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ON TWO-DIMENSIONAL SPARSE MATRIX PARTITIONING:
MODELS, METHODS, AND A RECIPE

ÜMİT V. ÇATALYÜREK∗, CEVDET AYKANAT† , AND BORA UÇAR‡

Abstract. We consider two-dimensional partitioning of general sparse matrices for parallel
sparse matrix-vector multiply operation. We present three hypergraph-partitioning based methods,
each having unique advantages. The first one treats the nonzeros of the matrix individually and hence
produces fine-grain partitions. The other two produce coarser partitions, where one of them imposes
a limit on the number of messages sent and received by a single processor, and the other trades that
limit for a lower communication volume. We also present a thorough experimental evaluation of the
proposed two-dimensional partitioning methods together with the hypergraph-based one-dimensional
partitioning methods, using an extensive set of public domain matrices. Furthermore, for the users
of these partitioning methods, we present a partitioning recipe that chooses one of the partitioning
methods according to some matrix characteristics.

Key words. Sparse matrix partitioning; parallel matrix-vector multiplication; hypergraph par-
titioning; two-dimensional partitioning; combinatorial scientific computing

AMS subject classifications. 05C50, 05C65, 65F10, 65F50, 65Y05

1. Introduction. Sparse matrix-vector multiply operation forms the computa-
tional core of many iterative methods including solvers for linear systems, linear pro-
grams, eigensystems, and least squares problems. In these solvers, the computations
y← Ax are performed repeatedly with the same large, sparse, possibly unsymmetric
or rectangular matrix A and with a changing input vector x . Our aim is to effi-
ciently parallelize these multiply operations by two-dimensional (2D) partitioning of
the matrix A in such a way that the computational load per processor is balanced
and the communication overhead is low.

Graph and hypergraph partitioning models have been used for one-dimensional
(1D) partitioning of sparse matrices [4, 5, 8, 9, 19, 20, 25, 26, 30, 32, 37]. In these
models, a K -way partition of the vertices of a given graph or hypergraph is computed.
The partitioning constraint is to maintain a balance criterion on the number of vertices
in each part; if the vertices are weighted, then the constraint is to maintain a balance
criterion on the sum of the vertex-weights in each part. The partitioning objective is
to minimize the cutsize of the partition defined over the edges or hyperedges. The par-
titioning constraint and objective relate, respectively to, maintaining a computational
load balance and minimizing the total communication volume. The limitations of the
graph model have been shown in [8, 9, 19]. First, it tries to minimize a wrong objective
function, since edge-cut metric is only an approximation to the total communication
volume. Second, it can only model square matrices. Alternative models such as bi-
partite graph model [21], multi-constraint and multi-objective partitionings [43, 44],
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2 ÇATALYÜREK, AYKANAT, UÇAR

skewed partitioning [23], and those based on hypergraph partitioning [8, 9] have been
proposed. All these new models address some of the limitations of the standard model,
but only in hypergraph-partitioning based ones, the partitioning objective is an exact
measure of the total communication volume.

Earlier works on 2D matrix partitioning [22, 34, 35, 39] are based on checkerboard
partitioning. These works are typically suited to dense matrices or sparse matrices
with structured nonzero patterns that are difficult to exploit. Later works [7, 11, 12,
52] are specifically targeted to sparse matrices. These works are based on different
hypergraph models and produce matrix partitionings with differing characteristics.
These 2D partitioning models, as hypergraph-partitioning based models for 1D parti-
tioning, encode the total communication volume exactly with the partitioning objec-
tive. The hypergraph model in [11] is used to partition the matrices on nonzero basis.
In other words, it produces fine-grain partitionings in which assignment decisions are
made in nonzero basis. The hypergraph model in [12] is used to obtain checkerboard
partitionings. In other words, the matrix is divided into blocks, and the blocks are
assigned to processors. The partitioned matrix maps naturally onto a 2D mesh of
processors. Therefore, the communication along a matrix row or column is confined
to a subset of processors, and hence the total number of messages is limited. The
approach presented in [52] applies recursive bisection in which each step partitions
the current submatrix along the rows or columns using the hypergraph models for 1D
partitioning. This approach does not limit the total number of messages.

In order to parallelize the matrix-vector multiply y ← Ax , we have to partition
the vectors x and y as well. There are two alternatives in partitioning the vectors x
and y . The first one, symmetric partitioning, is to have the same partition on x and
y . The second one, nonsymmetric partitioning, is to have different partitions on x and
y . There are three groups of methods to obtain vector partitionings. The methods
in the first group perform the vector partitioning implicitly using the partitions on
the matrix for symmetric partitioning [9, 11, 12]. The methods in the second group
perform the vector partitioning in an additional stage after partitioning the matrix
for nonsymmetric [3, 46, 47, 52] and symmetric [46, 52] partitionings. The methods
in the third group [50] enhance the previously proposed hypergraph models in order
to obtain vector and matrix partitionings simultaneously both for the symmetric and
nonsymmetric partitioning cases. A common goal pursued by all these techniques is
to assign a vector entry to a processor that has nonzeros in the corresponding row or
column of the matrix. In this paper, we are only interested in matrix partitioning,
and we do not make use of any of those vector partitioning methods. However, we
use a simple vector partitioning method achieving the common goal stated above.

We present some background material on parallel matrix-vector multiply opera-
tion based on 2D matrix partitioning, hypergraph partitioning, and hypergraph mod-
els for 1D matrix partitioning in the next section. Section 3 presents three meth-
ods with different assignment granularity and communication patterns for 2D matrix
partitioning: fine-grain, jagged-like, and checkerboard-like partitioning methods. The
fine-grain and the checkerboard-like models were briefly discussed, respectively, in [11]
and [12]. The jagged-like partitioning model was only described in the first author’s
thesis [7]. Section 4 contains further investigations on partitioning methods, including
a recipe on matrix partitioning alternatives. In Section 5, we present experimental
results.

Our contributions in this paper are four folds: first, to present the jagged-like
method for the first time, and the fine-grain and checkerboard-like methods in a more
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accessible venue (Section 3); second, to investigate the merits of these three partition-
ing approaches with respect to each other (Section 4.1); third, to propose a recipe
(Section 4.4) which suggests a partitioning method among the existing 1D and the
proposed 2D partitioning methods based on some easily computable matrix charac-
teristics; fourth, a thorough and conclusive experimental evaluation (Section 5) of the
1D and 2D partitioning methods as well as the effectiveness of the proposed recipe.
We also discuss (Sections 4.2 and 4.3) how communication requirements can be mod-
eled when collective communication primitives are used in the matrix-vector multiply
operations, and characterize a class of applications whose efficient parallelization can
be obtained by using hypergraph partitioning models.

2. Preliminaries. Here, we give an overview of algorithms for parallel matrix-
vector multiplies, hypergraph partitioning problem and its variations, and remind the
reader the hypergraph models for 1D sparse matrix partitioning.

2.1. Row-column-parallel matrix-vector multiply. Consider the computa-
tions y← Ax where the nonzeros of the M×N matrix A are partitioned arbitrarily
among K processors such that each processor Pk owns a mutually disjoint subset of
nonzeros, A(k) . Then, A can be written as A =

∑
k A(k) . The vectors y and x

are also partitioned among processors, where the processor Pk holds x(k) , a dense
vector of size Nk , and it is responsible for computing y(k) , a dense vector of size Mk .
We note that the vectors x(k) for k = 1, . . . ,K are disjoint and hence

∑
k Nk = N ;

similarly the vectors y(k) for k = 1, . . . ,K are disjoint and hence
∑

k Mk = M . In
this setting, the sparse matrix A(k) owned by processor Pk can be permuted and
written as

A(k) =



A(k)
11 · · · A(k)

1` · · · A(k)
1K

...
. . .

...
. . .

...
A(k)

`1 · · · A(k)
`` · · · A(k)

`K
...

. . .
...

. . .
...

A(k)
K1 · · · A(k)

K` · · · A(k)
KK


. (2.1)

Here, the blocks in the row-block stripe A(k)
k∗ = {A(k)

k1 , . . . ,A(k)
kk , . . . ,A(k)

kK} have
row dimension of Mk , and similarly the blocks in the column-block stripe A(k)

∗k =
{A(k)

1k , . . . ,A(k)
kk , . . . ,A(k)

Kk} have column dimension of Nk . The x -vector entries that
are needed by processor Pk are represented as x̂(k) = [x̂(k)

1 , . . . , x̂(k)
k , . . . , x̂(k)

K ] , a
sparse column vector (we omit the transpose sign for column vectors for simplicity in
the notation), where x̂(k)

` contains only those entries of x(`) of processor P` corre-
sponding to the nonzero columns in A(k)

∗` . Here, the vector x̂(k)
k is equivalent to x(k) ,

defined according to the given partition on the x -vector (hence the vector x̂(k) is of
size at least Nk ). The y -vector entries for which the processor Pk computes par-
tial results are represented as a sparse vector ŷ(k) = [ŷ(1)

k , . . . , ŷ(k)
k , . . . , ŷ(K)

k ] , where
ŷ(`)

k contains only the partial results for y(`) corresponding to the nonzero rows in
A(k)

`∗ . Since the parallelism is achieved on a nonzero basis, we derive a nonzero-based
sparse matrix-vector multiply (SpMxV) algorithm. This algorithm, which we call the
row-column-parallel algorithm, executes the following steps at each processor Pk :

1. For each ` 6= k , form and send sparse vector x̂(`)
k to processor P` , where x̂(`)

k

contains only those entries of x(k) corresponding to the nonzero columns in
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Fig. 2.1. Sparse matrix-vector multiplication y← Ax on a sample matrix. The matrix and the
input and output vectors are partitioned among four processors. The four disjoint sets of nonzeros
and vector entries that are assigned to the four processors are shown with four distinct shapes and
colors. The average number of nonzeros per processor is 46/4 = 11.5 . The maximum number of
nonzeros of a processor is 12, giving an imbalance ratio of 4.3% , i.e., the maximally loaded processor
has 4.3% more nonzeros than the average number of nonzeros. The minimum number of nonzeros of
a processor is 11, being 4.3% less than the average number of nonzeros. In the figure, we represent
the imbalance among the partitions, imbal, using these two marginal percentages.

A(`)
∗k .

2. In order to form x̂(k) = [x̂(k)
1 , . . . , x̂(k)

k , . . . , x̂(k)
K ] , first define x̂(k)

k = x(k) .
Then, for each ` 6= k where A(k)

∗` contains nonzeros, receive x̂(k)
` from pro-

cessor P` , corresponding to the nonzero columns in A(k)
∗` .

3. Compute ŷ(k) ← A(k)x̂(k) .
4. For each ` 6= k , send the sparse partial-results vector ŷ(`)

k to processor P` ,
where ŷ(`)

k contains only those partial results for y(`) corresponding to the
nonzero rows in A(k)

`∗ .
5. Receive the partial-results vector ŷ(k)

` from each processor P` who has com-
puted a partial result for y(k) , i.e., from each processor P` where A(`)

k∗ has
nonzeros.

6. Compute y(k) ←
∑

` ŷ(k)
` , adding all the partial results ŷ(k)

` received in the
previous step to its own partial results for y(k) .

There are two communication phases in this algorithm. The first one is just before
the local matrix-vector multiply, and it is due to the communication of the x -vector
entries (steps 1 and 2). We refer this operation as expand. The second communication
phase is just after the local matrix-vector multiply, and it is due to the communication
of the partial results on y -vector entries (steps 4 and 5). We refer this operation as
fold. It is possible to restructure this algorithm in order to take full advantage of
communication and computation overlap [48].

Figure 2.1 shows a sample matrix and input- and output-vectors of a matrix-
vector multiply operation, partitioned among four processors. The matrix is permuted
such that the rows and the columns of the matrix are aligned conformably with the
partition on the output and input-vectors, respectively. The disjoint sets of nonzeros
A(1) to A(4) are assigned to the processors P1 to P4 and each such set is shown with
a distinct symbol in the figure. Processor P1 holds the (red) squares; processor P2

holds the (green) triangles; processor P3 holds the (blue) circles; and processor P4
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holds the (magenta) diamonds. The number of nonzeros of the four processors are,
respectively, 12, 11, 12, and 11. The average number of nonzeros is 46/4 = 11.5, the
maximum is 12, being 4.3% more than the average, and the minimum is 11, being
4.3% less than the average. Consider the processor P3 , to see the steps of the multiply
algorithm and the communication operations performed by P3 . Among all blocks of
A(3) , only three are nonempty: A(3)

33 , containing the eight nonzeros of the (3, 3)-block
in the figure; A(3)

14 , containing the two nonzeros of the (1, 4)-block in the figure; and
A(3)

34 containing the two nonzeros of the (3, 4)-block. Processor P3 holds the vector
x(3) = [x3, x7, x9, x11] and has to compute the final result of the multiplication for
y(3) = [y3, y7, y9, y11] . It needs the x -vector entries x̂(3) = [x̂(3)

3 , x̂(3)
4 ] , where x̂(3)

3 =
x(3) and x̂(3)

4 contain only those entries of x(4) of processor P4 corresponding to the
nonzeros columns in A(3)

∗4 , i.e., x̂(3)
4 = [x12, x13] . During the course of the multiply

operation, P3 sends x̂(1)
3 = [x9] to processor P1 and x̂(4)

3 = [x9] to processor P4 in
step 1; receives x̂(3)

4 to form x̂(3) in step 2; performs the multiplication operations in
step 3; sends the partial-result vector ŷ(1)

3 for y8 to processor P1 in step 4; receives
partial result for y9 from processor P2 in step 5; and finally adds up the partial result
received in the previous step to its own results to compute y(3) = [y3, y7, y9, y11] .

It is implicit in the algorithm that row coherence and column coherence are im-
portant factors in a matrix partition for parallel SpMxV. Column coherence relates
to the fact that nonzeros on the same column require the same x -vector entry. Row
coherence relates to the fact that nonzeros on the same row generate partial results
for the same y -vector entry. In a partitioning, disturbing column coherence incurs
expand communication of x -vector entries, and disturbing row coherence incurs fold
communication of partial y -vector results.

If the sparsity structure of A is ignored, in the worst case, the total commu-
nication volume of the nonzero-based parallel matrix-vector multiply algorithm is
(K − 1)N + (K − 1)M units, and the total number of messages is 2K(K − 1). The
worst case occurs when there is at least one nonzero in every single row and every
single column of A(k) for all k . By restricting the partitioning of nonzeros to 1D,
i.e., partitioning such that only row-block stripe A(k)

k∗ (or column-block stripe A(k)
∗k )

would have all of the nonzeros in A(k) , one can reduce the worst-case communication
requirements to K(K − 1) messages with a total volume of (K − 1)N , or (K − 1)M
units. By further restricting the partitioning such that only a subset of blocks in row-
block stripe A(k)

k∗ and column-block stripe A(k)
∗k have nonzeros, it is also possible to

achieve a 2D distribution [22, 34, 35, 39], called as transpose-free blocked 2D partition-
ing, that would reduce the worst case communication requirements to 2K(

√
K − 1)

messages with a total volume of (
√

K − 1)N + (
√

K − 1)M units.

2.2. Hypergraph partitioning. A hypergraph H=(V,N ) is defined as a set
of vertices V and a set of nets (hyperedges) N . Every net nj ∈ N is a subset of
vertices, i.e., nj⊆V . The vertices in a net nj are called its pins. The number of pins
of a net defines its size. Weights can be associated with the vertices. We use wi to
denote the weight of the vertex vi .

Given a hypergraph H = (V,N ), Π={V1, . . . ,VK} is called a K -way partition
of the vertex set V if each part is nonempty, i.e., Vk 6= ∅ for 1 ≤ k ≤ K ; parts are
pairwise disjoint, i.e., Vk ∩ V` = ∅ for 1 ≤ k < ` ≤ K ; and the union of parts gives
V , i.e.,

⋃
k Vk = V . A K -way vertex partition of H is said to satisfy the partitioning

constraint if
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Wk ≤Wavg(1 + ε), for k = 1, 2, . . . ,K . (2.2)

In (2.2), the weight Wk of a part Vk is defined as the sum of the weights of the
vertices in that part (i.e., Wk =

∑
vi∈Vk

wi ), Wavg is the average part weight (i.e.,
Wavg =(

∑
vi∈V wi)/K ), and ε represents the allowable imbalance ratio.

In a partition Π of H , a net that has at least one pin (vertex) in a part is said
to connect that part. Connectivity set Λj of a net nj is defined as the set of parts
connected by nj . Connectivity λj = |Λj | of a net nj denotes the number of parts
connected by nj . A net nj is said to be cut (external) if it connects more than one
part (i.e., λj > 1), and uncut (internal) otherwise (i.e., λj = 1). The set of external
nets of a partition Π is denoted as NE . The partitioning objective is to minimize the
cutsize defined over the cut nets. There are various cutsize definitions. Two relevant
definitions are:

cutsize(Π) =
∑

nj∈NE

1 , (2.3)

cutsize(Π) =
∑

nj∈NE

(λj − 1) . (2.4)

In (2.3), each cut net contributes one to the cutsize. In (2.4), each cut net nj con-
tributes λj − 1 to the cutsize. If costs are associated with the nets, then a cut net
contributes its cost multiples of the above quantities to the cutsize. The hypergraph
partitioning problem can be defined as the task of dividing a hypergraph into two or
more parts such that the cutsize is minimized, while a given balance criterion (2.2) is
met. The hypergraph partitioning problem is known to be NP-hard [33].

Figure 2.2 shows a sample hypergraph H = (V,N ) with 12 vertices and 9 nets.
The vertices are labeled from u1 to u12 and represented by circles. The nets are
labeled from n1 to n9 and are represented by the small squares. The pins are shown
with lines. For example, net n2 contains vertices u1 to u4 . The vertices are parti-
tioned into three parts, each shown by a large cycle encompassing the vertices in that
part and labeled as V1,V2 and V3 . The nets n1 and n4 connect, respectively, 3 and
2 parts, and hence they are in the cut: the other nets are internal to a part. The
cutsize according to (2.3) is 2, as there are two nets in the cut, whereas the cutsize
according to (2.4) is 3, where n1 and n4 contribute, respectively, 2 and 1. Assuming
vertices of unit weights, the partition has a perfect balance.

A recent variant of the above problem is the multi-constraint hypergraph parti-
tioning [1, 7, 12, 27, 44] in which each vertex has a vector of weights associated with
it. The partitioning objective is the same as above, and the partitioning constraint
is to satisfy a balancing constraint associated with each weight. We use the notation
wi,g to denote the G weights of a vertex vi for g = 1, . . . , G . Hence, the balance
criterion (2.2) can be rewritten as

Wk,g ≤Wavg,g (1 + ε) for k = 1, . . . ,K and g = 1, . . . , G . (2.5)

where the g th weight Wk,g of a part Vk is defined as the sum of the g th weights of
the vertices in that part (i.e., Wk,g =

∑
vi∈Vk

wi,g ), and Wavg,g is the average part
weight for the g th weight (i.e., Wavg,g = (

∑
vi∈V wi,g)/K ), and ε again represents

allowed imbalance ratio.
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Fig. 2.2. A hypergraph and a partition on its vertices. The vertices are labeled from u1 to u12

and represented by circles. The nets are labeled from n1 to n9 and are represented by the small
squares. The vertices are partitioned into three parts, and the parts are labeled as V1,V2 and V3 .

2.3. Hypergraph models for 1D sparse matrix partitioning. In the col-
umn-net hypergraph model [8, 9] HR=(VR,NC) of matrix A , there exist one vertex
vi ∈ VR and one net nj ∈ NC for each row ri and column cj , respectively. Net
nj ⊆ VR contains the vertices corresponding to the rows that have a nonzero entry
in column cj . That is, vi ∈ nj if and only if aij 6= 0. Weight wi of a vertex vi ∈ VR
is set to the total number of nonzeros in row ri . This model is used for rowwise
partitioning.

In the row-net hypergraph model [8, 9] HC = (VC ,NR) of matrix A , there exist
one vertex vj ∈ VC and one net ni ∈ NR for each column cj and row ri , respectively.
Net ni⊆VC contains the vertices corresponding to the columns that have a nonzero
entry in row ri . That is, vj ∈ ni if and only if aij 6= 0. Weight wj of a vertex
vj ∈ VR is set to the total number of nonzeros in column cj . This model is used for
columnwise partitioning.

The use of the hypergraphs HR and HC in 1D sparse matrix partitioning for
parallelization of matrix-vector multiply operation is described in [8, 9]. In particular,
it has been shown that the partitioning objective of minimizing the cutsize (2.4) cor-
responds exactly to minimizing the total communication volume, and the partitioning
constraint of maintaining balance on part weights (2.2) corresponds to maintaining a
computational load balance for a given number K of processors.

3. Models and methods for 2D matrix partitioning. Here, we propose
three hypergraph partitioning based methods for 2D sparse matrix partitioning for
parallel y ← Ax computations. These three methods produce nonzero-to-processor
assignments, i.e., map(aij) = Pk if aij is assigned to processor Pk . They do not
address the vector partitioning problem. However, they rely on vector partitions
being consistent with the matrix partitions; consistent in the sense that each vector
entry xj or yi will be assigned to a processor having at least one nonzero in the
corresponding column (the j th column) or row (the ith row), respectively, of A . If
the vector partitioning is consistent, then the cutsize (2.4) in the proposed hypergraph-
partitioning based models will be equivalent to the total communication volume. The
consistency is easy to achieve for the nonsymmetric vector partitioning; xj can be
assigned to any of the processors in {map(aij) : 1 ≤ i ≤ M and aij 6= 0} , and yi
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vih

vii

vik

mi
vij

vjj

vlj

nj

Fig. 3.1. Dependency relation of 2D fine-grain hypergraph model.

can be assigned to any of the processors in {map(aij) : 1 ≤ j ≤ N and aij 6= 0} . If
a symmetric partitioning is sought, then special care must be taken to assign a pair
of matching input- and output-vector entries, e.g., xi and yi , to a processor having
nonzeros in the corresponding row and column. In order to have such a processor for
all vector entry pairs, the sparsity pattern of the matrix A can be modified to have a
zero-free diagonal. In such cases, a consistent vector partition is guaranteed to exist,
because the processors that own the diagonal entries can also own the corresponding
input- and output-vector entries; xi and yi can be assigned to map(aii). Therefore,
throughout this section, we assume that a consistent vector partitioning is always
possible after partitioning the matrix A .

3.1. Fine-grain model and partitioning method. In the fine-grain model,
an M × N matrix A with Z nonzeros is represented as a unit-weight hypergraph
HZ=(VZ ,NRC) with |VZ | = Z vertices and |NRC | = M+N nets for 2D partitioning.
There exists one vertex vij ∈ VZ corresponding to each nonzero aij in matrix A .
For each row and for each column there exists a net in NRC . Let NRC = NR ∪ NC
such that NR = {r1, . . . , rM} represents the set of nets corresponding to the rows,
and NC = {c1, . . . , cN} represents the set of nets corresponding to the columns of
the matrix A . The net ri contains the vertices corresponding to the nonzeros in the
ith row, and the net cj contains the vertices corresponding to the nonzeros in the
j th column. That is, vij ∈ ri and vij ∈ cj if and only if aij 6= 0. Note that each
vertex vij is a pin of exactly two nets. Each vertex vij corresponds to the scalar
multiply operation yj

i = aijxj . Therefore, each column-net cj represents the set of
scalar multiply operations that need xj during the expand phase, and each row-net
ri represents the set of scalar multiply results needed to accumulate yi in the fold
phase. Each vertex vij has unit computational weight wij = 1. Figure 3.1 illustrates
the dependency relation view of 2D fine-grain model. As seen in this figure, column-
net cj ={vij , vjj , vlj} of size 3 represents the 3 scalar multiply operations yj

i =aijxj ,
yj

j =ajjxj and yj
l =aljxj which need xj . In this figure, row-net ri ={vih, vii, vik, vij}

of size 4 represents the 4 scalar multiply results yh
i =aihxh , yi

i =aiixi , yk
i =aikxk and

yj
i =aijxj which are needed to accumulate yi =yh

i + yi
i +yk

i +yj
i .

The fine-grain partitioning method partitions the hypergraph HZ given above.
Consider a partition Π={V1, . . . ,VK} of the vertices of HZ . Without loss of general-
ity, we assign part Vk to processor Pk for k=1, . . . ,K . That is, for each k = 1, . . . ,K
we set map(aij) = Pk for all vij ∈ Vk . Since Π satisfies the balance constraint (2.2),
it achieves a computational load balance among processors under the vertex weight
definition given above. Consider an x -vector entry xj needed by only one processor.
Then all of the nonzeros in column j should have been assigned to a single processor.
This implies that the column-net cj connects only one part. Hence the contribution



ON TWO-DIMENSIONAL SPARSE MATRIX PARTITIONINGS 9

of that net to the cutsize is zero. Consider an x -vector entry xj needed by more than
one, say p , processors. Then the nonzeros in column j should have been partitioned
among these p processors. This implies that the column-net cj connects p parts.
That is λj = p holds. The contribution of this net to the cutsize is equal to p − 1.
Due to the consistency of the vector partitioning, xj is assigned to one of those p
processors. Therefore, we have the equivalence between λj − 1 and the communica-
tion volume regarding xj . Similar arguments hold for the y -vector entries, since the
sets NR and NC are disjoint.

Note that the nonzeros in the same row or column are treated independently
by the fine-grain partitioning method. Therefore, neither row coherence nor column
coherence is respected.

3.2. Jagged-like partitioning method. Jagged partitioning has been succes-
sively used in partitioning 2D spatial computational domains (2D workload arrays)
for load balancing in the parallelization of several irregular computations including
SpMxV computations on processor meshes [31, 38, 40, 41, 42]. In this method, for a
P × Q processor mesh, matrix is first partitioned into P horizontal (vertical) strips
and every horizontal (vertical) strip is independently partitioned into Q submatri-
ces. That is, splits span the entire array/matrix in one dimension, while they are
jagged in the other dimension. Asymptotically and run-time efficient exact algo-
rithms are proposed and implemented for producing jagged partitions with optimal
balance [31, 36, 40]. However, the jagged partitioning methods adopted in sparse ma-
trix partitioning unnecessarily restrict the search space since they do not utilize the
flexibility of disturbing the integrity and original ordering of the rows/columns of the
matrices, and furthermore, they do not consider the minimization of communication
volume explicitly.

The proposed jagged-like partitioning method uses the row-net and column-net
hypergraph models proposed in [8, 9]. The proposed partitioning method is a two-
step method, in which each step models either the expand phase or the fold phase of
the parallel SpMxV algorithm. Therefore, we have two alternative schemes for this
partitioning method. We present the one which models the expands in the first step
and the folds in the second step. A similar discussion holds for the other scheme.

Given an M×N matrix A and the number K of processors organized as a P×Q
mesh, the jagged-like partitioning model proceeds as shown in Fig. 3.2. The algorithm
has two main steps. First, A is partitioned rowwise into P parts using the column-
net hypergraph model HR discussed in §2.3 (lines 1 and 2 of Fig. 3.2). Consider a
P -way partition ΠR of HR . From the partition ΠR , we obtain P submatrices Ap

for p = 1, . . . , P each having roughly equal number of nonzeros. For each p , the
rows of the submatrix Ap correspond to the vertices in Rp . Hence, Ap is of size
Mp ×N , where Mp = |Rp| (lines 6 and 7 of Fig. 3.2). We assign the submatrix Ap

to the pth row of the processor mesh. Second, each submatrix Ap for 1 ≤ p ≤ P
is independently partitioned columnwise into Q parts using the row-net hypergraph
Hp (lines 8 and 9 of Fig. 3.2). Observe that the nonzeros in the ith row of A are
partitioned among the Q processors in a row of the processor mesh. In particular,
if vi ∈ Rp at the end of line 2 of the algorithm, then the nonzeros in the ith row of
A are partitioned among the processors in the pth row of the processor mesh. After
partitioning the submatrix Ap columnwise, we fill the map array for the nonzeros
residing in Ap .

Consider processor loads obtained according to the map array at the end of the
algorithm. The Q processors in a row of the processor mesh are assigned roughly
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Jagged-Like-Partitioning(A, K = P ×Q, ε1, ε2)
Input: a matrix A , the number of processors K = P ×Q , and the imbalance ratios ε1, ε2 .
Output: map(aij) for all aij 6= 0 and totalVolume.

1: HR = (VR,NC)← columnNet(A)
2: ΠR = {R1, . . . ,RP } ← partition(HR, P, ε1) . rowwise partitioning of A
3: expandVolume← cutsize(ΠR)
4: foldVolume← 0
5: for p = 1 to P do
6: Rp = {ri : vi ∈ Rp}
7: Ap ← A(Rp, :) . submatrix indexed by rows Rp

8: Hp = (Vp,Np)← rowNet(Ap)
9: ΠC

p = {C1p , . . . , CQ
p } ← partition(Hp, Q, ε2) . columnwise partitioning of Ap

10: foldVolume← foldVolume +cutsize(ΠC
p)

11: for all aij 6= 0 of Ap do
12: map(aij) = Pp,q ⇔ cj ∈ Cq

p

13: return totalVolume←expandVolume+foldVolume

Fig. 3.2. Jagged-like partitioning.

equal number of nonzeros, i.e., each having at most (1+ε2)
nnz(Ap)

Q nonzeros, due the
balance constraint (2.2) met while partitioning Hp . Furthermore, we have nnz (Ap) ≤
(1 + ε1)

nnz(A)
P for all p , due to the balance constraint met while partitioning HR .

Therefore, a processor can get as many as (1 + ε1 + ε2 + ε1ε2)
nnz(A)

K nonzeros. In
other words, the resulting K -way partitioning of A is guaranteed to satisfy a balance
constraint with an imbalance ratio of ε = (ε1 + ε2 + ε1ε2).

Consider a y -vector entry yi . As noted above, the nonzeros in the row ri are
partitioned in the columnwise partitioning of the submatrix Ap containing ri (line 9
of the algorithm). Hence, the processors that contribute to yi exactly correspond to
the parts in the connectivity set of the row-net ri in Hp . That is, the volume of com-
munication required to fold yi is accurately represented as a part of “foldVolume” in
the algorithm. Consider an x -vector entry xj . Suppose it is needed by q processors.
Then, the nonzeros in the j th column of A should have been partitioned among
those q processors. Note that due to the row-net model representing the columns
as vertices, the nonzeros of the j th column in a submatrix Ap is assigned to ex-
actly one processor. In other words, the j th column of A should have nonzeros in q
submatrices after the rowwise partitioning in line 2 of the algorithm. Therefore, the
connectivity of the net nj ∈ NC should be q . Due to the consistency of the vector
partitioning, the volume of communication regarding xj is equal to (q−1) = (λj−1).
Therefore, the volume of communication regarding xj is accurately represented as a
part of “expandVolume” in the algorithm.

As an example run of the algorithm, consider the 16×16 matrix shown in Fig. 3.3
to be partitioned among the processors of a 2× 2 mesh. Figure 3.4(a) illustrates the
column-net representation of the sample matrix. For simplicity of the presentation,
we labeled the vertices and the nets of the hypergraphs with letters “r” and “c” to
denote the rows and columns of the matrix. We first partition the matrix rowwise into
2 parts, and assign each part to a row of the processor mesh, namely to processors
{P1, P2} and {P3, P4} . The resulting permuted matrix is displayed in Fig. 3.4(b).
Figure 3.5(a) displays the two row-net hypergraphs corresponding to each submatrix
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Fig. 3.3. A 16×16 unsymmetric matrix A .
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Fig. 3.4. First step of 4-way jagged-like partitioning: (a) 2-way partitioning ΠR of column-
net hypergraph representation HR of A , (b) 2-way rowwise partitioning of matrix AΠ obtained
by permuting A according to the partitioning induced by Π ; the nonzeros in the same partition
are shown with the same shape and color; the deviation of the minimum and maximum numbers of
nonzeros of a part from the average are displayed as an interval imbal.

Ap for p = 1, 2. Each hypergraph is partitioned independently; sample partitions of
these hypergraphs are also presented in this figure. As seen in the final symmetric
permutation in Fig. 3.5(b), the coherences of columns 2 and 5 are not maintained,
resulting P3 to communicate with both P1 and P2 in the expand phase.

Note that we define Ap as of size Mp×N for all p (line 5 of Fig. 3.2) for the ease
of presentation. Normally, Ap contains only those columns of A that have nonzeros
in any of the rows in Rp . Some of the columns of A are internal to the row part Rp .
These columns appear as a vertex only in Hp . Some other columns have nonzeros
in more than one part of ΠR . Those columns correspond precisely to the external
nets in ΠR . That is, each external net nj in ΠR appears as a vertex in all Hq

for Rq ∈ Λj . For example, as seen in Fig. 3.4(a), the column-net c5 is an external
net with Λ5 = {R1,R2} , hence as displayed in Fig. 3.5(a) each hypergraph contains
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Fig. 3.5. Second step of 4-way jagged-like partitioning: (a) Row-net representations of subma-
trices of A and 2-way partitionings, (b) Final permuted matrix; the nonzeros in the same partition
are shown with the same shape and color; the deviation of the minimum and maximum numbers of
nonzeros of a part from the average are displayed as an interval imbal.

a vertex for column 5, namely c5 . Note that if Ap has Np nonzero columns for
p = 1, . . . , P , then

∑
Np = N + cutsize(ΠR).

3.3. Checkerboard partitioning method. The proposed checkerboard parti-
tioning method is also a two-step method, in which each step models either the expand
phase or the fold phase of the parallel SpMxV. Similar to jagged-like partitioning, we
have two alternative schemes for this partitioning method. Here, we present the one
which models the expands in the first step and the folds in the second step. An
analogous discussion holds for the other scheme.

Given an M ×N matrix A and the number K of processors organized as a
P × Q mesh, the checkerboard partitioning method proceeds as shown in Fig. 3.6.
First, A is partitioned rowwise into P parts using the column-net model (lines 1
and 2 of Fig. 3.6), producing ΠR = {R1, . . . ,RP } . Note that this first step is exactly
the same as that of the jagged-like partitioning. In the second step, the matrix A
is partitioned columnwise into Q parts by using the multi-constraint partitioning to
obtain ΠC = {C1, . . . , CQ} . In comparison to the jagged-like method, we partition the
whole matrix A (lines 4 and 8 of Fig. 3.6), not the submatrices defined by ΠR . The
rowwise and columnwise partitions ΠR and ΠC together define a 2D partition on the
matrix A , where map(aij) = Pp,q ⇔ ri ∈ Rp and cj ∈ Cq .

In order to achieve a load balance among processors, we use multi-constraint
partitioning in line 8 of the algorithm. Each vertex vi of HC is assigned G weights:
wi,p , for p = 1, . . . , P . Here, wi,p is equal to the number of nonzeros of column ci in
rows Rp (line 7 of Fig. 3.6). Consider a Q-way partitioning of HC with P constraints
using the vertex weight definition above. Maintaining the P balance constraints (2.5)
corresponds to maintaining computational load balance on the processors of each
row of the processor mesh. That is, the loads of the Q processors in the pth row
of the processor mesh satisfies Wp,q ≤ (1 + ε2)

P
i wi,p

Q . We also have
∑

i wi,p ≤
(1+ε1)

nnz(A)
P , due to the P -way ε1 -balanced partitioning in line 2. As in the jagged-

like partitioning, the resulting K -way partitioning of A is guaranteed to satisfy a
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Checkerboard-Partitioning(A, K = P ×Q, ε1, ε2)
Input: a matrix A , the number of processors K = P ×Q , and the imbalance ratios ε1, ε2 .
Output: map(aij) for all aij 6= 0 and totalVolume.

1: HR = (VR, NC)← columnNet(A)
2: ΠR = {R1, . . . ,RP } ← partition(HR, P, ε1) . rowwise partitioning of A
3: expandVolume← cutsize(ΠR)
4: HC = (VC ,NR)← rowNet(A)
5: for j = 1 to |VC | do
6: for p = 1 to P do
7: wj,p = |{nj ∩Rp}|
8: ΠC = {C1, . . . , CQ} ← MCPartition(HC , Q, w, ε2) . columnwise partitioning of A
9: foldVolume← cutsize(ΠC)

10: for all aij 6= 0 of A do
11: map(aij) = Pp,q ⇔ ri ∈ Rp and cj ∈ Cq

12: totalVolume←expandVolume+foldVolume

Fig. 3.6. Checkerboard partitioning.
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Fig. 3.7. Second step of 4-way checkerboard partitioning: (a) 2-way multi-constraint partition-
ing ΠC of row-net hypergraph representation HC of A , (b) Final checkerboard partitioning of A
induced by (ΠR, ΠC) ; the nonzeros in the same partition are shown with the same shape and color;
the deviation of the minimum and maximum numbers of nonzeros of a part from the average are
displayed as an interval imbal.

balance constraint with an allowable imbalance ratio of ε = (ε1 + ε2 + ε1ε2).
Establishing the equivalence between the total communication volume and the

sum of the cutsizes of the two partitions is fairly straightforward. We observe that if
the nonzeros in the ith row of A are partitioned among q processors, then the row-
net ri of HC will connect q parts after the columnwise partitioning in line 8 of the
algorithm. That is, the volume of communication for the fold operations corresponds
exactly to the cutsize(ΠC). Similarly, if the nonzeros in the j th column of A are
partitioned among p processors, then the net cj of HR should have vertices in the
same set of parts after the rowwise partitioning in line 2 of the algorithm. That is,
the volume of communication for the expand operations corresponds exactly to the
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cutsize(ΠR).
We demonstrate the main steps of the proposed checkerboard partitioning method

on the sample matrix shown in Fig. 3.3 for a 2× 2 processor mesh. First, a rowwise
2-way partition ΠR is obtained, giving the same figure as shown in Fig. 3.4. Fig-
ure 3.7(a) displays the row-net hypergraph representation HC of matrix A . It also
shows a 2-way multi-constraint partition ΠC of HC . In Fig. 3.7(a), w9,1 = 0 and
w9,2 =4 for internal column c9 of row stripe R2 , whereas w5,1 =2 and w5,2 =4 for
external column c5 . Figure 3.7(b) displays the 2×2 checkerboard partition induced
by (ΠR,ΠC).

Compared to the jagged-like partitioning method, the checkerboard partitioning
method maintains both row and column coherences at the level of the row or columns
of the processor mesh. It confines the expand and fold communications to the pro-
cessors of the same column and row of the processor mesh, respectively. In this way,
the number of messages to be sent and received by a processor is limited to P − 1
and Q− 1 processors in the expand and fold phases, respectively.

4. Further investigations and comments.

4.1. Comparison of the models. 1D rowwise partitioning incurs only expand
communication, because it respects row coherence by assigning entire rows to proces-
sors while disturbing column coherence. In a dual manner, 1D columnwise partitioning
incurs only fold communication, because it respects column coherence by assigning
entire columns to processors while disturbing row coherence. Therefore, in the 1D
matrix partitioning, the number of messages sent by a processor may be as high as
K− 1, for a parallel system with K processors, giving a total of K(K− 1) messages.
In a rowwise partitioning, the worst-case total communication volume is (K − 1)N
for an M×N matrix, and this worst-case occurs when each column has at least one
nonzero in each row stripe. Similarly, for a columnwise partitioning, the worst-case
total communication volume is (K − 1)M .

In the fine-grain partitioning method, nonzeros are allowed to be assigned indi-
vidually to processors. Since neither row coherence nor column coherence is enforced,
this method may incur both expand and fold operations, and hence the number of
messages sent by a processor may be as high as 2(K−1), giving a total of 2K(K−1)
messages. The worst-case communication volume is (K − 1)(M + N) units in to-
tal. The proposed fine-grain hypergraph-partitioning model is highly flexible, since
it enables assignment of each nonzero entry individually—it can partition a given
matrix among Z processors as compared to, for example, M processors in rowwise
partitioning. The fine-grain model has a higher degree of freedom than the 1D mod-
els in minimizing communication volume, since it enforces neither row coherence nor
column coherence.

The jagged-like partitioning is intrinsically better than the fine-grain partitioning
in terms of the total number of messages. In the expand communication phase, the
maximum number of messages per processor is P × Q − Q = K − Q for a P × Q
mesh of processors, since the processors in the same row of the processor mesh do not
require communication of x -vector components. In the fold communication phase,
the maximum number of messages per processor is Q − 1, since row coherence is
maintained at the level of rows of the processor mesh. Hence, the upper bound on
the total number of messages in jagged-like partitioning is K(K −Q) + K(Q− 1) =
K(K−1). The total communication volume may be as high as (P −1)N +(Q−1)M ,
and this worst-case occurs when each row and column of each submatrix of A(k) , as
shown in (2.1), has at least one nonzero.
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The 2D checkerboard partitioning method can be considered as a trade-off be-
tween 1D partitioning and 2D fine-grain partitioning methods. This method respects
both row and column coherences in a coarse level. It respects row coherence by as-
signing entire matrix rows to the processors in the same row of the processor mesh. It
also respects column coherence by assigning entire matrix columns to the processors
in the same column of the processor mesh. In other words, this method confines the
expand and fold operations, respectively, to the columns and the rows of the processor
mesh. In this way, it reduces the maximum number of messages sent by a processor
to P + Q − 2 for a P ×Q mesh of processors; if P = Q =

√
K , this results in

2K(
√

K − 1) messages in total. The total communication volume may be as high as
(P − 1)N + (Q− 1)M , and this worst-case occurs when each row and column of each
submatrix has at least one nonzero.

4.2. Modeling collective communication. As discussed above, the proposed
jagged-like partitioning method confines the communication regarding y -vector en-
tries to a row of the processor mesh, i.e., each yi will be computed by at most Q
processors. The checkerboard partitioning approach goes one step further and also
confines the communications regarding the x -vector entries to a column of the proces-
sor mesh, i.e., each xj is needed by at most P processors. Since P and Q are usually
much smaller than K , all-to-all communication looks affordable in the row-column-
parallel multiply algorithm given in §2.1. More precisely, if jagged-like or checkerboard
partitioning approaches are used, steps 4 and 5 of the row-column-parallel SpMxV
algorithm given in §2.1 can be replaced by an optimized all-to-all reduction oper-
ation. If the checkerboard partitioning approach is used, then steps 1 and 2 of the
same algorithm can be replaced by an optimized all-to-all broadcast operation. Those
collective communication operations can be implemented for any number of proces-
sors [24], i.e., the number of processors is not restricted to the powers of two. The
attractive feature of this all-to-all communication scheme is that it reduces the max-
imum number of messages per processor to dlog P e or dlog Qe in the expand or fold
communication phases. When such an optimized all-to-all scheme is used, the total
communication volume can be minimized by reducing the total number of x -vector
entries expanded or y -vector entries folded. Clearly, the objective here is equivalent
to reducing the number columns and rows whose nonzeros are shared by more than
one processor. The models proposed in this work can be directly used to address this
problem by using the cut-net objective function (2.3) instead of the connectivity-1
objective function (2.4).

4.3. How to apply hypergraph-based partitioning to other applications.
Although we have exclusively considered the SpMxV, there are other applications that
can make use of the contributions of the current work—in general, matrix partition-
ing methods. Parallel reduction (aggregation) operations form a significant class of
such applications [16, 18]. The reduction operation consists of computing M output
elements using N input elements. An output element may depend on multiple input
elements, and an input element may contribute to multiple output elements. Assume
that the operation on which reduction is performed is commutative and associative.
Then, the inherent computational structure can be represented with an M×N depen-
dency matrix, where each row and column of the matrix represents an output element
and an input element, respectively. For an input element xj and an output element
yi , if yi depends on xj , aij is set to 1 (otherwise zero). Using this representation,
the problem of partitioning the workload for the reduction operation is equivalent to
the problem of partitioning the dependency matrix for efficient SpMxV [13, 29].
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In some other reduction problems, the input and output elements may be pre-
assigned to parts. The proposed hypergraph model can be accommodated to those
problems by adding K part vertices and connecting those vertices to the nets which
correspond to the pre-assigned input and output elements. Obviously, those part
vertices must be fixed to the corresponding parts during the partitioning. Since the
required property is already included in the existing hypergraph partitioners [1, 6, 10,
28], this does not add extra complexity to our methods.

4.4. A recipe for matrix partitioning. The following abbreviations will be
used here and hereafter for the matrix partitioning methods discussed so far:

• RW: Rowwise 1D partitioning,
• CW: Columnwise 1D partitioning,
• FG: Fine-grain 2D partitioning,
• JL: Jagged-like 2D partitioning,
• CH: Checkerboard 2D partitioning.

As discussed so far, the FG method is most likely to give better total commu-
nication volume and computational load balance than any other method discussed.
However, it is also most likely to be the slowest. The CH method, on the other hand,
should be the fastest, most likely obtains better total number of messages than any
of the others, but it is likely to obtain the worst total communication volume and
the worst computational load balance. The JL method should be in between these
two methods in almost any metric considered. Except in extremely skewed matrices,
1D partitioning methods can never be significantly better than all of the remaining
methods.

As there are a number of alternative partitioning methods, each with a different
trait, a means to automate the decision of choosing which alternative to partition a
given matrix is necessary. If any of the metrics mentioned above is significantly more
important than the others, then the best method should be chosen. For example, if
the total number of messages is of utmost importance, then the checkerboard parti-
tioning method seems to be the method of choice, as it has the lowest limit for this
metric. However, usually a combination of the communication metrics, including the
maximum volume and message sent by a processor [47] or these two quantities both
in terms of sends and receives [3], corresponds to the communication cost. Usually,
a user of the partitioning methods does not have to know all the details of the parti-
tioning methods. Therefore, we present a recipe that tries to suggest a partitioning
method for a given matrix, where the suggestions are made for the total communi-
cation volume meanwhile trying to reduce the other metrics on the average. Notice
that for metrics different than the total volume of communication, other recipes can
be developed. As the principal aim of hypergraph partitioning models is to minimize
the total communication volume, we think that a recipe based on this metric could
be the most accurate and beneficial one. Note that for 1D partitioning methods, it
has been already said that it is advisable to partition along the columns (rows) if
the given matrix has dense rows (columns) but no dense columns (rows) [21]. This
advice, although it is sound for 1D partitioning, is not adequate for 2D partitioning,
as neither row coherence nor column coherence is guaranteed to be respected.

The proposed recipe is shown in Fig. 4.1. A user provides a matrix A , number
of processors K and an imbalance ratio ε (usually less than 3%) to use the recipe.
A number of quantities are then computed and compared with certain threshold
values to suggest a method. The recipe uses the pattern symmetry score, Sym(A) =∑

pij
pijpji/Z where pij = 1 if aij 6= 0 and zero otherwise, and a number of statistical
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Fig. 4.1. A recipe for matrix partitioning. Matrix A is of size M ×N with Z nonzeros to be
partitioned among K processors . The vectors dr and dc represent the row and column degrees, i.e.,
dr(i) is the number of nonzeros in row i .The statistical descriptors max, avg, and med represent,
respectively, the maximum, average, and median; mode is the value that has the largest number of
occurrences; Q3 is the third quartile, e.g., Q3(dc) is a number which is greater than 75% of the
column degrees. Sym(A) measures the symmetry score, and ε is a user specified allowed imbalance
ratio. Letters S and U after the method names (RW, CW, FG, JL, CH) represent symmetric and
unsymmetric vector partitioning, respectively.
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descriptions of the row degrees (shown with dr ) and the column degrees (shown
with dc ). In the recipe, max, avg, and med represent, respectively, the maximum,
average, and median; mode is the value that has the largest number of occurrences,
e.g., mode(dr ) is the most occurring row degree; Q3 is the third quartile, e.g., Q3(dc)
is a number which is greater than 75% of the column degrees and smaller than the
rest. Note that all these numbers, including the symmetry score, can be computed in
O(Z +M +N) time—see [14, Chapter 10] for median and order statistics and [45, p.
720] for calculating the symmetry score.

The recipe has three sets of tests to suggest a method: one set for rectangular
matrices, one set for square and almost symmetric (with a pattern symmetry score
larger than 0.95) matrices, and another set for the remaining square unsymmetric
matrices. For a rectangular matrix, if it is a very tall or very wide matrix, it selects
the CW or the RW method, respectively; otherwise it chooses the FG method. For
square matrices, it chooses the FG method for pathological cases—when the number
of nonzeros is less than the number of rows (Z ≤M ) and mode of the row or column
degrees is zero; the same choice is made for those matrices where the CH or JL
methods could lead to a load imbalance or have a hard time to obtain balance, i.e.,
max(dr, dc) ≥ (1 − ε)2Z/

√
K . For pattern symmetric or almost pattern symmetric

matrices (i.e., Sym(A) > 0.95), the recipe chooses the FG method, if the average
row/column degree is greater than the median, otherwise it chooses the JL method.
Note that in any case always a symmetric vector partitioning is suggested for these
type of matrices. For the unsymmetric square matrices with Sym(A) ≤ 0.95, the
recipe chooses the FG method, if there is a certain relation among the median, third
quartile and the maximum of the row or column degrees, otherwise a variant of JL
partitioning is suggested. For these matrices, the recipe uses the JL method that
performs columnwise partitioning first (JLT ) when the median of the row degrees
is smaller than that of the column degrees. The tests avg(dr) > med(dr) and the
big one with the quartiles try to see if there are sufficiently large number of rows or
columns with a high number of nonzeros. With the aid of the test med(dr) ≤ med(dc),
the recipe tries to adapt the advise on 1D partitioning to the JL method, i.e., if the
median degree of the rows is smaller than the median degree of the columns, then
most probably there are more dense rows than columns, and hence partitioning along
the columns in the first step is advisable. With this test, the recipe also tries to leave
more flexibility to the second phase of the JL partitioning method in terms of load
balancing.

5. Experimental results. We performed an extensive experimental evaluation
of the proposed 2D sparse matrix partitioning methods as well as 1D partitioning
methods [9] using almost all large matrices of the University of Florida (UFL) sparse
matrix collection [15]. Here, we first present the results of this experimental evaluation
and then investigate the effectiveness of the partitioning recipe.

5.1. Test dataset and experimental setup. We ran our tests using the
newly developed PaToH Matlab Matrix-Partitioning Interface [10, 51] (PaToH and
Matlab Matrix-Partitioning interface are available at http://bmi.osu.edu/∼umit/
software.html) on a 32-node cluster owned by the Department of Biomedical Infor-
matics at The Ohio State University. Each computer is equipped with dual 2.4 GHz
Opteron 250 processors, 8 GB of RAM and 500 GB of local storage. Nodes are in-
terconnected by a switched Infiniband network. We have run PaToH using default
parameters. In order to facilitate running of thousands of sequential partitionings
via Matlab interface, we have developed a simple first-in-first-out job scheduler and
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Matlab script executer, dcexec, using DataCutter [2], that runs each partitioning one-
by-one on one of the available nodes. The script dcexec keeps an instance of Matlab
running on each node, and passes Matlab partitioning commands via the use of a
FIFO file, hence avoid Matlab startup overhead for each partitioning.

We excluded matrices that have less than 500 non-zeros. Since our testing envi-
ronment is based on sequential partitioning of the matrices within Matlab environ-
ment, we also excluded matrices that have more than 10,000,000 non-zeros. There
were 1,413 matrices at the UFL collection satisfying these properties (there were a
total of 1,877 matrices at the time of experimentation among which 57 had more than
10,000,000 nonzeros). We tested with K ∈ {4, 16, 64, 256} . For a specific K value,
K -way partitioning of a test matrix constitutes a partitioning instance. The parti-
tioning instances in which min{M,N} < 50 × K are discarded, as the parts would
become too small to be meaningful. These resulted in 4,100 partitioning instances,
among which 1,932 were with a symmetric matrix, 1,456 were with a square unsym-
metric matrix, and 712 were with a rectangular matrix (on 45 instances M > N and
on 667 instances M < N ).

5.2. Partitioning methods. We tested all of the five partitioning methods RW,
CW, FG, JL and CH for every partitioning instance. We also include the results of
the recipe discussed in Section 4.4. As discussed before, the recipe, being a meta-
partitioning method, chooses a partitioning method from the above list using some
matrix statistics and applies the chosen partitioning method.

We considered symmetric and nonsymmetric vector partitioning for square matri-
ces. In the symmetric case, we added missing diagonal entries to the matrices before
partitioning, and assign the vector entries to the parts which contain the correspond-
ing diagonal entry. In the nonsymmetric vector partitioning case, we use a simple
approach to assign vector entries after the matrix partitioning. In this approach, each
vector entry xj or yi is assigned to a part having at least one nonzero in the corre-
sponding column (the j th column) or row (the ith row), respectively, of A . If more
than one part is qualified for assignment, we arbitrarily picked the one with the least
number of vector entries assigned so far.

For checkerboard and jagged-like partitioning, our default approach partitions the
matrix rowwise in the first step and columnwise in the second step. For completeness,
for unsymmetric matrices we have also considered changing the order of partitioning
direction, which is achieved by taking the transpose of the input matrix prior to
partitioning. Reported results for checkerboard and jagged-line partitioning includes
both these additional methods, and they are referred to as JLT and CHT .

As PaToH involves randomized algorithms, we obtained 10 different partitions for
each partitioning instance with every applicable method, and used the average of the
10 partitionings as representative result for that particular method on that particular
partitioning instance. In all partitioning instances, maximum allowable imbalance
ratio ε , see (2.2) and (2.5), is set to 3%. Although the balance constraint is met in
most of the partitionings, it was not feasible in some of the problem instances. We
will try to point out the balance problems while explaining the results.

The jagged-like and checkerboard methods assume a virtual 2D processor mesh
(see Sections 3.2 and 3.3). In our experiments, for mesh dimensions P and Q we
selected P = Q =

√
K , for K ∈ {4, 16, 64, 256} . The multi-constraint partitioning

techniques have been observed to perform worse by the increasing number of con-
straints [1, 49]. Therefore, for partitioning cases with P 6= Q , we suggest to partition
first for the smaller of P and Q to have a smaller number of constraints in the second
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phase of the checkerboard method.

5.3. Performance profiles. We use a generic tool, performance profiles, intro-
duced by Dolan and Moré [17] for comparing a set of methods over a large set of test
cases (in our case, the partitioning instances) with regard to a specific performance
metric. The main idea behind performance profiles is to use a cumulative distribution
function for a performance metric, instead of, for example, taking averages over all
the test cases. We will compare the partitioning methods using the following metrics:
the total communication volume, the total number of messages, the maximum vol-
ume of messages sent by a single processor, the computational load imbalance, and
the partitioning time.

Each performance profile plot helps compare different methods with respect to a
specific metric. For a given metric, a profile plot shows the probability that a specific
partitioning method gives results which are within some value τ of the best result
reached by all methods. Therefore the higher the probability, the more preferable
the method is. For example, for the total communication volume metric, a τ value
shows the probability for a partitioning method that the total communication volume
obtained by that method is within τ of the best result reached by all methods shown
in the same plot.

On 63 partitioning instances, the minimum total volume of communication found
by at least one partitioning method was zero. We exclude those instances while plot-
ting the performance profiles. In the performance profiles for the rectangular matrices,
the plots of RW, CW, FG, JL, and CH always refer to the results of the associated
partitioning method, post-processed with a nonsymmetric vector partitioning. In the
profiles for the symmetric matrices, these labels always refer to the results of the
associated partitioning method with a symmetric vector partitioning (and hence the
missing diagonal entries were always added to the matrices before partitioning). The
unsymmetric square case is a little more complicated. For these matrices, RW, CW,
and FG always refer to the best result (with respect to the total communication
volume) of the associated method with a symmetric and nonsymmetric vector par-
titioning (in the symmetric vector partitioning case the missing diagonal entries are
added). JL and CH, in addition to the two different vector partitioning approaches,
also include the best of the transposed partitioning approaches, i.e., JLT and CHT .
In the performance profile figures labeled with “all instances”, each method refers to
best of symmetric (whenever applicable), nonsymmetric, and transposed approaches
(whenever applicable). We did not use transposed approaches on the rectangular
matrices, as this will change the size of the matrices. The symmetric matrices usu-
ally require symmetric vector partitioning (for example in linear system solvers for
symmetric matrices). In unsymmetric matrices, all methods with all variations are
acceptable. With the “all instances” figures, we mean to show what can be expected
when a certain partitioning approach is used with all variations, e.g., a user of these
partitioning methods tries all possible combinations at hand and uses the best (in
terms of the total communication volume).

5.4. Results. Figure 5.1 displays performance profiles of five partitioning meth-
ods as well as the proposed recipe, using the total communication volume as the
comparison metric. As seen in Fig. 5.1(f), in almost 90% of the partitioning in-
stances the FG method obtains results within 1.2 of the best. In rectangular instances
(Figs. 5.1(a)–5.1(c)), when the number of rows is greater than the number of columns
(i.e., M > N , Fig. 5.1(a)), as one might expect, the RW method produces the sec-
ond best results, and when the number of columns is greater than number of rows
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(Fig. 5.1(b)), the CW method produces the second best results. When we consider
all rectangular instances (Fig. 5.1(c)), since there are a lot more instances with more
columns than rows (662 vs 45—here 5 matrices were discarded because they had zero
total communication volume), the CW method still produces the second best results.
In all different type of instances, CH produces the worst results because it is the most
restricted partitioning method. However, in almost 75% of partitioning instances even
CH results are within 2 of the best.

Figure 5.2 displays the comparison of the methods using the total number of
messages as the comparison metric. As seen in the figure, this is the metric that CH
shines, as it inherently limits the maximum number of messages to a much smaller
number than the others. In almost 75% of the partitioning instances, it produces
the least number of messages, and in 95% of the partitioning instances, it produces
the results within 1.5 of the best. Although the upper bound on the total number
of messages for the JL method is the same as those for the RW and CW methods
(K(K − 1)), JL seems to be preferable for square matrices (for rectangular matrices,
if M > N RW is preferable, else CW is preferable). As expected, FG achieves the
worst performance in this metric.

Figure 5.3 displays the comparisons on the metrics of the maximum volume and
maximum number of messages of a processor. Since the trends in these two metrics
are similar to those of the total volume and the total number of messages, we present
a single performance profile plot for each of those metrics (containing all instances).
In terms of the maximum volume per processor metric, FG and JL generally produce
better results. The CH method produces more pronounced best results for the maxi-
mum number of messages per processor metric, since its upper bound is the smallest
among all. In almost 85% of the partitioning instances, CH produces the best results.

Figure 5.4(a) displays the comparison of average imbalance ratios of the compu-
tational loads of the processors. In 1,411 partitioning instances (about 35% of the
whole) one of the methods found a perfect balance, that is the best ε was 0, see (2.2)
and (2.5). Hence, the plots do not reach up to 1 in the y-axis of the performance
profile plots. As expected, FG achieves better partitionings in terms of imbalance
ratios because it does its assignments in the finest granularity possible. Actually, FG
found partitions with perfect balance in 1,266 partitioning instances. Recall that the
CH and JL methods are two-step methods, and unfortunately solution of the first
step drastically limits the flexibility of the second step. Furthermore, assignments are
done at a much coarser level, therefore those two methods produce the worst parti-
tions in terms of the computational balance. The CH method performs worse than
the JL method, because it maintains row and column coherences. The RW and CW
methods are in somewhere between the FG method and the other two 2D partitioning
methods CH and JL, but they are more closer to the CH and JL methods than to the
FG. This happens because the granularity of the assignments limits the best balance
that could be achieved. The individual plots for the symmetric, unsymmetric, and
rectangular matrices are not shown because the trends are similar. The FG method
is always the best, next comes the 1D partitioning methods, followed by the JL and
then CH methods.

Comparison of the partitioning times is displayed in Fig. 5.4(b). As expected, the
FG method is the slowest of all. The RW, CW and JL methods take more or less the
same amount of time. An interesting result is that CH seems to be faster than the
others in almost 90% of the instances. One might expect the execution time of the CH
method to be comparable or even larger than that of the JL method—they have the
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(b) rectangular instances N > M
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(c) all rectangular instances
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(d) square nonsymmetric instances
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(e) square symmetric instances
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Fig. 5.1. Performance profile plots comparing the six partitioning methods (five base meth-
ods and partitioning recipe (PR)) using the total communication volume as the comparison metric.
(a) rectangular partitioning instances where number of rows is greater than number of columns,
(b) rectangular partitioning instances where the number columns is greater than number of rows,
(c) all rectangular partitioning instance, (d) nonsymmetric square partitioning instances, (e) sym-
metric partitioning instances, (f) all partitioning instances.
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(a) rectangular instances M > N
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(b) rectangular instances N > M
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(c) all rectangular instances

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = Number of messages relative to the best

F
ra

ct
io

n
 o

f 
te

st
 c

as
es

 

 

RW
CW
FG
JL
CH
PR

(d) square nonsymmetric instances
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(e) square symmetric instances
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Fig. 5.2. Performance profile plots comparing the six partitioning methods using the total
number of messages as the comparison metric. (a) rectangular partitioning instances where number
of rows is greater than number of columns, (b) rectangular partitioning instances where the number
columns is greater than number of rows, (c) all rectangular partitioning instance, (d) nonsymmetric
square partitioning instances, (e) symmetric partitioning instances, (f) all partitioning instances.
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(a) Maximum volume
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(b) Maximum number of messages

Fig. 5.3. Performance profiles plot comparing the six partitioning methods using the maximum
volume and number of messages per processor as the comparison metric.
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(b) Partitioning time

Fig. 5.4. Performance profiles plot comparing the six partitioning methods using the load
balance and partitioning time as the comparison metric on all partitioning instances.

same first step, but the second step of CH involves multi-constraint partitioning. The
CH method partitions a larger hypergraph in the second step, whereas the JL method
partitions

√
K smaller hypergraphs. We think that the more restricted search space

of the multi-constraint partitioning may result in such an outcome. Note that the
individual plots for the symmetric, unsymmetric, and rectangular matrices are not
shown, as the trends are again similar to those that are shown. Up until τ = 2, the
CH method is the fastest, followed by almost equally fast RW, CW, and JL methods,
with the slowest always being the FG method. After τ = 2, all methods except FG
are almost equally fast, and FG is again the slowest.

5.5. Evaluation of the recipe. In this section, we try to see how successful
the recipe is in reducing the total communication volume and addressing the other
communication cost metrics. Tables 5.1 and 5.2 display the number of times a method
produced the best result in terms of total communication volume, and the number of
times a specific method has been chosen by the partitioning recipe, respectively. As
seen in Table 5.1, FG produces the best results in terms of the total communication
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Table 5.1
The number of times a method produced the best result in terms of total communication volume.

If two or more methods give the same best value, each one’s score is incremented by one.

method K = 4 K = 16 K = 64 K = 256

RW sym 76 7 2 1
CW sym 62 8 3 2
FG sym 276 278 168 113
JL sym 158 159 111 69
CH sym 21 0 0 0
RW nonsym 139 52 26 9
CW nonsym 167 113 44 15
FG nonsym 508 481 310 179
JL nonsym 231 190 121 76
CH nonsym 38 0 0 0
JLT nonsym 78 53 39 29
JLT sym 31 13 26 10
CHT nonsym 19 0 0 0
CHT sym 5 0 0 0
PR 524 491 312 197

Table 5.2
The number of times a specific method has been chosen by the partitioning recipe for 4,100

partitioning instances.

method K = 4 K = 16 K = 64 K = 256

FG sym 350 331 252 148
JL sym 296 272 176 107
RW nonsym 9 8 5 4
CW nonsym 94 82 52 26
FG nonsym 594 567 327 198
JL nonsym 31 23 16 12
JLT nonsym 43 40 24 13

volume metric in considerably larger number of instances than any other method.
Note that in this table, the best is defined in absolute terms, e.g., even if a method
performs slightly better than the others, its score is incremented by one. If any two
methods obtain the same best value, then each one’s score is incremented by one. In
other words, this table can be used to draw the performance profile of the methods
at τ = 1. We use Table 5.1 in order to highlight the choices made by the partitioning
recipe. Although selecting the FG method will most likely guarantee a better success
(in terms of the total volume of communications metric) than any of the others, the
recipe does not always choose the FG method, see Table 5.2. For example, for K = 4,
it chooses FG in more than 900 instances, but it also chooses JL in more than 350
instances, and 1D partitionings (RW or CW) in more than 100 instances. We note
that the recipe obtains the highest number of best results for any K shown in the
tables.

As shown in Fig. 5.1(f), the recipe achieves a performance similar to that of the
FG method (in almost 90% of the instances, the results obtained by these two methods
are within 1.2 of of the best). Later we see that in almost 95% of the instances both
results are within 1.4 of the best. Looking at Figs. 5.2(d) and 5.2(e), we can see
that the recipe achieves better total number of messages than the FG method. In
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Fig. 5.2(f), the difference between the recipe and the FG method is not significant.
This is because of two reasons: first, on rectangular matrices, the FG method obtains
better results than the recipe; second, the recipe always chooses symmetric vector
partitioning for the symmetric matrices, whereas FG is represented by the best of
the symmetric and nonsymmetric vector partitioning variants. As seen in Fig. 5.3(a),
the recipe and the FG methods obtain the best performance in the maximum volume
of a processor metric, while the recipe being more preferable up until τ = 2.5. As
seen in Fig. 5.3(b), in terms of the metric of the maximum number of messages of a
processor, the recipe demonstrates an average behavior, being inferior to the CH and
JL methods while begin superior to the others. Now consider, in return, Figs. 5.4(a)
and 5.4(b). As seen from these figures, the recipe is faster than the FG method, while
the difference between the computational load balance performances are acceptable.
In summary, the proposed recipe achieves similar performance with the FG method
in terms of the total communication volume, while being more favorable or not too
bad in terms of other metrics, on average. Therefore, for a user of these methods, we
suggest using the proposed recipe to choose a partitioning method to obtain a good
partitioning on average.

6. Conclusion. In this work, we presented three hypergraph-based, 2D ma-
trix partitioning methods, each having a unique advantage. The fine-grain partition-
ing method treats individual nonzeros as the smallest assignable elements and hence
achieves a very fine-grain partitioning of matrices. This gives maximum flexibility in
reducing the total communication volume and in balancing the computational loads at
the expense of longer partitioning time and possibly higher total number of messages.
The checkerboard partitioning method produces coarser partitionings and maintains
row and column coherences at a coarse level by assigning rows and columns of the
matrices only to a subset of processors. Hence, it imposes a smaller upper limit on
the total number of messages. Although more restricted partitioning may yield larger
total communication volume, this method could be a good alternative for parallel
architectures with high message latency. The jagged-like method trades the number
of messages limit for a better communication volume.

We also presented a thorough experimental evaluation of the hypergraph-parti-
tioning-based methods using 4,100 partitioning instances—a partitioning instance is
defined as a pair of a matrix and an integer representing the number of parts. The
experimentation clearly demonstrated the strengths and weaknesses of the proposed
methods. We further proposed an easy-to-use partitioning recipe that chooses one
of the appropriate methods according to some matrix characteristics. The average
behavior of the proposed recipe on the partitioning instances is such that, with 90%
probability, it produces results within 1.2 times the best solution for the total volume
of communication metric. Furthermore, the recipe achieves this performance while
being faster than the method with the best performance on the total communication
volume metric on average, and while respecting a symmetric vector partitioning for
symmetric matrices.
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