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Abstract

We propose a new hypergraph model for the decompo-
sition of irregular computational domains. This work fo-
cuses on the decomposition of sparse matrices for parallel
matrix-vector multiplication. However, the proposed model
can also be used to decompose computational domains of
other parallel reduction problems. We propose a “fine-
grain” hypergraph model for two-dimensional decomposi-
tion of sparse matrices. In the proposed fine-grain hyper-
graph model, vertices represent nonzeros and hyperedges
represent sparsity patterns of rows and columns of the ma-
trix. By partitioning the fine-grain hypergraph into equally
weighted vertex parts (processors) so that hyperedges are
split among as few processors as possible, the model cor-
rectly minimizes communication volume while maintaining
computationalload balance. Experimental results on a wide
range of realistic sparse matrices confirm the validity of the
proposed model, by achieving up to 50 percent better de-
compositions than the existing models, in terms of total com-
munication volume.

1 Introduction

Repeated matrix-vector multiplication y = Ax that in-
volves the same large, sparse, structurally symmetric or non-
symmetric square matrix A is the kernel operation in itera-
tive solvers. These algorithms also involve linear operations
on dense vectors. For efficient parallelization of these itera-
tive algorithms, matrix A should be partitioned among pro-
cessors in such a way that communication overhead is kept
low while maintaining computational load balance. In or-
der to avoid the communication of vector components dur-
ing the linear vector operations, a symmetric partitioning
scheme is adopted. That is, all vectors (including x and y
vectors) used in the solver are divided conformally.

�This work is partially supported by Turkish Science and Research
Council under grant EEEAG-199E013.

The standard graph partitioning approach has been
widely used for one-dimensional (1D) decomposition of
irregularly sparse matrices. In recent works, we [3, 4],
and Hendrickson [9] mentioned the flaws and shortcom-
ings of the standard graph-partitioning approach. In our
recent works [3, 4], we proposed hypergraph-partitioning
approach which correctly minimizes the communication
volume in 1D matrix decomposition. Other recently pro-
posed alternative models for 1D matrix decomposition
were discussed in the excellent survey by Hendrickson and
Kolda [10].

The literature that addresses 2D matrix decomposition
is very rare. The 2D checkerboard decomposition schemes
proposed by Hendrickson et al. [11] and Lewis and van de
Geijn [15] are typically suitable for dense matrices or sparse
matrices with structured nonzero patterns that are difficult
to exploit. These schemes do not involve explicit effort to-
wards reducing communication volume.

Parallel matrix-vector multiplication is one of the basic
parallel reduction algorithms. Elements of x vector are the
inputs of the reduction and elements of y vector are the out-
puts of the reduction. Matrix A corresponds to the mapping
matrix from input elements to output elements. Hence, any
technique used in the sparse matrix decomposition is also
applicable to other reduction problems.

In this paper, we propose a fine-grain hypergraph-
partitioning model for 2D decomposition of irregularly
sparse matrices based on our previous work [2]. Vertices of
the proposed fine-grain hypergraph correspond to the nonze-
ros of the matrix to model each scalar multiplication oper-
ation as an atomic task during the decomposition. Hyper-
edges of the fine-grain hypergraph correspond to columns
and rows of the matrix to model the communication volume
requirement of the expand and fold operations in the par-
allel matrix-vector multiplication. By partitioning the fine-
grain hypergraph into equally weighted vertex parts (proces-
sors) so that hyperedges are split among as few processors
as possible, the model correctly minimizes communication
volume while maintaining computational load balance.



2 Preliminaries

A hypergraph H=(V;N ) is defined as a set of vertices
V and a set of nets (hyperedges) N among those vertices.
Every net nj 2 N is a subset of vertices, i.e., nj � V .
The vertices in a net nj are called its pins and denoted as
pins[nj] . The set of nets connected to a vertex vi is denoted
as nets[vi] . Weights and costs can be assigned to the ver-
tices and edges of the hypergraph, respectively. Let wi and
cj denote the weight of vertex vi 2 V and the cost of net
nj2N , respectively.

�=fP1;P2; : : : ;PKg is a K-way partition of H if the
following conditions hold: each part Pk; 1 � k � K , is
a nonempty subset of V , parts are pairwise disjoint (Pk \
P` = ; for all 1 � k < ` � K ), and union of K parts
is equal to V (i.e.

SK
k=1Pk = V ). A partition is said to be

balanced if each part Pk satisfies the balance criterion

Wk �Wavg(1 + "); for k = 1; 2; : : : ;K: (1)

In (1), weight Wk of a part Pk is defined as the sum of the
weights of the vertices in that part (i.e. Wk=

P
vi2Pk

wi ),
Wavg=(

P
vi2V

wi)=K denotes the weight of each part un-
der the perfect load balance condition, and " represents the
predetermined maximum imbalance ratio allowed.

In a partition � of H , a net that has at least one pin (ver-
tex) in a part is said to connect that part. Connectivity set
�j of a net nj is defined as the set of parts connected by
nj . Connectivity �j= j�jj of a net nj denotes the number
of parts connected by nj . A net nj is said to be cut if it con-
nects more than one part (i.e. �j > 1), and uncut otherwise
(i.e. �j = 1). The cut and uncut nets are also referred to
here as external and internal nets, respectively. The set of
external nets of a partition � is denoted as NE . There are
various cutsize definitions for representing the cost �(�) of
a partition � . Two relevant definitions are:

�(�) =
X

nj2NE

cj (2)

�(�) =
X

nj2NE

cj(�j � 1): (3)

In (2), the cutsize is equal to the sum of the costs of the cut
nets. In (3), each cut net nj contributes cj(�j�1) to the cut-
size. Hence, the hypergraph partitioning problem [14] can
be defined as the task of dividing a hypergraph into two or
more parts such that the cutsize is minimized, while a given
balance criterion (1) among the part weights is maintained.
The hypergraph partitioning problem is known to be NP-
hard [14].
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Figure 1. Dependency relation of 2D fine-grain
hypergraph model

3 A Fine-grain Hypergraph Model

In this model, an M �M matrix A with Z nonzero el-
ements is represented as a hypergraph H = (V;N ) with
jVj=Z vertices and jN j=2�M nets for 2D decomposi-
tion. There exists one vertex vij 2 V corresponding to each
nonzero aij in matrix A. For each row and for each column
there exists a net in N . For simplicity in the presentation let
N = NR [ NC such that NR = fm1;m2; : : : ;mMg rep-
resents the set of nets corresponding to the rows and NC =
fn1; n2; : : : ; nMg represents the set of nets corresponding
to the columns of matrix A. Net mj � V contains the ver-
tices corresponding to the nonzeros in row j , and net nj�V
contains the vertices corresponding to the nonzeros in col-
umn j . That is, vij2mi and vij2nj if and only if aij 6=0 .
Note that each vertex vij is connected to exactly two nets.
Each vertex vij 2 V corresponds to the scalar multiplica-
tion operation yji = aijxj . Hence, each vertex vij 2 V
has unit computational weight wij = 1 . The nets in NC
represent the dependency relations of the scalar multiplica-
tion operations on the x-vector entries, that is, they model
the expand operation in the pre communication phase. The
nets in NR represent the dependency relations of the addi-
tion operations needed to accumulate the y-vector entries on
the scalar multiplication results, in other words, they model
the fold operation in the post communication phase. Hence,
each column-net nj denotes the set of scalar multiplication
operations (vertices) that need xj during pre communica-
tion, and each row-net mi denotes the set of scalar multipli-
cation results needed to accumulate yi . Figure 1 illustrates
the dependency relation view of 2D fine-grain model. As
seen in this figure, column-net nj=fvij; vjj; vljg of size 3
represents the dependency of atomic tasks vij , vjj , vlj to
xj because of the 3 multiplication operations yji = aijxj ,
yjj = ajjxj and yjl = aljxj . In this figure, row-net mi =
fvih; vii; vik; vijg of size 4 represents the dependency of ac-
cumulating yi=yhi + yii+y

k
i +y

j
i to the 4 partial yi results

yhi =aihxh , yii=aiixi , yki =aikxk and yji =aijxj .



By assigning unit costs to the nets (i.e. cj = 1 for each
net nj 2 N ), the proposed fine-grain hypergraph model re-
duces the 2D matrix decomposition problem for a parallel
system with K processors to the K -way hypergraph parti-
tioning problem according to the cutsize definition given in
(3). Nets corresponding to rows of matrix (i.e. nets in NR )
model the communication volume requirement of folds, and
nets corresponding to columns of matrix (i.e. nets in NC )
model the communication volume requirement of expands.

Consistency of the proposed hypergraph models for ac-
curate representation of communication volume require-
ment while maintaining symmetric partitioning depends on
the condition that “vii 2 pins[mi] and vii 2 pins[ni]
for each row-net mi and column-net ni ”. Note that sym-
metric partitioning — having the same number of input and
output elements and assigning the corresponding input and
output elements to the same processor — may not be re-
quired in the other reduction problems hence in the decom-
position of those problems we may not need such a consis-
tency condition. That is, in the absence of symmetric par-
titioning requirement, the proposed model already achieves
the accurate representation of communication volume re-
quirement without consistency condition. In some other re-
duction problems, the input and output elements may be
pre-assigned to parts. The proposed hypergraph model can
be simply accommodated to those problems by adding K
part vertices and connecting those vertices to the nets which
correspond to the pre-assigned input and output elements.
Obviously, those part vertices must be fixed to correspond-
ing parts during the partitioning. Since the required prop-
erty is already included in the existing hypergraph partition-
ers [5, 13] this doesn’t add extra complexity to our model.
For the sparse matrix decomposition problem, we first as-
sume that the consistency condition holds in the discussion
throughout the following paragraphs and then discuss the
appropriateness of the assumption in the last paragraph of
this section.

Consider a partition �=fP1;P2; : : : ;PKg of H in the
fine-grain hypergraph model for 2D decomposition of ma-
trix A. Without loss of generality, we assume that part Pk is
assigned to processor Pk for k=1; 2; : : :;K: Recall that �
is defined as a partition on the vertex set of H , hence it does
not induce any part assignment for the nets. Since column
and row nets of H denote the expand and fold operations
on x and y vectors, we need to decode � as inducing a par-
tition on nets to formulate communication volume require-
ments. Let �[nj] and �[mj ] denote the connectivity sets of
column-net nj and row-net mj in � , and part[vij] denotes
the part (hence processor) assignment for vertex vij .

Consider an internal column-net nj of part Pk (i.e.
�[nj] = fPkg). As all pins of net nj lie in Pk , all nonze-
ros in column j (including ajj by the consistency condi-
tion) which need xj for their multiplication are already as-

signed to processor Pk . Hence, internal column-net nj of
Pk , which does not contribute to the cutsize (3) of partition
� , does not necessitate any expand operation if xj is as-
signed to processor Pk . Similarly, consider an internal row-
net mj of part Pk . As all pins of row-net mj lie in Pk , all
nonzeros in row j which will contribute to the accumula-
tion of yj are already assigned to processor Pk . Hence, in-
ternal row-net mj of Pk , which does not contribute to the
cutsize (3) of partition � , does not necessitate any fold op-
eration if yj is assigned to processor Pk .

Consider an external column-net nj (i.e., �[nj] > 1).
As all pins of net nj lie in the parts in its connectivity set
�[nj] , all nonzeros (including ajj by the consistency con-
dition) which need xj for multiplication are assigned to the
parts (processors) in �[nj] . Hence, contribution �[nj]�
1 of external net nj to the cutsize according to (3) accu-
rately models the amount of communication volume to in-
cur during the expand of xj if xj is assigned to any pro-
cessor in �[nj] . Let map[nj] 2 �[nj] denote the part
and hence processor assignment for xj corresponding to
cut net nj . Cut net nj indicates that processor map[nj]
should send its local xj to those processors in connectivity
set �[nj] except itself (i.e., to processors in the set �[nj]�
fmap[nj]g). Hence, processor map[nj ] should send its lo-
cal xj to j�[nj]j�1 = �[nj]�1 distinct processors. Sim-
ilarly, consider an external row-net mj . As all pins of net
mj lie in the parts in its connectivity set �[mj] , all nonzeros
which will contribute in the accumulation of yj are already
assigned to the parts (processors) in �[mj] . Cut net mj

indicates that the processors in the connectivity set �[mj ]
except owner of mj (i.e., processors in the set �[mj]�
fmap[mj]g) should send their partial yj results to the pro-
cessor map[mj ] . Hence, contribution �[mj]�1 of external
row-net mj to the cutsize according to (3) accurately mod-
els the amount of communication volume to incur during the
fold of yj if yj is assigned to any processor in �[mj] .

The above discussion shows that the consistency of the
proposed hypergraph model depends on the existence of an
at least one common part between connectivity sets �[nj]
and �[mj] , for each j = 1; : : : ;M . Fortunately, the con-
sistency condition also guarantees the existence of such a
common part which is part[vjj] , because nets nj and mj

share pin vjj by the consistency condition. In essence, in
the fine-grain hypergraph model, any partition � of H with
part[vii] = Pk can be safely decoded as assigning row-net
mi (hence yi ) and column-net ni (hence xi ) to part Pk ,
i.e., map[ni] = map[mi] = part[vii] . With this assign-
ment, both symmetric partitioning on x and y vectors is
maintained and also total communication volume is exactly
modeled. Thus, in the fine-grain model, minimizing the cut-
size according to (3) corresponds to minimizing the actual
volume of interprocessor communication during the pre and
post communication phases.



Nonzero diagonal entries automatically satisfy the con-
dition “vii 2 pins[mi] and vii 2 pins[ni] for each row-
net mi and column-net ni ” thus enabling both accurate rep-
resentation of communication requirement and symmetric
partitioning of x and y vectors. If however some diagonal
entries of the given matrix are zero then the consistency of
the proposed model is easily maintained by simply adding
dummy vertex vjj for each ajj = 0 with wjj = 0 to ver-
tex set V of H . Vertex vjj is also added to both pin lists
pins[nj] and pins[mj ] . The net list of this dummy vertex
vjj is simply set to nets[vjj] = fnj;mjg . Since dummy
vertices are assigned zero weight, these vertex additions do
not affect the balancing model (1).

4 Experimental Results

We have tested the validity of the proposed hypergraph
model for 2D decomposition by running our multilevel hy-
pergraph partitioning tool PaToH [5] on the hypergraphs for
the decompositions of various realistic sparse test matrices
arising in different application domains [1, 6, 7, 8]. Table 1
illustrates the properties of the test matrices listed in the or-
der of increasing number of nonzeros. The proposed 2D de-
composition results were compared with the 1D decompo-
sitions obtained by running MeTiS [12] using the standard
graph models, and PaToH using the 1D column/row-net hy-
pergraph model presented in [4]. All experiments were car-
ried out on a workstation equipped with a 133 MHz Pow-
erPC processor with 64 Mbytes of memory. For a specific
K value, K -way decomposition of a test matrix constitutes
a decomposition instance. MeTiS and PaToH were run 50
times starting from different random seeds for each decom-
position instance and average performance results are dis-
played in Table 2. The percent load imbalance values are
below 3% for all decomposition results displayed in these
figures, where percent imbalance ratio is defined as 100 �
(Wmax �Wavg)=Wavg .

Table 2 displays the decomposition performance of the
proposed fine-grain hypergraph model for 2D decomposi-
tion together with the standard graph model and 1D hyper-
graph model. Communication volume values (in terms of
the number of words transmitted) are scaled by the number
of rows/columns of the respective test matrices. Although
the main objective of this work is the minimization of the
total communication volume, average number of messages
handled by a single processor are also displayed in this ta-
ble. As seen in Table 2, the proposed 2D hypergraph model
produces substantially better partitions than 1D decomposi-
tion models at each instance in terms of total communication
volume. On the overall average, 2D fine-grain hypergraph
model produces 59%, and 43% better decompositions than
1D graph and hypergraph models, respectively.

Table 2 also displays the average number of messages

Table 1. Properties of test matrices
number of nonzeros

number of per row/col
name rows/cols total min max avg
sherman3 5005 20033 1 7 4.00
bcspwr10 5300 21842 2 14 4.12
ken-11 14694 82454 2 243 5.61
nl 7039 105089 1 361 14.93
ken-13 28632 161804 2 339 5.65
cq9 9278 221590 1 702 23.88
co9 10789 249205 1 707 23.10
pltexpA4-6 26894 269736 5 204 10.03
vibrobox 12328 342828 9 121 27.81
cre-d 8926 372266 1 845 41.71
cre-b 9648 398806 1 904 41.34
world 34506 582064 1 972 16.87
mod2 34774 604910 1 941 17.40
finan512 74752 615774 3 1449 8.24

handled by a single processor. Recall that, the theoretical
bound on the maximum number of messages handled by a
single processor is K � 1 for the standard graph model and
1D hypergraph models, whereas it is 2(K � 1) for fine-
grain hypergraph model. Although, fine-grain hypergraph
model produces 39% worse decompositions than the stan-
dard graph model in terms of average number of messages
for K = 16 , it only requires 16:17 messages per proces-
sor on the average which is well below the theoretical bound
2(16 � 1) = 30 . With increasing K , average number
of messages becomes more comparable with the standard
graph model, for example for K = 64 they are almost same.

The average execution times of the MeTiS and PaToH
for the standard graph and hypergraph models are also dis-
played in Table 2. 2D fine-grain hypergraph model is ap-
proximately 2.4 and 7.3 times slower than the 1D hyper-
graph model and the standard graph model, respectively.
This is an expected result, since 2D fine-grain hypergraph
model contains 2 times more pins and nets than the 1D hy-
pergraph model. Also number of vertices in the 2D fine-
grain model is equal to the number of nonzeros in the ma-
trix, whereas it is the number of rows/columns in 1D hyper-
graph model. Here, we should note that we have used Pa-
ToH without any modification and tuning. We are expecting
substantial decrease in the run-time of PaToH for fine-grain
hypergraph model with planned modifications.

5 Conclusion

A fine-grain computational hypergraph model was pro-
posed for two-dimensional (2D) decomposition of sparse
matrices. The proposed model reduces the 2D matrix de-
composition problem to the well-known hypergraph parti-
tioningproblem so that partitioningobjectives correspond to
minimizing communication volume while maintaining load
balance during repeated matrix-vector multiplication. The



Table 2. Average communication requirements of the proposed 2D hypergraph model and the existing
1D decomposition models.

1D Decomposition 2D Decomposition
Standard Graph Model Hypergraph Model Fine-Grain Hypergraph Model

comm. vol. avg comm. vol. avg comm. vol. avg
name K tot max #msgs time tot max #msgs time tot max #msgs time

16 0.31 0.03 5.30 0.53 0.25 0.02 4.46 (1.77) 0.25 0.02 8.38 (3.03)
sherman3 32 0.46 0.02 6.48 0.61 0.37 0.02 5.81 (1.79) 0.36 0.02 10.07 (3.34)

64 0.64 0.02 7.42 0.71 0.53 0.01 6.94 (1.71) 0.50 0.01 11.01 (3.39)
16 0.09 0.01 4.21 0.28 0.08 0.01 4.29 (3.62) 0.07 0.01 7.14 (7.28)

BCSPWR10 32 0.15 0.01 4.79 0.34 0.13 0.01 4.65 (3.63) 0.12 0.01 7.49 (7.25)
64 0.23 0.01 5.20 0.42 0.22 0.01 4.93 (3.34) 0.19 0.01 7.32 (6.86)
16 0.93 0.08 13.99 1.77 0.60 0.05 12.91 (2.19) 0.14 0.02 10.79 (3.66)

ken-11 32 1.17 0.06 26.00 1.98 0.74 0.03 21.19 (2.39) 0.29 0.02 18.85 (4.09)
64 1.45 0.04 40.48 2.35 0.93 0.02 32.22 (2.26) 0.48 0.02 28.23 (4.20)
16 1.70 0.15 14.99 1.21 1.06 0.10 13.30 (3.09) 0.74 0.08 23.87 (7.07)

nl 32 2.25 0.10 27.88 1.43 1.49 0.07 20.39 (3.12) 1.05 0.07 35.98 (7.39)
64 3.04 0.07 38.35 1.54 2.20 0.05 26.13 (3.34) 1.38 0.05 42.43 (8.03)
16 0.94 0.08 14.77 3.84 0.55 0.04 13.87 (2.17) 0.08 0.01 9.39 (3.33)

ken-13 32 1.17 0.05 29.02 4.50 0.63 0.03 22.79 (2.18) 0.17 0.02 11.22 (3.64)
64 1.40 0.03 50.81 4.78 0.79 0.02 35.93 (2.30) 0.39 0.02 20.51 (4.33)
16 1.70 0.17 14.88 2.12 0.99 0.12 12.62 (2.64) 0.50 0.08 18.03 (6.81)

cq9 32 2.43 0.15 21.96 2.46 1.45 0.08 17.87 (2.61) 0.79 0.09 24.54 (6.96)
64 3.73 0.12 32.27 2.80 2.33 0.06 22.67 (2.82) 1.22 0.07 30.72 (7.31)
16 1.50 0.16 14.81 2.42 0.94 0.11 12.82 (2.72) 0.47 0.07 20.00 (6.63)

co9 32 2.07 0.12 19.62 2.84 1.36 0.08 17.55 (2.78) 0.74 0.07 26.84 (7.14)
64 3.10 0.09 29.99 3.07 2.17 0.06 21.85 (2.99) 1.09 0.06 31.13 (8.01)
16 0.34 0.03 10.05 3.22 0.30 0.03 10.11 (3.81) 0.20 0.02 14.78 (8.92)

pltexpA4-6 32 0.55 0.03 15.86 3.84 0.51 0.02 14.73 (4.13) 0.29 0.01 20.51 (9.61)
64 0.98 0.03 20.48 4.32 0.86 0.02 17.35 (4.21) 0.51 0.01 21.40 (9.73)
16 1.24 0.11 12.84 2.77 1.06 0.08 10.14 (4.56) 0.79 0.07 23.27 (10.40)

vibrobox 32 1.73 0.08 20.85 3.25 1.53 0.06 14.77 (4.65) 1.06 0.06 31.28 (10.90)
64 2.28 0.05 28.85 3.49 2.08 0.05 19.58 (4.97) 1.43 0.05 35.38 (11.88)
16 2.82 0.24 14.90 4.18 2.00 0.17 11.78 (2.34) 1.15 0.12 26.05 (7.49)

cre-d 32 4.12 0.19 28.59 4.80 2.90 0.14 19.49 (2.44) 1.77 0.11 41.37 (8.08)
64 5.95 0.14 47.36 5.03 4.14 0.10 29.73 (2.72) 2.55 0.10 55.76 (9.05)
16 2.62 0.23 14.78 4.41 2.02 0.18 12.13 (2.38) 1.01 0.11 25.91 (7.27)

cre-b 32 3.90 0.18 28.57 5.01 2.88 0.15 19.97 (2.42) 1.55 0.11 40.33 (7.96)
64 5.73 0.14 46.42 5.42 4.08 0.12 29.98 (2.62) 2.26 0.10 52.72 (8.66)
16 0.59 0.05 11.78 5.76 0.54 0.06 6.09 (3.36) 0.23 0.05 16.57 (8.37)

world 32 0.84 0.04 18.00 7.04 0.76 0.05 8.19 (3.34) 0.41 0.04 23.14 (9.00)
64 1.19 0.03 20.58 8.16 1.06 0.04 11.58 (3.54) 0.62 0.04 27.42 (9.54)
16 0.57 0.05 10.95 5.85 0.52 0.06 5.59 (3.51) 0.24 0.05 13.02 (8.92)

mod2 32 0.79 0.04 14.59 7.19 0.72 0.04 7.42 (3.32) 0.41 0.05 18.68 (9.20)
64 1.14 0.03 17.84 7.96 1.02 0.04 10.51 (3.68) 0.62 0.04 24.44 (9.33)
16 0.20 0.03 4.35 7.84 0.16 0.03 3.48 (3.28) 0.07 0.02 9.24 (7.03)

finan512 32 0.27 0.02 6.39 9.56 0.21 0.02 4.15 (3.30) 0.10 0.02 10.75 (7.04)
64 0.38 0.01 8.80 11.17 0.31 0.01 5.37 (3.34) 0.20 0.02 14.90 (7.13)

Averages overK

16 1.11 0.10 11.61 3.30 0.79 0.08 9.54 (2.96) 0.42 0.05 16.17 (6.87)
average 32 1.56 0.08 19.19 3.92 1.12 0.06 14.21 (3.01) 0.65 0.05 22.93 (7.26)

64 2.23 0.06 28.20 4.37 1.62 0.04 19.63 (3.13) 0.96 0.04 28.81 (7.68)

overall average 1.63 0.08 19.67 3.86 1.18 0.06 14.46 (3.03) 0.68 0.05 22.64 (7.27)

“tot” denotes the total communication volume, whereas “max” denotes the maximum communication volume handled by a single processor.
“avg #msgs” denotes the average number of messages per processor. “time” denotes the execution time (in seconds) of MeTiS and PaToH
for the graph model and hypergraph models. Numbers in the parentheses are the normalized execution times with respect to graph model
using MeTiS.



performance of the proposed 2D decomposition model was
tested against 1D decomposition through graph and hyper-
graph models on a wide range of realistic sparse matrices.
The 2D decompositions achieved about 50 percent decrease
in the communication volume requirement of a single paral-
lel matrix-vector multiplication, on the average.
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