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Abstract

We present a physically-based system to simulate and control the
locomotion of soft body characters without skeletons. We use the
finite element method to simulate the deformation of the soft body,
and we instrument a character with muscle fibers to allow it to ac-
tively control its shape. To perform locomotion, we use a variety of
intuitive controls such as moving a point on the character, specify-
ing the center of mass or the angular momentum, and maintaining
balance. These controllers yield an objective function that is passed
to our optimization solver, which handles convex quadratic program
with linear complementarity constraints. This solver determines the
new muscle fiber lengths, and moreover it determines whether each
point of contact should remain static, slide, or lift away from the
floor. Our system can automatically find an appropriate combina-
tion of muscle contractions that enables a soft character to fulfill
various locomotion tasks, including walking, jumping, crawling,
rolling and balancing.
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1 Introduction

In this paper we present a method of animating soft body characters,
that is, characters that do not have a skeleton. In particular, our em-
phasis is on creating animations of soft body creature locomotion,
including crawling, walking, rolling and jumping. There are a wide
variety of animals in nature that have no skeleton whatsoever. Some
examples of such creatures are slugs, starfish, earthworms, octopus,
and jellyfish. In addition, many hand-drawn animated characters
move in such a flexible manner that they seem to be boneless. The
animation principle of squash-and-stretch can be seen in its purest
form with soft body characters. Finally, as exemplified by our own
tongues, even animals with skeletons can have body parts that move
without the help of bones. Our research is driven by the intellectual
challenge of simulating the locomotion of such soft body creatures,
without resorting to any form of rigid elements in our models.
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Figure 1: Four alphabetic soft body characters perform different
forms of locomotion.

There are two key aspects of anatomy that allow real soft-bodied
creatures to move: volume preservation and muscle contractions.
Our animation system makes use of these same principles. Soft
body tissue is volume preserving, due primarily to the incompress-
ible nature of water. This volume preservation puts constraints on
the degree of deformation that a soft body may undergo. We use
volume-preserving finite elements to match this aspect of soft body
tissue. The second important aspect of soft body creatures is that
they control the shape of their body by the contraction of muscles.
If such a creature shortens only the muscles that run down the right
side of its body, this will cause the creature to bend towards the
right. Note that volume preservation and muscle contractions often
work in concert to produce motion. If a cylindrical creature uses ra-
dial muscle contraction to make itself thinner, then the constraint of
volume preservation means that at the same time the creature will
stretch lengthwise.

Each of our soft body characters is represented as a tetrahedral mesh
and simulated using the finite element method. Our models typi-
cally contain hundreds of tetrahedral elements, and controlling such
a high degree of freedom model poses a challenge. The aforemen-
tioned muscles from real animals provide a way of reducing the
degrees of freedom in our characters. In addition to the tet mesh,
each of our characters is augmented with a collection of polyline
paths, each of which represents a muscle fiber. A character changes
its body shape by contracting these muscle fibers, and this induces
a shape change in the collection of tetrahedra near the fibers. In the-
ory, such a character could be controlled by specitying the timing
of various muscle contractions. However, unlike controlling artic-
ulated figures using joint torques, the complex interplay between
muscles and soft body shapes makes the control problem exceed-
ingly challenging; even bending a limb of a soft body creature is
much more difficult than bending a joint of an articulated figure.
For these reasons, we decided that controlling a soft body creature
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by specifying the changes to each muscle fiber would be a tedious
method of control.

Our system provides a collection of intuitive controls for soft body
creature motion, such as moving a point of the character to a given
position, or regulating the character’s linear or angular momentum.
With this collection of intuitive controls, we are able to animate a
variety of soft body characters, and in particular, we can demon-
strate a wide array of locomotion methods. To move a character,
we specify a set of high-level goals (possibly time-varying), and
these goals are turned into an objective function that is passed to
our solver. For each time step, we formulate and solve a constrained
optimization problem, and this gives us new muscle lengths. These
muscle lengths induce changes in stress that are applied to the tetra-
hedral elements, and we then use our physics simulator to advance
the system forward in time.

An important part of our constraint solver is contact planning, and
this proves to be a challenge for soft bodies. At each time step,
our solver must be able to predict how a change to the muscle con-
tractions will influence the points of contact between the character
and the ground. For articulated figures, most optimization-based
controllers assume that each point of contact is static, which makes
contact resolution relatively straightforward to solve. In our sys-
tem, we cannot assume static contact because sliding and breaking
contact turn out to be quite important strategies to control soft char-
acters. For instance, a soft creature may need to widen its base
in order to balance, and this means that the points of contact must
slide. Depending on the motion goals that are given for a charac-
ter, the best way to minimize the resulting objective function might
be to maintain static contact, to break contact, or to allow sliding
contact along the ground. The behavior needs to be decided for
each point of contact, and this results in a high dimensional and
discontinuous optimization problem. We formulate this as a lin-
ear complementarity problem with a quadratic objective function.
Although similar problems have been recently proposed in other
fields [Braun and Mitchell 2005; Bai et al. 2011], we believe that
our solution method is new to graphics.

A natural alternative to our approach would be to represent a char-
acter as a rigid, articulated skeleton, and to surround the skeleton
with soft tissue that deforms. Such a character representation could
even demonstrate elongation and contraction with the use of transla-
tional joints. This approach would have several advantages, includ-
ing the availability of numerous tools that can be used to control
an articulated figure. We made a deliberate choice to avoid using
rigid elements entirely. We think that using only soft elements will
be more likely to result in motions that are more faithful to actual
soft body creatures. Our approach avoids the possibility that the
character motion shows hints of a hidden skeleton. In addition, us-
ing only muscle contractions keeps our character motions “honest”
in terms of the magnitude of forces that such characters can ap-
ply without a skeleton. Perhaps the most important reason that we
avoid the use of rigid elements is our desire to expand the creature
body forms that we can simulate using computers. Many animals in
nature move without the use of skeletons, so is it possible to create
a computer simulation that mirrors this fascinating phenomenon?

The main contributions of our paper are:

1. A new representation of soft body characters that uses mus-
cle fibers to control a volume-preserving finite element mesh.
This representation matches the muscle fibers and volume
preserving tissue found in real soft body creatures.

2. A framework that provides control of the motion of a soft
body character through high-level goals.

3. A new approach for solving the linear complementarity prob-

lem with a quadratic objective function, which enables our
controller to utilize a wide variety of contact cases, including
static, sliding, rolling and breaking contact.

2 Related Work

Soft body shape control. Controlling physically simulated soft
bodies is a practical problem in computer animation. Previous work
offers a rich repertoire of techniques that enable the artists to control
the shape of soft bodies. Many methods proposed to track a given
input animation or keyframes using interpolated resting shapes
[Kondo et al. 2005], a constrained Lagrangian solver [Bergou et al.
2007], a linear quadratic regulator [Barbi¢ and Popovié 2008], or
reduced spacetime optimization [Barbic€ et al. 2009]. Martin et al.
[2011] introduced an example-based approach for simulating soft
bodies with desired behaviors. The user supplies the system with a
few poses to guide the simulation results toward preferred shapes.
Shape control for soft bodies has also been applied to physics-based
facial animation. Sifakis [2005] formulated an optimization to au-
tomatically determine muscle activation that tracks a sparse set of
motion capture markers. Our work also aims to track predefined
shapes using muscle activation. Unlike Sifakis’s work, we do not
assume a steady state when computing muscle activation because
inertia effects play a key role in the types of motion we focus on
in this paper. In addition, while the pose of a face is entirely de-
termined by muscle activation and kinematic parameters, our mus-
cle activation needs to handle issues due to discontinuous contact
forces and balance.

Soft body locomotion control. In contrast to shape control, lo-
comotion control for soft bodies is relatively less explored in com-
puter animation. The main difficulty in locomotion is to control an
under-actuated system by exploiting external forces. Previous work
has shown that mass-spring systems can be used to simulate mo-
tion of worms, snakes, and fish [Miller 1988; Tu and Terzopoulos
1994; Grzeszczuk and Terzopoulos 1995]. Miller [1988] utilized
anisotropic frictional forces such that a worm can slide forward by
contracting elastic body segments. Tu and Terzopoulos [1994] ap-
plied a simple fluid dynamic model to provide forward thrust when
a fish deforms its body. Recent work by Kim and Pollard [2011a;
2011b] demonstrated that much more complex locomotion can be
achieved by effective soft body control. They combined an ef-
ficient skeleton-driven FEM simulator and an optimization-based
controller to create many interesting behaviors, such as a star fish
crawling out of a box and a fish flipping back and forth. Inspired
by their compelling results, we wish to generate even more com-
plex locomotion that requires intricate balance control, using only
muscle contraction without an actuated skeleton. Consequently, our
work demands a more sophisticated contact modeling method dur-
ing control optimization to handle discrete switches between static
contact, sliding contact, and contact breakage.

Contact handling. One broadly applied technique to handle
contact is to formulate a linear complementarity problem (LCP).
Stewart and Trinkle proposed an LCP formulation using an im-
plicit time-stepping method to guarantee non-penetration, direc-
tional friction, and approximated Coulomb’s friction cone condi-
tions [Stewart and Trinkle 1996]. Based on the LCP framework,
many improved contact models were introduced recently in com-
puter graphics, including using an efficient iterative method [Er-
leben 2007], a simple staggered sequence of projections [Kauf-
man et al. 2008], or a progressive constrained manifold refinement
[Otaduy et al. 2009]. Velocity-based LCPs for contact modeling
can have infinitely many solutions, but general LCP solvers, such
as Lemke’s algorithm, are incapable of ascertaining the quality of



the solutions for a given criterion. This drawback is particularly un-
desirable when solving an optimal control problem that exploits the
contact and dynamic state of the system. Due to the lack of robust
schemes to formulate optimization with arbitrary objective func-
tion and linear complementarity constraints, many previous meth-
ods explicitly assumed that the contacts remain static [Abe et al.
2007; Jain et al. 2009; Kim and Pollard 2011a] while optimizing
control forces subject to equations of motion. This assumption sig-
nificantly restricts the effectiveness of the controller for locomo-
tion and balance because the controller is not allowed to actively
exploit contact breakage, slipping contacts, or rolling contacts to
achieve control goals. A few previous studies in mathematics ad-
dressed the problems of linear and convex quadratic programs with
complementarity constraints (LPCCs and QPCCs) [Hu et al. 2008;
Bai et al. 2011]. They showed that global resolution of nonconvex
problems in these two subclasses, including those infeasible and
unbounded, can be accomplish in finite time. Instead of seeking a
general solution, we develop our own specialized QPCC solver for
the purpose of contact modeling. We exploit the physical meaning
of complementarity constraints as heuristics to greatly improve the
solution and performance of the solver.

Soft body simulation. Since the seminal work introduced by
Terzpoulos [1987], researchers in computer graphics have sim-
ulated a wide variety of deformable phenomena including cloth
[Baraff and Witkin 1998; Bridson et al. 2002], elasticity [Miiller
et al. 2002], and plasticity [O’Brien and Hodgins 1999; Bargteil
et al. 2007]. One popular technique is the Finite Element Method
(FEM) [Bathe 2007], which uses a tetrahedral or hexahedral dis-
cretization to solve dynamic equations. The robustness of FEM
simulation can be improved by handling inverted tetrahedra [Irv-
ing et al. 2004], remeshing ill-conditioned elements [Bargteil et al.
2007], or preserving volume without locking artifacts [Irving et al.
2007]. To improve the performance of FEM simulation, linear
strain model and precomputed stiff matrix are often used. How-
ever, these models are only valid for small deformation. To simu-
late large deformation, Miiller ef al. [2002] proposed a corotational
method to fix the volume inflation artifacts. Nesme ez al. [2005]
suggested that linearization around the current deformed configura-
tion reduces ghost torques. Precomputed deformation modes have
also been used to interactively deform large structures [James and
Pai 2003; Barbi¢ and James 2005; Kim and James 2009].

Muscle modeling. Modeling detailed human musculoskeletal
system also requires simulating and controlling soft bodies. Pre-
vious work has demonstrated that complex interplay among bones,
muscles, ligaments and other soft tissues can be modeled for indi-
vidual body parts, including the neck [Lee and Terzopoulos 2006],
the upper body [Zordan et al. 2006; DiLorenzo et al. 2008; Lee
et al. 2009], and hands [Tsang et al. 2005; Sueda et al. 2008].
Using the volumetric data from the visible human data set, Teran
et al. integrated a B-spline representation for muscles, a tetrahedra
mesh for soft tissues, and a triangulated surface for each bone to
simulate musculoskeletal behaviors [Teran et al. 2003; Teran et al.
2005]. A striking difference of our work is that we focus on con-
trolling deformation behaviors without skeletal support. This type
of control mechanism resembles biomechanical movements using
muscular-hydrostats, such as the tentacles of cephalopod mollusks
or the trunks of elephants [Kier 1985]. By using muscle contraction
alone, we can generate functional motor skills, including elongat-
ing, shortening, bending, and twisting. We show that visually ap-
pealing behaviors that cannot be produced by skeleton-based sys-
tems emerge with appropriate control.

3 System Overview

soft body shape locomotion . o
— simulator animation
muscle fibers controller muscle
I contraction
QPCC solver

Figure 2: Overview of our system.

We design a wide variety of locomotion controllers for soft bodies,
including balance, walking, crawling, jumping, sliding and rolling.
Given the geometry of a soft-body creature and the arrangement
of its muscle fibers, our controller computes required muscle con-
traction to propel the creature to achieve desired locomotion while
maintaining balance. At each time step, the controller formulates
a quadratic program with complementarity constraints (QPCC) to
solve for the optimal muscle contraction under discretized dynamic
equations of motion and frictional contact constraints. The objec-
tive function, assuming a convex quadratic form, can be designed
arbitrarily to address control goals of the desired locomotion. The
optimal muscle contraction is passed to a FEM simulator to calcu-
late the next state. Figure 2 illustrates the main components of our
system.

4 Soft Body Simulation and Modeling

Before we introduce the control algorithms for locomotion, we
first describe the methods for simulating soft bodies and comput-
ing muscle forces.

4.1 Finite Element Simulation

A soft body creature is represented as a tetrahedral mesh and is
simulated using a modified corotational linear FEM [Miiller et al.
2002]. We chose FEM instead of a mass-spring model because it is
difficult to enforce volume preservation for the material with mass-
spring systems. At each time step, the state of the creature, p, is
computed through numerical integration of the dynamic equations
of motion:

where M is the mass matrix of the discretized soft body and p is
the nodal position of the deformed shape. The forces on the right
hand side, £, f., f4, and £,,,, indicate external, elastic, damping, and
muscle forces respectively. The external force f, includes gravity,
contact force, and user perturbation force.

As notation, when we are specifying a quantity q for a single ele-
ment, we will write this as q. To compute the elastic force for each
element, we adapted the method suggested by Nesme et al. [2005]:

f. = -B"DB(p — Rx) 2)

where X indicates the nodal position in the rest shape and R trans-
forms the element from the reference coordinates to the deformed
coordinates. B is the strain-displacement matrix in the deformed
coordinates and Q is the stress-strain matrix. We use the Pois-
son ratio 0.45 in D to make the soft body nearly incompressible
while avoiding locking artifacts [Irving et al. 2007]. Although vol-
ume preservation is not enforced strictly, our experiments show that
the volume change is below 15% and is not visually noticeable.
This formulation linearizes the elastic force around the current de-
formed shape, rather than around the rest shape, as used in most



FEM implementations. We chose this formulation because it elimi-
nates “ghost torques” caused by the error of linearization around the
rest shape [Nesme et al. 2005]. When the material is soft or when
the deformation is small, ghost torques do not cause visible arti-
facts. However, this formulation is necessary for our case, because
soft body locomotion requires large deformation with relatively stiff
materials to support the weight of the creature.

We assemble the individual stiffness matrices BT DB for each el-
ement into a large stiffness matrix K for the whole system. The
elastic force for all the FEM nodes can be expressed by f. =
—K(p — Rx). For damping force, we use simple Rayleigh damp-
ing model to compute its effect: f; = —Cp = —(uM + AK)p.
We set the damping coefficients ;1 = 0 and A = 0.2 such that the
system is slightly over-damped.

4.2 Muscle Modeling

‘We model muscle fibers as polygonal curves with a small number
of segments. Each muscle segment can contract along its current
direction, but it cannot extend or bend. Based on the arrangement
of muscle fibers, we can bundle them into muscle groups. There are
three types of muscles which lead to different control tasks. The
longitudinal muscles are linear muscles that extend from one end
of the body to the other end. Their main function is to shorten or
bend the body. The radial muscles are a set of short muscles that
span a cross-section of the body. When radial muscles contract, the
volume-preserving nature of the tissue causes the body to elongate.
Helical muscles wrap around the body in a helical shape. When a
helical muscle contracts, the body twists.

Muscle contraction induces muscle force on nearby FEM elements.
Each muscle segment is modeled as a spring with a changeable de-
sired length. The spring force caused by each segment is computed
as: f = k(lq — 1), where k is the stiffness of the muscle fiber, l4 is
the current desired length, and [ is the current length of the segment.
We treat f as a virtual force, which is realized by muscle stress im-
posed on nearby elements. When a muscle segment contracts with
the virtual force f in the direction of d in the reference coordinates,
the effect of contraction is as muscle stress F':

f 00
F=U|0 0 o0 |U” 3)
0 0 0

where U is the matrix that rotates vector (1,0, 0)” in the reference
coordinates to be aligned with d.

Each FEM element may be affected by multiple muscles. The ac-
cumulated muscle stress experienced by an element ¢ is a weighted
sum of all the muscle stresses that have an influence on the element
i, denoted in the deformed coordinates of element ¢ as:

&1,1 = Zwi]'RFjRT (4)
J

where w;; weighs the influence of muscle fiber j on the element
1. The value of w;; is based on the shortest distance d;;, from
the muscle fiber to the center of the element in the reference co-
ordinates. We use a Gaussian kernel as the attenuation function,
h(d) = exp(j—i), where o is the variance of the Gaussian function.
The influence weight w;; is defined as

h(dij)
Zkeyroup(j) h(dlk)

The denominator in Equation 5 normalizes the influence of muscle
fibers within the same group. This normalization allows different

(&)

Wij =

muscle groups, typically with different functionalities, to exert their
influence on the soft body simultaneously.

Once we compute the muscle stress for each element ,,,, we cal-
culate the force at each face of the element by multiplying &, with
the area-weighted face normal in the deformed coordinates. Finally,
we evenly distribute the force at each face to the vertices to obtain
f,. at each node. As a shorthand, we define a muscle force matrix
A to express the relation between the muscle force on each node
and the effect of muscle contraction.

fr. =A(lg—1) 6)

Note that A € R3"*™ where n is the number of nodes in the FEM
mesh and m is the number of muscle segments, which is also the
dimension of our control variables.

4.3 Numerical Integration

To ensure the stability of our system with large time steps, we use
an implicit integrator to solve the dynamic equations. After substi-
tuting each force terms into Equation 1, we arrive at the following
dynamic equation:

Mp=f,—K(p—Rx)-Cp+A(lg -1 @)
Applying the implicit integrator, we can rewrite the equation as,

Mp™'! = Mp" + At(f] — K(p" ~ Rx") + Aly — 1))
=f"+f + Al ®
pn+1 _ pn + Atpn+1 (9)

where superscript n indicates the discretized time index and At is
the time step. We define M = M+ AtC+At>K and A = AtA,
and single out the contact force as f., which is part of f,, and will be
discussed in the next section. f” accounts for the remaining terms
on the right hand side of Equation 8.

5 Locomotion Control

To create functional locomotion using the simulation framework
described in previous section, we need a control algorithm to com-
pute the appropriate muscle contractions. Our control algorithm
formulates an optimization at each time step to solve for the de-
sired muscle contraction 14 that achieves the control goals subject
to physical constraints.

5.1 Optimization

We express the objective function in the optimization as a convex
quadratic function of the next state of the soft body: G(p™™*).
This general function form is sufficient to encode a wide variety of
control goals while retaining convexity of the optimization. Using
Equation 8 and 9, the optimization minimizes a reparameterized ob-
jective function which implicitly enforces the equations of motion:

min G(p" + AM (" + £, + Aly)) (10)
d

In addition to the objective function, the optimization must satisfy
two constraints. The first constraint enforces the range of muscle
contractions: 0.5y < 1; < 1o, where 1y denotes the muscle length
at the rest pose. The second constraint enforces valid contact under
Coulomb’s friction model. We adapt an implicit time-stepping LCP
method to regulate contact velocity and contact force, f. = Nf| +
Df, where N is the unit normal vector, D is a set of tangential



directions at the contact point, and f and f) are the magnitudes of
normal and tangent forces. The optimization with constraints can
be written as

ld,g{%‘,AG(lmfhf“) (11
subject to
0.5l <13 <]y
fL NTpn+1
o< | ff | L| DTp"™'+EX | >0
A pfL — ETf|

where p is the friction coefficient and E is a block-diagonal matrix
of e, which is a vector of ones. The complementarity constraints
also introduce auxiliary variables A. The physical meaning of ) is
related to the tangent velocity of a sliding contact. Please see An-
itescu and Portra [1997] for a complete review of LCP formulation.

A quadratic program with linear complementarity constraints
(QPCCQ) is well known for its nonconvexity and disjunctive features,
which cannot be solved efficiently by standard nonconvex solvers.
Previous work simplified this problem by assuming that the current
contacts will remain static (the velocities of contact points remain
zero) at the end of time step. If this assumption is not consistent
with the simulated result, the controller will try to correct it at the
next time step. In soft body control, assuming static contacts is too
restrictive and significantly reduces the effectiveness of the con-
troller. As a result, we cannot drop the complementarity constraints
in the optimization. We will introduce a new iterative solver to
QPCC for contact modeling in Section 6.

5.2 Low-level Controllers

We develop three types of low-level control mechanisms by formu-
lating different objective functions G (14, f., f;) in Equation 11. In
Section 7, we demonstrate that these three basic mechanisms can be
combined to design fundamentally different locomotion controllers.

Momentum control. Regulating momentum is of paramount im-
portance for biped balance and locomotion. Previous work [Mac-
chietto et al. 2009] has demonstrated that controlling the linear mo-
mentum relative to the contact support is a simple but very effective
balance strategy. We use the following objective function to regu-
late the linear momentum, L.

G(la,fe,£)) = L™, p") — L|J? (12)
The desired change of linear momentum L is defined as
L =mK,(c —c") — K,L" (13)

where m is the mass of the creature and c is the center of mass
(COM) position. K, and K4 are the stiffness and damping coef-
ficients for the feedback control. For balance control, the desired
COM position ¢ is computed based on the center of the contact
support area.

Angular momentum also plays an important role in balance. For
soft body creatures, controlling angular momentum is also essential
to rolling motion.

G(la, o, £) = [HP",p",p") — H|? (14)

where H denotes the target value for the change of angular momen-

tum and H computes the change of angular momentum at the next
state.

Base control. In addition to controlling the momentum, we can
increase the contact area to provide a wider range of support to
the COM. This balance strategy is particularly interesting for soft
bodies. By squashing and stretching its entire body, a soft body
creature can adjust its base area at will to maintain balance. We
define an objective function that controls the projected base area A

by matching its change rate to a desired rate A:
G(la, f1.£)) = A", p") — A|” (15)

We compute A by projecting a defined base area to the ground sur-
face with normal vector n:

1 T
A= 5;((@ —a;) % (i —a;))'n (16)

where index ¢ loops over all triangles in the base area, and a;, b;,
and c; are the vertices of the ¢th triangle. When computing A, we
evaluate the velocity terms at p" ' and the position terms at p™.
This approximation has negligible effect on accuracy, but keeps our

objective function convex.

Position and velocity tracking. Direct control of a Cartesian po-
sition or velocity is also an effective way to regulate locomotion.
For example, tracking the trajectory of a foot is essential for pro-
ducing a walking gait. The following objective function minimizes
the distance between a particular body point at the next time step
and a target Cartesian point p

G(la, o, £) = [f("") — b an

where f is a function that selects a node from p™ 1. If we redefine
f as a function that computes the COM, Equation 17 can be used
to track the COM. Likewise, we can track the relative position of
two body points by replacing f(p" ™) with f1 (p™ ") — fa(p™ ),
where f1 selects the first node and fs selects the second node from

p™ . We can also use a similar objective function to track velocity.

G(la, f1,) = [IF (") - pI* (18)

6 QPCC for contact modeling

The control framework described in Section 5 requires an efficient
QPCC solver that can handle 50 to 100 complementarity variables.
Solving QPCC in general is difficult due to the presence of the lin-
ear complementarity constraints. A naive way to solve QPCC is
to evaluate all the valid combinations of the complementarity con-
straints and output the minimizer. This exhaustive method is guar-
anteed to find the global minimum. However, the computational
time grows exponentially with the number of variables involved in
the complementarity constraint. In our control problem, we have
10 variables for each contact point (one for f , eight for f;; and one
for ). Thus, a few contact points alone will render the exhaustive
method computational impractical.

We propose a more efficient way to solve a QPCC for contact prob-
lems, such as Equation 11. Our iterative QPCC solver starts with
an initial guess, which is a set of linear constraints that are compat-
ible with the complementarity conditions. For the initial guess, we
manually set some elements of f,, f|;, and X to be zero and their
complementary pairs to be nonnegative, in a way that the state of
those variables has a physical meaning. For example, if we assume



all contact points are static, we arrive at the following convex QP:

ld,gi,rfl”’k G(lg, L, f)) (19)
subject to
0.51p <13 <1
0<f, Np"™' =0 (20
0<f, D'p"™ +EA=0 (21)
0=\, pfl —ETf; >0 (22

After solving the above QP, we examine the complementarity con-
ditions at the minimizer. We identify those inequality constraints
that reach their boundary at the minimizer as candidates for pivot-
ing. Our algorithm pivots one of those candidates at a time. That
is, we set the candidate to equality constraint and flip its comple-
mentary counterpart from equality to inequality. By pivoting the
complementarity constraints, we formulate a new QP with a set of
different linear constraints and we solve for the minimizer for this
new QP. We repeat this process until all the candidates reach the
local minimum of the QPCC, i.e. until we encounter a minimizer
that lies in the interior of the feasible region. The candidate that
yields the best local minimum is returned as the solution of the
QPCC. Our QPCC solver explores the nonconvex feasible region
based on the following heuristics: Each pair of the complementar-
ity constraints defines a feasible region formed by two intersect-
ing half-hyperplanes. If a minimizer hits the boundary of the half-
hyperplane, exploring the other half-hyperplane might give a better
minimizer. Figure 3 shows a two dimensional example.

Our algorithm further exploits the structure of a contact problem
to improve the performance. Instead of arbitrarily selecting a can-
didate to pivot, we can group the complementarity constraints ac-
cording to their physical meaning and pivot a whole group together.
There are three different situations for each contact point: static,
sliding and contact breakage. Pivoting constraints in Equation 20
indicates a switch between a static (or a sliding) contact and con-
tact breakage. Pivoting constraints in Equation 21 and 22 indi-
cates a switch between static and sliding contact. For example, if
£ (1) = 0 is the result of solving the QP (Equation 19), it im-
plies that breaking ith contact point might lead to a better mini-
mizer for the QPCC. The solver will pivot the corresponding con-
straints: f1 (i) > 0 — f. (i) = 0and (NTp"*1)(i) = 0 —
(NTp™+1)(i) > 0. The new QP will be solved subsequently.
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Figure 3: A simple 2D QPCC example. The complementarity con-
straints are 0 < x 1 x —y — 2 > 0. (a) The feasible region
lies in two intersecting half-hyperplanes, shown as two black line
segments. (b) With the initial guess of x = 0 and x —y — 2 > 0,
the minimizer, shown as an orange dot, is located at the boundary
of the inequality constraint. (c) After pivoting the constraint, set-
ting x > 0 and x —y — 2 = 0, we find a better minimizer (global
minimizer in this simple case).

Conversely, when a free point restores a static contact, we apply
the opposite pivoting.

If a friction cone condition (Equation 22) for the ¢th contact point
needs to be pivoted, this implies that the ith contact point is about
to slide and switching it from static to sliding might lead to a bet-
ter minimizer. The solver then changes the inequality constraint
(ufL — ETf))(i) > 0 to equality and changes the corresponding
equality constraint A(¢) = O to inequality. In addition, we need
to pivot some constraints in Equation 21 to specify the direction of
the sliding contact, which can be estimated using the static friction
from the current minimizer. We project this static friction force to
each of the tangential direction of the ith contact point D(%) and
find the two directions (the mth and nth direction in D(7)) that
have the largest magnitude. The sliding force direction is estimated
to be along the convex combination of mth and nth directions. We
pivot the constraints in the following way,

fiy(i,m) >0, (D"p"" +EN)(i,m) =0
£(i,n) >0, (D"p"" +EN(i,n) =0
£i(i,5) =0, (D'p"" +EN)(i,j) >0, Vj£m,n

where fj (4, j) is the magnitude of the friction force along the jth

direction for the ith contact point'. For the special case, where the
friction force is exactly along the mth (or nth) direction, we only
pivot the complementarity constraints involving the mth (or nth)
direction. For a switch between sliding to static contact, we use
the same pivoting mechanism but pivot the constraints the opposite
way.

Instead of searching exhaustively in the feasible region of the
QPCC, our solver systematically explores the feasible region based
on the above mentioned heuristics. Although the objective value
is not guaranteed to decrease monotonically, our experiments show
that the objective value decreases drastically within a small number
of iterations. The minimizer found by our solver is, in all the exper-
iments, significantly closer to optimal than the one solved under the
static contact assumption. We report the results of the experiments
in Section 8.

Implementation. Our solver requires a feasible initial guess. We
can use constraints under static contact assumption (Equations 20-
22) as an initial guess, or the solution from the previous QPCC
when it is available (warm start). Occasionally, both initialization
methods fail to generate feasible solutions. In that case, we assume
the same muscle activation as in last time step, remove the objective
function and muscle length constraints from Equation 11 and solve
a pure LCP. The contact situation from the LCP solution is then
used as the initial guess for the QPCC.

We implement the QPCC solver using a graph expansion algorithm.
Each QP with linear constraints is a node in the graph. We visit each
node twice, starting from the initial guess as the root. In the first
visit, we solve the QP, assign the objective value to the node, and
store the set of candidates to be pivoted. After first visit, we push
the node into a priority queue based on its objective function value.
A node is visited the second time when it is at the top of the queue.
In the second visit, we pivot the constraints from its candidate set.
Each pivot generates a child node. We discard the child node if it
already exists in the current graph. If the child node is new, we
visit the node for the first time and push it into the queue. The
second visit is completed when all the constraints in the candidate
set are pivoted. We then pop the next node in the queue and repeat

') (4, 7) is actually the (i - N + j)th element of f assuming that N
tangential directions are used for the linearized friction cone for each contact
point.



Figure 4: An H-shaped soft body character does its morning exercises by swinging its body from one side to the other.

Figure 5: An I-shaped soft body character tries to maintain balance under perturbation by regulating its momenta, widening its base and

lowering its center of mass.

this process. The algorithm terminates when the priority queue is
empty or the number of visited nodes exceeds a threshold. The final
solution is the best minimizer found so far by the QPCC solver.

7 Results

In this section we describe the results of our soft body locomotion
controllers. Please see the accompanying video to watch the loco-
motion animations. Our system is implemented in C++, and we
generated the tetrahedral mesh for FEM simulation using TETGEN
[Si 2006]. We used the GPU to create layered depth images for
collision detection, and we used contact patches (multi-resolution
volume contact) [Allard et al. 2010] instead of points as the contact
primitives. For each contact patch, we use eight tangential direc-
tions to linearize the friction cone, which provides sufficient accu-
racy while keeping the QPCC tractable. The examples were run on
a workstation with a 2.26GHz CPU and 4GB of memory. All the
data of our locomotion examples are summarized in Table 1.

We design many different shapes of the soft body characters, all
of which are chosen from the English alphabet. Figure 4 shows
an H-shaped character doing morning exercises. The character is
designed with four longitudinal muscles and one radial muscle for
each leg (Figure 10a). It is animated by specifying the trajectory
of the desired center of mass (COM), which is moved left/right by
a sine function. We use the position and velocity tracking con-

examples | #tets | #dofs | #contact | sim | opt | total

patches | time | time | time

exercise(H) | 1901 52
balance(I) 1066 48
slide(F) 705 48
jump(I) 1066 104
jump(T) 1219 51
roll(O) 911 40
crawl(I) 620 26
walk(X) 1128 112

0.54 | 0.05 | 0.59
0.31 | 0.28 | 0.59
025 | 0.23 | 0.48
0.33 | 048 | 0.81
0.63 | 0.30 | 0.93
026 | 0.18 | 0.44
0.18 | 0.24 | 0.42
054 | 0.70 | 1.24

PO A DA

Table 1: Parameters and performance of examples. # tets: the
number of elements in the FEM simulation. # dofs: the number of
muscle degrees of freedom for the soft body. Sim time, opt time and
total time are the average simulation, optimization and total time
(in second) per frame.

troller from Section 5.2 to track the desired COM. Note that when
the “H” swings left, its right side elongates and gets thinner while
the left side shortens and becomes fatter due to the volume preser-
vation. This animation clearly exemplifies the principle of squash
and stretch.

Balance. We design an I-shaped character (Figure 5) to demon-
strate static balance. We gave the character four longitudinal mus-
cles that allow it to bend in any direction. This character is per-
turbed by a large force exerting at its head, and it attempts to re-
cover its balance. Static balance of the “I”” turns out to be one of the
most difficult task among all our examples. The geometry of the let-
ter “I” does not have limbs or other appendages to help it regulate
the linear and angular momentum. The squishy body and lack of
skeletal support make the task even more challenging. In addition
to momentum control for balance, which is not enough to prevent
the “I” from falling, we exploit the advantage of its flexible body
shape. We include a term in the objective function that encourages
it to widen its support base. With this wider base, the contact area
is increased and the COM is lowered, which helps with the balance
task. Without our QPCC solver, base widening would be difficult to
achieve, because it requires frequent switching from static to sliding
contacts. In addition, we observe that right after the perturbation,
half of the base is lifted from the ground and the contact area con-
centrates on the rim of the base to provide the maximum amount of
torque to combat the perturbation. It is similar to a human lifting
his or her heels and using only toes to balance when pushed from
behind. This natural contact strategy emerges automatically from
our QPCC solution. To compare our QPCC solver and a more com-
monly used QP solver with linear constraints, we produced two ani-
mation sequences of the “I” balancing, one with each solver. QPCC
produced natural and effective balance motions, including changing
contact situation, lowering the COM, widening the base and regu-
lating momentum. In contrast, the QP solver (which only allows
for static contact constraints) resulted in a falling motion.

Sliding. In the example of Figure 6, instead of applying a per-
turbation force that lasts for a short time, we exert an continuously
increasing pulling force on the “F” standing on a slippery surface.
We design a sliding balance controller for this special balance task.
The controller estimates the optimal relative position between the
center of base (COB) and the COM such that the total angular mo-
mentum is zero. We use the position and tracking controller to track



Figure 6: An F-shaped soft body character maintains balance under a persistent and continuously increasing pulling force on a slippery
surface. It actively leans backward to avoid tipping over.

Figure 7: An I-shaped soft body character squashes and stretches its whole body to jump forward.

the optimal COB.

The sliding balance controller

also benefits from our QPCC so-

lution since planning the move- f

ment of the COB involves plan-

ing the change of contact situa- e,
tion (from static to sliding). We

instrument the vertical stroke

of the “F” with four longitudi- —m mg
nal muscles. Even though no
muscle resides in the horizontal cop HmMg

parts of this character, the two

horizontal strokes are still influ-

enced by the muscles in the main body. The first sequence of sliding
balance in the video shows that the “F” leans left while it is dragged
towards the right. As the drag force increases, the “F” leans more
and more to prevent from tipping over. The second sequence shows
the sliding motion when it is dragged to the left. The sliding mo-
tion is different from the first one due to the asymmetry of the body
shape. The elongation and oscillation of the top stroke of the “F”
demonstrates the animation principle of follow through. In the third
sequence, we applied the sliding balance controller 0.3 second after
the start of dragging to delay the character’s response time. The
slow response of the “F” makes it difficult to maintain the opti-
mal COB-COM relative position. It struggles to keep balance by
constantly switching between sliding and breaking contact (small
jumps), and eventually it manages to balance. These changes of
contact, due to the QPCC solver, makes the controller more robust
and the soft body character more lifelike.

Jumping. Jumping is an visually interesting form of locomotion
for soft body characters as it is often seen in cartoons and anima-
tions. Our jumping controller consists of three separate controllers
for takeoff phase, airborne phase, and landing phase. During the
takeoff phase, we use the position and velocity tracking controller

to follow a desired trajectory of the COM. We also set H = 0 to
the angular momentum controller, which prevents large rotation at
takeoff. During the airborne phase, we control the relative position
between the COB and COM. Extending the COB towards the di-
rection of jumping helps the character balance after landing. Upon
landing, we switch to the static balance controller. Figure 7 shows
a forward jumping motion of the same character “I” with a slightly
different fiber arrangement. We add four more longitudinal muscles

and one radial muscle to help it with this highly dynamic motion.
Another sequence in the video shows successive jumps in place.
Figure 8 demonstrates a twist jump and the use of helical muscles

(Figure 10b). Before the “T” takes off, we set H = (0, 600, 0)7 to
make it twist its body.

Rolling. In the accompanying video, we also demonstrate loco-
motion by rolling. We designed an O-shaped character with two
loops of muscle fibers arranged as two concentric circles (Fig-
ure 10c). Each fiber consists of 20 independent segments, which
allow the “O” to control its shape locally. The rolling motion is
initiated by moving the COM in front of the contact patches. We
use the angular momentum control to make it roll. In the first an-
imation, we set the desired change of angular momentum H to be
(0,0, —200)7 in the first 90 frames. We observe that the character
actively changes its shape by shifting its weight to the right in order
to roll. After the character starts rolling, we disable the controller

(b)

() (d)

Figure 10: Examples of the muscle fiber designs for various soft
body characters. Each curve inside the character represents a mus-
cle fiber, which consists of a number of independently contracting
degrees of freedom.
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Figure 8: A T-shaped soft body character twists using helical muscles when jumping.

Figure 9: An X-shaped soft body quadraped walks by slowly lifting and moving one foot at a time.

and simulate the passive rolling. The character recovers to its origi-
nal symmetric rounded shape and the rolling stops after a while due
to friction. In the second animation, we compare our result with the
motion solved by a QP using the static contact assumption. When
we only allow static contact, the “O” never begins rolling because
this motion requires the character to break contact, which is pro-
hibited by the static contact assumption (Equation 20). The third
sequence shows that the “O” starts to roll right, deaccelerates, stops

and rolls to the left by applying a time varying H to the controller.

Crawling. Crawling is often used by soft body creatures in nature,
such as earthworms. To demonstrate crawling motion, we flatten
the “I”” and lay it down on the ground. In addition to the four lon-
gitudinal muscles run along four sides of the body, we add another
radial muscle in the middle of its body to facilitate the elongation
of the body. We specify the trajectory of its four corners for the
crawling motion; the back of the character moves while it is con-
tracting, and the front moves when it elongates. We use the position
and velocity tracking controllers to match the trajectory. As Miller
noted, such creatures have oriented scales that result in anisotropic
friction [Miller 1988]. We incorporate just such an anisotropic
friction into our contact model by modifying the contact force to
f. = NfL + DSf), where S is a diagonal scaling matrix that
modulates the frictional force according to the direction of motion.
We set the friction coefficient in the backward direction to be 10
times larger than all other directions. In the accompanying video,
we demonstrate the earthworm style of crawling. The whole body
of the character lies flat on the ground at all times and it moves for-
ward by repeatedly shortening and elongating its body. The contact
strategy of this form of crawling is complex. During shortening, the
front end of the body is in static contact while the rear end is sliding
forward. During elongating, the front end switches to sliding con-
tact while the rear end switches to static contact. It is challenge to
capture this complex contact strategy using the traditional control
mechanism, but it emerges automatically by solving QPCC.

We also demonstrates an inchworm style of crawling, using the
same body geometry and muscles as the earthworm. For this style
of motion, the body bends upward periodically at the middle and
the contacts mostly concentrate at the two ends of the body. We
achieve this effect using the same controller as in the earthworm
style crawling with an additional constraint that the upper longi-
tudinal muscle cannot contract. While other muscles contract to
tracking the trajectory, the asymmetric muscle contractions bend
the body upwards naturally.

Walking. Figure 9 demonstrates the walking motion of an X-
shaped quadruped. We instrument four longitudinal muscles and
two radial muscles for each limb of the “X” (Figure 10d) and spec-
ify the trajectories of four corners on each foot. Using the posi-
tion and velocity tracking controller, the walking motion emerges
from muscle contraction computed by the algorithm. The first se-
quence in the accompanying video shows a careful and slow gait
that moves only one foot at a time. The second walking sequence
shows a faster walking gait by simultaneously lifting and moving
two feet at a time. The breaking of contact when a foot lifts from
the ground is handled automatically by the QPCC solver.

8 Evaluation and Limitations

QPCC. To evaluate our QPCC solver, we tested it on 10 QPCC
problems with 98 variables and 40 pairs of linear complementarity
constraints. We compared our solutions with the ground truth, as
well as with the solutions based on the static contact assumption.
The ground truth is computed by an exhaustive search, i.e. , solv-
ing a QP for every combination of complementarity variables and
selecting the one with the lowest objective value. We evaluated our
results using a “gap ratio”, defined as the ratio of difference in the
optimal value between our solver and the ground truth, to the dif-
ference in the optimal value between the static contact assumption
and the ground truth. On average of 10 problems, the gap ratio is
6.29, indicating that our solver yields solutions 6.29 times closer to
the ground truth than the solutions based static contact assumption.
We also selected the best case and the worst case according to the
gap ratio and reported them in Table 2.

Limitations. Our system has a few limitations. The optimization
scheme described in Section 5 only optimizes the control variables
for the next time step. This type of greedy algorithm sometimes
leads to unnaturally large muscle contraction or discontinuities in
motion. For example, the rolling “O” demo in the accompanying
video exhibits some unnatural vibration. Furthermore, the greedy
algorithm prevents us from simulating anticipatory behaviors in
motion. For example, we were not able to develop a “cartwheel”
controller for the I-shaped character because a natural and stable
cartwheel motion requires optimizing a long-window of trajectory.
This issue can potentially be solved by implementing long-horizon
optimization or model predictive control methods.

QPCC is an NP-hard problem [Braun and Mitchell 2005] and our
method provides an effective heuristic. Although the empirical re-



QPCC QP (Static Contact Assumption) Ground Truth
Avg Best | Worst Avg Best Worst Avg Best | Worst
Objective Value | 1483.16 | 21.79 | 697.91 | 5222.84 | 2072.00 1246.95 | 772.85 0.00 0.00
Num Iterations 17 3 31 1 1 1 10000 | 10000 | 10000

Table 2: The results of the numerical experiments of the QPCC solver.

sults showed that our QPCC solver can effectively solve contact
resolution problem and balance between the quality of solution and
computational time, the QPCC solver does not guarantee finding
the minimizer in polynomial time. In the worst case, it takes the
same amount of time as the exhaustive search to find the global
minimizer.

9 Conclusion

We have presented a system for animating soft body characters,
with a particular emphasis on locomotion. Key aspects of our ap-
proach include the coordinated deformation of groups of finite el-
ements using virtual muscle fibers, the specification of high-level
goals by the animator, and the use of a new solver that handles
static, sliding and breaking contact cases. Our system allows us
to create soft body characters that demonstrate a variety of loco-
motion behaviors, including crawling, hopping, walking, sliding
and rolling. Our characters move in an organic manner, and they
follow the animation principles of anticipation, squash-and-stretch,
and follow through.

One of the issues that we hope to explore in the future is to expand
our solution techniques to handle longer-term goals that cannot be
reached using our current optimization method. In this work, all
muscles are manually designed. We would like to develop an au-
tomatic muscle design algorithm to incorporate more sophisticated
muscle structures. We would also like to investigate muscle design
for chunkier creatures. For example, it is not immediately obvi-
ous how muscle fibers should be arranged for the Stanford Bunny.
Another possibility is to note that in our current system, we only
use contracting muscle fibers in order to change the shape of our
characters. It would be interesting to explore other forms of shape
control, such as elongating muscles or sheets of virtual muscles.
Another possible direction would be to explore the animation of
soft body characters in water, since many real soft-body creatures
live in an aquatic environment. Finally, our current animator con-
trols are provided as program modules, and an easier way to use
them would be to plug them together using a graphical user inter-
face.
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