
Hypergraph Model for Mapping Repeated Sparse Matrix-Vector

Product Computations onto Multicomputers �

�Umit V. C�ataly�urek Cevdet Aykanat

Computer Engineering Department Computer Engineering Department

Bilkent University Bilkent University

Ankara, 06533, Turkey Ankara, 06533, Turkey

cumit@cs.bilkent.edu.tr aykanat@cs.bilkent.edu.tr

Graph model of computation has de�cien-
cies in the mapping of repeated sparse
matrix-vector computations to multicom-
puters. We propose a hypergraph model
of computation to avoid these de�ciencies.
We also propose one-phase Kernighan-Lin
based mapping heuristics for the graph
and hypergraph models. The proposed
mapping heuristics are used for the exper-
imental evaluation of the validity of the
proposed hypergraph model on sparse ma-
trices selected from Harwell-Boeing collec-
tion and NETLIB suite. The proposed
heuristic using the hypergraph model �nds
drastically better mappings than the one
using the graph model on test matrices
with unstructured sparsity pattern.

1 Introduction

Iterative solvers are widely used for the solution of
large, sparse, linear system of equations on distributed
memory architectures (multicomputers). Consider
the solution of a linear system of m equations with an
m�m sparse coe�cient matrix. Three basic types of
operations are repeatedly performed at each iteration.
These are linear operations on dense m-vectors (such
as scalar-vector product and vector addition), inner
product(s) of dense m-vectors, and sparse matrix-
vector product of the form y = Ax, where y and x
are dense m-vectors, and A is an m�m matrix with
the sparsity structure of the coe�cient matrix [1, 9].

All of these basic operations can be performed con-
currently by distributing the rows of theAmatrix and
the components of the dense vectors in the same way.

�This work is partially supported by the Commission of the
European Communities, Directorate General for Industry un-
der contract ITDC 204-82166.

This data distribution scheme induces a computa-
tional distribution such that each processor is held re-
sponsible for updating the values of those vector com-
ponents assigned to itself. With this data distribution
scheme, linear vector operations and inner-product
operations can be easily and e�ciently parallelized by
an even distribution of vector components to proces-
sors [1, 9]. Linear vector operations do not necessitate
communication, whereas inner-product operations ne-
cessitate global communication. However, the global
communication overhead due to these inner product
computations become negligible with increasing prob-
lem size.

Sparse matrix-vector product computations consti-
tute the most time consuming operation in iterative
solvers. In the parallel matrix-vector product com-
putation, processors need some nonlocal components
of the global x-vector, depending on the sparsity pat-
tern of the local rows. Hence, the row partitioning
scheme mentioned earlier necessitates communication
just before the local matrix-vector product compu-
tations. Each processor send some of its local x-
vector components to those processor(s) which need
them. After receiving the needed nonlocal x compo-
nents, each processor can concurrently compute its
local components of the global y-vector by perform-
ing a local matrix-vector product. Load balance dur-
ing concurrent local matrix-vector product compu-
tations necessitates a row-partitioning which assigns
equal number of nonzero entries to each processor.
Hence, by weighting each row by its nonzero entry
count, load balancing problem can be considered as
the number partitioning problem which is known to
be NP-hard. However, di�erent row partitionings
with good load balance, and di�erent assignments of
these row partitions to processors may also signi�-
cantly di�er the communication requirement. Unfor-

tunately, the communication requirement scales up
with increasing problem size. The minimization of the
communication overhead while maintaining the com-
putational load balance reduces to the NP-hard map-

ping problem for coe�cient matrices with unstruc-
tured and irregular sparsity pattern [7].

Simultaneous single-hop communications between
distinct adjacent pairs of processors can be performed
concurrently. However, simultaneous multi-hop com-
munications between distant pairs of processors may
introduce congestion to the interconnection network,
thus increasing the communication overhead. Multi-
hop communications between distant processors are
usually routed over the shortest paths of links between
the communicating pairs of processors. Hence, multi-
hop messages are usually weighted with the distances
between the respective pairs of processors in the net-
work, while considering their contribution to the over-
all communication cost [2, 3, 10]. Here, distance refers
to the number of communication links and switching
elements along the communication route in static and
dynamic interconnection networks, respectively.

The mapping methods proposed in the literature
employ graph model of computation [2, 3, 10]. In this
work, we show the de�ciencies of the graph model for
mapping sparse matrix-vector product computations,
and propose a hypergraph model which avoids these
de�ciencies. Kernighan-Lin [8] (KL) based heuristics
are fast heuristics widely used for solving the map-
ping problem [2, 10]. However, KL-based heuristics
proposed in the literature solve the mapping problem
in two-phase. In these approaches, a clustering phase
is followed by a one-to-one mapping phase. In this
work, we also propose one-phase (many-to-one map-

ping) KL-based mapping heuristics for the graph and
hypergraph models. The proposed KL-based map-
ping heuristics are used for the experimental evalu-
ation of the validity of proposed hypergraph model
on symmetric sparse matrices selected from Harwell-

Boeing collection [4] and NETLIB suite [6].

2 Graph Model of Computation

A symmetric sparse matrix A can be represented
as an undirected graph GA(V;E). The vertices in the
vertex set V correspond to the rows/columns of the
A matrix. In the edge set E, (vi; vj)2E if and only
if aij and aji of the A matrix are nonzeros. Hence,
the vertices in the adjacency list of a vertex vi denote
the column (row) indices of the o�-diagonal nonzeros
in row i (column i) of A. Each nonzero entry of A
incurs a multiply/add operation in the matrix-vector
product computation. Hence, wi= di+1 denotes the

computational load of mapping row i to a processor,
where di denotes the degree of vertex vi.

In the graph model, the mapping problem is to
�nd a many-to-one mapping function M which as-
signs each vertex of the graph GA to a unique pro-
cessor of the multicomputer, and minimizes the total
communication cost

CC =
X

(vi;vj)2E;M(i) 6=M(j)

2�DM(i);M(j) (1)

while maintaining the computational load balance.
The computational load Wp of a processor p is the
summation of the weights of the tasks assigned to
that processor. That is, Wp =

P
vi2V;M(i)=pwi for

p = 1; 2; : : :; P , where, M (i) = p denotes the label of
the processor that row i is mapped to. In (1), Dpq

denotes the distance between the processors p and q
in the interconnection network. An edge (vi; vj)2E
is said to be cut if vertices vi and vj are mapped to
two di�erent processors, i.e., M (i) 6=M (j), otherwise
uncut. Only cut edges incur communication. The
amount of contribution of a cut edge (vi; vj) is equal
to twice the distance between processors M (i) and
M (j). The factor 2 appears since the local xi and xj
values should be exchanged between processors M (i)
and M (j), respectively.

Figure 1(a), which illustrates di�erent cases of ad-
jacent vertex mappings to a 2�3 mesh, is given in or-
der to reveal the de�ciencies of the graph model. Map-
ping adjacent vertices v1 and v2 to the same processor
P1 does not incur any communication since (v1,v2) is
an uncut edge. Mapping adjacent vertices v10 and
v3 to di�erent processors P1 and P6, respectively, in-
curs a communication cost of 6 since (v10; v3) is a cut
edge and D1;6=3. Similarly, mapping adjacent ver-
tices v6 and v7, and v8 and v9 to adjacent processors
P4 and P5, respectively, will incur a total communi-
cation cost of 4 since both edges (v6,v7) and (v8,v9)
are cut edges and D4;5=1. Hence, the graph model
correctly represents these cases. However, consider
vertices v4 and v5 in P2 which are adjacent to vertex
v2 in P1. This case will incur a communication cost
of 4 in the graph model, since both edges (v2,v4) and
(v2,v5) are cut edges and D1;2 = 1. However, it is
obvious that processor P1 should send x2 only once
to processor P2, whereas P2 should send both x4 and
x5 to P1. Hence, the actual contribution to the com-
munication cost should be 3 instead of 4. That is,
graph model does not di�erentiate between the cut-
edge pairs f(v2; v4); (v2; v5)g and f(v6; v7); (v8; v9)g.

P2 P3

P4 P5 P6

v3v6 v7

v8 v9

v2
v10

1P

v
v

v

1

4

5

(a)

P2 P3

P4 P5 P6

n3

v6 v7

v8 v9

n9

n8

n7

n6

v10
n5

n2
n1

v1

n10

1P

v

n

v

v

v

4

4

5

2

3

(b)
Figure 1: Di�erent cases for mapping adjacent vertex pairs to a 2x3 mesh in (a) graph, (b) hypergraph models

3 Hypergraph Model of Computation

In this work, we exploit hypergraphs for a more ac-
curate modeling of parallel sparse matrix-vector prod-
uct computations. A hypergraph H(V;N) consists of
a �nite non-empty set V of vertices and a �nite non-
empty set N � 2V of hyperedges (nets), where 2V

is power set of vertex set V . Each net ni in N is a
subset of V . Vertices in a net nj are called its pins
and denoted as pins(nj). The set of nets connected
to a vertex vi is denoted as nets(vi)

In the proposed model, matrix A is represented
with a hypergraph HA(V;N). There is one vertex vi
and one net nj in V and N for each row i and col-
umn j of A, respectively. Net nj contains the vertices
corresponding to the rows which have a nonzero en-
try on column j. Formally, vi 2 nj if and only if
aij 6= 0. The following relation exists between graph
(GA) and hypergraph (HA) models of a symmetric
m�m matrix A. The vertex sets are the same, and
the net set of HA is N = fni : ni = adjGA

(vi) [fvig
for i = 1; 2; : : : ;mg.

In the hypergraph model, a net that has at least
one pin (vertex) in a processor is said to connect that
processor. The set of processors that a net ni connects
is denoted by its connectivity set C(i). A net that
connects more than one processor is said to be cut,
otherwise uncut. Set of cut nets are called external

nets (NE). Thus, total interprocessor communication
cost can be formulated as

CC =
X

ni2NE

X

p2C(i) 3 p 6=M(i)

DM(i);p (2)

Only cut nets contribute to the communication cost.
A cut net ni indicates that processorM (i) should send
its local xi to those processor in the connectivity set
of net ni except itself. Therefore, amount of commu-
nication contribution of a cut net ni is the sum of the
distances between the source processor M (i) and the
processors in the set C(i) � fM (i)g.

Figure 1(b) displays the partial hypergraph repre-
sentation of a symmetric matrix whose partial graph
representation is given in Figure 1(a). Net n1 has no
contribution to the communication cost since it is an
uncut net. Consider the vertices v4 and v5 in proces-
sor P2 which are adjacent to vertex v2 in processor P1.
Respective nets n4, n5 and n2 are all cut nets, and
hence they contribute D2;1=1, D2;1=1 and D1;2=1,
respectively, to the communication cost. Hence, their
total contribution will be 3 thus correctly modeling
the actual communication requirement.

4 One-Phase KL-Based Heuristics

KL algorithm is an iterative improvement heuristic
originally proposed for 2-way graph partitioning (bi-
partitioning) [8]. This algorithm became the basis for
most of the subsequent partitioning algorithms, all of
which we call the KL-based algorithms. KL algorithm
performs a number of passes until it �nds a locally
minimum partition. Each pass consists of a sequence
of vertex swaps. Fiduccia-Mattheyses (FM) [5] intro-
duced a faster implementation of KL algorithm for
hypergraph partitioning. They proposed vertex move
concept instead of vertex swap. This modi�cation as
well as proper data structures, e.g., bucket lists, re-
duced the time complexity of a single pass of KL al-
gorithm to linear in the size of the graph. Here, size
refers to the number of edges and pins in a graph
and hypergraph, respectively. Sanchis [11] proposed
a multiway hypergraph partitioning algorithm which
directly handles the partitioning of a hypergraph into
more than two parts. Note that all the previous ap-
proaches before Sanchis' algorithm (SN algorithm) are
originally bipartitioning algorithms.

As mentioned earlier, all KL-based mapping
heuristics proposed in the literature employ two-phase
approach. Here, we propose one-phase KL-based
mapping heuristics for the graph and hypergraph
models. The proposed algorithms adopt the nice fea-
tures of FM and SN algorithms such as bucket lists,

1 construct a random, initial, feasible mapping;
2 repeat
2.1 unlock all vertices;
2.2 compute P � 1 move gains of each vertex v 2 V

by invoking Gcompute(G;v)/Hcompute(H;v)
for graph/hypergraph model;

2.3 mcnt = 0;
2.4 while there exists a feasible move of

an unlocked vertex do
2.4.1 select a feasible move with max gain gmax of

an unlocked vertex v
from processor s to processor t;

2.4.2 mcnt = mcnt+ 1;
2.4.3 G[mcnt] = gmax;
2.4.4 Moves[mcnt] = fv; s; tg;
2.4.5 tentatively realize the move of vertex v;
2.4.6 lock vertex v;
2.4.7 recompute the move gains of unlocked vertices

in Adj(v)/pins(nets(v)) by invoking
Gcompute(G;v)/Hcompute(H;v)
for graph/hypergraph model;

2.5 perform pre�x sum on the array G[1 : : :mcnt];
2.6 select 1 � i� �mcnt with max gain Gmax = G[i�];
2.7 if Gmax > 0 then
2.7.1 permanently realize the moves in Moves[1 : : : i�]

until Gmax � 0

Figure 2: One-phase KL-based mapping heuristic

vertex move concept, multiple (P � 1) move direc-
tions, and operates on feasible mappings. Here, P
denotes the number of processors. A mapping is said
to be feasible if it satis�es the load balance criterion
Wavg(1� ") � Wp � Wavg(1+ "), for each processor
p=1; 2; : : :P . Here, Wavg=(

Pn

i=1wi)=P denotes the
computational load of each processor under perfect
load balance condition, and " represents the predeter-
mined maximum load imbalance ratio allowed. Each
vertex is associated with (P�1) possible moves. Each
move is associated with a gain. The move gain of a
vertex vi in processor s with respect to processor t
(t 6=s), i.e., the gain of the move of vi from the home
(source) processor s to the destination processor t,
denotes the amount of decrease in the overall com-
munication cost to be obtained by making that move.
Positive gain refers to a decrease, whereas negative
gain refers to an increase in the communication cost.

Figure 2 illustrates the proposed KL-based map-
ping heuristic. The algorithm starts from a random
feasible mapping (Step 1), and iterates a number of
passes over the vertices of the graph/hypergraph un-
til a locally optimum mapping is found (repeat-loop
at Step 2). Figures 3 and 4 illustrate the move gain
computation algorithms for the graph and hypergraph
models, respectively. In Figure 4, �j(s) denotes the
number of pins of the net nj that lie in processor s,
i.e., �j(s) = jfvi 2 nj :M (i) = sgj.

Gcompute(G, vi)
1 s M(i);
2 for each processor t 6= s do
2.1 gi(t) 0;
3 for each vj 2 Adj(vi) do
3.1 q M(j);
3.2 for each processor t 6= s do
3.2.1 gi(t) gi(t) + 2� (Dsq �Dqt);

Figure 3: Gain computation for Graph Model

Hcompute(H, vi)
1 s M(i);
2 for each processor t 6= s do
2.1 gi(t) 0;
3 for each nj 2 nets(vi) do
3.1 if nj 6= ni then
3.1.1 q M(j);
3.1.2 if �j(s) = 1 then
3.1.2.1 for each processor t 6= s do
3.1.2.1.1 gi(t) gi(t) +Dqs;
3.1.3 for each processor t 6= s do
3.1.3.1 if �j(t) = 0 then
3.1.3.1.1 gi(t) gi(t)�Dqt;
3.2 else
3.2.1 for each processor t 6= s do
3.2.1.1 for each processor q 2 C(i)

and q 6= s do
3.2.1.1.1 gi(t) gi(t) +Dsq �Dqt;
3.2.1.2 if �i(s) > 1 then
3.2.1.2.1 gi(t) gi(t)�Dst;

Figure 4: Gain computation for Hypergraph Model

At the beginning of each pass, all vertices are un-

locked (Step 2.1), and initial P�1 move gains for each
vertex are computed (Step 2.2). At each iteration
(while-loop at Step 2.4) in a pass, a feasible move
with the maximum gain is selected, tentatively per-
formed, and the vertex associated with the move is
locked (Steps 2.4.1{2.4.6). The locking mechanism
enforces each vertex to be moved at most once per
pass. That is, a locked vertex is not selected any more
for a move until the end of the pass. After the move,
the move gains a�ected by the selected move are up-
dated so that they indicate the e�ect of the move cor-
rectly. In the graph model, move gains of only those
unlocked vertices which are adjacent to the vertex
moved should be updated. In the hypergraph model,
move gains of only those unlocked vertices which share
nets with the vertex moved should be updated. In the
current implementation, these updates are performed
by recomputing the move gains of those local vertices
for the sake of simplicity (Step 2.4.7).

At the end of the pass, we have a sequence of ten-
tative vertex moves and their respective gains. We
then construct from this sequence the maximum pre-

�x subsequence of moves with the maximum pre�x

sum (Steps 2.5 and 2.6). That is, the gains of the
moves in the maximum pre�x subsequence give the

Table 1: Communication cost averages and standard deviations (�), and execution time averages (in seconds).
jV j is the number of vertices, jEj is the number of edges and davg is the average vertex degree in the graph model.

mapping problem KL-G (graph model) KL-H (hypergraph model)
sparse matrix 2D comm. cost exec. comm. cost exec.

name jV j jEj davg mesh avg. � time avg. � time

2x2 443 36 0.8 246 (0.56) 67 4.0 (4.89)
2x4 887 79 2.4 509 (0.57) 85 8.0 (3.35)

BCSPWR06 1454 1923 2.65 4x4 1489 78 9.2 841 (0.56) 104 21.6 (2.36)
4x8 2614 181 45.0 1627 (0.62) 191 70.1 (1.56)
2x2 466 46 0.9 268 (0.57) 64 4.2 (4.55)
2x4 1005 74 2.5 541 (0.54) 79 8.7 (3.48)

BCSPWR07 1612 2106 2.61 4x4 1626 99 10.9 971 (0.60) 117 25.7 (2.36)
4x8 2912 245 43.6 1907 (0.65) 160 80.3 (1.84)
2x2 505 41 0.9 271 (0.54) 64 4.5 (4.88)
2x4 1045 84 2.8 565 (0.54) 90 10.2 (3.71)

BCSPWR08 1624 2213 2.73 4x4 1708 132 11.4 996 (0.58) 108 25.2 (2.21)
4x8 3143 265 47.7 2091 (0.67) 181 78.8 (1.65)
2x2 555 54 1.1 332 (0.60) 75 5.1 (4.55)
2x4 1140 103 2.9 663 (0.58) 103 10.4 (3.62)

BCSPWR09 1723 2394 2.78 4x4 1811 137 11.2 1138 (0.63) 143 27.2 (2.43)
4x8 3269 231 58.6 2211 (0.68) 217 94.4 (1.61)
2x2 1904 102 6.1 1026 (0.54) 195 23.1 (3.78)
2x4 3641 312 15.4 2003 (0.55) 337 47.3 (3.06)

BCSPWR10 5300 8271 3.12 4x4 5761 483 62.0 3433 (0.60) 196 117.1 (1.89)
4x8 10236 982 289.1 6325 (0.62) 568 410.1 (1.42)

2x2 800 221 1.6 458 (0.57) 63 8.5 (5.32)
2x4 1833 404 3.0 1122 (0.61) 172 18.8 (6.33)

NESM 662 4116 12.4 4x4 3375 322 8.6 2537 (0.75) 336 43.7 (5.10)
4x8 5935 863 33.3 5185 (0.87) 533 119.9 (3.60)
2x2 2170 196 4.5 1550 (0.71) 211 44.0 (9.73)
2x4 4313 379 11.1 3230 (0.75) 341 99.3 (8.95)

80BAU3B 2262 10074 8.91 4x4 7142 486 34.3 5844 (0.82) 318 206.6 (6.03)
4x8 13530 1083 125.8 11065 (0.82) 773 524.3 (4.17)

2x2 154 38 1.4 186 (1.21) 52 4.7 (3.46)
2x4 512 127 4.1 503 (0.98) 115 10.6 (2.61)

JAGMESH9 1349 3876 5.75 4x4 995 136 12.8 988 (0.99) 137 30.0 (2.34)
4x8 2252 499 51.2 2091 (0.93) 315 72.7 (1.42)
8x8 4430 717 179.5 3838 (0.86) 408 205.5 (1.15)
2x2 281 29 2.9 310 (1.10) 58 10.8 (3.66)
2x4 685 144 8.6 908 (1.33) 232 26.5 (3.07)

LSHP2614 2614 7683 5.88 4x4 1553 346 30.2 1730 (1.11) 305 60.1 (1.99)
4x8 4091 1345 124.9 3678 (0.90) 507 179.6 (1.44)
8x8 7902 2314 413.0 6166 (0.78) 773 471.5 (1.14)

maximumdecrease in the communication cost among
all pre�x subsequences of the moves tentatively per-
formed. Then, we permanently realize the moves in
the maximum pre�x subsequence and start the next
pass if the maximumpre�x sum is positive. The map-
ping process terminates if the maximum pre�x sum
is not positive, i.e., no further decrease in the com-
munication cost is possible, and we then have found
a locally optimum mapping. Note that moves with
negative gains, i.e., moves which increase the commu-
nication cost, might be selected during the iterations
in a pass. These moves are tentatively realized in the
hope that they will lead to moves with positive gains
in the future iterations. This feature together with
the maximum pre�x subsequence selection brings the
hill-climbing capability to the KL-based algorithms.

5 Experimental Results

The proposed one-phase KL-based mapping heuris-
tics are used for the experimental evaluation of the
validity of the proposed hypergraph model on sym-

metric sparse matrices selected from Harwell-Boeing

collection [4] and linear programming problems in
NETLIB suite [6]. Table 1 illustrates the perfor-
mance results for the mapping of the selected sparse
matrices. BCSPWR06{10 matrices come from the
sparse matrix representation of various power net-
works. JAGMESH9 and LSHP2614 matrices come
from the �nite element discretizations of pinched hole
and L-shaped regions, respectively. The sparsity pat-
terns of NESM and 80BAU3B are obtained from
the NETLIB suite by multiplying the respective con-
straint matrices with their transposes. Power and
NETLIB matrices have unstructured sparsity pattern.
Finite element matrices have structured but irregular
sparsity pattern.

The graph and hypergraph representations of these
matrices are mapped onto 2�2, 2�4, 4�4 and 4�8
2D-meshes by running the proposed KL-based heuris-
tics on a SunSparc 10. The maximum load imbal-
ance ratio is selected as " = 0:1. We will refer to
the KL-based heuristics using the graph and hyper-

graph models as KL-G and KL-H , respectively. Both
KL-G and KL-H heuristics are executed 20 times for
each mapping instance starting from di�erent, ran-
dom initial mappings. Communication cost averages
and their standard deviations (�), and execution time
averages (in seconds) are displayed in Table 1. The
communication cost averages displayed in Table 1 cor-
respond to the averages of the communication costs
computed according to (2). The values in parentheses
in the \comm. cost" column of KL-H, give the ratio
of the average communication costs of the mappings
found by KL-H to those of KL-G. A bold value in
a row correspond to the best value for the respec-
tive mapping instance. Values in parentheses in the
\exec. time" column of KL-H, give the ratio of the
average execution times of KL-H to those of KL-G.

As seen in Table 1, KL-H always �nds drastically
better mappings than KL-G on test matrices with un-
structured sparsity pattern (i.e., power and NETLIB
matrices). However, KL-H cannot perform better
than KL-G on the mappings of structured matrices
(i.e., �nite element matrices) to small size meshes.
This experimental �nding can be attributed to the fol-
lowing reason. KL-H algorithm encounters large num-
ber of zero move gains during the mapping of these
matrices to small size meshes. KL-H algorithm ran-
domly resolves these ties. However, on such cases,
KL-G algorithm tends to gather the adjacent ver-
tices to near processors although they do not decrease
the communication requirement at that point in time.
Various tie braking strategies might be considered to
improve the performance of the proposed KL-H algo-
rithm on such mapping instances. However, as is also
seen in Table 1, the relative performance of the KL-H
algorithm increases with the increasing mesh size for
these structured matrices. The increase in the num-
ber of processors is expected to decrease the number
of such ties. As seen in Table 1, KL-H performs better
than KL-G algorithmon the mappings of JAGMESH9
and LSHP2614 to P �8 and P �32 processors, respec-
tively. Note that only these structured matrices are
mapped to 8�8 mesh just to show this tendency. As is
seen in Table 1, KL-H is somewhat slower than KL-G
algorithm because of the more expensive local gain
update computations. However, relative speed di�er-
ence decreases with increasing number of processors.

6 Conclusion

We have proposed a hypergraph model for mapping
repeated sparse matrix-vector computations to mul-
ticomputers. The proposed hypergraph model avoids
the de�ciencies of the conventional graph model. We

have also proposed one-phase Kernighan-Lin based
mapping heuristics for the graph and hypergraph
models. We have used these heuristics to evaluate
the validity of proposed hypergraph model on sparse
matrices selected from Harwell-Boeing collection and
NETLIB suite. Experimental results justify the va-
lidity of the proposed hypergraph model.

References

[1] Aykanat, C., �Ozg�uner, F., Ercal, F., and Sa-
dayappan, P., \Iterative algorithms for solution
of large sparse systems of linear equations on hy-
percubes," IEEE Trans. on Computers, vol. 37,
pp. 1554{1567, 1988.

[2] Bultan, T., and Aykanat, C., \A new mapping
heuristic based on mean �eld annealing," Journal
of Parallel and Distributed Computing, vol. 10,
pp. 292{305, 1992.

[3] Camp, W. J., Plimpton, S. J., Hendrick-
son, B. A., and Leland, R. W., \Massively par-
allel methods for Engineering and Science prob-
lem," Communication of ACM, vol. 37, no. 4,
pp. 31{41, April 1994.

[4] Du�, I.S., and Grius, R. G., \Sparse matrix test
problems," ACM Trans. on Mathematical soft-
ware, vol. 17, no. 1, pp. 1{14, March 1989.

[5] Fiduccia, C. M., and Mattheyses, R. M., \A lin-
ear heuristic for improving network partitions,"
Proc. Design Automat. Conf., pp. 175{181, 1982.

[6] Gay, D. M., \Electronic mail distribution of lin-
ear programming test problems" Mathematical
Programming Society COAL Newsletter, 1985.

[7] Indurkhya, B,, Stone, H. S. and Xi-Cheng, L.,
\Optimal partitioning of randomly generated dis-
tributed programs," IEEE Trans. Software Engi-
neering, vol. 12(3), pp. 483{495, 1986.

[8] Kernighan, B. W., and Lin, S., \An e�cient
heuristic procedure for partitioning graphs," Bell
Syst. Tech. J., vol. 49, pp. 291{307, 1970.

[9] Pommerell, C., Annaratone, M., and Ficht-
ner, W., \A Set of New Mapping and Coloring
Heuristics for Distributed Memory Parallel Ar-
chitectures". SIAM J. on Scienti�c and Statisti-
cal Computing. vol. 13(1), pp. 194{226, 1992.

[10] Sadayappan, P., Ercal, F., and Ramanujam, J.,
\Cluster partitioning approaches to mapping
parallel programs onto hypercube," Parallel
Computing, vol. 13, pp. 1{16, 1990.

[11] Sanchis, L. A., \Multiple-way network partition-
ing," IEEE Trans. on Computers, vol. 38(1),
pp. 62{81, 1989.

