
TDAlab

Seeking Performance Portability
on Graph Analytics

Ümit V. Çatalyürek
Amazon Scholar, Amazon Web Services
Professor, School of Computational Science and Engineering
Georgia Institute of Technology

PPAM 2022

14th International Conference on Parallel Processing and Applied Mathematics
Sep 12, 2022

Bringing HPC Graph Analytics to
Modern Graph Databases

https://cse.gatech.edu/
http://tda.gatech.edu/

TDAlab

Outline

▪ Motivation

▪ Current Landscape of “Graph World”

▪ Few Examples of HPC Graph Analytics

▪ HPC Graph Analytics - Tips/Tricks

▪ Faster centrality computations

▪ Graph manipulations for fast centrality [SDM’13, TKDD’17]

▪ Faster centrality computations on GPU [GPGPU’13]

▪ Vectorized centrality computations [MTAAP’14,JPDC’15]

▪ A Middle Ground: Task-based Execution on Heterogeneous Environments
▪ Parallel Graph Algorithms by Blocks (PGAbB) [HPEC’19,TPDS'22,underreview]

▪ What about Graph Databases

▪ Interoperability Challenges

▪ Design Challenges

▪ Conclusions & Future Directions

12 Sep 2022 @ PPAM 2022 2Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Graphs are Ubiquitous

They are growing. Up to billions of vertices and edges

Fast, efficient analysis is important and pervasive

Many graph processing frameworks, and databases, have been proposed/developed

Albert-László Barabási/BarabasiLab 2019
Gerhard et al., Frontiers in Neuroinformatics 5(3), 2011 Caleb Jonson, How to Visualize Your Twitter Network, 2014
Jenn Caulfield, Social network vector illustration, 2018
Image credits:

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 3

TDAlab

Why HPC - Hardware Motivation: 50 Years of Microprocessors

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 4

https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

TDAlab

Why HPC - Hardware Motivation: Current & Future Systems

▪ More and more machines composed of multi-core and many-core CPUs, and accelerators

▪ June 2022: Top500’s top 10 has 9 with many-core CPU/Accelerators (7 GPUs, Maxtrix-2000,
SW26010)

▪ Some examples:

▪ Frontier: 8,730,112 cores (9,408 nodes)

▪ 64-core AMD EPYC, 4 AMD MI250X GPUs

▪ Fugaku: 7,630,848 cores (>150K nodes):

▪ Fujitsu’s 48-core A64FX SoC

▪ Summit: 2,414,592 cores (4,608 nodes)

▪ 2 IBM Power9 22 Cores, 6 NVIDIA Volta GV100

▪ Intel Xeon E7-8890 V4

▪ 24 cores, 2 threads per core, 2 AVX 512 vector processing units/core

▪ SW26010 chip is a Chinese “homegrown” many-core (260 core) processor

▪ 4 cluster of 64 CPEs+ 1 MPE

▪ NVIDIA A100

▪ 6,912 cores, 432 tensor cores, 9.7 / 19.5 TFLOPS (FP64 / FP64 Tensor Core)

▪ Cloud Instances also have ”similar” GPUs and and many-core CPUs.

12 Sep 2022 @ PPAM 2022 5Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

Die photo of A64FX CPU

TDAlab

Outline

▪ Motivation

▪ Current Landscape of “Graph World”

▪ Few Examples of HPC Graph Analytics

▪ HPC Graph Analytics - Tips/Tricks

▪ Faster centrality computations

▪ Graph manipulations for fast centrality [SDM’13, TKDD’17]

▪ Faster centrality computations on GPU [GPGPU’13]

▪ Vectorized centrality computations [MTAAP’14,JPDC’15]

▪ A Middle Ground: Task-based Execution on Heterogeneous Environments
▪ Parallel Graph Algorithms by Blocks (PGAbB) [HPEC’19,TPDS'22,underreview]

▪ What about Graph Databases

▪ Interoperability Challenges

▪ Design Challenges

▪ Conclusions & Future Directions

12 Sep 2022 @ PPAM 2022 6Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Landscape of current “Graph World”

Enterprise
Graph

Frameworks

HPC Graph
Analytics

Graph
Databases

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 7

TDAlab

Scalability

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

S
p

e
e
d

u
p

Number of Processors

Sys/Code A

Sys/Code B

S(p) =
T(n,1)

T (n, p)

12 Sep 2022 @ PPAM 2022 8Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Scalability

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1,000,000.00

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

E
x
e

c
u

ti
o

in
 T

im
e

Number of Processors

Sys/Alg A

Sys/Alg B

12 Sep 2022 @ PPAM 2022 9Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Scalability! But at what COST?

F. McSherry, M. Isard, and D. G. Murray, “Scalability! But at what COST?,” HotOS, 2015.

12 Sep 2022 @ PPAM 2022 10Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Productivity vs Performance

N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A. Hassaan, S. Sengupta, Z. Yin,
and P. Dubey, “Navigating the maze of graph analytics frameworks using massive graph
datasets”. SIGMOD 2014.

>100x

12 Sep 2022 @ PPAM 2022 11Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Outline

▪ Motivation

▪ Current Landscape of “Graph World”

▪ Few Examples of HPC Graph Analytics

▪ HPC Graph Analytics - Tips/Tricks

▪ Faster centrality computations

▪ Graph manipulations for fast centrality [SDM’13, TKDD’17]

▪ Faster centrality computations on GPU [GPGPU’13]

▪ Vectorized centrality computations [MTAAP’14,JPDC’15]

▪ A Middle Ground: Task-based Execution on Heterogeneous Environments
▪ Parallel Graph Algorithms by Blocks (PGAbB) [HPEC’19,TPDS'22,underreview]

▪ What about Graph Databases

▪ Interoperability Challenges

▪ Design Challenges

▪ Conclusions & Future Directions

12 Sep 2022 @ PPAM 2022 12Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

HPC Graph Analytics - Tips/Tricks

▪ It is almost all about data movement and maximizing data reuse/locality

▪ Smaller problems are easier to solve (and they take less memory space!)
▪ Reduce your problem size: Graph manipulations/compression

▪ Memory/Data Structures Optimizations
▪ Align (/reorder) to memory/compute architecture

▪ Make it memory hierarchy (cache) friendly

▪ Processor optimizations

▪ Take advantage of (instruction) parallelism (e.g., Vectorization, Tensor-Cores etc.)
▪ Well, sometimes non-work optimal algorithm (with redundant computation) runs faster!

▪ Hybrid (Memory + Processor)

▪ Task-based execution: 1D vs 2D tasks

▪ Task scheduling: pipelining, multi-buffering for computation and communication overlap

▪ Eliminate “redundant” computation
▪ Can you reduce the solution space?

▪ Would approximation be appropriate/good?

▪ Can you sparsify?

12 Sep 2022 @ PPAM 2022 13Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Outline

▪ Motivation

▪ Current Landscape of “Graph World”

▪ Few Examples of HPC Graph Analytics

▪ HPC Graph Analytics - Tips/Tricks

▪ Faster centrality computations

▪ Graph manipulations for fast centrality [SDM’13, TKDD’17]

▪ Faster centrality computations on GPU [GPGPU’13]

▪ Vectorized centrality computations [MTAAP’14,JPDC’15]

▪ A Middle Ground: Task-based Execution on Heterogeneous Environments
▪ Parallel Graph Algorithms by Blocks (PGAbB) [HPEC’19,TPDS'22,underreview]

▪ What about Graph Databases

▪ Interoperability Challenges

▪ Design Challenges

▪ Conclusions & Future Directions

12 Sep 2022 @ PPAM 2022 14Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

▪ Let G = (V, E) be an undirected and unweighted graph with a vertex set V of n
vertices and an edge set E of m edges

▪ Closeness:

▪ Betweenness:

▪ O(mn) complexity for both metrics

Graph manipulations for fast centrality computations

12 Sep 2022 @ PPAM 2022 15Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Graph manipulations for fast centrality computations

12 Sep 2022 @ PPAM 2022 16Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Closeness Centrality

SSSP: Single Source Shortest

Path = BFS is computed for

each vertex

BFS with

farness

computation

cc value is

assigned

12 Sep 2022 @ PPAM 2022 17Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Betweenness Centrality

▪ The current best algorithm (by Brandes)

▪ Phase 1: simple BFS with shortest path counting

▪ Phase 2: computing partial BC scores with counted paths

D at a: G = (V, E)
bc[v] 0, 8v 2 V
for each s 2 V do

S empty stack, Q empty queue
P[v] empty list , σ[v] 0, d[v] − 1, 8v 2 V
Q.push(s), σ[s] 1, d[s] 0
. Phase 1: BFS f r om s
whi le Q is not empty do

v Q.pop(), S.push(v)
for al l w 2 Γ(v) do

i f d[w] < 0 t hen
Q.push(w)
d[w] d[v] + 1

i f d[w] = d[v] + 1 t hen
1 σ[w] σ[w] + σ[v]

P[w].push(v)

. Phase 2: Back pr opagat i on

δ[v] 1
σ [v]

, 8v 2 V

whi le S is not empty do
w S.pop()
for v 2 P [w] do

2 δ[v] δ[v] + δ[w]

i f w 6= s t hen
3 bc[w] bc[w] + (δ[w]⇥σ[w] + 1)

r et ur n bc

A lgor i t hm 1: Bc-Or g

bc[v] = 2⇥((lv r v) + (n − lv − r v − 1)(lv + r v)) where lv
and r v are the number of vert ices in the left and right

subt rees of v, respect ively. This approach takes only

O(n) t ime. A similar argument can be given for cliques

since every vertex is a side vertex and has a 0 BC score.

As shown in Figure 1, B A D I OS applies a series

of operat ions as a preprocessing phase: Let G = G0

be the init ial graph, and G` be the one after the

`th shat tering/ compression operat ion. The ` + 1th

operat ion modifies a single connected component of G`

and generates G` + 1. The preprocessing cont inues if

G` + 1 is amenable to further modificat ion. Otherwise,

it terminates and the final BC computat ion phase of

the framework begins.

3.1 Shat t er ing Gr aphs: Let G = (V, E) be the

original graph. For simplicity, we assume that G is

connected. To correct ly compute the BC scores after

shat tering G, weassign a r each at t ribute to each vertex.

Let v0 be a vertex in C0, a component in the shat tered

graph G0: r each[v0] is the number of vert ices in G which

are only reachable from C0 via v0. At the beginning, we

set r each[v] = 1 for all v 2 V .

3.1.1 Shat t er ing wi t h ar t iculat ion ver t ices: Let

u0 be an art iculat ion vertex in a component C ✓ G`

after the ` th operat ion of the preprocessing phase. We

first shat ter C into k (connected) components Ci for

1 i k by removing u0 from G` and adding a local

a

b b
b'

c

d

c{d}

e

c{d,e}
f

g

h

1 32 54

Figure1: (1) a i s a degr ee-1 ver t ex and b i s an ar t icu lat ion
ver t ex . T he fr am ewor k r em oves a and cr eat e a copy b0

t o r ep r esent b in t he b ot t om com p onent . (2) T her e is no
degr ee-1, ar t icu lat ion , or ident ical ver t ex , or a br idge.
V er t ices b and b0 ar e now side ver t ices and t hey ar e
r em oved. (3) V er t ex c and d ar e now t y p e-I I ident ical
ver t ices: d i s r em oved , and c i s kept . (4) V er t ex c and e
ar e now t y p e-I ident ical ver t ices: e i s r em oved, and c i s
kep t . (5) V er t ices c and g ar e t y p e-I I ident ical ver t ices
and f and h ar e now t y p e-I . T he last r educt ions ar e not
show n but t he b ot t om com p onent is com pr essed t o a
singlet on ver t ex . T he 5-cycle ab ove cannot b e r educed.

copy u0
i of u0 to each new component by connect ing u0

i

to the same vert ices u was connected within Ci . The

r each values for each local copy is set with

(3.4) r each[u0
i] =

X

v02 C \ C i

r each[v0]

for 1 i k. We will use or g(v0) to denote the

mapping from V 0 to V , which maps a local copy v0 2 V 0

to the corresponding original copy in V .

At any t ime of the preprocessing phase, a vertex s 2

V has exact ly one representative u0 in each component

C such that r each[u0] is incremented by one due to s.

This vertex is denoted as rep(C, s). Note that each

local copy is a representat ive of its original. Note also

that , if r ep(C, s) = u0 and rep(C, t) = v0 with v0 6= u0

then or g(u0) is on all s t paths in G.

Algorithm 2 computes the BC scores of the vert ices

in a shat tered graph. Note that the only di↵erence with

Bc-Or g are lines 1 and 3, and if r each[v] = 1 for all

v 2 V , then the algorithms are equivalent . Hence, the

complexity of Bc-Reach isalso O(mn) for a graph with

n vert ices and m edges.

Let G = (V, E) be the init ial graph, |V | = n, and

G0 = (V 0, E 0) be the one shat tered via preprocessing.

Let bc and bc0 be the scores computed by Bc-Or g(G)

and Bc-Reach(G0), respect ively. We will prove that

(3.5) bc[v] =
X

v02 V 0|or g (v0)= v

bc0[v0],

D at a: G = (V, E)
bc[v] 0, 8v 2 V
for each s 2 V do

S empty stack, Q empty queue
P[v] empty list , σ[v] 0, d[v] − 1, 8v 2 V
Q.push(s), σ[s] 1, d[s] 0
. Phase 1: BFS f r om s
whi le Q is not empty do

v Q.pop(), S.push(v)
for al l w 2 Γ(v) do

i f d[w] < 0 t hen
Q.push(w)
d[w] d[v] + 1

i f d[w] = d[v] + 1 t hen
1 σ[w] σ[w] + σ[v]

P[w].push(v)

. Phase 2: Back pr opagat i on

δ[v] 1
σ [v]

, 8v 2 V

whi le S is not empty do
w S.pop()
for v 2 P [w] do

2 δ[v] δ[v] + δ[w]

i f w 6= s t hen
3 bc[w] bc[w] + (δ[w]⇥σ[w] − 1)

r et ur n bc

A lgor i t hm 1: Bc-Or g

bc[v] = 2⇥((lv r v) + (n − lv − r v − 1)(lv + r v)) where lv
and r v are the number of vert ices in the left and right

subt rees of v, respect ively. This approach takes only

O(n) t ime. A similar argument can be given for cliques

since every vertex is a side vertex and has a 0 BC score.

As shown in Figure 1, B A D I OS applies a series

of operat ions as a preprocessing phase: Let G = G0

be the init ial graph, and G` be the one after the

`th shat tering/ compression operat ion. The ` + 1th

operat ion modifies a single connected component of G`

and generates G` + 1. The preprocessing cont inues if

G` + 1 is amenable to further modificat ion. Otherwise,

it terminates and the final BC computat ion phase of

the framework begins.

3.1 Shat t er ing Gr aphs: Let G = (V, E) be the

original graph. For simplicity, we assume that G is

connected. To correct ly compute the BC scores after

shat tering G, weassign a r each at t ribute to each vertex.

Let v0 be a vertex in C0, a component in the shat tered

graph G0: r each[v0] is the number of vert ices in G which

are only reachable from C0 via v0. At the beginning, we

set r each[v] = 1 for all v 2 V .

3.1.1 Shat t er ing wit h ar t iculat ion ver t ices: Let

u0 be an art iculat ion vertex in a component C ✓ G`

after the ` th operat ion of the preprocessing phase. We

first shat ter C into k (connected) components Ci for

1 i k by removing u0 from G` and adding a local

a

b b
b'

c

d

c{d}

e

c{d,e}
f

g

h

1 32 54

Figure1: (1) a i s a degr ee-1 ver t ex and b i s an ar t icu lat ion
ver t ex . T he fr am ewor k r em oves a and cr eat e a copy b0

t o r epr esent b in t he b ot t om com p onent . (2) T her e is no
degr ee-1, ar t icu lat ion , or ident ical ver t ex , or a br idge.
V er t ices b and b0 ar e now side ver t ices and t hey ar e
r em oved. (3) V er t ex c and d ar e now t yp e-I I ident ical
ver t i ces: d i s r em oved , and c i s kept . (4) V er t ex c and e
ar e now t yp e-I ident ical ver t ices: e i s r em oved, and c i s
kept . (5) V er t ices c and g ar e t yp e-I I ident ical ver t ices
and f and h ar e now t y p e-I . T he last r educt ions ar e not
show n but t he b ot t om com p onent is com pr essed t o a
singlet on ver t ex . T he 5-cycle ab ove cannot b e r educed.

copy u0
i of u0 to each new component by connect ing u0

i

to the same vert ices u was connected within Ci . The

r each values for each local copy is set with

(3.4) r each[u0
i] =

X

v02 C \ C i

r each[v0]

for 1 i k. We will use or g(v0) to denote the

mapping from V 0 to V , which maps a local copy v0 2 V 0

to the corresponding original copy in V .

At any t ime of thepreprocessing phase, a vertex s 2

V has exact ly one representative u0 in each component

C such that r each[u0] is incremented by one due to s.

This vertex is denoted as rep(C, s). Note that each

local copy is a representat ive of its original. Note also

that , if r ep(C, s) = u0 and rep(C, t) = v0 with v0 6= u0

then or g(u0) is on all s t paths in G.

Algorithm 2 computes the BC scores of the vert ices

in a shat tered graph. Note that the only di↵erence with

Bc-Or g are lines 1 and 3, and if r each[v] = 1 for all

v 2 V , then the algorithms are equivalent . Hence, the

complexity of Bc-Reach isalso O(mn) for a graph with

n vert ices and m edges.

Let G = (V, E) be the init ial graph, |V | = n, and

G0 = (V 0, E 0) be the one shat tered via preprocessing.

Let bc and bc0 be the scores computed by Bc-Or g(G)

and Bc-Reach(G0), respect ively. We will prove that

(3.5) bc[v] =
X

v02 V 0|or g(v0)= v

bc0[v0],

12 Sep 2022 @ PPAM 2022 18Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Graph Manipulations for Centrality with BADIOS

a

b b
b'

c

d

c{d}

e

c{d,e}
f

g

h

c{d,e,g}
f

h

c{d,e,g}

1 2 3 4 5 6 7
a: degree-1,

b: articulation
b, b':side

d: type II

identical

e: type I

identical

g: type II

identical
f, h: degree-1

12 Sep 2022 @ PPAM 2022 19Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

BC Experiments for BADIOS

BASE, o, do, dao, dbao, dbaio, dbaiso

36m

14m

1h38m

1h

12m

41s

2h

17m

1d8h

20h

12h

10h

1d18h

8h

5d5h

16h

[SDM’13, TKDD’17]

12 Sep 2022 @ PPAM 2022 20Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Outline

▪ Motivation

▪ Current Landscape of “Graph World”

▪ Few Examples of HPC Graph Analytics

▪ HPC Graph Analytics - Tips/Tricks

▪ Faster centrality computations

▪ Graph manipulations for fast centrality [SDM’13, TKDD’17]

▪ Faster centrality computations on GPU [GPGPU’13]

▪ Vectorized centrality computations [MTAAP’14,JPDC’15]

▪ A Middle Ground: Task-based Execution on Heterogeneous Environments
▪ Parallel Graph Algorithms by Blocks (PGAbB) [HPEC’19,TPDS'22,underreview]

▪ What about Graph Databases

▪ Interoperability Challenges

▪ Design Challenges

▪ Conclusions & Future Directions

12 Sep 2022 @ PPAM 2022 21Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

▪ Vertex-based parallelism

▪ Assign a thread to each vertex

▪ When a thread processes a vertex u, if there exists an unvisited vertex w
in u’s neighborhood, set d[w] = d[u] + 1

▪ Edge-based parallelism
▪ Assign a thread to each edge

▪ For each edge (u,v), if u is in the current level and v is not visited yet set
d[v] = d[u] + 1

▪ Both has problems

▪ Vertex-based: load imbalance

▪ Edge-based: too many atomic operations

How to implement Centrality Computations in GPU?

12 Sep 2022 @ PPAM 2022 22Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Centrality Computations on GPU: Virtual vertices

▪ Use multiple virtual vertices for a vertex with high degree

▪ Hybrid edge/vertex parallelism.

▪ Restructure computation to take advantage of coalesced memory access

u

u’

u’’

12 Sep 2022 @ PPAM 2022 23Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Results for GPU parallelism

• VirBC-Multi (vectorized BC with Virtual Vertices) is better 6 out of 7

• VirBC-Multi is 4.7x faster than Ligra, 1.6x faster than our CPU code

[GPGPU’13, JPDC’15]

12 Sep 2022 @ PPAM 2022 24Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Outline

▪ Motivation

▪ Current Landscape of “Graph World”

▪ Few Examples of HPC Graph Analytics

▪ HPC Graph Analytics - Tips/Tricks

▪ Faster centrality computations

▪ Graph manipulations for fast centrality [SDM’13, TKDD’17]

▪ Faster centrality computations on GPU [GPGPU’13]

▪ Vectorized centrality computations [MTAAP’14,JPDC’15]

▪ A Middle Ground: Task-based Execution on Heterogeneous Environments
▪ Parallel Graph Algorithms by Blocks (PGAbB) [HPEC’19,TPDS'22,underreview]

▪ What about Graph Databases

▪ Interoperability Challenges

▪ Design Challenges

▪ Conclusions & Future Directions

12 Sep 2022 @ PPAM 2022 25Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

No Vector Coalescing

▪ All the representations give vector coalescing only
``if you are lucky''

12 Sep 2022 @ PPAM 2022 26Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

▪ Vectorization is overlooked in most graph problems

▪ Irregular nature of applications

▪ We make our applications more “regular”

▪ Process 𝐵 traversals at once

▪ Level synchronous execution.

▪ Model the CC/traversal with SpMV operation
 (like GraphBLAS does)
▪ Sparse Matrix Vector Multiplication: Multiplying a sparse

 matrix with a vector

▪ Switch from SpMV to SpMM: Sparse Matrix Matrix Multiplication
▪ Increases the complexity from O(|E|) to O(d*|E|), but suitable for

vectorization!

Different Formulation for Vectorization

12 Sep 2022 @ PPAM 2022 27Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Hardware+Software Vectorization is the way to go

Vectorized code (*-SpMM) is 5.9x faster in CPU, 21x in Xeon Phi,

70x on GPU (compared to previous best)
[MTAAP’14, JPDC’15]

12 Sep 2022 @ PPAM 2022 28Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Outline

▪ Motivation

▪ Current Landscape of “Graph World”

▪ Few Examples of HPC Graph Analytics

▪ HPC Graph Analytics - Tips/Tricks

▪ Faster centrality computations

▪ Graph manipulations for fast centrality [SDM’13, TKDD’17]

▪ Faster centrality computations on GPU [GPGPU’13]

▪ Vectorized centrality computations [MTAAP’14,JPDC’15]

▪ A Middle Ground: Task-based Execution on Heterogeneous Environments
▪ Parallel Graph Algorithms by Blocks (PGAbB) [HPEC’19,TPDS'22,underreview]

▪ What about Graph Databases

▪ Interoperability Challenges

▪ Design Challenges

▪ Conclusions & Future Directions

12 Sep 2022 @ PPAM 2022 29Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Parallel Graph Algorithms by Blocks (PGAbB)

How can we propose architecture agnostic graph algorithms that run well on shared-
memory and heterogeneous systems as well as distributed-memory systems?

D
at

a
/

C
o

m
p

u
ta

ti
o

n
 P

a
rt

it
io

n
in

g

P
er

fo
rm

an
ce

 P
o

rt
a

b
il

it
y

B
lo

ck
-B

a
se

d
 A

lg
.

D
es

ig
n

Parallel Graph Algorithms by Block

(PGAbB)

Block-based graph algorithms offer a sweet spot between efficient

parallelism and architecture agnostic algorithm design

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 30

TDAlab

Algorithm Design Steps

Generic and Custom

Block-List Generators.

Host and Device

Kernels

Before

Iter.

After

Iter.

WorkEs

tim.

Required Optional

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 31

TDAlab

Execution Flow

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 32

https://github.com/GT-TDAlab/PIGO

https://github.com/GT-TDAlab/SARMA

TDAlab

Categorizing Graph Algorithms

Single Block

Bulk Sync.

Activation

Based

Multi Block

Pattern Based

PageRank

HITS

Afforest

Shiloach-Vishkin

kCore

Dijkstra

BFS

MiniTri

kTruss

Jaccard Rank

Floyd-Warshall

Triangle

Counting

Butterfly

Counting

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 33

TDAlab

Related Work

GAPBS: Beamer, et al., 2015. “The GAP benchmark suite.”, ArXiV

Galois-GPU: Martin Burtscher, et al. 2012. “A quantitative study of

irregular programs on GPUs”, IISWC

LAGraph: Davis. 2019. “Algorithm 1000: SuiteSparse: GraphBLAS:

Graph algorithms in the language of sparse linear algebra”, TOMS

Galois: Kulkarni, et al. 2007. “Optimistic parallelism requires

abstractions”, PLDI

Ligra: Shun and Blelloch. 2013. “Ligra: a lightweight graph

processing framework for shared memory”, PPoPP

Gunrock: Wang, et al. 2016. ”Gunrock: A high-performance graph

processing library on the GPU”, PPoPP

Frameworks in Our Experiments

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 34

TDAlab

Experiments on Selected Graphs

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 35

Number of

Graph Vertices Edges Triangles CC

Twitter7 41.6 M 1.2 B 34.8 B 0.001

Com-Orkut 3 M 117 M 627 M 0.041

Sk-2005 50.6 M 1.8 B 84.9 B 0.002

Kmer_V1r 214 M 232 M 49 0.000

Europe-OSM 50.9 M 54.1 M 61 K 0.003

Myciel.19 393 K 451 M 0 0

Kron-Scale21 2.1 M 91 M 8.8 B 0.044

o Power9 (2 x 16 x 4) CPUs & Volta100 GPU.

o 320 GB Host Memory. 32 GB Device
Memory.

o CPU-GPU bandwidth: ~60GB/s

o PGAbB: Kokkos at the backend with
OpenMP (Host) and Cuda (Device)

TDAlab

Outline

▪ Motivation

▪ Current Landscape of “Graph World”

▪ Few Examples of HPC Graph Analytics

▪ HPC Graph Analytics - Tips/Tricks

▪ Faster centrality computations

▪ Graph manipulations for fast centrality [SDM’13, TKDD’17]

▪ Faster centrality computations on GPU [GPGPU’13]

▪ Vectorized centrality computations [MTAAP’14,JPDC’15]

▪ A Middle Ground: Task-based Execution on Heterogeneous Environments
▪ Parallel Graph Algorithms by Blocks (PGAbB) [HPEC’19,TPDS'22,underreview]

▪ What about Graph Databases

▪ Interoperability Challenges

▪ Design Challenges

▪ Conclusions & Future Directions

12 Sep 2022 @ PPAM 2022 36Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Graph Databases

Two camps

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 37

RDF: Resources Description Framework

Vertices

Resources: URIs

Attribute Values: Literals

Edges

Relationships: URIs

RDF Triple: Subject-Predicate-Object

LPG: Labeled Property Graphs

Vertices

Nodes: Label/ID + Properties (set of

key-value pairs)

Edges

Relationships: Label/ID + Type +

Properties

NID1

(name : “Umit”)

NID2

(name : “Kaan”)

EID1

(relat ion : “son”)

S O
P

(SPO)

There is no internal structure for nodes and edges

TDAlab

Graph interoperability

▪ Amazon Neptune

▪ managed, cloud-based graph database service

▪ supports RDF (SPARQL) and LPG (Gremlin & openCypher)

▪ User has to choose either RDF or LPG
▪ this choice also determines which query languages are available

▪ the choice is not always easy, and is hard to reverse later

▪ RDF vs. LPG
▪ RDF offers a formal model, LPG not so much

▪ RDF is “sometimes seen as academic”, and developers tend to prefer LPG

▪ different strengths and weaknesses
3812 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Graph interoperability

▪ What if we did not have to choose between RDF and LPG?

▪ What if we could use Gremlin over RDF, or SPARQL over LPG?

▪ Interoperability: single graph (meta)model, free use of any query
language
▪ we are not interested in “qualified” interoperability where one metamodel

is implemented using the other

▪ RDF-star is a step towards having LPG features in RDF

▪ 1G model (“one graph to rule them all”)
▪ "Graph? Yes! Which one? Help!", O. Lassila, M. Schmidt, B. Bebee, D.

Bechberger, W. Broekema, A. Khandelwal, K. Lawrence, R. Sharda, B.
Thompson, arXiv:2110.13348v1, 2021.

3912 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

TDAlab

Interoperability challenges

▪ Edge properties, multiple edge instances, reification

▪ Triples vs. graph abstraction

▪ Datatype alignment

▪ Graph partitioning

▪ Graph merging, external identifiers

▪ Lack of formal foundation

▪ Update query semantics

40

The Neptune team seek support from the broader community

to look into these issues

TDAlab

Storage Challenges

▪ Interoperability: serve both RDF and LPG

▪ 1G Graph Storage

▪ Graph is not static (well, obviously!)

▪ Many HPC Graph Analytics kernels assumes graph is not changing.

▪ Even dynamic ones conveniently ignores deletion.

▪ Scalability: Scaling Up (vertical/single-node) and Scaling Out

(horizontal/multi-node)

▪ Read scaling is “easy”

▪ Write scaling with transaction support is challenging:

▪ Distributed in-memory graph storage with logging is still challenging to implement.

▪ How to (dynamically) distribute data

▪ Node partition vs Edge partition vs Blocked partition

▪ What does it mean to provide Graph Analytics under transactional system?

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 41

TDAlab

Computational Infrastructure Challenges

▪ Interoperability: serve multiple query languages and graph analytics

▪ Can we implement once, and run everywhere: from multi-core to multi-host
with potentially accelerators?

▪ Yes!

▪ Multi-Level Intermediate Representation (MLIR) for Graphs

▪ Event-based runtime system

▪ “Coarse-grained” Labeled-Dataflow Execution

▪ OLAP vs OLTP tradeoffs and Scheduling
▪ multiple, mixed (OLAP and OLTP), concurrent queries.

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 42

TDAlab

Other Challenges

▪ Where does the Graph come from?

▪ Authoring

▪ Toolkits

▪ Visualization

▪ TCO: Total Cost of Ownership

▪ Price/performance and price/scale options.

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 43

TDAlab

Conclusions & Future Directions

▪ Graphs ubiquitous and market is growing extremely fast
▪ “By 2025, graph technologies will be used in 80% of the data and analytics innovations,

up from 10% in 2021, facilitating rapid decision making across the enterprise” Gartner
“Market Guide: Graph Database Management Solutions”, M. Adrian, A. Jaffri, D.
Feinberg, 24 May 2021.

▪ HTAP (i.e., Hybrid OLTP and OLAP) solutions are needed!
▪ Enterprise Graph Systems gives the illusion of read scaling, while failing in absolute

performance, and write/update scaling (they just leave that to file system)

▪ HPC Graph Analytics codes/libraries, are one-off, focused on narrow set of kernels and
fail to provide end-to-end solutions

▪ Existing “Real” Graph Databases, provides OLTP but fails to deliver OLAP

▪ Interoperability is a big challenge!
▪ SPARQL, Gremlin and OpenCypher queries for both OLTP and OLAP workloads

▪ Graph as a Service

▪ It is exciting times for Graphs!

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 44

TDAlab

Acknowledgements – TDAlab Members and Collaborators

Centrality

Sivasankaran
Rajamanickam

Jonathan
Berry

Abdurrahman
Yaşar

12 Sep 2022 @ PPAM 2022Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases" 45

Kamer

Kaya

Erik

Saule

Erdem

Sarıyüce

PGAbB

(Other) TDAlab Members

Fatih
Balin

Kaan
Sancak

Xiaojing
An

Ümit V.
Çatalyürek

Yusuf
Özkaya

Kasimir
Gabert

James
Fox

Benjamin
Cobb

Amazon Neptune

Team

TDAlab

Thanks

▪ For more information

▪ email: umit@gatech.edu
▪ twitter: @catalyurek
▪ web: tda.gatech.edu

▪ Acknowledgement of (Previous) Support

12 Sep 2022 @ PPAM 2022 46Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

mailto:umit@gatech.edu
https://twitter.com/catalyurek
http://tda.gatech.edu/

TDAlab

References

[SDM’13] A.E. Sarıyüce, E. Saule, K. Kaya, and Ü.V. Çatalyürek, “Shattering and Compressing Networks for Betweenness Centrality”,
13th SIAM International Conference on Data Mining (SDM), May 2013.

[TKDD’17] A.E. Sarıyüce, K. Kaya, E. Saule, and Ü.V. Çatalyürek, “Graph Manipulations for Fast Centrality Computation”, ACM
Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Apr 2017.

[GPGPU’13] A.E. Sarıyüce, K. Kaya, E. Saule, and Ü.V. Çatalyürek, “Betweenness Centrality on GPUs and Heterogeneous
Architectures”, Workshop on General Purpose Processing Using GPUs (GPGPU), in conjunction with ASPLOS, Mar 2013.

[MTAAP’14] A.E. Sarıyüce, E. Saule, K. Kaya, and Ü.V. Çatalyürek, “Hardware/Software Vectorization for Closeness Centrality on Multi-
/Many-Core Architectures”, Proceedings of 28th IPDPSW, W. on Multithreaded Architectures and Applications (MTAAP), May 2014.

[JPDC’15] A.E. Sarıyüce, E. Saule, K. Kaya, and Ü.V. Çatalyürek, “Regularizing Graph Centrality Computations”, Journal of Parallel and
Distributed Computing, Vol. 76, pp. 106-119, Feb 2015.

[HPEC’18] A. Yaşar, S. Rajamanickam, M.M. Wolf, J. W. Berry, and Ü.V. Çatalyürek, “Fast Triangle Counting Using Cilk”, High
Performance Extreme Computing Conference (HPEC), Sep 2018.

[HPEC’19] A. Yaşar, S. Rajamanickam, J. W. Berry, M.M. Wolf, J. Young, and Ü.V. Çatalyürek, “Linear Algebra-Based Triangle Counting
via Fine-Grained Tasking on Heterogeneous Environments”, High Performance Extreme Computing Conference (HPEC), Sep 2019.

[TPDS'22] A. Yaşar, S. Rajamanickam, J. W. Berry, and Ü.V. Çatalyürek, “A Block-Based Triangle Counting Algorithm on Heterogeneous
Environments”. IEEE Transactions on Parallel and Distributed Systems, 2022.

See http://tda.gatech.edu/publications for links/slides/PDFs.

12 Sep 2022 @ PPAM 2022 47Çatalyürek "Bringing HPC Graph Analytics to Modern Graph Databases"

http://tda.gatech.edu/publications

© 2022, Amazon Web Services, Inc. or its Affiliates.

Amazon Neptune – We are hiring!

Amazon Neptune is hiring! If you are excited by the possibility of building the internals of one of the fastest growing
graph databases in the world, look no further! We're looking for some fearless SDEs to work on cutting edge
technologies and core foundations of HPC, distributed transaction management, graph databases, algorithms and
many more. (Locations: US, CAN, GER, IND)

Visit www.amazon.jobs and search “Neptune” for more info on multiple positions/openings.

Contact: uvc@amazon.com

http://www.amazon.jobs/
mailto:uvc@amazon.com

	Slide 1: Seeking Performance Portability on Graph Analytics
	Slide 2: Outline
	Slide 3: Graphs are Ubiquitous
	Slide 4: Why HPC - Hardware Motivation: 50 Years of Microprocessors
	Slide 5: Why HPC - Hardware Motivation: Current & Future Systems
	Slide 6: Outline
	Slide 7: Landscape of current “Graph World”
	Slide 8: Scalability
	Slide 9: Scalability
	Slide 10: Scalability! But at what COST?
	Slide 11: Productivity vs Performance
	Slide 12: Outline
	Slide 13: HPC Graph Analytics - Tips/Tricks
	Slide 14: Outline
	Slide 15: Graph manipulations for fast centrality computations
	Slide 16: Graph manipulations for fast centrality computations
	Slide 17: Closeness Centrality
	Slide 18: Betweenness Centrality
	Slide 19: Graph Manipulations for Centrality with BADIOS
	Slide 20: BC Experiments for BADIOS
	Slide 21: Outline
	Slide 22: How to implement Centrality Computations in GPU?
	Slide 23: Centrality Computations on GPU: Virtual vertices
	Slide 24: Results for GPU parallelism
	Slide 25: Outline
	Slide 26: No Vector Coalescing
	Slide 27: Different Formulation for Vectorization
	Slide 28: Hardware+Software Vectorization is the way to go
	Slide 29: Outline
	Slide 30: Parallel Graph Algorithms by Blocks (PGAbB)
	Slide 31: Algorithm Design Steps
	Slide 32: Execution Flow
	Slide 33: Categorizing Graph Algorithms
	Slide 34: Related Work
	Slide 35: Experiments on Selected Graphs
	Slide 36: Outline
	Slide 37: Graph Databases
	Slide 38: Graph interoperability
	Slide 39: Graph interoperability
	Slide 40: Interoperability challenges
	Slide 41: Storage Challenges
	Slide 42: Computational Infrastructure Challenges
	Slide 43: Other Challenges
	Slide 44: Conclusions & Future Directions
	Slide 45: Acknowledgements – TDAlab Members and Collaborators
	Slide 46: Thanks
	Slide 47: References
	Slide 48

