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Graphs are Ubiquitous

CORONAVIRUS COVID_PPI_Drugs

Linkedin Ego-Net DBLP Ego-Net

They are growing. Up to billions of vertices and edges
Fast, efficient analysis is important and pervasive

Many graph processing frameworks, and databases, have been proposed/developed

Image credits:
Jenn Caulfield, Social network vector illustration, 2018 Albert-LdszIo Barabdsi/BarabasiLab 2019
Caleb Jonson, How to Visualize Your Twitter Network, 2014
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Why HPC - Hardware Motivation: 50 Years of Microprocessors
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Original data up to the year 2010 collected and plotted byehnaHorowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp https://github.com/karlrupp/microprocessor-trend-data
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https://github.com/karlrupp/microprocessor-trend-data

Why HPC - Hardware Motivation: Current & Future Systems

More and more machines composed of multi-core and many-core CPUs, and accelerators

June 2022: Top500’s top 10 has 9 with many-core CPU/Accelerators (7 GPUs, Maxtrix-2000,
SW26010)

Some examples:

4

Frontier: 8,730,112 cores (9,408 nodes) 07K Rivs
64-core AMD EPYC, 4 AMD MI250X GPUs

Fugaku: 7,630,848 cores (>150K nodes): @ ENERGY
Fujitsu’s 48-core A64FX SoC o=~

Summit; 2,414,592 cores (4,608 nodes) AMDZ
2 IBM Power9 22 Cores, 6 NVIDIA Volta GV100
Intel Xeon E7-8890 V4
24 cores, 2 threads per core, 2 AVX 512 vector processing units/core
SW26010 chip is a Chinese “homegrown” many-core (260 core) processor
4 cluster of 64 CPEs+ 1 MPE
NVIDIA A100
6,912 cores, 432 tensor cores, 9.7 / 19.5 TFLOPS (FP64 / FP64 Tensor Core)

Cloud Instances also have "similar” GPUs and and many-core CPUs.

Die photo of A64FX CPU
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Landscape of current “Graph World”
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Scalabllity
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Scalabllity
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Scalablility! But at what COST?

scalable system cores | twitter | uk-2007-05
Stratosphere [6] 16 950s -
X-Stream [17] 16 1159s -
Spark [8] 128 1784s > 8000s
Giraph [8] 128 200s > 8000s
GraphLab [8] 128 242s 714s
GraphX [8] 128 251s 800s
Single thread (SSD) 1 153s 417s

Table 3: Reported elapsed times for label propa-
gation, compared with measured times for single-
threaded label propagation from SSD.

F. McSherry, M. Isard, and D. G. Murray, “Scalability! But at what COST?,” HotOS, 2015.
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Productivity vs Performance

BFS (Weak scaling, 128M undirected edges/node)

—0-Native Combblas —e—Graphlab -#—Socialite =-#=Giraph

1000

100 DX X DX

—e— —t—% L _100x

Overall time (seconds)
[HEY
= o
t

1 2 4 8 16 32 64
Number of nodes

N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A. Hassaan, S. Sengupta, Z. Yin,
and P. Dubey, “Navigating the maze of graph analytics frameworks using massive graph
datasets”. SIGMOD 2014.
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HPC Graph Analytics - Tips/Tricks

£ TDAlab

It is almost all about data movement and maximizing data reuse/locality

Smaller problems are easier to solve (and they take less memory space!)
Reduce your problem size: Graph manipulations/compression

Memory/Data Structures Optimizations
Align (/reorder) to memory/compute architecture
Make it memory hierarchy (cache) friendly

Processor optimizations

Take advantage of (instruction) parallelism (e.g., Vectorization, Tensor-Cores etc.)
Well, sometimes non-work optimal algorithm (with redundant computation) runs faster!

Hybrid (Memory + Processor)
Task-based execution: 1D vs 2D tasks
Task scheduling: pipelining, multi-buffering for computation and communication overlap

Eliminate “redundant” computation
Can you reduce the solution space?
Would approximation be appropriate/good?
Can you sparsify?
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Graph manipulations for fast centrality computations

Amy Wayne  Diana

e & bl

Henry David

Jack
Let G = (V, E) be an undlrected and unweighted graph with a vertex set V of n

vertices and an edge set E of m edges

1
Closeness: far|u| = da(u,v) CC[U] —
2 far(u]
dG (ufv)?éoo

Betweenness: bc(v) = Z 0st(V)
s#Ev£teV T st

O(mn) complexity for both metrics
£ TDAlab




Graph manipulations for fast centrality computations

Amy Wayne  Diana

e & bl

Henry David

Diana
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John Amy & May Sue

f Martin

Henry & Wayne

David

£ TDAlab



Closeness Centrality

Algorithm 1: CC: Basic centrality computation
Data: G = (V, F) SSSP: Single Source Shortest

Output: cc|.] / Path = BFS is computed for
1 for each s € V do each vertex
>SSSP (G, s) with centrality computation
() < empty queue
d[v] < oo, Vv € V' \ {s}
Q.push(s), d[s] < O
far(s] «+ 0
BES with |~ Whﬂs f_z gnff f)mp ty do
farness -POP

_ for all w € T'¢(v) do
computatloTQ\/\ if d|w] = oo then

.push(w
\\l\dQ[qB] <—( dfv] + 1
\_ far|s] « far[s| + d[w]

_ 1 cc value is
ccls| = > .
far(s] assigned

—

return cc|.
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Betweenness Centrality

The current best algorithm (by Brandes)
Phase 1: simple BFS with shortest path counting
Phase 2: computing partial BC scores with counted paths

Data: G= (V,E)

bc[v] 0,8v2V

for each s2 V do

S empty stack, Q empty queue

Pv] empty list, olv] 0,dlv] -1,8v2V
Q.push(s), o[s] 1, ds] O

THIISETE BSOS .Phase 2: Back propagation
while Q is not empty do aqv] -L.8v2V
v Q.pop(), S.push(v) oD
for all w2 [(v) do while S is not empty do
if dw]< Othen w  S.pop()
Q.push(w) for v2 P[w] do
dw] dv]+ 1 2 | dlvl  dlv]+ gw]
if diw] = d[v]+ 1then if w6 sthen
1 ow]  ofw]+ o[v] 3 | befw]  be[w] + (dw] ~ofw] - 1)
Plwl.push(v)

12 Sep 2022 @ PPAM 2022
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Graph Manipulations for Centrality with BADIOS

a_ | ! ! ! | !
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BC Experiments for BADIOS
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How to implement Centrality Computations in GPU?

Vertex-based parallelism
Assign a thread to each vertex
When a thread processes a vertex u, if there exists an unvisited vertex w
In u’s neighborhood, set djw] =d[u] + 1
Edge-based parallelism
Assign a thread to each edge

For each edge (u,v), if u is in the current level and v Is not visited yet set
div] =d[u] +1

Both has problems
Vertex-based: load imbalance
Edge-based: too many atomic operations
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Centrality Computations on GPU: Virtual vertices

Use multiple virtual vertices for a vertex with high degree
Hybrid edge/vertex parallelism.

Restructure computation to take advantage of coalesced memory access

vmap|1l|2|2|3[4[5|6]|7|8[9[10/10

I , vptrs [ 1|2 |6 [10{12|15|18|21|24|27|29|33|35} ———-
)
. Y
P adjs ... [210
u

)
u * offset|0|O0f(1]|0|O0O(0|0O]|O|0]|0O|O0|1

vmap [1|2|2|3|4(5]|6[7]|8[9]|10|10

nvir [1]2|1(1]1]1(1|1]1]2

ptrs | 1|2 10|12]|15(18|21(24|27|29|35F————————— I

{ y
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Results for GPU parallelism

1200
mm CPU-SNAP
mm CPU-Ligra
. mm CPU-BC _ |
1000 = — Gpy.virBC
== GPU-VirBC-Multi
800 |- .
. B -
o
W 600 _ B
= .
400 | .
200 .
0

Amazon Gowalla Google NotreDame WikiTalk Orkut LiveJournal

« VirBC-Multi (vectorized BC with Virtual Vertices) is better 6 out of 7
« VIrBC-Multi is 4.7x faster than Ligra, 1.6x faster than our CPU code
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Vectorized centrality computations

A Middle Ground: Task-based Execution on Heterogeneous Environments
Parallel Graph Algorithms by Blocks (PGADB)

What about Graph Databases
Interoperability Challenges
Design Challenges

Conclusions & Future Directions
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No Vector Coalescing

B_B I O 1L_H
X XX X XX X XX ' X XX
xKox: X X X X X X X XK. X
X X X X X X X X X X X X
X X X);(X XX XX
[l—x-g - A X X X X X X
X X X X X X X X X X X X
X X XXX 3t X X XXX X X XXX X X XXX
X . X . X
)><(x XX X XX XX X é’rﬂs\x X é}x X X
X X XX X X || X X
Vertex Edge Virtual Virtual Coalesced

All the representations give vector coalescing only
“if you are lucky"
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Different Formulation for Vectorization

Vectorization is overlooked in most graph problems :!
Irregular nature of applications X XXo %
We make our applications more “regular” X X XKoo
Process B traversals at once | & SO
Level synchronous execution. x X X X0
Model the CCltraversal with SpMV operation A B B8

. X
(like GraphBLAS does)
Sparse Matrix Vector Multiplication: Multiplying a sparse
matrix with a vector
Switch from SpMV to SpMM: Sparse Matrix Matrix Multiplication

Increases the complexity from O(|E]|) to O(d*|E]), but suitable for
vectorization!

4TDA|ab Catalyiirek "Bringing HPC Graph Analytics to Modern Graph Databases”
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Hardware+Software Vectorization Is the way to go

90
== CPU-DO _
go - == CPU-SpMM |
mm PHI-DO
S0 | - PHI-SpMM i
=3 GPU-VIrCC
— GPU-SpMM
60 .
u 50 .
LLl
|_ N
O 40 - ] s
30 N
20 |- ] . -
10 - -
0
Amazon Gowalla Google NotreDame WikiTalk Orkut LiveJournal

Vectorized code (*-SpMM) is 5.9x faster in CPU, 21x in Xeon Phi,

70x on GPU (compared to previous best)
[IMTAAP’14, JPDC’15]
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[SDM'13, TKDD'17]

[GPGPU'13]
[MTAAP’14,JPDC’15]

A Middle Ground: Task-based Execution on Heterogeneous Environments
Parallel Graph Algorithms by Blocks (PGADB) [+rec19,1PDS 22, underreview]

What about Graph Databases
Interoperability Challenges
Design Challenges

Conclusions & Future Directions
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Parallel Graph Algorithms by Blocks (PGADbB)

How can we propose architecture agnostic graph algorithms that run well on shared-
memory and heterogeneous systems as well as distributed-memory systems?

Block-based graph algorithms offer a sweet spot between efficient

parallelism and architecture agnostic algorithm design

( Parallel Graph Algorithms by Block )

(PGADB)

DR

N
g

N

U

ata/Computation Partitionin

Performance Portability

|:Eock-3ased Alg. Design

CEN
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Algorithm Design Steps

Block List Attribute Execution Kernel
Composition Assignment Handling Development
Pa, Po |PGABB API Ko, Kp
Generic and Custom Before After | WorkEs Host and Device
Block-List Generators. lter. lter. tim. Kernels

Required Optional
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Execution Flow

Layout Management Block List Composition

Bo| |B1 | B "2 | Lo| | L1| | L2| |L3| [L4| |Ls
’ OO B0 |[OE B0 (O |(EE

= =
%,/./Bf ISorting;g
Bs| (B |By Ll (L] [Lal [ Lol [1o] [ L.

B OO BEE OO Cm O
SymmetricfPartitioner ; — : :

https://github.com/GT-TDAlab/SARMA

]

TRUE

Za ) EIC 7 p—
; ;/ KéH Ls)
STOP

| I/0O Handling Scheduling
https://github.com/GT-TDAIlab/PIGO
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Categorizing Graph Algorithms

Dijkstra Jaccard Rank
Y PageRank
MiniTri Floyd-Warshall

AT kCore BES Butterfly

4 Shiloach-Vishkin * | KIS counting
Triangle

S Afforest Counting %

Activation Multi Block

Based Pattern Based

£ TDAlab



Related Work

CPU-Based
Vs

Edge-Centric

Vertex-Centric

GraphMat
Linear-Algebra Based

PEGASUS LAGraph

Block-Centric
GoFFish

gsaNA and
-

PGAbB

@l o

GPU-Based
~

D
- =D

Lux

GBTL-Cuda

MultiGraph

-G e
J

Distributed Memory Shared Memory

G:rameworks in our experiments)

Easy

Ease of Productivity (with Restricted APls)

Hard

Frameworks in Our Experiments

GAPBS: Beamer, et al., 2015. “The GAP benchmark suite.”, ArX1V

Galois: Kulkarni, et al. 2007. “Optimistic parallelism requires
abstractions”, PLDI

Ligra: Shun and Blelloch. 2013. “Ligra: a lightweight graph
processing framework for shared memory”, PPoPP

LAGraph: Davis. 2019. “Algorithm 1000: SuiteSparse: GraphBLAS:
Graph algorithms in the language of sparse linear algebra”, TOMS

Galois-GPU: Martin Burtscher, et al. 2012. “4 guantitative study of
irregular programs on GPUs”, ISWC

Gunrock: Wang, et al. 2016. "Gunrock: A high-performance graph
processing library on the GPU”, PPoPP
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Experiments on Selected Graphs

o Power9 (2 x 16 x 4) CPUs & Voltal00 GPU.

o 320 GB Host Memory. 32 GB Device

Memory.

o CPU-GPU bandwidth: ~60GB/s
o PGADB: Kokkos at the backend with

OpenMP (Host) and Cuda (Device)

Social

‘Web

Gene

Synthetic

twitter?7

l

Orkut

sk-2005

kmer_Vir

myciel19 | kron21

Galois

PR
SV/LP
cC
BFS
TC

0.83

0.84

0.69

1.01
1.71
1.56
0.59
1.06

1.01
1.68
0.98

0.63

0.89 1.03
2.29 1.81
0.64 0.64

Ligra

PR
SV/LP
CcC
BFS
TC

0.60
0.70

0.99

LAGraph

PR
SV/LP
CcC
BFS
TC

Galois-GPU

PR
SV/LP
CcC
BFS
TC

0.75 0.65

Gunrock

PR
SV/LP
CcC
BFS
TC

Number of

Graph Vertices Edges  Triangles CC

Twitter7 41.6 M 12B 348 B 0.001
Com-Orkut 3M 117 M 627 M 0.041
Sk-2005 50.6 M 18B 849 B 0.002
Europe-OSM 509 M 54.1 M 61K 0.003
Myciel.19 393 K 451 M 0 0
Kron-Scale21 21 M 91 M 8.8B 0.044

£ TDAlab
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[SDM'13, TKDD'17]

[GPGPU'13]
[MTAAP’14,JPDC’15]

[HPEC'19,TPDS'22,underreview]

What about Graph Databases
Interoperability Challenges
Design Challenges

Conclusions & Future Directions

PRESYNETN Cetalyirek “Binging HPC Graph Analytcs to Modern Graph Daabases’  1sepazz@PpAMz02 36



Graph Databases

Two camps

LPG: Labeled Property Graphs

Vertices
Nodes: Label/ID + Properties (set of
key-value pairs)

Edges

Relationships: Label/ID + Type +
Properties

£ TDAlab

EID1

o (relation : “son”)»o

NID1 NID2
(name : “Umit”) (name : “Kaan”)

Catalyurek "Bringing HPC Graph Analytics to Modern Graph Databases”

RDF: Resources Description Framework

Vertices

Resources: URIs
Attribute Values: Literals
Edges

Relationships: URIs

RDF Triple: Subject-Predicate-Object

(SPO)

O——0

There is no internal structure for nodes and edges

12 Sep 2022 @ PPAM 2022



Graph interoperability

£ TDAlab

5, o H_D <Q

)& ) ) '
Amazon S3 Amazon Neptune Fast graph queries Client accesses content
Fast, parallel bulk Purpose-built graph Open graph APIs for Apache Easily execute queries that
loading for CSV and database that stores TinkerPop Gremlin, W3C's efficiently navigate highly
RDF data stored in S3 billions of relationships RDF/SPARQL, and openCypher connected datasets

Amazon Neptune |

managed, cloud-based graph database service
supports RDF (SPARQL) and LPG (Gremlin & openCypher)

User has to choose either RDF or LPG
this choice also determines which query languages are available
the choice Is not always easy, and is hard to reverse later

RDF vs. LPG
RDF offers a formal model, LPG not so much

RDF is “sometimes seen as academic”, and developers tend to prefer LPG
different strengths and weaknesses
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Graph interoperability

£ TDAlab

What if we did not have to choose between RDF and LPG?
What if we could use Gremlin over RDF, or SPARQL over LPG?

Interoperability: single graph (meta)model, free use of any query
language

we are not interested in “qualified” interoperability where one metamodel
IS Implemented using the other

RDF-star Is a step towards having LPG features in RDF

1G model (“one graph to rule them all”)

"Graph? Yes! Which one? Help!", O. Lassila, M. Schmidt, B. Bebee, D.

Bechberger, W. Broekema, A. Khandelwal, K. Lawrence, R. Sharda, B.
Thompson, arXiv:2110.13348v1, 2021.

Catalyurek "Bringing HPC Graph Analytics to Modern Graph Databases”
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Interoperabllity challenges

Edge properties, multiple edge instances, reification
Triples vs. graph abstraction

Datatype alignment

Graph partitioning

Graph merging, external identifiers

Lack of formal foundation

Update query semantics

The Neptune team seek support from the broader community
to look into these issues

A TDAlab



Storage Challenges

Interoperability: serve both RDF and LPG
1G Graph Storage

Graph is not static (well, obviously!)

Many HPC Graph Analytics kernels assumes graph is not changing.
Even dynamic ones conveniently ignores deletion.

Scalability: Scaling Up (vertical/single-node) and Scaling Out

(horizontal/multi-node)

Read scaling is “easy”
Write scaling with transaction support is challenging:
Distributed in-memory graph storage with logging is still challenging to implement.

How to (dynamically) distribute data
Node partition vs Edge partition vs Blocked partition

What does it mean to provide Graph Analytics under transactional system?
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Computational Infrastructure Challenges

Interoperabllity: serve multiple query languages and graph analytics

Can we implement once, and run everywhere: from multi-core to multi-host
with potentially accelerators?

Yes!
Multi-Level Intermediate Representation (MLIR) for Graphs

Event-based runtime system
“Coarse-grained” Labeled-Dataflow Execution

OLAP vs OLTP tradeoffs and Scheduling
multiple, mixed (OLAP and OLTP), concurrent queries.
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Other Challenges

Where does the Graph come from?
Authoring

Toolkits

Visualization

TCO: Total Cost of Ownership
Price/performance and price/scale options.
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Conclusions & Future Directions

Graphs ubiquitous and market is growing extremely fast

“By 2025, graph technologies will be used in 80% of the data and analytics innovations,
up from 10% in 2021, facilitating rapid decision making across the enterprise” Gartner
“Market Guide: Graph Database Management Solutions”, M. Adrian, A. Jaffri, D.
Feinberg, 24 May 2021.

HTAP (i.e., Hybrid OLTP and OLAP) solutions are needed!

Enterprise Graph Systems gives the illusion of read scaling, while failing in absolute
performance, and write/update scaling (they just leave that to file system)

HPC Graph Analytics codes/libraries, are one-off, focused on narrow set of kernels and
fail to provide end-to-end solutions

Existing “Real” Graph Databases, provides OLTP but fails to deliver OLAP

Interoperability is a big challenge!
SPARQL, Gremlin and OpenCypher queries for both OLTP and OLAP workloads

Graph as a Service
It is exciting times for Graphs!
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dWS

N
Amazon Neptune — We are hiring!

Amazon Neptune is hiring! If you are excited by the possibility of building the internals of one of the fastest growing
graph databases in the world, look no further! We're looking for some fearless SDEs to work on cutting edge
technologies and core foundations of HPC, distributed transaction management, graph databases, algorithms and
many more. (Locations: US, CAN, GER, IND)

Visit www.amazon.jobs and search “Neptune” for more info on multiple positions/openings.

Contact: uvc@amazon.com
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