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ABSTRACT
Application of machine learning models to study land-cover
change is typically restricted to the change detection of catego-
rical, i.e. classified, land-cover data. In this study, our aim is to
extend the utility of such models to predict the spectral band
information of satellite images. A Random Forests (RF)-based
machine learning model is trained using topographic and histor-
ical climatic variables as inputs to predict the spectral band values
of high-resolution satellite imagery across two large sites in the
western United States, New Mexico (10,570 km2), and Washington
(9400 km2). The model output is used to obtain a true colour
photorealistic image and an image showing the normalized differ-
ence vegetation index values. We then use the trained model to
explore what the land cover might look like for a climate change
scenario during the 2061–2080 period. The RF model achieves
high validation accuracy for both sites during the training phase,
with the coefficient of determination (R2) = 0.79 for New Mexico
site and R2 = 0.73 for Washington site. For the climate change
scenario, prominent land-cover changes are characterized by an
increase in the vegetation cover at the New Mexico site and a
decrease in the perennial snow cover at the Washington site. Our
results suggest that direct prediction of spectral band information
is highly beneficial due to the ability it provides for deriving
ecologically relevant products, which can be used to analyse
land-cover change scenarios from multiple perspectives.
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1. Introduction

Recent warming of the climate has led to large-scale changes in earth’s land cover.
Large-scale warming has resulted in a shift in the dominant vegetation species to higher
latitudes and higher elevations, which has been reported in many parts of the world
(Walther et al. 2002; Root et al. 2003; Kelly and Goulden 2008; Lenoir et al. 2008;
VanDerWal et al. 2013). Throughout the southwest US, woody species have been
encroaching on grasslands (Barger et al. 2011). In southwestern Wyoming, where pre-
cipitation has been trending down for the last 30 years, sagebrush vegetation have been
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giving way to bare ground (Homer et al. 2015). In many western states of the US, where
seasonal snowmelt accounts for a large fraction of the annual water supply, winter snow
accumulation and perennial snow cover has been decreasing. Mote (2003) has shown
that from the mid to latter half of the twentieth century, winter snow accumulation at
several locations along the Cascades Mountain Range fell by more than 40%. Hall et al.
(2015) have reported that in north-western Wyoming, the winter snowmelt is
16 ± 10 days earlier in 2000s compared to the period 1972–1999. At higher latitudes,
where warming has been significantly greater than the planetary average, there has
been simultaneous shortening of the snow season (Groisman, Karl, and Knight 1994;
Stow et al. 2004) and lengthening of the vegetation growing season (Foster 1989; Foster,
Winchester, and Dutton 1992; Stone et al. 2002). These are just some of the land-cover
changes that studies have documented within the last 100 years. However, while this
evidence of change provides a view to the future change, it nevertheless remains highly
uncertain what changes will occur in the global land cover over the next 100 years.

Despite high uncertainty, numerous studies have attempted to model the potential
impact of climate change on future land cover (Pearson and Dawson 2003; Sitch et al.
2003; 2008; Krinner et al. 2005; Rogan et al. 2008). We can broadly classify these modelling
efforts into those using physically based and statistically based models. Physically based
models provide a mechanistic framework in which mathematical representation of indivi-
dual processes, such as vegetation growth and decline, snow dynamics, and land–atmo-
sphere exchanges of water and carbon, can be coupled to simulate an integrated landscape
response to climate forcing. For instance, Sitch et al. (2003) developed the Lund-Potsdam-
Jena Dynamic Global Vegetation Model to simulate the response of terrestrial vegetation to
climate forcing and demonstrated its application globally at 0.5° × 0.5° spatial resolution.
Campbell et al. (2010) used the Simultaneous Heat and Water model to simulate future
changes in snowpack and soil frost at the Hubbard Brook Experimental Forest in New
Hampshire, USA, with climate forcing from three different General Circulation Models
(GCMs). Physically based models have the benefit that they can be used to infer the
cause and effect of land-cover change at the level of individual physical processes (Parker
et al. 2003; Pauleit, Ennos, and Golding 2005; Pitman et al. 2009). However, these models
suffer from the large number of simulations necessary to adequately constrain parameter
values, and therefore can be both time consuming and, in many instances, beyond the
available computing power for many researchers. As a result, physically based simulations
tend to make a compromise in their spatial resolution (Brovkin et al. 2006; Verburg,
Neumann, and Nol 2011) or their areal extent (Tague, Seaby, and Hope 2009; Abdelnour
et al. 2011; 2013).

Statistically based land-cover change models, on the other hand, operate on the
premise that a strong relationship exists between the geographical distribution of
land cover and the environmental and climate conditions and that these relationships
can be empirically extracted using statistical machine learning methods (DeFries and
Chan 2000; Guisan and Zimmermann 2000; McIver and Friedl 2002; Brown De
Colstoun et al. 2003; Guisan et al. 2006; Klein, Gessner, and Kuenzer 2012). Machine
learning refers to a broad set of computational techniques used for identifying
patterns in data and are usually applied where standard techniques such as regres-
sion analysis are not applicable. Machine learning algorithms statistically learn pat-
terns and rules based on present correlations defined by a training set of data and
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provides a learned mapping between predictor variables (or attributes) and a target
variable (Witten et al. 1993; Bishop 2006). Once a model is developed through
training, it can be used to predict the target variable in situations where the predictor
variables are known but the target variable is not (Mitchell 1997). Some of the widely
used machine learning techniques include Neural Networks (NN), Support Vector
Machines, Classification Trees (CT), Regression Trees (RT), Random Forests (RF),
Boosted Regression Trees (BRT), and Multivariate Adaptive Regression Splines
(Vapnik 1999; Domingos 2012; Alpaydin 2014).

Machine learning models have been widely used to predict the changes in land cover
for a given site or region. Rogan et al. (2008) compared three different machine learning
models (CT, Maximum Likelihood Classification, and NN) to detect changes in land-cover
classes across two sites in California, USA, between the years 1990 and 1996. Similar
model comparison was done by Schneider (2012) for land-cover change detection in
China across five time periods between 1988 and 2009. Pearson et al. (2013) used a RF
model to identify relationships between 19 bioclimatic variables from the WorldClim
database and 8 tundra vegetation types in the Arctic, and then used the trained model
to predict future vegetation cover classes for the climate change scenarios in the 2050s.
Statistical machine learning models have an advantage over the physically based models
due to their significantly faster computational speed and better predictive capacity (Im
and Jensen 2005; Rogan et al. 2008). Thus, they can operate at both high spatial
resolutions and over very large areas with much lower computational overhead.
However, one limitation of the machine learning models is that their application has
so far been restricted to the change detection/prediction of categorical (i.e., classified)
land-cover information.

In this article, our goal is to extend the utility of machine learning models to predict
the spectral band information of high-resolution satellite-based land-cover images
(which is continuous scale numerical data) for a future climate change scenario. The
rationale for doing so is two-fold. First, there is a body of evidence that strongly relates
remote-sensing proxies, such as the normalized difference vegetation index (NDVI), to
ecologically important processes (Roughgarden, Running, and Matson 1991; Kerr and
Ostrovsky 2003; Pettorelli et al. 2005), and their prediction into the future will offer a
quantitative understanding of ecological change. Availability of spectral band informa-
tion for a future scenario would be critical to derive such proxy data. Second, as will be
demonstrated, our methodology can be used to provide a photorealistic view of land-
cover change, which from a conceptual vantage point provides new and intuitive
insights to understand the implications of change. To conduct this research, we have
used the topographic and historical climate data (1950–2000) from two large sites in the
United States, one in the state of New Mexico and the other in the state of Washington,
to train a RF machine learning model. The model is trained to predict the spectral values
from bands 1 (Blue), 2 (Green), 3 (Red), and 4 (Near Infrared) of a Landsat 7 image. Then,
with the GCM climate forecast data from the 2061–2080 period as input, we use the
trained model to predict the future band information and its derivative RGB and NDVI
images. The data used include Landsat 7 reflectance imagery, mean annual temperature,
and annual precipitation for the 1950–2000 period; digital elevation model data; and the
future climate projections generated using the Goddard Institute for Space Studies
(GISS) GCM version E2 that are downscaled and bias corrected to the current climate.
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2. Study area and data

2.1. Study sites

Our New Mexico site (Figure 1) is located in the north-central region of New Mexico
state in the western US and includes the N-S flowing Rio Grande River, the Jimenez
Mountains on the west, and the Santa Fe National Forest on the east. Elevation ranges
from 1573 to 3972 m. The annual mean temperature ranges from −1.3°C at higher
altitudes to 12.7°C in the valleys. Annual precipitation ranges from 250 mm in the valleys
to 1000 mm in the uplands. Dominant vegetation types include grasses near the river
channel, shrubs in the lowlands and along the mountain slopes, and evergreen vegeta-
tion in the uplands. Uplands also include grasses and a small fraction of mixed forest.
The soil type in this region consists mainly of Entisols, Inceptisols, and Alisols. Exposed
rock formations are also present in areas surrounding the mountain peaks (Wolock
1997). The total area covered is 10,570 km2.

Our Washington site (Figure 1) is located in the northwest part of Washington state
and includes the North Cascades National Park and part of the Mount Baker-Snoqualmie
National Forest. Elevation ranges from 70 m in the southwest to 3300 m in the northeast.
The North Cascade Range is oriented in a NW-SE direction and divides the region into
distinct regimes; cool and wet to the west of the range during winter and cold and dry
to the east. Summers are typically dry throughout the region. The predominant vegeta-
tion is evergreen forest, which covers more than 60% of the site area. Major tree species
include Western Hemlock, Pacific Silver Fir, Subalpine Mountain Hemlock, Alpine,
Subalpine Fir, and Douglas Fir (Crawford et al. 2009). Other significant vegetation are
shrubs, covering 14% of the territory, grasslands are 8% of the area, and deciduous
forests are 1% of the area. The most distinctive feature of this landscape is the arc of
perennial snow that covers about 1.5% of the land area. Soils are predominantly
Andisols, Inceptisols, and exposed rock formation (rock outcrops) at higher altitudes of

Figure 1. Location map of the two study sites.
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the mountain range (Wolock 1997). Rock outcrops account for almost 8% of the area.
Annual mean temperature ranges from −4.9°C at higher altitudes to 10.5°C at lower
altitudes. Annual precipitation varies between 460 mm, east of the Cascade Mountains,
and 2087 mm on the western side of the mountains (Hijmans et al. 2005). The total area
covered is 9400 km2.

2.2. Data

Table 1 summarizes the spatial data used as model inputs at each of the two study sites. We
use the 32-day raw composite satellite images from Landsat 7, specifically seeking informa-
tion on the values of spectral bands 1, 2, 3, and 4, which correspond to the blue, green, red,
and near infrared colour channels, respectively. Both historical and future climate data sets
(items 4 and 5 in Table 1) are obtained from theWorldClim data set (Hijmans et al. 2005). The
historical observed climate data by Hijmans et al. (2005) has used observed meteorological
station data (47,544 stations for precipitation and 24,542 stations for air temperature) from a
variety of sources, such as Global Historical Climatology Network (GHCN v2), World
Meteorological Organization’s Climate Normals (WMO CLINO), and Food and Agricultural
Organization’s Agroclimatic Database (FAOCLIM 2.0). These observed point data have been
interpolated over a 1 km global grid using the thin-plate smoothing spline algorithm. As
shown in Figure 1 of Hijmans et al. (2005), the meteorological station density is amongst the
highest in the continental United States. The downscaled 2061–2080 climate data from the
GISS E2 model output are for the Representative Concentration Pathway (RCP) 8.5 scenario
(IPCC 2013). To ensure fast computation as well as uniformity amongst the different data
sets, we resample all the above-mentioned data onto a common 150 m resolution grid.

3. Methods

3.1. Machine learning model

We use the RF model (Breiman 2001), which is an ensemble-based machine learning
method, to predict the spectral band information of Landsat images. The spatial data
used as model inputs, i.e. the predictor variables, are elevation, aspect, slope, mean
annual precipitation, and temperature. The model outputs, i.e. the target variables, are
the spectral values from bands 1, 2, 3, and 4 of the Landsat image.

Each ensemblemember in the RFmodel is a Decision Trees (DT)model, which is essentially
an inverted binary tree structure where splitting rules govern the flow of decisions. The DT

Table 1. Summary information of all the input data used for training the machine learning model.
Attribute Source Resolution

Elevation USGS National Elevation Dataset 30 m
Aspect Calculated from Elevation data 30 m
Slope Calculated from Elevation data 30 m
Historical mean annual temperature and
precipitation

Worldclim – Normal 1950–2000 period (Hijmans et al. 2005) 1000 m

Future mean annual temperature and
precipitation

Worldclim – Downscaled GISS E2 2061–2080 period
(Hijmans et al. 2005)

1000 m

Landsat 7 reflectance imagery For New Mexico: 16 October 1999 – 17 November 1999 30 m
For Washington: 12 July 2001 – 13 August 2001
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algorithm begins at the top node and proceeds down through internal nodes and branches.
There are two main types of DT models: (1) CT, which are used when the data type of target
variables is categorical, and (2) RT, which are used when the data type of target variables is
numerical. Since our target variables are the spectral band values in every pixel of the Landsat
data, we use RT as the base ensemble constituent of our RFmodel. Each node of RT is a binary
split that is conditional based on the value of a predictor variable. The particular formof RT that
we use here is Classification and Regression Tree (CART). CART builds a RT in a top-down
manner, first creating a root node and progressively splitting the data into two sub-trees. The
final output of RF model is the mean of the output from all individual RT models in the
ensemble.

A drawback of the DT models is their tendency to overfit the training data set by
building very deep trees (Bramer 2007). This can lead to poor model performance when
making predictions outside the training data set. RF models reduce the risk of overfitting
in two main ways. Firstly, given that the RF model structure is an ensemble of a large
number of DT models, its output is not overly dependent on that of any single DT
model. Secondly, when creating the training data set for its ensemble member models,
the RF model uses the bootstrap aggregating method (also referred to as bagging)
(Breiman 1996). In this method, the original training data set is sampled with replace-
ment, thereby creating a sub-sampled data set that has the same length as the original
training data set. The use of bagging method ensures that (1) each individual DT model
in the ensemble is trained with a slightly different data set and (2) part of the original
training data set that is left out due to bagging can be used as the test data set to
determine model performance (also known as the out-of-bag (OOB) score). Here, we use
the coefficient of determination (R2) to measure the RF model’s OOB score.

One of the main controlling factors in RF model’s performance is the number of its
ensemble members (i.e. individual RT). Typically, having too few ensemble members leads
to a poor OOB score, and increasing the number of ensemble members can improve the OOB
score. However, the improvement in model performance becomes marginal once a certain
threshold of ensemble members is crossed, and having too many ensemble members simply
adds to the computational cost without any performance gain. During preliminary tests of the
RF model with our data sets, we found that having more than 100 RT model ensembles
provides virtually no improvement in the OOB score. Therefore, for all the results presented in
this article, our RF model consists of an ensemble of 100 RT models.

During the training phase of RF model, we use the historical climate data (see Table 1)
and topographic variables (elevation, slope, and aspect) as model inputs. The spectral
band information from Landsat 7 images is used for comparison with model outputs to
calibrate the RF model. In the prediction phase, the RF model uses the future climate
data and the topographic variables as model inputs. We use the RF model in the scikit-
learn machine learning package that is implemented in Python® programming language
(Pedregosa et al., 2011).

3.2. Post-processing of the model outputs

The output of RF model is the spectral band information of the Blue, Green, Red, and
Near Infrared bands of the Landsat image. We use this output information to create two
derived products: (1) a true colour photorealistic image consisting of the Red, Green and
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Blue (RGB) colour bands and (2) an image showing the NDVI values of the study sites.
NDVI value for each pixel is calculated using the following formula.

NDVI ¼ B4 " B3
B4 þ B3

(1)

where B4 is the Near Infrared colour band and B3 is the Red colour band of a Landsat 7
satellite image.

In addition to the OOB score obtained during the RF model’s training phase (see
Section 3.1), we calculate two more error metrics to assess the model performance for
the final trained images. For the photorealistic image, the error at each pixel is calculated
as follows:

ERGB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1; obs " B1;pred
" #2 þ B2; obs " B2;pred

" #2 þ B3; obs " B3;pred
" #2

q
(2)

where B1 is the Blue colour band, B2 is the Green colour band, and obs and pred denote
the observed and model predicted spectral band values, respectively. For the NDVI
image, the error at each pixel is calculated as follows:

ENDVI ¼ NDVIobs " NDVIpred (3)

4. Results and discussion

We first present the results from the RF model’s training phase, which uses the topo-
graphic and historical climate data to train the model for predicting the four spectral
band values (Blue, Green, Red, and Near Infrared) of the Landsat image. For the New
Mexico site, the OOB R2 value for the prediction of four spectral band values is 0.79. For
the Washington site, the OOB R2 value is 0.73. Figure 2 compares the original Landsat
and the trained true colour photorealistic images for both study sites. Images produced
using the RF model are able to capture almost all the major land-cover features at both
sites, and there is good visual agreement with the original Landsat images.

Figure 2. Comparison of the original Landsat 7 images and the RF model trained true colour
photorealistic images for the two study sites.
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Figure 3 compares the NDVI values between the original and trained images at both study
sites. For the New Mexico site, the R2 value between observed and simulated NDVI values is
0.97. For theWashington site, R2 = 0.96 between the observed and simulated NDVI values. It is
worth noting here that the R2 values are much higher for NDVI because at each site we
compare all the pixels between the observed and simulated data, whereas for the raw spectral
band values, we only compare the pixels that were left out from training due to bagging.

Figure 4 shows the RGB error between the original Landsat and the model-generated
photorealistic images calculated at each pixel using Equation (2). The error across RGB band
values is lower at the New Mexico site, where there is no prominent geographical pattern for
high error values. Conversely, the Washington site has higher error across the RGB band
values, and the high error pixels are predominantly located in areas adjacent to the perennial
snow cover. Figure 5 shows the error between the original andmodel generated NDVI images

Figure 3. Comparison of the NDVI values between the original historical images (derived from
Landsdat 7 using Equation (1)) and the RF model trained images for the two study sites.

Figure 4. Spatial distribution of the error in RGB band values calculated for each pixel at (a) New
Mexico site and (b) Washington site. Also shown are the error histograms using the data from all the
pixels at (c) New Mexico site and (d) Washington site.
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calculated at each pixel using Equation (3). Consistent with the RGB error shown in Figure 4,
the NDVI error values are lower at the New Mexico site compared to the Washington site.

Next, we focus on the prediction phase of the RF model, which uses the topographic
and future climate data (see Table 1) to predict the spectral band values for the RCP 8.5
climate change scenario. Figure 6 compares the historical (trained) and the future
(predicted) true colour photorealistic images for both study sites. For the New Mexico
site, the most prominent change is the increase in vegetation cover within the forested
areas on either side of the Rio Grande river. For the Washington site, there is a
substantial decrease in the perennial snow cover in the vicinity of Mount Baker (top
left of the image) as well as across other mountainous areas along the Cascades
Mountain Range. Many areas that appear as snow covered in the trained historical

Figure 5. Spatial distribution of the error in NDVI values calculated for each pixel at (a) New Mexico
site and (b) Washington site. Also shown are the error histograms using the data from all the pixels
at (c) New Mexico site and (d) Washington site.

Figure 6. Comparison of the historical (RF model trained) and future (RF model predicted for RCP 8.5
scenario) true colour photorealistic images for the two study sites.
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image are replaced by bare ground in the future scenario image. Figure 7 shows the
NDVI images at both study sites for the historical (trained) and the future (predicted)
scenarios. The overall increase in vegetation cover at the New Mexico site is discernible
from the NDVI comparison. Interestingly, the reduction in perennial snow cover for the
Washington site can be perceived through the increase in NDVI values in the mountai-
nous areas.

We have attempted to demonstrate that a machine learning model that is trained to
predict the spectral band information of satellite images can be highly useful for
scenario-based assessment of future land cover. Moreover, given the richness of infor-
mation available from spectral band values, it is possible to create several derived
products to analyse (and visualize) land-cover response to climate change from multiple
perspectives. In our view, this is a non-trivial improvement from previous land-cover
change studies which had limited the application of machine learning models to
categorical land-cover classification data (Rogan et al. 2008; Schneider 2012; Pearson
et al. 2013). It is worth mentioning here that the categorical land-cover classification
data itself is a product that is derived from satellite image data, similar to the photo-
realistic images and NDVI data shown in our study. Several methods, many of them
based on machine learning, exist to convert the satellite’s spectral band information into
land-cover classes (Friedl and Brodley 1997; DeFries and Chan 2000; Hansen et al. 2000;
Qian et al. 2015). We would also like to note that our focus on predicting only the first
four spectral bands of the Landsat 7 images was governed by our choice of derivative
products, the NDVI and RGB images (which require the use of first four bands only).
Nonetheless, the techniques presented in this study are applicable to predicting the
information from any desired number of satellite spectral bands, depending on the final
product sought by the end user.

Our preference for choosing a RF machine learning model in this study was partly due to
the fact that its ensemble constituents are comprised of DT models, which offers a number of
attractive features over other statistical learning techniques. DT models are non-parametric
and therefore make no assumptions regarding the distribution of the data. They are structu-
rally explicit models and provide for a clear interpretation of the connections between the

Figure 7. Comparison of the NDVI values between the historical (RF model trained) and future (RF
model predicted for RCP 8.5 scenario) images for the two study sites.
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predictor and target variables. Normalization of attribute distances is unnecessary in these
models, and their internal structure (essentially a cascading set of data splitting decisions)
makes them much more tolerant to redundancies in the information content among the
input variables [Song and Lu 2015). In addition, they tend to be computationally faster than
other machine learning techniques (Witten and Frank 2005; Kotsiantis, Zaharakis, and Pintelas
2007; Rogan et al. 2008; Schneider 2012) such as NN or BRT, and certainly faster than the
physically based mechanistic models for a similar resolution data and areal extent. Lastly, as
we hadmentioned in Section 3.1, the ensemble averaging process in a RFmodelmitigates the
drawbacks caused by the direct use of a stand-alone DT model. Nonetheless, there are a few
assumptions and limitations built into ourmethodology. Firstly, our model requires long-term
climatic averages of precipitation and air temperature as inputs. These were chosen because
the development of natural vegetation cover is a gradual process and would be a function of
past climate over a long time period (in the order of decades) (Dale 1997; Kangur et al. 2005;
Soudzilovskaia et al. 2013), especially for forested areas which are abundant in both our study
sites. Unfortunately, this makes the model unsuitable for change detection at short time
scales, and a time gap of several decades would be needed between the training and
prediction dataset to obtain meaningful change detection. Secondly, our input data was
resampled to a common grid resolution of 150m prior to running themodel, which was done
to limit the computational expenditure in the desktop runtime setting. Grid resampling does
bring another source of uncertainty to the model, but is unavoidable due to different
resolutions of our input data sets. Nonetheless, it would be possible to run our model at
finer spatial resolutions if additional computational resources are available to the user.

As we look forward, the method presented in our study offer both challenges and
opportunities. Firstly, our model presumes that the land-cover change for the 2061–2080
period is simply the application of learned rules from the historical period to the climate
changed environment. Many sites within our two study regions have experienced
disturbance due to, for example, grazing pressure and fires (Everett et al. 2000; Floyd
et al. 2003; Allen 2007). However, to a large extent, this is mitigated by the fact that our
land-cover training is conducted over regions that are much larger than the scale of a
typical disturbance. Secondly, the predicted land cover for 2061–2080 period does not
indicate the velocity of land-cover change in response to changes in precipitation and
air temperature (Loarie et al. 2009). Thus, our model does not provide any mechanistic
understanding of how the final predicted state of land cover will be reached.

Within the limits of these challenges, the method presented here does provide a few
opportunities. Monthly Landsat images are available at the 16- and 32-day time frames
going back to 2002, and can provide ample raw data to explore how the seasonality of
vegetation will be altered in a future scenario. Ongoing improvements in the satellite
sensor technology, such as those in the recently launched Landsat 8 satellite (Knight and
Kvaran 2014; Roy et al. 2014), also have the potential to provide increasingly better
quality input data to land-cover change models. The fast computational speed of the
machine learning models permit the rendering of future land cover over much larger
areas than our study regions, possibly even covering the entire continental USA. The five
predictor variables we used were obtained from three primary data sources: rainfall, air
temperature, and elevation (slope and aspect are derivative products of elevation), and
were chosen based on what we judged to be important factors for predicting land
cover. Nonetheless, we cannot rule out the possibility that, at least in some regions,

5602 S. D. PATIL ET AL.



inclusion of different types of predictor variables could improve the machine learning
model’s capability to predict land cover. Therefore, there is opportunity to experiment
with the predictor variables by adding to or modifying the data sources.

5. Conclusions

In this article, our goal was to extend the utility of machine learning based land-cover
change models to predict the spectral band information of satellite-based land-cover
images. We used the topographic and historical climate data from two large sites in the
United States to train a RF machine learning model to predict the spectral values from bands
1 (Blue), 2 (Green), 3 (Red), and 4 (Near Infrared) of Landsat 7 image. We then used the
trained model to explore what the land cover might look like for a climate change scenario
during the 2061–2080 period through the two derived products. Our results showed that
the RF model can accurately reproduce the land-cover properties for historical data and is
able to provide realistic rendering of future land cover for a climate change scenario. The
two derived land-cover products (photorealistic RGB image and NDVI image) shown in our
results demonstrate that the direct prediction of spectral band information is helpful for
deriving ecologically relevant products. We consider this a major strength of our proposed
approach because it enables the analysis of land cover change from multiple perspectives.

What land-cover change will occur over the next 100 years is highly uncertain.
However, presuming little is done to reduce the rate of CO2 emissions, the global air
temperatures for the 2081–2100 period are projected to be to 1.5–4.8°C higher than for
the 1986–2005 period (IPCC 2013). This will almost certainly impact regional and global
land cover (Krinner et al. 2005; Beer et al. 2007; Sitch et al., 2008; Anav et al. 2010; Hickler
et al., 2012). We hope that the method presented here makes a useful contribution
towards understanding and predicting these changes.

Acknowledgements

This work was supported by the National Science Foundation under Award Number 1027870 (CDI-Type
Small Resources Supercomputing: High Performance Computing in the Earth Sciences).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Science Foundation under Award Number 1027870 (CDI-
Type Small Resources Supercomputing: High Performance Computing in the Earth Sciences).

ORCID

Sopan D. Patil http://orcid.org/0000-0002-8575-5220

INTERNATIONAL JOURNAL OF REMOTE SENSING 5603



References

Abdelnour, A., R. B. McKane, M. Stieglitz, F. Pan, and Y. Cheng. 2013. “Effects of Harvest on Carbon
and Nitrogen Dynamics in a Pacific Northwest Forest Catchment.” Water Resources Research. 49
(3): 1292–1313. doi:10.1029/2012WR012994.

Abdelnour, A., M. Stieglitz, F. Pan, and R. McKane. 2011. “Catchment Hydrological Responses to
Forest Harvest Amount and Spatial Pattern.” Water Resources Research. 47: W09521–W09521.
doi:10.1029/2010WR010165.

Allen, C. D. 2007. “Interactions across Spatial Scales among Forest Dieback, Fire, and Erosion in
Northern New Mexico Landscapes.” Ecosystems 10 (5): 797–808. doi:10.1007/s10021-007-
9057-4.

Alpaydin, E. 2014. Introduction to Machine Learning. Cambridge, Massachusetts: MIT press.
Anav, A., F. D’Andrea, N. Viovy, and N. Vuichard. 2010. “A Validation of Heat and Carbon Fluxes

from High-Resolution Land Surface and Regional Models.” Journal of Geophysical Research 115
(G4): G04016. doi:10.1029/2009JG001178.

Barger, N. N., S. R. Archer, J. L. Campbell, C. Huang, J. A. Morton, and A. K. Knapp. 2011. “Woody
Plant Proliferation in North American Drylands: A Synthesis of Impacts on Ecosystem Carbon
Balance.” Journal of Geophysical Research 116 (G4): n/a-n/a. doi:10.1029/2010JG001506.

Beer, C., W. Lucht, D. Gerten, K. Thonicke, and C. Schmullius. 2007. “Effects of Soil Freezing and
Thawing on Vegetation Carbon Density in Siberia: A Modeling Analysis with the Lund-Potsdam-
Jena Dynamic Global Vegetation Model (LPJ-DGVM).” Global Biogeochemical Cycles 21 (1): n/a-n/
a. doi:10.1029/2006GB002760.

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. New York: Springer.
Bramer, M. 2007. Principles of Data Mining. London: Springer.
Breiman, L. 1996. “Bagging Predictors.” Machine Learning 24 (2): 123–140. doi:10.1007/BF00058655.
Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi:10.1023/A:1010933404324.
Brovkin, V., M. Claussen, E. Driesschaert, T. Fichefet, D. Kicklighter, M. F. Loutre, H. D. Matthews, N.

Ramankutty, M. Schaeffer, and A. Sokolov. 2006. “Biogeophysical Effects of Historical Land Cover
Changes Simulated by Six Earth System Models of Intermediate Complexity.” Climate Dynamics.
26 (6): 587–600. doi:10.1007/s00382-005-0092-6.

Brown De Colstoun, E. C., M. H. Story, C. Thompson, K. Commisso, T. G. Smith, and J. R. Irons. 2003.
“National Park Vegetation Mapping Using Multitemporal Landsat 7 Data and a Decision Tree
Classifier.” Remote Sensing of Environment 85 (3): 316–327. doi:10.1016/S0034-4257(03)00010-5.

Campbell, J. L., S. V. Ollinger, G. N. Flerchinger, H. Wicklein, K. Hayhoe, and A. S. Bailey. 2010. “Past
and Projected Future Changes in Snowpack and Soil Frost at the Hubbard Brook Experimental
Forest, New Hampshire, USA.” Hydrological. Process. 24 (17): 2465–2480. doi:10.1002/hyp.7666.

Crawford, R. C., C. B. Chappell, C. C. Thompson, and F. J. Rocchio (2009), Vegetation Classification of
Mount Rainier, North Cascades, and Olympic National Parks. Plant Association Descriptions and
Identification Keys, Natural Resource Technical Report NPS/NCCN/NRTR—2009/D-586. US
Department of the Interior, National Park Service, Natural Resource Program Centre, Fort
Collins, CO, US.

Dale, V. H. 1997. “The Relationship between Land-Use Change and Climate Change.” Ecological
Applications 7 (3): 753–769. doi:10.1890/1051-0761(1997)007[0753:TRBLUC]2.0.CO;2.

DeFries, R. S., and J. C.-W. Chan. 2000. “Multiple Criteria for Evaluating Machine Learning
Algorithms for Land Cover Classification from Satellite Data.” Remote Sensing of Environment
74 (3): 503–515. doi:10.1016/S0034-4257(00)00142-5.

Domingos, P. 2012. “A Few Useful Things to Know about Machine Learning.” Communicable ACM
55 (10): 78–87. doi:10.1145/2347736.2347755.

Everett, R. L., R. Schellhaas, D. Keenum, D. Spurbeck, and P. Ohlson. 2000. “Fire History in the
Ponderosa Pine/Douglas-Fir Forests on the East Slope of the Washington Cascades.” Forest
Ecology and Management 129 (1–3): 207–225. doi:10.1016/S0378-1127(99)00168-1.

Floyd, M. L., T. L. Fleischner, D. Hanna, and P. Whitefield. 2003. “Effects of Historic Livestock Grazing on
Vegetation at Chaco Culture National Historic Park, New Mexico.” Conservation Biology 17 (6): 1703–
1711. doi:10.1111/j.1523-1739.2003.00227.x.

5604 S. D. PATIL ET AL.



Foster, J. L. 1989. “The Significance of the Date of Snow Disappearance on the Arctic Tundra as a
Possible Indicator of Climate Change.” Arctic and Alpine Research 21 (1): 60–70. doi:10.2307/
1551517.

Foster, J. L., J. W. Winchester, and E. G. Dutton. 1992. “The Date of Snow Disappearance on the
Arctic Tundra as Determined from Satellite, Meteorological Station and Radiometric in Situ
Observations.” IEEE Transactions on Geoscience and Remote Sensing 30 (4): 793–798. doi:10.1109/
36.158874.

Friedl, M. A., and C. E. Brodley. 1997. “Decision Tree Classification of Land Cover from Remotely
Sensed Data.” Remote Sensing of Environment 61 (3): 399–409. doi:10.1016/S0034-4257(97)
00049-7.

Groisman, P. Y., T. R. Karl, and R. W. Knight. 1994. “Observed Impact of Snow Cover on the Heat
Balance and the Rise of Continental Spring Temperatures.” Science 263 (5144): 198–200.
doi:10.1126/science.263.5144.198.

Guisan, A., A. Lehmann, S. Ferrier, M. Austin, J. M. C. C. Overton, R. Aspinall, and T. Hastie. 2006.
“Making Better Biogeographical Predictions of Species’ Distributions.” Journal of Applied Ecology
43 (3): 386–392. doi:10.1111/j.1365-2664.2006.01164.x.

Guisan, A., and N. E. Zimmermann. 2000. “Predictive Habitat Distribution Models in Ecology.”
Ecological Modelling 135 (2–3): 147–186. doi:10.1016/S0304-3800(00)00354-9.

Hall, D. K., C. J. Crawford, N. E. DiGirolamo, G. A. Riggs, and J. L. Foster. 2015. “Detection of Earlier
Snowmelt in the Wind River Range, Wyoming, Using Landsat Imagery, 1972–2013.” Remote
Sensing of Environment 162: 45–54. doi:10.1016/j.rse.2015.01.032.

Hansen, M. C., R. S. Defries, J. R. G. Townshend, and R. Sohlberg. 2000. “Global Land Cover
Classification at 1 Km Spatial Resolution Using a Classification Tree Approach.” International
Journal of Remote Sensing 21 (6–7): 1331–1364. doi:10.1080/014311600210209.

Hickler, T., Vohland, K., Feehan, J., Miller, P. A., Smith, B., Costa, L., Giesecke, T., Fronzek, S., Carter, T.
R., Cramer, W., Kühn, I., Sykes, M. T. 2012. “Projecting the Future Distribution of European
Potential Natural Vegetation Zones with a Generalized, Tree Species-Based Dynamic Vegetation
Model.” Global Ecology and Biogeography 21 (1): 50–63. doi:10.1111/j.1466-8238.2010.00613.x.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. “Very High Resolution
Interpolated Climate Surfaces for Global Land Areas.” Int. J. Climatol 25 (15): 1965–1978.
doi:10.1002/joc.1276.

Homer, C. G., G. Xian, C. L. Aldridge, D. K. Meyer, T. R. Loveland, and M. S. O’Donnell. 2015.
“Forecasting Sagebrush Ecosystem Components and Greater Sage-Grouse Habitat for 2050:
Learning from past Climate Patterns and Landsat Imagery to Predict the Future.” Ecological
Indicators 55: 131–145. doi:10.1016/j.ecolind.2015.03.002.

Im, J., and J. R. Jensen. 2005. “A Change Detection Model Based on Neighborhood Correlation
Image Analysis and Decision Tree Classification.” Remote Sensing of Environment 99 (3): 326–340.
doi:10.1016/j.rse.2005.09.008.

IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovern - Mental Panel on Climate Change. United Kingdom
and New York, NY, USA: Cambridge.

Kangur, A., H. Korjus, K. Jõgiste, and A. Kiviste. 2005. “A Conceptual Model of Forest Stand
Development Based on Permanent Sample-Plot Data in Estonia.” Scandinavian Journal of
Forest Research 20 (S6): 94–101. doi:10.1080/14004080510041039.

Kelly, A. E., and M. L. Goulden. 2008. “Rapid Shifts in Plant Distribution with Recent Climate
Change.” Proceedings of the National Academy of Sciences 105 (33): 11823–11826. doi:10.1073/
pnas.0802891105.

Kerr, J. T., and M. Ostrovsky. 2003. “From Space to Species: Ecological Applications for Remote
Sensing.” Trends in Ecology & Evolution 18 (6): 299–305. doi:10.1016/S0169-5347(03)00071-5.

Klein, I., U. Gessner, and C. Kuenzer. 2012. “Regional Land Cover Mapping and Change Detection in
Central Asia Using MODIS Time-Series.” Applied Geography 35 (1–2): 219–234. doi:10.1016/j.
apgeog.2012.06.016.

Knight, J. E., and G. Kvaran. 2014. “Landsat-8 Operational Land Imager Design, Characterization
and Performance.” Remote Sensing 6 (11): 10286–10305. doi:10.3390/rs61110286.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5605



Kotsiantis, S. B., I. Zaharakis, and P. Pintelas. 2007. Supervised Machine Learning: A Review of
Classification Techniques. Amsterdam: IOS Press.

Krinner, G., N. Viovy, N. De Noblet-Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch,
and I. C. Prentice. 2005. “A Dynamic Global Vegetation Model for Studies of the Coupled
Atmosphere-Biosphere System.” Global Biogeochemical Cycles 19 (1): n/a-n/a. doi:10.1029/
2003GB002199.

Lenoir, J., J. C. Gégout, P. A. Marquet, P. De Ruffray, and H. Brisse. 2008. “A Significant Upward Shift
in Plant Species Optimum Elevation during the 20th Century.” Science 320 (5884): 1768–1771.
doi:10.1126/science.1156831.

Loarie, S. R., P. B. Duffy, H. Hamilton, G. P. Asner, C. B. Field, and D. D. Ackerly. 2009. “The Velocity
of Climate Change.” Nature 462 (7276): 1052–1055. doi:10.1038/nature08649.

McIver, D. K., and M. A. Friedl. 2002. “Using Prior Probabilities in Decision-Tree Classification of
Remotely Sensed Data.” Remote Sensing of Environment 81 (2–3): 253–261. doi:10.1016/S0034-
4257(02)00003-2.

Mitchell, T. M. 1997. Machine Learning. Burr Ridge, IL: McGraw Hill.
Mote, P. W. 2003. “Trends in Snow Water Equivalent in the Pacific Northwest and Their Climatic

Causes.” Geophys. Res. Lett 30 (12): n/a-n/a. doi:10.1029/2003GL017258.
Parker, D. C., S. M. Manson, M. A. Janssen, M. J. Hoffmann, and P. Deadman. 2003. “Multi-Agent

Systems for the Simulation of Land-Use and Land-Cover Change: A Review.” Annals of the
Association of American Geographers 93 (2): 314–337. doi:10.1111/1467-8306.9302004.

Pauleit, S., R. Ennos, and Y. Golding. 2005. “Modeling the Environmental Impacts of Urban Land
Use and Land Cover Change—A Study in Merseyside, UK.” Landscape and Urban Planning 71 (2–
4): 295–310. doi:10.1016/j.landurbplan.2004.03.009.

Pearson, R. G., and T. P. Dawson. 2003. “Predicting the Impacts of Climate Change on the
Distribution of Species: Are Bioclimate Envelope Models Useful?” Global Ecology and
Biogeography 12 (5): 361–371. doi:10.1046/j.1466-822X.2003.00042.x.

Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, and S. J. Goetz.
2013. “Shifts in Arctic Vegetation and Associated Feedbacks under Climate Change.” Nature
Climate Change 3 (7): 673–677. doi:10.1038/nclimate1858.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., Duchesnay, É. 2011. “Scikit-Learn: Machine Learning in {P}Ython.” Journal of Machine
Learning Research 12:2825–2830.

Pettorelli, N., J. O. Vik, A. Mysterud, J.-M. Gaillard, C. J. Tucker, and N. C. Stenseth. 2005. “Using the
Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change.” Trends in
Ecology & Evolution 20 (9): 503–510. doi:10.1016/j.tree.2005.05.011.

Pitman, A. J., N. De Noblet-Ducoudr, F. T. Cruz, E. L. Davin, G. B. Bonan, V. Brovkin, M. Claussen,
et al. 2009. “Uncertainties in Climate Responses to past Land Cover Change: First Results from
the LUCID Intercomparison Study.” Geophysical Research Letters 36 (14): n/a-n/a. doi:10.1029/
2009GL039076.

Qian, Y., W. Zhou, J. Yan, W. Li, and L. Han. 2015. “Comparing Machine Learning Classifiers for
Object-Based Land Cover Classification Using Very High Resolution Imagery.” Remote Sensing. 7
(1). doi:10.3390/rs70100153.

Rogan, J., J. Franklin, D. Stow, J. Miller, C. Woodcock, and D. Roberts. 2008. “Mapping Land-Cover
Modifications over Large Areas: A Comparison of Machine Learning Algorithms.” Remote Sensing
of Environment 112 (5): 2272–2283. doi:10.1016/j.rse.2007.10.004.

Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds. 2003. “Fingerprints
of Global Warming on Wild Animals and Plants.” Nature 421 (6918): 57–60. doi:10.1038/
nature01333.

Roughgarden, J., S. W. Running, and P. A. Matson. 1991. “What Does Remote Sensing Do For
Ecology?” Ecology 72 (6): 1918–1922. doi:10.2307/1941546.

Roy, D. P., M. A. Wulder, T. R. Loveland, W. C.E., R. G. Allen, M. C. Anderson, D. Helder, et al. 2014.
“Landsat-8: Science and Product Vision for Terrestrial Global Change Research.” Remote Sensing
of Environment 145: 154–172. doi:10.1016/j.rse.2014.02.001.

5606 S. D. PATIL ET AL.



Schneider, A. 2012. “Monitoring Land Cover Change in Urban and Peri-Urban Areas Using Dense
Time Stacks of Landsat Satellite Data and a Data Mining Approach.” Remote Sensing of
Environment 124: 689–704. doi:10.1016/j.rse.2012.06.006.

Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P.,
Friedlingstein, P., Jones, C. D., Prentice, I. C., Woodward, F. I. 2008. “Evaluation of the Terrestrial
Carbon Cycle, Future Plant Geography and Climate-Carbon Cycle Feedbacks Using Five
Dynamic Global Vegetation Models (Dgvms).” Global Change Biology 14 (9): 2015–2039.
doi:10.1111/j.1365-2486.2008.01626.x.

Sitch, S., B. Smith, I. C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. O. Kaplan, et al. 2003.
“Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the LPJ
Dynamic Global Vegetation Model.” Global Change Biology 9 (2): 161–185. doi:10.1046/j.1365-
2486.2003.00569.x.

Song, Y., and Y. Lu. 2015. “Decision Tree Methods: Applications for Classification and Prediction.”
Shanghai Arch. Psychiatry 27 (2): 130–135. doi:10.11919/j.issn.1002-0829.215044.

Soudzilovskaia, N. A., T. G. Elumeeva, V. G. Onipchenko, I. I. Shidakov, F. S. Salpagarova, A. B.
Khubiev, D. K. Tekeev, and J. H. C. Cornelissen. 2013. “Functional Traits Predict Relationship
between Plant Abundance Dynamic and Long-Term Climate Warming.” Proceedings of the
National Academy of Sciences 110 (45): 18180–18184. doi:10.1073/pnas.1310700110.

Stone, R. S., E. G. Dutton, J. M. Harris, and D. Longenecker. 2002. “Earlier Spring Snowmelt in
Northern Alaska as an Indicator of Climate Change.” Journal of Geophysical Research:
Atmospheres 107 (D10): ACL 10-1-ACL 10-13. doi:10.1029/2000JD000286.

Stow, D. A., A. Hope, D. McGuire, D. Verbyla, J. Gamon, F. Huemmrich, S. Houston, et al. 2004.
“Remote Sensing of Vegetation and Land-Cover Change in Arctic Tundra Ecosystems.” Remote
Sensing of Environment 89 (3): 281–308. doi:10.1016/j.rse.2003.10.018.

Tague, C., L. Seaby, and A. Hope. 2009. “Modeling the Eco-Hydrologic Response of a Mediterranean
Type Ecosystem to the Combined Impacts of Projected Climate Change and Altered Fire
Frequencies.” Climatic Change 93 (1–2): 137–155. doi:10.1007/s10584-008-9497-7.

VanDerWal, J., H. T. Murphy, A. S. Kutt, G. C. Perkins, B. L. Bateman, J. J. Perry, and A. E. Reside. 2013.
“Focus on Poleward Shifts in Species’ Distribution Underestimates the Fingerprint of Climate
Change.” Nature Climate Change 3 (3): 239–243. doi:10.1038/nclimate1688.

Vapnik, V. N. 1999. “An Overview of Statistical Learning Theory.” IEEE Transactions on Neural
Networks 10 (5): 988–999. doi:10.1109/72.788640.

Verburg, P. H., K. Neumann, and L. Nol. 2011. “Challenges in Using Land Use and Land Cover Data
for Global Change Studies.” Global Change Biology 17 (2): 974–989. doi:10.1111/j.1365-
2486.2010.02307.x.

Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O.
Hoegh-Guldberg, and F. Bairlein. 2002. “Ecological Responses to Recent Climate Change.”
Nature 416 (6879): 389–395. doi:10.1038/416389a.

Witten, I. H., S. J. Cunningham, G. Holmes, R. McQueen, and L. Smith. 1993. Practical Machine
Learning and Its Application to Problems in Agriculture. Hamilton, New Zealand: University of
Waikato, Department of Computer Science.

Witten, I. H., and E. Frank. 2005. Data Mining: Practical Machine Learning Tools and Techniques.
Cambridge, Massachusetts: Morgan Kaufmann.

Wolock, D. M. 1997. STATSGO Soil Characteristics for the Conterminous United States. Lawrence,
Kansas: US Geological Survey.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5607


