial ex-
pressions inx, y andz. If a surface is simple enough, it may be
described by a single polynomial expression. A good deal of atten-
tion has been devoted to this approach, and we recommend Gabriel
Taubin [28] and Keren and Gotsman [16] as starting points in this
area. Much of the work on this method has been devoted to fit-
ting an algebraic surfaces to a given collection of points. Usually
it is not possible to interpolate all of the data points, so error min-
imizing techniques are sought. Surfaces may also be described by
piecing together many separate algebraic surface patches, and here
again there is a large literature on the subject. Good introductions to
these surfaces may be found in the chapter by Chanddrajit Bajaj and
the chapter by Alyn Rockwood in [5]. It is easier to create complex
surfaces using a collection of algebraic patches rather than using
a single algebraic surface. The tradeoff, however, is that a good
deal of machinery is required to create smooth joins across patch
boundaries.

We have only described some of the implicit surface representa-
tions that are most closely related to our own work. There are many
other topics within the broad area of implicit surfaces, and we refer
the interested reader to the excellent book by Bloomenthal and his
co-authors [5].
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Figure 3: Polygonal surface of a human fist with 750 vertices (left) and an interpolating implicit surface created from the polygons (right).

2.2 Thin-Plate Interpolation

Thin-plate spline surfaces are a class of height fields that are closely
related to the interpolating implicit surfaces of this paper. Thin-
plate interpolation is one approach to solving thescattered data
interpolationproblem. The two-dimensional version of this prob-
lem can be stated as follows: Given a collection ofk constraint
points fc1;c2; : : : ;ckg that are scattered in thexy-plane, together
with scalar height values at each of these pointsfh1;h2; : : : ;hkg,
construct a “smooth” surface that matches each of these heights at
the given locations. We can think of this solution surface as a scalar-
valued functionf (x) so thatf (ci) = hi , for 1� i � k. If we define
the wordsmoothin a particular way, there is a unique solution to
such a problem, and this solution is the thin-plate interpolation of
the points. Consider the energy functionE( f ) that measures the
smoothness of a functionf :

E( f ) =
Z

Ω
f 2
xx(x)+2 f 2

xy(x)+ f 2
yy(x)dx (3)

The notationfxx means the second partial derivative in thex di-
rection, and the other two terms are similar partial derivatives, one
of them mixed. This energy function is basically a measure of the
aggregate curvature off (x) over the region of interestΩ (a por-
tion of the plane). Any creases or pinches in a surface will result
in a larger value ofE. A smooth function that has no such regions
of high curvature will have a lower value ofE. Note that because
there are only squared terms in the integral, the value forE can
never be negative. The thin-plate solution to an interpolation prob-
lem is the functionf (x) that satisfies all of the constraints and that
has the smallest possible value ofE. Note that thin-plate surfaces
are height fields, and thus they are in factparametricsurfaces.

This interpolation method gets its name because it is much like
taking a thin sheet of metal, laying it horizontally and bending the
it so that it just touches the tips of a collection of vertical poles
that are set at the positions and heights given by the constraints of
the interpolation problem. The metal plate resists bending so that it
smoothly changes its height in the positions between the poles. This
springy resistance is mimicked by the energy functionE. Thin-plate

interpolation is often used in the computer vision domain, where
there are often sparse surface constraints [12, 29]. The above cur-
vature minimization process is sometimes referred to as regulariza-
tion, and can be thought of as an additional constraint that selects
a unique surface out of an infinite number of surfaces that match a
set of given height constraints. Solving such constrained problems
draws from a branch of mathematics called the variational calculus,
thus thin-plate techniques are sometimes referred to as variational
methods.

The scattered data interpolation problem can be formulated in
any number of dimensions. When the given pointsci are positions
in n-dimensions rather than in 2D, this is called then-dimensional
scattered data interpolation problem. There are appropriate gener-
alizations to the energy function and to thin-plate interpolation for
any dimension. In this paper we will make use of variational inter-
polation in two and three dimensions.

2.3 Related Work on Implicit Surfaces

The first publication on interpolating implicits of which we are
aware is that of Savchenko et al. [24]. We consider this to be a pio-
neering paper in implicit surfaces, and feel it deserves to be known
more widely than it is at present. Their research was on the cre-
ation of implicit surfaces from measured data such as range data
or contours. Their work did not, however, describe techniques for
modelling. Their approach to implicit function creation is similar to
our method in the present paper in that both solve a linear system to
get the weights for radial basis functions. The work of [24] differs
from our own in that they use acarrier solid to suggest what part
of space should be interior to the surface that is being created. We
believe that the three methods that we describe for defining the in-
terior of a surface in Section 4 of this paper give more user control
than a carrier solid and are thus more appropriate for modelling.

The implicit surface creation methods described in this paper are
an outgrowth of earlier work in shape transformation by Turk and
O’Brien [30]. They created implicit functions inn+1 dimensions
to interpolate between pairs ofn-dimensional shapes. These im-
plicit functions were created using thenormal constraintformula-
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tion of interpolating implicit surfaces, as described in Section 4.3
of this paper. The present paper differs from that of [30] in its in-
troduction of several techniques for defining interpolating implicit
surfaces that are especially useful for model creation.

Recently techniques have developed that allow the methods dis-
cussed above to be applies to system with a large numbers of con-
straints [19, 6]. The work of Morse et al. [19] uses Gaussian-like
compactly supported radial basis functions to accelerate the sur-
face building process, and they are able to create surfaces that have
tens of thousands of constraints. Carr et al. use fast evaluation
methods to reconstruct surfaces using up to a half millions basis
functions [6]. They use the radial basis functionφ(x) = jxj, the bi-
harmonic basis function. Both of these improvements for creating
surfaces with many constraints are complementary to the work of
the present paper, and the new techniques that we describe in Sec-
tions 4, 5 and 6 should work gracefully with the methods in both of
these papers.

3 Variational Methods and Radial Basis
Functions

In this section we review the necessary mathematical background
for thin-plate interpolation. This will provide the tools that we will
then use in Section 4 to create interpolating implicit surfaces.

The scattered data interpolation task as formulated above is a
variational problem where the desired solution is a function,f (x),
that will minimize equation 3 subject to the interpolation constraints
f (ci) = hi . There are several numerical methods that can be used
to solve this type of problem. Two commonly used methods, fi-
nite elements and finite differencing techniques, discretize the re-
gion of interest,Ω, into a set of cells or elements and define local
basis functions over the elements. The functionf (x) can then be
expressed as a linear combination of the basis functions so that a
solution can be found, or approximated, by determining suitable
weights for each of the basis functions. This approach has been
widely used for height-field interpolation and deformable models,
and examples of its use can be found in [29, 27, 7, 31]. While fi-
nite elements and finite differencing techniques have proven useful
for many problems, the fact that they rely on discretization of the
function’s domain is not always ideal. Problems that can arise due
to discretization include visibly stair-stepped surfaces and the in-
ability to represent fine details. In addition, the cost of using such
methods grows cubically as the desired resolution grows.

An alternate approach is to express the solution in terms of radial
basis functions centered at the constraint locations. Radial basis
functions are radially symmetric about a single point, or center, and
they have been widely used for function approximation. Remark-
ably, it is possible to choose these radial functions is such a way
that they will automatically solve differential equations, such as the
one required to solve equation 3, subject to constraints located at
their centers. For the 2D interplation problem, equation 3 can be
solved using the biharmonic radial basis function:

φ(x) = jxj2 log(jxj) (4)

This is commonly know as the thin-plate radial basis function.
For 3D interpolation, one commonly used radial basis function is
φ(x) = jxj3, and this is the basis function that we use. We note that
Carr et al. [6] used the basis functionφ(x) = jxj. Duchon did much
of the early work on variational interpolation [8], and the report by
Girosi, Jones and Poggio is a good entry point into the mathematics
of variational interpolation [11].

Using the appropriate radial basis functions, we can write the
interpolation function in this form:

f (x) =
k

∑
j=1

wjφ(x�c j )+P(x) (5)

In the above equation,c j are the locations of the constraints, the
wj are the weights, andP(x) is a degree one polynomial that ac-
counts for the linear and constant portions off . Solving for the
weightswj and the coefficients ofP(x) subject to the given con-
straints yields a function that both interpolates the constraints and
minimizes equation 3. The resulting function exactly interpolates
the constraints (if we ignore numerical precision issues), and is not
subject to approximation or discretization errors. Also, the number
of weights to be determined does not grow with the size of the re-
gion of interestΩ. Rather, it is only dependent on the number of
constraints.

To solve for the set ofwj that will satisfy the interpolation con-
straints, we begin with the criteria that the surface must interpolate
our constraints: hi = f (ci) (6)

We now substitute the right side of equation 5 forf (ci) to give
us:

hi =
k

∑
j=1

wjφ(ci �cj )+P(ci) (7)

Since the above equation is linear with respect to the unknowns,
wj and the coefficients ofP(x), it can be formulated as a linear
system. For interpolation in 3D, letci = (cx

i ;c
y
i ;c

z
i ) and letφi j =

φ(ci �c j ). Then this linear system can be written as follows:

2
66666666664
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(8)
The sub-matrix in equation 8 consisting of theφi j ’s is condition-

ally positive-definite on the subspace of vectors that are orthogonal
to the lasts four rows of the full matrix, so equation 8 is guaranteed
to have a solution. We used symmetric LU decomposition to solve
this system of equations for all of the examples shown in this paper.
Our implementation to set up the system, call the LU decomposi-
tion routine and evaluate the interpolating function of equation 5 for
a givenx consists of about 100 lines of commented C++ code. This
code plus the public-domain polygonalization routine described in
Section 7.1 is all that is needed to create interpolating implicit sur-
faces.

Two concerns that arise with such matrix systems are compu-
tation times and ill-conditioned systems. For systems with up to
a few thousand centers, including all of the examples in this pa-
per, direct solution techniques such as LU decomposition and SVD
are practical. However as the system becomes larger, the amount
of work required to solve the system grows asO(k3). We have
used direct solution methods for systems with up to roughly 3,000
constraints. LU decomposition becomes impractical for more con-
straints than this. We are pleased that other researchers, notably the
authors of [19, 6], have begun to address this issue of computational
complexity.

As the number of constraints grows, the condition number of the
matrix in equation 8 is also likely to grow, leading to instability for
some solution methods. For the systems we have worked with, ill-
conditioning has not been a problem. If problems arose for larger
systems, variational interpolation is such a well-studied problem
that methods exist for improving the conditioning of the system of
equations [10].

4
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4 Creating Interpolating Implicit Surfaces

With tools for solving the scattered data interpolation problem in
hand, we now turn our attention to creating implicit functions. In
this section we will examine three ways in which to define a inter-
polating implicit surface. Common to all three approaches is the
specification of zero-valued constraints through which the surface
must pass. The three methods differ in specifying where the im-
plicit function takes on positive and negative values. These meth-
ods are based on using three different kinds of constraints:interior,
exterior, andnormal constraints. We will look at creating both 2D
interpolating implicit curves and 3D interpolating implicit surfaces.
The 2D curve examples are for illustrative purposes, and our actual
goal is the creation of 3D surfaces.

4.1 Interior Constraints

The left portion of Figure 1 (earlier in this paper) shows the first
method of describing a interpolating implicit curve. Four zero-
valued constraints have been placed in the plane. We call such zero-
value constraintsboundary constraintsbecause these points will be
on the boundary between the interior and exterior of the shape that
is being defined. In addition to the four boundary constraints, a sin-
gle constraint with a value of one is placed at the location marked
with a plus sign. We use the terminterior constraintwhen referring
to such a positive valued constraint that helps to determine the in-
terior of the surface. We construct an implicit function from these
five constraints simply by invoking the 2D variational interpolation
technique described in earlier sections. The interpolation method
returns a set of scalar coefficientswi that weight a collection of
radially symmetric functionsφ that are centered at the constraint
positions. The implicit curve shown in the figure is given by those
locations at which the variationally-defined function takes on the
value zero. The function takes on positive values inside the curve
and is negative at locations outside the curve. Figure 1 (right) shows
a refinement of the curve that is made by adding three more bound-
ary constraints to the original set of constraints in the left portion of
the figure.

Why does an interior constraint surrounded by zero-valued con-
straints yield a function that is negative beyond the boundary con-
straints? The key is that the energy function is larger for functions
that take on positive values on both sides of a zero-valued con-
straint. Each boundary constraint acts much like a see-saw— pull
the surface up on one side of a boundary constraint (using an inte-
rior constraint) and the other side tends to move down.

Creating surfaces in 3D is accomplished in exactly the same way
as the 2D case. Zero-valued constraints are specified by the mod-
eler as those 3D points through which the surfaces should pass, and
positive values are specified at one or more places that are to be
interior to the surface. Variational interpolation is then invoked to
create a scalar-valued function overR3. The desired surface is sim-
ply the set of all points at which this scalar function takes on the
value zero. Figure 2 (left) shows a surface that was created in this
fashion by placing four zero-valued constraints at the vertices of a
regular tetrahedron and placing a single interior constraint in the
center of the tetrahedron. The resulting implicit surface is nearly
spherical.

Figure 2 (right) shows a recursive branching object that is a in-
terpolating implicit surface. The basic building block of this ob-
ject is a triangular prism. Each of the six vertices of a large prism
specified the location of a zero-valued constraint, and a single in-
terior constraint was placed in the center of this prism. Next, three
smaller and slightly tilted prisms were placed atop the first large
prism. Each of these smaller prisms, like the large one, contributes
boundary constraints at its vertices and has a single interior con-
straint placed at its center. Each of the three smaller prisms have

even smaller prisms placed on top of them, and so on.

Why does this method of creating an implicit function create
a smooth surface? We are creating the scalar-valued function in
3D that matches our constraints and that minimizes a 3D energy
functional similar to Equation 3. This energy functional selects a
smoothly changing implicit function that matches the constraints.
The iso-surface that we extract from such a smoothly changing
function will almost always be smooth as well. It isnot the case
in general, however, that this iso-surface is also the minimum of a
curvature-based functional over surfaces. Satisfying the 3D energy
functional does not give any guarantee about the smoothness of the
resulting 2D surface.

Placing one or more positive-valued constraints on the interior
of a shape is an effective method of defining interpolating implicit
surfaces when the shape one wishes to create is well-defined. We
have found, however, that there is another approach that is even
more flexible for interactive free-form surface sculpting.

4.2 Exterior Constraints

Figure 4 illustrates a second approach to creating interpolating im-
plicit functions. Instead of placing positive-valued constraints in-
side a shape, negative-valued constraints can be placed on the exte-
rior of the shape that is being created. We call each such negative-
valued constraint anexterior constraint. As before, zero-valued
constraints specify locations through which the implicit curve will
pass through. In Figure 4 (left), eight exterior constraints surround
the region at which a curve is being created. As with positive-
valued constraints, the magnitude of the values is unimportant, and
we use the value negative one. These exterior constraints, cou-
pled with the curvature-minimizing nature of variational method,
induce the interpolation function to take on positive values interior
to the shape outlined by the zero-valued constraints. Even specify-
ing just two boundary constraints defines a reasonable closed curve,
as shown by the ellipse-like curve at the left in Figure 4. More
boundary constraints result in a more complex curve, as shown on
the right in Figure 4.

We have found that creating a circle or sphere of negative-valued
constraints is the approach that is best suited to interactive free-form
design of curves and surfaces. Once these exterior constraints are
defined, the user is free to place boundary constraints in any loca-
tion interior to this cage of exterior constraints. Section 5 describes
the use of exterior constraints for interactive sculpting.

Figure 4: Curves defined using surrounding exterior constraints.
Just two zero-valued constraints yield an ellipse-like curve (on the
left). More constraints create a more complex curve (at right).
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Figure 5: A polygonal surface (left) and the interpolating implicit surface defined by the 800 vertices and their normals (right).

4.3 Normal Constraints

For some applications we may have detailed knowledge about the
shape that is to be modeled. In particular, we may know approx-
imate surface normals at many locations on the surface to be cre-
ated. In this case there is a third method of defining a interpolating
implicit function that may be preferred over the two methods de-
scribed above, and this method was originally described in [30].
Rather than placing positive or negative values far from the bound-
ary constraints, we can create constraints very close to the boundary
constraints. Figure 6 shows this method in the plane. In left por-
tion of this figure, there are six boundary constraints and in addi-
tion there are sixnormal constraints. These normal constraints are
positive-valued constraints that are placed very near the boundary
constraints, and they are positioned towards the center of the shape
that is being created. A normal constraint is created by placing a

Figure 6: Two curves defined using nearly identical boundary and
normal constraints. By moving just a single normal constraint (the
north-west one, shown in red), the curve on the left is changed to
that shown on the right.

positive constraint a small distance in the direction�n, wheren is
an approximate normal to the shape that we are creating. (Alterna-
tively, we could choose to place negative-valued constraints in the
outward-pointing direction.) A normal constraint is always paired
with a boundary constraint, although not every boundary constraint
requires a normal constraint. The right part of Figure 6 shows that
a normal constraint can be used to bend a curve at a given point.

There are at least two ways in which a normal constraint might
be defined. One way is to allow a user to hand-specify the sur-
face normals of a shape that is being created. A second way al-
lows us to create smooth surfaces based on polyhedral models. If
we wish to create a interpolating implicit surface from a polyhe-
dral model, we simply need to create one boundary constraint and
one normal constraint for each vertex in the polyhedron. The loca-
tion of a boundary constraint is given by the position of the vertex,
and the location of a normal constraint is given by moving a short
distance in a direction opposite to the surface normal at the ver-
tex. We place normal constraints 0:01 units from the corresponding
boundary constraints for objects that fit within a unit cube. Figure 5
(right) shows a interpolating implicit surface created in the manner
just described from the polyhedral model in Figure 5 (left). This is
a simple yet effective way to create an everywhere smooth analyt-
ically defined surface. This stands in contrast to the complications
of patch stitching inherent in most parametric surface modeling ap-
proaches. Figure 3 is another example of converting polygons (a
fist) to an implicit surface.

4.4 Review of Constraint Types

In this section we have seen three methods of creating interpolating
implicit functions. These methods are in no way mutually exclu-
sive, and a user of an interactive sculpting program could well use
a mixture of these three techniques to define a single surface. Ta-
ble 4.4 lists each of the three kinds of constraints, when we believe
each is appropriate to use, and which figures in this paper were cre-
ated using each of the methods.

6
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Figure 7: Interactive sculpting of interpolating implicit surfaces. The left image shows an initial configuration with four boundary constraints
(the red markers). The right surface is a sculpted torus.

Constraint Types When to Use 2D Figure 3D Figure
Interior constraints Planned model construction Figure 1 Figure 2
Exterior constraints Interactive modelling Figure 4 Figures 7, 8, 10
Normal constraints Conversion from polygons Figure 6 Figures 3, 5, 9

Table 1: Constraint Types

5 Interactive Model Building

Interpolating implicit surfaces seem ready-made for interactive 3D
sculpting. In this section we will describe how they can be grace-
fully incorporated into an interactive modeling program.

In 1994, Andrew Witkin and Paul Heckbert presented an ele-
gant method for interactive manipulation of implicit surfaces [32].
Their method uses two types of oriented particles that lie on the
surface of an implicitly defined object. One class of particles, the
floaters, are passive elements that are attracted to the surface of the
shape that is being sculpted. Floaters repel one another in order to
evenly cover the surface. Even during large changes to the surface,
a nearly constant density of floaters is maintained by particle fis-
sioning and particle death. A second type of particle, the control
point, is the method by which a user interactively shapes an im-
plicit surface. Control points provide the user with direct control of
the surface that is being created. A control point tracks a 3D cursor
position that is moved by the user, and the free parameters of the im-
plicit function are adjusted so that the surface always passes exactly
through the control point. The mathematical machinery needed to
implement floaters and control points is presented clearly in Witkin
and Heckbert’s paper, and the interested reader should consult it for
details.

The implicit surfaces used in Witkin and Heckbert’s modeling
program are blobby spheres and blobby cylinders. We have cre-
ated an interactive sculpting program based on their particle sam-
pling techniques, but we use interpolating implicit surfaces instead
of blobbies as the underlying shape description. Our implementa-
tion of floaters is an almost verbatim transcription of their equations

into code. The only change needed was to represent the implicit
function as a sum ofφ(x) = jxj3 radial basis functions and to pro-
vide an evaluation routine for this function and its gradient. Floater
repulsion, fissioning and death work for interpolating implicits just
as well as when using blobby implicit functions. As in the orig-
inal system, the floaters provide a means of interactively viewing
an object during editing that may even change the topology of the
surface.

The main difference between our sculpting system and Witkin
and Heckbert’s is that we use an entirely different mechanism for
direct interaction with a surface. Witkin/Heckbert control points
provide anindirect link between a 3D cursor and the free parame-
ters of a blobby implicit function. We donot make use of Witkin
and Heckbert’s control particles in our interactive modelling pro-
gram. Instead, we simply allow users to create and move the bound-
ary constraints of an interpolating implicit surface. This provides a
direct way to manipulate the surface.

We initialize a sculpting session with a simple interpolating im-
plicit surface that is nearly spherical, and this is shown at the left
in Figure 7. It is described by four boundary constraints at the
vertices of a unit tetrahedron (the thick red disks) and with eight
exterior (negative) constraints surrounding these at the corners of
a cube with a side width of six. (The exterior constraints are not
drawn.) A user is free to drag any of the boundary constraint loca-
tions using a 3D cursor, and the surface follows. The user may also
create any number of new boundary constraints on the surface. The
location of a new boundary constraint is found by intersecting the
surface with a ray that passing through the camera position and the
cursor. After a user creates or moves a boundary constraint, the ma-
trix equation from Section 3 is solved anew. The floaters are then
moved and displayed. The right portion of Figure 7 shows a toroidal
surface that was created using this interactive sculpting paradigm.
The interactive program repeatedly executes the following steps:

1. Create or move constraints based on user interaction.
2. Solve new variational matrix equation.
3. Adjust floater positions (with floater birth and death).

7
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Figure 8: Changing a normal constraint. Left image shows original surface, and right image shows the same surface after changing a normal
constraint (shown as a red spike).

4. Render floaters.

An important consequence of the matrix formulation given by
equation 8 is that adding a new boundary constraint on the existing
surface does not affect the surface shape at all. This is because the
implicit function already takes on the value of zero at the surface,
so adding new zero-valued constraint on the surface will not alter
the surface. Only when such a new boundary constraint is moved
does it begin to affect the shape of the surface. This ability to retain
the exact shape of a surface while adding new boundary constraints
is similar in spirit to knot insertion for polynomial spline curves
and surfaces. We do not know of any similar capability for blobby
implicit surfaces.

In addition to control of boundary constraints, we also allow a
user to create and move normal constraints. By default, no normal
constraint is provided for a newly created boundary constraint. At
the user’s request, a normal constraint can be created at any spec-
ified boundary constraint. The initial direction of the normal con-
straint is given by the gradient of the current implicit function. The
value for such a constraint is given by the implicit function’s value
at the constraint location. A normal constraint is drawn as a spike
that is fixed at one end to the disk of its corresponding boundary
point. The user may drag the free end of this spike to adjust the
normal to the surface, and the surface follows this new constraint.
Figure 8 shows an example of changing a normal constraint during
an interactive modelling session.

What has been gained by using interpolating implicit functions
instead of blobby spheres and cylinders? First, the interpolating
implicit approach is easier to implement because the optimization
machinery for control points of blobby implicits is not needed. Sec-
ond, the user has control over the surface normal as well as the
surface position. Finally, the user does not need to specify which
implicit parameters are to be fixed and which are to be free at differ-
ent times during the editing session. Using the blobby formulation,
the user must choose at any given time which parameters such as
sphere centers, radii of influence and cylinder endpoints may be al-
tered by moving a control point. With the variational formulation,
the user is always changing the position of just a single boundary or

normal constraint. We believe that this direct control of the param-
eters of the implicit function is more natural and intuitive. Witkin
and Heckbert state the following [32]:

Another result of this work is that we have discovered
that implicit surfaces are slippery:when you attempt
to move them using control points they often slip out of
your grasp.

(emphasis from the original paper)

In contrast to blobby implicits, we have found thatinterpolating
implicit surfaces are not at all slippery. Users easily grasp and re-
shape these surfaces with no thought to the underlying parameters
of the model.

6 Object Blending

A blendis a portion of a surface that smoothly joins two sub-parts
of an object. One of the more useful attributes of implicit surfaces is
the ease with which they allow two objects to be blended together.
Simply summing together the implicit functions for two objects of-
ten gives quite reasonable results for some applications. In some
instances, however, traditional implicit surface methods have been
found to be problematic when creating certain kinds of blends. For
example, it is difficult to get satisfactory results when summing to-
gether the implicit functions for two branches and a trunk of a tree.
The problem is that the surface will bulge at the location where the
trunk and the two branches join. Bulges occur because the con-
tribution of multiple implicit functions causes their sum to take on
large values in the blend region, and this results in the new function
reaching the iso-surface threshold in locations further away from
the blend than is desirable. Several solutions have been proposed
for this problem of bulges in blends, but these methods are either
computationally expensive or are fairly limited in the geometry for
which they can be used. For an excellent description of various
blending methods, see Chapter 7 of [5].
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Figure 9: Three polygonal tori (left), and the soft union created with interpolating implicits (right).

Interpolating implicit surfaces provide a new way in which to
create blends between objects. Objects that are blended using this
new approach are free of the bulging problems found using some
other methods. Our approach to blending together surfaces is to
form one large collection of constraints by collect together the con-
straints that define of all the surfaces to be blended. The new
blended surface is the surface defined by this new collection of
constraints. It is important to note that simply usingall of the con-
straints from the original surfaces will usually produce poor results.
The key to the success of this approach is to throw out those con-
straints that would cause problems.

Consider the task of blending together two shapesA andB. If
we used all of the constraints from both shapes, the resulting sur-
face is not likely to be what we wish. The task of selecting which
constraints to keep is simple. LetfA(x) and fB(x) be the implicit
functions for shapesA andB respectively. We will retain those con-
straints from objectA that are outside ofB. That is, a constraint
from A with positionci will be kept if fB(ci) < 0. All other con-
straints fromA will be discarded. Likewise, we will keep only those
constraints from objectB that are outside of objectA. To create a
blended shape, we collect together all of the constraints that pass
these two tests and form a new surface based on these constraints.

This approach can used to blend together any number of objects.
Figure 9 (left) shows three polygonal tori that overlap one another
in 3D. To blend these objects together, we first create a set of bound-
ary and normal constraints for each object, using the approach de-
scribed in Section 4.3. We then keep only those constraints from
each object that are outside of each of the other two objects, as
determined by their implicit functions. Finally, we create a single
implicit function using all of the constraints from the three objects
that were retained. Figure 9 (right) shows the result of this proce-
dure. Notice that there are no bulges in the locations where the tori
meet.

7 Rendering

In this section we examine two traditional approaches for rendering
implicit surfaces that both perform well for interpolating implicits.

7.1 Conversion to Polygons

One way to render an implicit surface is to create a set of polygons
that approximate the surface and then render these polygons. The
topic of iso-surface extraction is well-studied, especially for regu-
larly sampled volumetric data. Perhaps the best known approach
of this type is the Marching Cubes algorithm [17], but a number
of variants of this method have been described since the time of its
publication.

We use a method of iso-surface extraction known as acontinua-
tion approach [3] for many of the figures in this paper. The models
in Figure 2 and in the right images of Figures 5 and 9 are collections
of polygons that were created using the continuation method. This
method first locates any position that is on the surface to be tiled.
This first point can be thought of as a single corner of a cube that is
one of an infinite number of cubes in a regular lattice. The contin-
uation method then examines the values of the implicit function at
neighboring points on the cubic lattice and creates polygons within
each cube that the surface must pass through. The neighboring ver-
tices of these cubes are examined in turn, and the process eventually
crawls over the entire surface defined by the implicit function. We
use the implementation of this method from [4] that is described in
detail by Bloomenthal in [3].

7.2 Ray Tracing

There are a number of techniques that may be used to ray trace
implicit surfaces, and a review of these techniques can be found
in [13]. We have produced ray traced images of interpolating im-
plicit surfaces using a particular technique introduced by Hart that
is known assphere tracing[14]. Sphere tracing is based on the idea
that we can find the intersection of a ray with a surface by traveling
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Figure 10: Ray tracing of interpolating implicit surfaces. The left image shows reflection and shadows of two implicit surfaces, and the right
image illustrates constructive solid geometry.

along the ray in steps that are small enough to avoid passing through
the surface. At each step along the ray the method conservatively
estimates the radius of a sphere that will not intersect the surface.
We declare that we are near enough to the surface when the value of
f (x) falls below some toleranceε. We currently use a heuristic to
determine the radius of the spheres during ray tracing. We sample
the space in and around our implicit surface at 2000 positions, and
we use the maximum gradient magnitude over all of these locations
as the Lipschitz constant for sphere tracing. For extremely patho-
logical surfaces this heuristic may fail, although it has worked well
for all of our images. Coming up with a sphere radius that is guar-
anteed not to intersect the surface is a good area for future research.
We think it is likely that other ray tracing techniques can also be
successfully applied to ray tracing of interpolating implicits, such
as the LG-surfaces approach of Kalra and Barr [15].

Figures 10 (left) is an image of two interpolating implicit sur-
faces that were ray traced using sphere tracing. Note that this figure
includes shadows and reflections. Figure 10 (right) illustrates con-
structive solid geometry with interpolating implicit surfaces. The
figure shows (from left to right) intersection and subtraction of two
implicit surfaces. This figure was created using standard ray tracing
CSG techniques as described in [23].

The rendering techniques of this section highlight a key point
– interpolating implicit surfaces may be used in almost all of the
contexts in which other implicit formulations have been used. This
new representation may provide fruitful alternatives for a number
of problems that use implicit surfaces.

8 Comparison to Related Methods

At this point it is useful to compare interpolating implicit surfaces
to other representations of surface geometry. Although they share
similarities with existing techniques, interpolating implicits are dis-
tinct from other forms of surface modeling. Because interpolating
implicits are not yet well known, we provide a comparison of them

to two more well-known modelling techniques.

8.1 Thin-Plate Surface Reconstruction

The scientific and engineering literature abound with surface re-
construction based on thin-plate interpolation. Aren’t interpolating
implicits just a slight variant on thin-plate techniques? The most
important difference is that traditional thin-plate reconstruction cre-
ates aheight fieldin order to fit a given set of data points. The
use of a height field is a barrier towards creating closed surfaces
and surfaces of arbitrary topology. For example, a height field can-
not even represent a simple sphere-like object such as the surface
shown in Figure 2 (left). Complex surfaces can be constructed using
thin-plate techniques only if a number of height fields are stitched
together to form a parametric quilt over the surface. This also pre-
supposes that the topology of the shape to be modelled is already
known. Interpolating implicit surfaces, on the other hand, do not re-
quire multiple patches in order to represent a complex model. Both
methods create a function based on variational methods, but they
differ in the dimension of the scalar function that they create. Tra-
ditional thin-plate surfaces use a function with a 2D domain to cre-
ate aparametricsurface, whereas the interpolating implicit method
uses a function with a 3D domain to specify the location of anim-
plicit surface.

8.2 Sums of Implicit Primitives

Section 3 shows that a interpolating implicit function is in fact a
sum of a number of functions that have radial symmetry (based on
thejxj3 function). Isn’t this similar to constructing an implicit func-
tion by summing a number of spherical Gaussian functions (blobby
spheres or meta-balls)? Let us consider the process of modeling a
particular shape using blobby spheres. The unit of construction is
the single sphere, and two decisions must be made when we add
new sphere to a model: the sphere’s center and its radius. We can-
not place the center of the sphere where we want the surface to be
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– we must displace it towards the object’s center and adjust its ra-
dius to compensate for this displacement. What we are doing is
much like guessing the location of the medial axis of the object that
we are modeling. (The medial axis is the locus of points that are
equally distant from two or more places on an object’s boundary.)
In fact, the task is more difficult than this because summing multi-
ple blobby spheres is not the same as calculating the union of the
spheres. The interactive method of Witkin and Heckbert relieves
the user from some of this complexity, but still requires the user
to select which blobby primitives are being moved and which are
fixed. These issues never come up when modeling using interpolat-
ing implicit surfaces because we can directly specify locations that
the surface must pass through.

Fitting blobby spheres to a surface is an art, and indeed many
beautiful objects have been sculpted in this manner. Can this pro-
cess be entirely automated? Shigeru Muraki demonstrated a way
in which a given range image may be approximated by blobby
spheres [18]. The method begins with a single blobby sphere that
is positioned to match the data. Then the method repeatedly selects
one blobby sphere and splits it into two new spheres, invoking an
optimization procedure to determine the position and radii of the
two spheres that best approximates the given surface. Calculating
a model composed of 243 blobby spheres “took a few days on a
UNIX workstation (Stardent TITAN3000 2 CPU).” Similar blobby
sphere data approximation by Eric Bittar and co-workers was lim-
ited to roughly 50 blobby spheres [1]. In contrast to these methods,
the bunny in Figure 5 (right) is a interpolating implicit surface with
800 boundary and 800 normal constraints. It required 1 minute
43 seconds to solve the matrix equation for this surface, and the
iso-surface extraction required 7 minutes 43 seconds. Calculations
were performed on an SGI O2 with a 195 MHz R10000 processor.

9 Conclusion and Future Work

In this paper we have introduced new approaches for model creation
using interpolating implicit surfaces. Specific advantages of this
method include:

� Direct specification of points on the implicit surface
� Specification of surface normals
� Conversion of polygon models to smooth implicit forms
� Intuitive controls for interactive sculpting
� Addition of new control points that leave the surface un-

changed (like knot insertion)
� A new approach to blending objects

A number of techniques have been developed for working with
implicit surfaces. Many of these techniques could be directly ap-
plied to interpolating implicits, indicating several directions for fu-
ture work. The critical point analysis of Stander and Hart could
be used to guarantee topologically correct tessellation of such sur-
faces [26]. Interval techniques, explored by Duff, Snyder and oth-
ers, might be applied to tiling and ray tracing of interpolating im-
plicits [9, 25]. The interactive texture placement methods of Ped-
ersen should be directly applicable to interpolating implicit sur-
faces [21, 22]. Finally, many marvelous animations have been pro-
duced using blobby implicit surfaces [2, 33]. We anticipate that the
interpolating properties of these implicit surfaces may provide ani-
mators with an even greater degree of control over implicit surfaces.

Beyond extending existing techniques for this new form of im-
plicit surface, there are also research directions that are suggested
by issues that are specific to our technique. Like blobby sphere im-
plicits, interpolating implicit surfaces are everywhere smooth. Per-
haps there are ways in which sharp features such as edges and cor-
ners can be incorporated into a interpolating implicit model. We
have showed how gradients of the implicit function may be spec-
ified indirectly using positive constraints that are near zero con-

straints, but it may be possible to modify the approach to allow the
exact specification of the gradient.

Another direction for future research is to find higher-level in-
teractive modelling techniques for creating these implicit surfaces.
Perhaps several new constraints could be created simultaneously,
maybe arranged in a line or in a circle for greater surface control. It
might also make sense to be able to move the positions of more than
one constraint at a time. Another modelling issue is the creation of
surfaces with boundaries. Perhaps a second implicit function could
specify the presence or absence of a surface. Another issue related
to interactivity is the possibility of displaying the surface with poly-
gons rather than with floaters. With sufficient processor power, cre-
ating and displaying a polygonal isosurface of the implicit function
could be done at interactive rates.

10 Acknowledgments

This work was funded under ONR grant N00014-97-0223. We
thank the members of the Georgia Tech Geometry Group for their
ideas and enthusiasm. Thanks also goes to Victor Zordan for help-
ing with video.

References

[1] Eric Bittar, Nicolas Tsingos, and Marie-Paule Gascuel. Au-
tomatic reconstruction of unstructured 3d data: Combining a
medial axis and implicit surfaces.Computer Graphics Forum
(Proceedings of Eurographics ’95), 14(3):457–468, 1995.

[2] James F. Blinn. A generalization of algebraic surface drawing.
ACM Transactions on Graphics, 1(3):235–256, 1982.

[3] Jules Bloomenthal. Polygonization of implicit surfaces.
Computer-Aided Geometric Design, 5(4):341–355, 1988.

[4] Jules Bloomenthal. An implicit surface polygonizer. In
Paul S. Heckbert, editor,Graphics Gems IV, pages 324–349.
Academic Press, 1994.

[5] Jules Bloomenthal, editor.Introduction to Implicit Surfaces.
Morgan Kaufmann Publishers, Inc., San Francisco, Califor-
nia, 1997.

[6] Jonathan C. Carr, Tim J. Mitchell, Richard K. Beatson, Jon B.
Cherrie, W. Richard Fright, Bruce C. McCallum, and Tim R.
Evans. Reconstruction and representation of 3d objects with
radial basis functions.Computer Graphics Proceedings, An-
nual Conference Series (SIGGRAPH 2001), pages 67–76, Au-
gust 2001.

[7] George Celniker and Dave Gossard. Deformable curve and
surface finite-elements for free-form shape design.Computer
Graphics (SIGGRAPH 91), 25(4):257–266, July 1991.

[8] J. Duchon. Spline minimizing rotation-invariant semi-norms
in sobolev spaces. In W. Schempp and K. Zeller, editors,Con-
structive Theory of Functions on Several Variables, Lecture
Notes in Mathematics 571, Berlin, 1977. Springer-Verlag.

[9] Tom Duff. Interval arithmetic and recursive subdivision for
implicit functions and constructive solid geometry.Computer
Graphics (SIGGRAPH 92), 26(2):154–168, July 1992.

[10] Nira Dyn. Interpolation of scattered data by radial basis func-
tions. In L. L. Schumaker C. K. Chui and F. I. Utreras,
editors,Topics in Multivariate Approximation, pages 47–61.
Academic Press, Inc., 1987.

11



Appears in ACM Transactions on Graphics, Vol 21, No 4, October 2002

[11] Federico Girosi, Michael Jones, and Tomaso Poggio. Priors,
stabilizers and basis functions: from regularization to radial,
tensor and additive splines. Technical report, MIT Artificial
Intelligence Laboratory, June 1993. A.I. Memo No. 1430.

[12] W. E. L. Grimson. Surface consistancy constraints in vision.
Computer Vision, Graphics, and Image Processing, 24(1):28–
51, October 1983.

[13] John Hart. Ray tracing implicit surfaces.Siggraph 93 Course
Notes: Design, Visualization and Animation of Implicit Sur-
faces, pages 1–16, 1993.

[14] John Hart. Sphere tracing: A geometric method for the an-
tialiased ray tracing of implicit surfaces.The Visual Com-
puter, 12(10):527–545, 1997.

[15] Devendra Kalra and Alan Barr. Guarenteed ray intersection
with implicit surfaces.Computer Graphics (SIGGRAPH 89),
23(4):297–306, 1989.

[16] D. Keren and C. Gotsman. Tight fitting of convex polyhedral
shapes.International Journal of Shape Modeling, pages 111–
126, 1998.

[17] William Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3-d surface construction algorithm.Computer
Graphics (SIGGRAPH 87), 21(4):163–169, July 1987.

[18] Shigeru Miraki. Volumetric shape description of range data
using ’blobby model’.Computer Graphics (SIGGRAPH 91),
25(4):227–235, July 1991.

[19] Bryan Morse, Terry S. Yoo, Penny Rheingans, David T. Chen,
and K.R. Subramanian. Interpolating implicit surfaces from
scattered surface data using compactly supported radial basis
functions.Shape Modelling International, May 2001.

[20] Hitoshi Nishimura, Makoto Hirai, Toshiyuki Kawai, Toru
Kawata, Isao Shirkawa, and Koichi Omura. Object modeling
by distribution function and a method of image generation.
Transactions of the Institute of Electronics and Communica-
tion Engineers of Japan, J68-D(4):718–725, 1985.

[21] Hans Pedersen. Decorating implicit surfaces.Com-
puter Graphics Proceedings, Annual Conference Series (SIG-
GRAPH 95), pages 291–300, August 1995.

[22] Hans Pedersen. A framework for interactive texturing on
curved surfaces.Computer Graphics Proceedings, Annual
Conference Series (SIGGRAPH 96), pages 295–302, August
1996.

[23] Scott Roth. Ray casting as a method for solid modeling.Com-
puter Graphics and Image Processing, 18(2):109–144, 1982.

[24] Vladimir V. Savchenko, Alexander A. Pasko, Oleg G.
Okunev, and Tosiyasu L. Kunni. Function representation of
solids reconstructed from scattered surface points and con-
tours. Computer Graphics Forum, 14(4):181–188, October
1995.

[25] John Snyder. Interval analysis for computer graphics.Com-
puter Graphics (SIGGRAPH 92), 26(2):121–130, July 1992.

[26] Barton T. Stander and John C. Hart. Guaranteeing the topol-
ogy of an implicit surface polygonization for interactive mod-
eling. Computer Graphics Proceedings, Annual Conference
Series (SIGGRAPH 97), pages 279–286, August 1997.

[27] Richard Szeliski. Fast surface interpolation using hierarchical
basis functions.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(6):513–528, June 1990.

[28] Gabriel Taubin. An improved algorithm for algebraic curve
and surface fitting. InFourth International Conference on
Computer Vision (ICCV ’93), pages 658–665, Berlin, Ger-
many, May 1993.

[29] Demetri Terzopoulos. The computation of visible-surface rep-
resentations.IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 10(4):417–438, July 1988.

[30] Greg Turk and James O’Brien. Shape transformation using
variational implicit functions.Computer Graphics Proceed-
ings, Annual Conference Series (SIGGRAPH 1999), pages
335–342, August 1999.

[31] William Welch and Andrew Witkin. Free-form shape design
using triangulated surfaces.Computer Graphics Proceedings,
Annual Conference Series (SIGGRAPH 94), pages 247–256,
July 1994.

[32] Andrew P. Witkin and Paul S. Heckbert. Using particles
to sample and control implicit surfaces.Computer Graph-
ics Proceedings, Annual Conference Series (SIGGRAPH 94),
pages 269–278, July 1994.

[33] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data
structures for soft objects.The Visual Computer, 2(4):227–
234, 1986.

12


