Hypergraph-Partitioning Based Decomposition
for Parallel Sparse-Matrix Vector Multiplication

Umit V. Catalyiirek and Cevdet Aykanat, Member, IEEE
Computer Engineering Department, Bilkent University
06533 Bilkent, Ankara, Turkey
{cumit/aykanat} @cs.bilkent.edu.tr

Abstract

In this work, we show that the standard graph-partitioning based decomposition of sparse matrices does not reflect
the actual communication volume requirement for parallel matrix-vector multiplication. We propose two compu-
tational hypergraph models which avoid this crucial deficiency of the graph model. The proposed models reduce
the decomposition problem to the well-known hypergraph partitioning problem. The recently proposed successful
multilevel framework is exploited to develop a multilevel hypergraph partitioning tool PaToH for the experimental
verification of our proposed hypergraph models. Experimental results on a wide range of realistic sparse test
matrices confirm the validity of the proposed hypergraph models. In the decomposition of the test matrices, the
hypergraph models using PaToH and hMeTiS result in up to 63% less communication volume (30%-38% less on
the average) than the graph model using MeTiS, while PaToH is only 1.3-2.3 times slower than MeTiS on the

average.

Index Terms—Sparse matrices, matrix multiplication, parallel processing, matrix decomposition, computational

graph model, graph partitioning, computational hypergraph model, hypergraph partitioning.

*This work is partially supported by the Commission of the European Communities, Directorate General for Industry under contract
ITDC 204-82166, and Turkish Science and Research Council under grant EEEAG-160.

1 INTRODUCTION

Iterative solvers are widely used for the solution of large, sparse, linear system of equations on multicomputers.
Two basic types of operations are repeatedly performed at each iteration. These are linear operations on dense
vectors and sparse-matrix vector product (SpMxV) of the form y=Ax, where A is an m xm square matrix with
the same sparsity structure as the coefficient matrix [3, 5, 8, 35], and y and x are dense vectors. Our goal is the

parallelization of the computations in the iterative solvers through rowwise or columnwise decomposition of the

A matrix as
C AT
A= Al and A:[Ai---Ai---A%y],
| Ak

where processor Fj, owns row stripe Az or column stripe Aj,, respectively, for a parallel system with A processors.
In order to avoid the communication of vector components during the linear vector operations, a symmetric parti-
tioning scheme is adopted. That is, all vectors used in the solver are divided conformally with the row partitioning
or the column partitioning in rowwise or columnwise decomposition schemes, respectively. In particular, the x and
y vectors are divided as [x1, ..., xx]" and [y1, ...,y k], respectively. In rowwise decomposition, processor P is
responsible for computing y, = A7x and the linear operations on the £-th blocks of the vectors. In columnwise
decomposition, processor P is responsible for computing y* = A$x; (where y = Eiil y*) and the linear
operations on the k-th blocks of the vectors. With these decomposition schemes, the linear vector operations
can be easily and efficiently parallelized [3, 35], such that only the inner-product computations introduce global
communication overhead of which its volume does not scale up with increasing problem size. In parallel SpMxV,
the rowwise and columnwise decomposition schemes require communication before or after the local SpMxV
computations, thus they can also be considered as pre and post communication schemes, respectively. Depending
on the way in which the rows or columns of A are partitioned among the processors, entries in x or entries in y*
may need to be communicated among the processors. Unfortunately, the communication volume scales up with
increasing problem size. Our goal is to find a rowwise or columnwise partition of A that minimizes the total
volume of communication while maintaining the computational load balance.

The decomposition heuristics [32, 33, 37] proposed for computational load balancing may result in extensive
communication volume, because they do not consider the minimization of the communication volume during the
decomposition. In one-dimensional (1D) decomposition, the worst-case communication requirementis &' (K — 1)
messages and (A — 1)m words, and it occurs when each submatrix Aj, (A7) has at least one nonzero in each column
(row) in rowwise (columnwise) decomposition. The approach based on 2D checkerboard partitioning [15, 30]
reduces the worst-case communication to 2K (v/A — 1) messages and 2(v/K — 1)m words. In this approach, the

worst-case occurs when each row and column of each submatrix has at least one nonzero.

The computational graph model is widely used in the representation of computational structures of various
scientific applications, including repeated SpMxV computations, to decompose the computational domains for
parallelization [5, 6, 20, 21, 27, 28, 31, 36]. In this model, the problem of sparse matrix decomposition for
minimizing the communication volume while maintaining the load balance is formulated as the well-known
I -way graph partitioning problem. In this work, we show the deficiencies of the graph model for decomposing
sparse matrices for parallel SpMxV. The first deficiency is that it can only be used for structurally symmetric
square matrices. In order to avoid this deficiency, we propose a generalized graph model in Section 2.3 which
enables the decomposition of structurally nonsymmetric square matrices as well as symmetric matrices. The
second deficiency is the fact that the graph models (both standard and proposed ones) do not reflect the actual
communication requirement as will be described in Section 2.4. These flaws are also mentioned in a concurrent
work [16]. Inthis work, we propose two computational hypergraph models which avoid all deficiencies of the graph
model. The proposed models enable the representation and hence the decomposition of rectangular matrices [34]
as well as symmetric and nonsymmetric square matrices. Furthermore, they introduce an exact representation for
the communication volume requirement as described in Section 3.2. The proposed hypergraph models reduce the
decomposition problem to the well-known K-way hypergraph partitioning problem widely encountered in circuit
partitioning in VLSI layout design. Hence, the proposed models will be amenable to the advances in the circuit
partitioning heuristics in VLSI community.

Decomposition is a preprocessing introduced for the sake of efficient parallelization of a given problem.
Hence, heuristics used for decomposition should run in low order polynomial time. Recently, multilevel graph
partitioning heuristics [4, 13, 21] are proposed leading to fast and successful graph partitioning tools Chaco [14]
and MeTiS [22]. We have exploited the multilevel partitioning methods for the experimental verification of the
proposed hypergraph models in two approaches. In the first approach, MeTiS graph partitioning tool is used
as a black box by transforming hypergraphs to graphs using the randomized clique-net model as presented in
Section 4.1. In the second approach, the lack of a multilevel hypergraph partitioning tool at the time of this work
was carried led us to develop a multilevel hypergraph partitioning tool PaToH for a fair experimental comparison of
the hypergraph models with the graph models. Another objective in our PaToH implementation was to investigate
the performance of multilevel approach in hypergraph partitioning as described in Section 4.2. Recently released
multilevel hypergraph partitioning tool hMeTiS [24] is also used in the second approach. Experimental results
presented in Section 5 confirm both the validity of our proposed hypergraph models and the appropriateness of
the multilevel approach to hypergraph partitioning. The hypergraph models using PaToH and hMeTiS produce
30%-38% better decompositions than the graph models using MeTiS, while the hypergraph models using PaToH
are only 34%-130% slower than the graph models using the most recent version (Version 3.0) of MeTiS, on the

average.

2 GRAPH MODELS AND THEIR DEFICIENCIES
2.1 Graph Partitioning Problem

An undirected graph G =(V, &) is defined as a set of vertices V' and a set of edges £. Every edge ¢;; € £ connects
a pair of distinct vertices »; and v;. The degree d; of a vertex v; is equal to the number of edges incident to v;.
Weights and costs can be assigned to the vertices and edges of the graph, respectively. Let w; and ¢;; denote the
weight of vertex »; €V and the cost of edge e;; € &, respectively.

M={P1,P2,..., Px} isa K-way partition of G if the following conditions hold: each part P, 1 < k < K, is
a nonempty subset of V), parts are pairwise disjoint (P, NP, = @ forall 1 < k < ¢ < K), and union of K parts is
equal to V (i.e. UE; P, =V). A K-way partition is also called a multiway partition if & > 2 and a bipartition if

K =2. A partition is said to be balanced if each part P, satisfies the balance criterion

Wi < Wa(l+e¢), fork=12,... K. (1)

In (1), weight W}, of a part P is defined as the sum of the weights of the vertices in that part (i.e. Wy =3, p, w:),
Wavg = (32, ey wi)/ K denotes the weight of each part under the perfect load balance condition, and ¢ represents
the predetermined maximum imbalance ratio allowed.

In a partition IT of G, an edge is said to be cut if its pair of vertices belong to two different parts, and uncut
otherwise. The cut and uncut edges are also referred to here as external and internal edges, respectively. The set
of external edges of a partition IT is denoted as £x. The cutsize definition for representing the cost x(IT) of a

partition IT is

XM= > e (2)

€43 EEE

In (2), each cut edge ¢;; contributes its cost ¢;; to the cutsize. Hence, the graph partitioning problem can be
defined as the task of dividing a graph into two or more parts such that the cutsize is minimized, while the balance
criterion (1) on part weights is maintained. The graph partitioning problem is known to be NP-hard even for

bipartitioning unweighted graphs [11].

2.2 Standard Graph Model for Structurally Symmetric Matrices

A structurally symmetric sparse matrix A can be represented as an undirected graph G4 = (V,), where the
sparsity pattern of A corresponds to the adjacency matrix representation of graph G4. That is, the vertices of G4
correspond to the rows/columns of matrix A, and there exist an edge ¢;; € £ for # j if and only if off-diagonal
entries a;; and a;; of matrix A are nonzeros. In rowwise decomposition, each vertex v; € V corresponds to atomic
task ¢ of computing the inner product of row ¢ with column vector x. In columnwise decomposition, each vertex
v; € V corresponds to atomic task ¢ of computing the sparse SAXPY/DAXPY operation y =y + z;a,;, where a,;
denotes column 7 of matrix A. Hence, each nonzero entry in a row and column of A incurs a multiply-and-add
operation during the local SpMxV computations in the pre and post communication schemes, respectively. Thus,

computational load w; of row/column : is the number of nonzero entries in row/column <. In graph theoretical

notation, w; = d; when a;; =0 and w; = d;+1 when a;; # 0. Note that the number of nonzeros in row : and column
¢ are equal in a symmetric matrix.

This graph model displays a bidirectional computational interdependency view for SpMxV. Each edge ¢;; € £
can be considered as incurring the computations y; < y; +a;;2; and y; — y; +a;;2;. Hence, each edge represents
the bidirectional interaction between the respective pair of vertices in both inner and outer product computation
schemes for SpMxV. If rows (columns) ¢ and j are assigned to the same processor in a rowwise (columnwise)
decomposition, then edge ¢;; does not incur any communication. However, in the pre-communication scheme,
if rows ¢ and j are assigned to different processors then cut edge e¢;; necessitates the communication of two
floating—point words because of the need of the exchange of updated x; and «; values between atomic tasks ¢ and
7 just before the local SpMxV computations. In the post-communication scheme, if columns ¢ and j are assigned
to different processors then cut edge e;; necessitates the communication of two floating—point words because of
the need of the exchange of partial y; and y; values between atomic tasks ¢ and j just after the local SpMxV
computations. Hence, by setting ¢;; = 2 for each edge ¢;; € £, both rowwise and columnwise decompositions of
matrix A reduce to the K -way partitioning of its associated graph G 4 according to the cutsize definition given in (2).
Thus, minimizing the cutsize is an effort towards minimizing the total volume of interprocessor communication.
Maintaining the balance criterion (1) corresponds to maintaining the computational load balance during local
SpMxV computations.

Each vertex v; € V effectively represents both row i and column i in G 4 although its atomic task definition differs
in rowwise and columnwise decompositions. Hence, a partition IT of G, automatically achieves a symmetric
partitioning by inducing the same partition on the y-vector and x-vector components since a vertex »; € Py
corresponds to assigning row ¢ (column 7), y; and z; to the same part in rowwise (columnwise) decomposition.

In matrix theoretical view, the symmetric partitioning induced by a partition I'T of G 4 can also be considered
as inducing a partial symmetric permutation on the rows and columns of A. Here, the partial permutation cor-
responds to ordering the rows/columns assigned to part P; before the rows/columns assigned to part Pj.1, for
k=1,...,K —1, where the rows/columns within a part are ordered arbitrarily. Let A"l denote the permuted
version of A according to a partial symmetric permutation induced by IT. An internal edge e;; of a part P
corresponds to locating both «;; and «; in diagonal block All . An external edge e;; of cost 2 between parts P
and P, corresponds to locating nonzero entry «;; of A in off-diagonal block A}, and «;; of A in off-diagonal block
AL, or vice versa. Hence, minimizing the cutsize in the graph model can also be considered as permuting the
rows and columns of the matrix to minimize the total number of nonzeros in the off-diagonal blocks.

Figure 1 illustrates a sample 10:x 10 symmetric sparse matrix A and its associated graph G4. The numbers
inside the circles indicate the computational weights of the respective vertices (rows/columns). This figure also
illustrates a rowwise decomposition of the symmetric A matrix and the corresponding bipartitioning of G 4 for a
two—processor system. As seen in Fig. 1, the cutsize in the given graph bipartitioning is 8 which is also equal to

the total number of nonzero entries in the off-diagonal blocks. The bipartition illustrated in Fig. 1 achieves perfect

123456780910
1[x Tl XX X X x| 1
2| x 2 X X X x| x| 2
3| x P, 3 X X X X! x| 3
4 | X 4 | X X X ! X X x| 4
s x| | 5] xx xi x x| 5
6(x] ™ | 6[x X X X x| 6
7|X 7 ><><:><>< X X |7
8 | x P, 8 X X X X x| 8
9| x 9 XX X X x| 9
10 | X im LOX X X X x| 10

y A X

Figure 1: Two-way rowwise decomposition of a sample structurally symmetric matrix A and the corresponding
bipartitioning of its associated graph G 4.

load balance by assigning 21 nonzero entries to each row stripe. This number can also be obtained by adding the

weights of the vertices in each part.
2.3 Generalized Graph Model for Structurally Symmetric/Nonsymmetric Square Matrices

The standard graph model is not suitable for the partitioning of nonsymmetric matrices. A recently proposed bipar-
tite graph model [17, 26] enables the partitioning of rectangular as well as structurally symmetric/nonsymmetric
square matrices. Inthis model, each row and column is represented by a vertex, and the sets of vertices representing
the rows and columns form the bipartition, i.e. V = Vz U V.. There exists an edge between a row vertex i € Vx
and a column vertex j € V¢ if and only if the respective entry «;; of matrix A is nonzero. Partitions Il and
I1c on V¢ and Ve, respectively, determine the overall partition IT= {P1, ..., Pk}, where P, = Vg, UV, for
kE=1,..., K. For rowwise (columnwise) decomposition, vertices in Vr (V) are weighted with the number of
nonzeros in the respective row (column) so that the balance criterion (1) is imposed only on the partitioning of
Vr (Ve). As in the standard graph model, minimizing the number of cut edges corresponds to minimizing the
total number of nonzeros in the off-diagonal blocks. This approach has the flexibility of achieving nonsymmetric
partitioning. In the context of parallel SpMxV, the need for symmetric partitioning on square matrices is achieved
by enforcing [Tz = Il;. Hendrickson and Kolda [17] propose several bipartite-graph partitioning algorithms that
are adopted from the techniques for the standard graph model and one partitioning algorithm that is specific to
bipartite graphs.

In this work, we propose a simple yet effective graph model for symmetric partitioning of structurally non-
symmetric square matrices. The proposed model enables the use of the standard graph partitioning tools without
any modification. In the proposed model, a nonsymmetric square matrix A is represented as an undirected graph
Gr=(Vr,&)and Gc=(Ve, &) for the rowwise and columnwise decomposition schemes, respectively. Graphs Gz
and G¢ differ only in their vertex weight definitions. The vertex set and the corresponding atomic task definitions
are identical to those of the symmetric matrices. That is, weight w; of a vertex »; € Vg (v; € V) is equal to the
total number of nonzeros in row 7 (column) in Gr (Ge). In the edge set £, e;; € £ if and only if off-diagonal
entries a;; # 0 or a;; #0. That is, the vertices in the adjacency list of a vertex »; denote the union of the column
indices of the off-diagonal nonzeros at row ¢ and the row indices of the off-diagonal nonzeros at column :. The
cost ¢;; of an edge ¢;; is set to 1 if either a;; #0 or a;; # 0, and it is set to 2 if both «;; # 0 and a;; #0. The

1234567282910

1[x Tl X % 1 x| 1
2| x 2 X X X, x| 2
3| x P, 3 X X X! x| 3
4 | X 4 | X X X ! X X x| 4
(x| | s X1 X x| 5
6[x] ™~ | s X X X x| 6
7|X 7 X ><:>< X X |7
8 | x P, 8 X X X x| 8
9| x 9 | X X X x| 9
10 | X im LoX XX x| 10
y A X

Figure 2: Two-way rowwise decomposition of a sample structurally nonsymmetric matrix A and the corresponding
bipartitioning of its associated graph Gr.

proposed scheme is referred to here as a generalized model since it automatically produces the standard graph
representation for structurally symmetric matrices by computing the same cost of 2 for every edge.

Figure 2 illustrates a sample 10x 10 nonsymmetric sparse matrix A and its associated graph G for rowwise
decomposition. The numbers inside the circles indicate the computational weights of the respective vertices
(rows). This figure also illustrates a rowwise decomposition of the matrix and the corresponding bipartitioning of
its associated graph for a two—processor system. As seen in Fig. 2, the cutsize of the given graph bipartitioning
is 7 which is also equal to the total number of nonzero entries in the off-diagonal blocks. Hence, similar to the
standard and bipartite graph models, minimizing cutsize in the proposed graph model corresponds to minimizing
the total number of nonzeros in the off-diagonal blocks. As seen in Fig. 2, the bipartitioning achieves perfect load
balance by assigning 16 nonzero entries to each row stripe. As mentioned earlier, the G- model of a matrix for
columnwise decomposition differs from the Gz model only in vertex weights. Hence, the graph bipartitioning
illustrated in Fig. 2 can also be considered as incurring a slightly imbalanced (15 versus 17 nonzeros) columnwise

decomposition of sample matrix A (shown by vertical dash line) with identical communication requirement.

2.4 Deficiencies of the Graph Models

Consider the symmetric matrix decomposition given in Fig. 1. Assume that parts P, and 7, are mapped to
processors P; and P,, respectively. The cutsize of the bipartition shown in this figure is equal to 2 x 4 =8, thus
estimating the communication volume requirement as 8 words. In the pre-communication scheme, off-block-
diagonal entries a4 7 and as 7 assigned to processor 1 display the same need for the nonlocal x-vector component
x7 twice. However, it is clear that processor /2 will send z7 only once to processor P;. Similarly, processor Py will
send x4 only once to processor P, because of the off-block-diagonal entries a7 4 and ag 4 assigned to processor Ps.
In the post-communication scheme, the graph model treats the off-block-diagonal nonzeros a7 4 and a7 5 in Py as
if processor P will send two multiplication results a7 424 and a7 55 to processor F,. However, it is obvious that
processor P; will compute the partial result for the nonlocal y-vector component y4 = a7 424+ a7 55 during the
local SpMxV phase and send this single value to processor P, during the post-communication phase. Similarly,
processor P, will only compute and send the single value y; = a4 727+ aa gg to processor P;. Hence, the actual
communication volume is in fact 6 words instead of 8 in both pre and post communication schemes. A similar

analysis of the rowwise decomposition of the nonsymmetric matrix given in Fig. 2 reveals the fact that the actual

communication requirement is 5 words (x4, =5, g, 7 and xg) instead of 7 determined by the cutsize of the given
bipartition of G.

In matrix theoretical view, the nonzero entries in the same column of an off-diagonal block incur the commu-
nication of a single = value in the rowwise decomposition (pre-communication) scheme. Similarly, the nonzero
entries in the same row of an off-diagonal block incur the communication of a single y value in the columnwise
decomposition (post-communication) scheme. However, as mentioned earlier, the graph models try to minimize
the total number of off-block-diagonal nonzeros without considering the relative spatial locations of such nonzeros.
In other words, the graph models treat all off-block-diagonal nonzeros in an identical manner by assuming that
each off-block-diagonal nonzero will incur a distinct communication of a single word.

In graph theoretical view, the graph models treat all cut edges of equal cost in an identical manner while
computing the cutsize. However, r cut edges, each of cost 2, stemming from a vertex v;, in part Py to r
vertices v;,, vy, . . ., v;,,, N part Py incur only r+1 communications instead of 2r in both pre and post com-
munication schemes. In the pre-communication scheme, processor P; sends z;, to processor P, while P, sends
Tiys Tigs - -5 Tipyy 10 Pp. In the post-communication scheme, processor P, sends ., yi., . . .,yfm to processor
Py, while Py, sends y; to P,. Similarly, the amount of communication required by r cut edges, each of cost 1,
stemming from a vertex v;, in part P, to r vertices v;,, v;;, ..., v; ., in part P, may vary between 1 and words

instead of exactly » words determined by the cutsize of the given graph partitioning.

3 HYPERGRAPH MODELS FOR DECOMPOSITION
3.1 Hypergraph Partitioning Problem

A hypergraph H = (V, N) is defined as a set of vertices) and a set of nets (hyperedges) A" among those vertices.
Every net n; € A is a subset of vertices, i.e., n; CV. The vertices in a net n; are called its pins and denoted
as pins[n;]. The size of a net is equal to the number of its pins, i.e., s; = |pins[n;]|. The set of nets connected
to a vertex v; is denoted as nets[v;]. The degree of a vertex is equal to the number of nets it is connected to,
i.e., d; = |nets[v;]|. Graph is a special instance of hypergraph such that each net has exactly two pins. Similar to
graphs, let w; and ¢; denote the weight of vertex »; €V and the cost of net n; € VV, respectively.

Definition of K -way partition of hypergraphs is identical to that of graphs. In a partition IT of H, a net that
has at least one pin (vertex) in a part is said to connect that part. Connectivity set A; of a net »; is defined as the
set of parts connected by n;. Connectivity A; =|A;| of a net n; denotes the number of parts connected by n;. A
net »; is said to be cut if it connects more than one part (i.e. A; > 1), and uncut otherwise (i.e. A\; = 1). The
cut and uncut nets are also referred to here as external and internal nets, respectively. The set of external nets of
a partition IT is denoted as NVy. There are various cutsize definitions for representing the cost y(IT) of a partition
IT. Two relevant definitions are:

(@) x(M= > ¢ and (b)) x(I)= Y ¢} -1)

nJENE TLJENE

In (3.a), the cutsize is equal to the sum of the costs of the cut nets. In (3.b), each cut net »; contributes ¢;(A; — 1)

to the cutsize. Hence, the hypergraph partitioning problem [29] can be defined as the task of dividing a hypergraph
into two or more parts such that the cutsize is minimized, while a given balance criterion (1) among the part weights
is maintained. Here, part weight definition is identical to that of the graph model. The hypergraph partitioning
problem is known to be NP-hard [29].

3.2 Two Hypergraph Models for Decomposition

We propose two computational hypergraph models for the decomposition of sparse matrices. These models are re-
ferred to here as the column-net and row-net models proposed for the rowwise decomposition (pre-communication)
and columnwise decomposition (post-communication) schemes, respectively.

In the column-net model, matrix A is represented as a hypergraph Hz = (Vr, A) for rowwise decomposition.
Vertex and net sets Vz and N correspond to the rows and columns of matrix A, respectively. There exist one
vertex »; and one net »; for each row ¢ and column 7, respectively. Netn; C V¢ contains the vertices corresponding
to the rows which have a nonzero entry in column j. That is, v; € »; if and only if a;; #0. Each vertex v; € Vg
corresponds to atomic task ¢ of computing the inner product of row 7 with column vector x. Hence, computational
weight w,; of a vertex v; € V¢ is equal to the total number of nonzeros in row :. The nets of Hz represent the
dependency relations of the atomic tasks on the x-vector components in rowwise decomposition. Each net n;
can be considered as incurring the computation y; < y; +a;;z; for each vertex (row) »; € n;. Hence, each net
n; denotes the set of atomic tasks (vertices) that need z;. Note that each pin »; of a net »; corresponds to a
unique nonzero a;; thus enabling the representation and decomposition of structurally nonsymmetric matrices as
well as symmetric matrices without any extra effort. Figure 3(a) illustrates the dependency relation view of the
column-net model. As seen in this figure, net n; = {v;,, v;, v} represents the dependency of atomic tasks %, ¢, k
to «; because of the computations yj, — yp+an;z;, y; < yi+a;;2; and yi — yi +ax;x;. Figure 4(b) illustrates the
column-net representation of the sample 16 x 16 nonsymmetric matrix given in Fig. 4(a). In Fig. 4(b), the pins of
net n7 = {v7, v10, v13} represent nonzeros az 7, aio 7, and aiz 7. Net n7 also represents the dependency of atomic
tasks 7, 10 and 13 to 7 because of the computations y7 < y7+a7 727, y10— Y10+ @10,727 and y13 — y13+a13 727.

The row-net model can be considered as the dual of the column-net model. Inthis model, matrix A is represented
as a hypergraph He = (Ve, MVr) for columnwise decomposition. Vertex and net sets Ve and A’z correspond to
the columns and rows of matrix A, respectively. There exist one vertex »; and one net »; for each column 7 and
row j, respectively. Net n; C V. contains the vertices corresponding to the columns which have a nonzero entry
inrow j. Thatis, v; €n; if and only if a;; # 0. Each vertex v; € V¢ corresponds to atomic task 7 of computing
the sparse SAXPY/DAXPY operation y = y + z;a,;. Hence, computational weight w; of a vertex »; € Ve is
equal to the total number of nonzeros in column :. The nets of H¢ represent the dependency relations of the
computations of the y-vector components on the atomic tasks represented by the vertices of H in columnwise
decomposition. Each net »; can be considered as incurring the computation y; — y; +a;;x; for each vertex
(column) v; € n;. Hence, each net »; denotes the set of atomic task results needed to accumulate y;. Note that

each pin v; of a net n; corresponds to a unique nonzero «;; thus enabling the representation and decomposition of

nj(rj/yj)

aK
o) @@x@
\

(@) Column-Net Model (b) Row-Net Model

vi(r 1y;)

Figure 3: Dependency relation views of (@) column-net and (b) row-net models.

structurally nonsymmetric matrices as well as symmetric matrices without any extraeffort. Figure 3(b) illustrates
the dependency relation view of the row-net model. As seen in this figure, net n; = {vy, v;, v} represents the
dependency of accumulating y; = y” + y:+y% onthe partial y; resultsy” = a x5,y = ajiz; andy? = a;xy. Note
that the row-net and column-net models become identical in structurally symmetric matrices.

By assigning unit costs to the nets (i.e. ¢; = 1 for each net »;), the proposed column-net and row-net
model s reduce the decomposition problem to the A" -way hypergraph partitioning problem according to the cutsize
definition given in (3.b) for the pre and post communication schemes, respectively. Consistency of the proposed
hypergraph models for accurate representation of communication volume requirement while maintaining the
symmetric partitioning restriction depends on the condition that “v; € n; for each net »;”. We first assume that
thiscondition holdsinthe discussion throughout the followingfour paragraphs and then discussthe appropriateness
of the assumption in the last paragraph of this section.

The validity of the proposed hypergraph modelsis discussed only for the column-net model. A dual discussion
holds for the row-net model. Consider a partition I of % in the column-net model for rowwise decomposition
of amatrix A. Without loss of generality, we assume that part P, isassigned to processor P, for k=1,2,..., K.
AsTT isdefined as a partition on the vertex set of Hr, it induces a complete part (hence processor) assignment for
the rows of matrix A and hence for the components of they vector. That is, a vertex »; assigned to part Py in I1
corresponds to assigning row 7 and y; to part P,. However, partition IT does not induce any part assignment for
the nets of Hi. Here, we consider partition IT as inducing an assignment for the internal nets of Hx hence for
the respective x-vector components. Consider an internal net »; of part P, (i.e. A; = {Px}) which corresponds
to column j of A. Asall pinsof net »; liein Py, al rows (including row j by the consistency condition) which
need z; for inner-product computations are already assigned to processor P;. Hence, internal net »; of P, which
does not contribute to the cutsize (3.b) of partition I, does not necessitate any communication if z; is assigned
to processor P;,. The assignment of z; to processor P, can be considered as permuting column j to part Py, thus
respecting the symmetric partitioning of A since row j is already assigned to P;. In the 4-way decomposition
givenin Fig. 4(b), interna nets n1, n1g, n13 Of part 1 induce the assignment of 1, x19, 13 and columns 1, 10,
13 to part 1. Notethat part 71 already contains rows 1, 10, 13 thus respecting the symmetric partitioning of A.

Consider an external net »; with connectivity set A;, where A; = |A;| and A; > 1. Asal pinsof net »; lie

in the parts in its connectivity set A ;, all rows (including row j by the consistency condition) which need z; for

9

W N UM WN R

1234567 8910111213141516 101351 61411 3 2157 9 81612 4

X

X X 1 X X | X 10
X X X 2 X X | | X 13
X X 3 X X X, | } 5
X X 4 X X! ! ! 1
X X X 5 XX ! ! 6
X X 6 X X X | | x |14
X X X X 7 X X X, } X 11
X X X 8 | X X } 3
X X x |o X X ! x |2
X X X X 10 | CoX X 15
X X X X 1 X XX X, 7
X X x| 12 } L XX, x |9
X X X 13 ! X X x| 8
X X X X 14 ! ! X X x|1e
| |
I I
| |

1234567 8910111213141516 101351 61411 3 2157 9 81612 4

@ (©

Figure 4: (@) A 16x 16 structurally nonsymmetric matrix A. (b) Column-net representation{z of matrix A and
4-way partitioning IT of H . () 4-way rowwise decomposition of matrix A" obtained by permuting A according
to the symmetric partitioning induced by IT.

(b)

inner-product computationsare assigned to the parts (processors) in A;. Hence, contribution A\; —1 of external net
n; to the cutsize according to (3.b) accurately models the amount of communication volume to incur during the
parallel SoMxV computations because of z; if z; isassigned to any processor in A;. Let map[j] € A; denote the
part and hence processor assignment for z; corresponding to cut net ;. In the column-net model together with the
pre-communication scheme, cut net »; indicates that processor map[j] should senditslocal z ; to those processors
in connectivity set A ; of net n; except itself (i.e., to processorsinthe set A;—{map[;j]}). Hence, processor map[;]
should send itslocal z; to |A;| —1= A; — 1 distinct processors. As the consistency condition “v; € n;” ensures
that row j is already assignedto apart in A;, symmetric partitioning of A can easily be maintained by assigning
z; hence permuting column ; to the part which containsrow j. In the 4-way decomposition shown in Fig. 4(b),
external net ns (with As = {P1, P2, P3}) incursthe assignment of 25 (hence permuting column 5) to part P; since
row 5 (vs € ns) isaready assigned to part ;. The contribution As — 1 = 2 of net ns to the cutsize accurately
model s the communication volume to incur dueto x5, because processor Py should send x5 to both processors P,
and Ps only oncesince As — {map[5]} = As — {P1} = { P>, P3}.

In essence, in the column-net model, any partition I of Hx with v; € P, can be safely decoded as assigning
row ¢, y; and x; to processor P, for rowwise decompoasition. Similarly, inthe row-net model, any partitionIT of H¢
withv; € Py can besafely decoded asassigning column ¢, x; and y; to processor P for columnwisedecomposition.
Thus, in the column-net and row-net model's, minimizing the cutsize according to (3.b) correspondsto minimizing
the actual volume of interprocessor communication during the pre and post communication phases, respectively.
Maintaining the balance criterion (1) corresponds to maintaining the computational 1oad balance during the local
SpMxV computations. Figure 4(c) displaysa permutation of the sample matrix given in Fig. 4(a) according to the
symmetric partitioning induced by the 4-way decomposition shown in Fig. 4(b). Asseenin Fig. 4(c), the actual
communicationvolumefor the given rowwise decomposition is 6 words since processor P; should send x5 to both
P, and P3, P, should send 11 to Py, P53 should send z7 to P1, and P4 should send z 15 to both P, and P;. As

10

seen in Fig. 4(b), external nets ns, n7, n11 and nqo contribute 2, 1, 1 and 2 to the cutsize since As = 3, A7 = 2,
A = 2and Az = 3, respectively. Hence, the cutsize of the 4-way decomposition given in Fig. 4(b) is 6, thus
leading to the accurate modeling of the communication requirement. Note that the graph model will estimate the
total communication volume as 13 words for the 4-way decomposition given in Fig. 4(c) since the total number
of nonzeros in the off-diagonal blocksis 13. As seen in Fig. 4(c), each processor is assigned 12 nonzeros thus
achieving perfect computational |oad balance.

Inmatrix theoretical view, let Al denote apermuted version of matrix A according to the symmetric partitioning
induced by apartitionII of Hx inthe column-net model. Each cut-net »; with connectivity set A ; and map[j] =P
corresponds to column j of A containing nonzerosin A; distinct blocks (A, for ;. € A;) of matrix AL, Since
connectivity set A; of net »; is guaranteed to contain part map[j], column j contains nonzerosin A; — 1 distinct
off-diagonal blocks of A'l. Note that multiple nonzeros of column j in aparticular off-diagonal block contributes
only one to connectivity A; of net »; by definition of ;. So, the cutsize of a partition IT of /g is equal to the
number of nonzero column segmentsin the off-diagonal blocks of matrix A!'. For example, external net ns with
As = {P1, P2, P3} and map[5] = P1 in Fig. 4(b) indicates that column 5 has nonzerosin two off-diagonal blocks
All; and A}l; as seen in Fig. 4(c). As also seen in Fig. 4(c), the number of nonzero column segments in the
off-diagonal blocks of matrix A'! is 6 which is equal to the cutsize of partition IT shown in Fig. 4(b). Hence, the
column-net model triesto achieve a symmetric permutation which minimizesthe total number of nonzero column
segments in the off-diagonal blocks for the pre-communication scheme. Similarly, the row-net model tries to
achieve a symmetric permutation which minimizes the total number of nonzero row segmentsin the off-diagonal
blocksfor the post-communication scheme.

Nonzero diagonal entries automatically satisfy the condition “v; € n; for each net »;”, thus enabling both
accurate representation of communication requirement and symmetric partitioning of A. A nonzero diagonal entry
a;; already impliesthat net »; contains vertex v; asitspin. If however some diagonal entries of the given matrix
are zeros then the consistency of the proposed column-net model is easily maintained by simply adding rows,
which do not contain diagonal entries, to the pin lists of the respective column nets. That is, if a;; =0 then vertex
v; (row j) isadded to the pinlist pins[n ;] of net n; and net »; isadded to the net list nets[v;] of vertex v;. These
pin additions do not affect the computational weight assignments of the vertices. That is, weight w; of vertex v;
in Hz becomes equal to either d; or d;— 1 depending on whether a;; # 0 or a;; =0, respectively. The consistency

of the row-net model is preserved in a dua manner.

4 DECOMPOSITION HEURISTICS

Kernighan-Lin (KL) based heuristics are widely used for graph/hypergraph partitioning because of their short
run-timesand good quality results. The KL algorithmisan iterative improvement heuristic originally proposed for
graph bipartitioning [25]. The KL agorithm, starting from aninitial bipartition, performsanumber of passes until
it findsalocally minimum partition. Each passconsistsof asequence of vertex swaps. The same swap strategy was

applied to the hypergraph bipartitioning problem by Schweikert-Kernighan [38]. Fiduccia-Mattheyses (FM) [10]

11

introduced a faster implementation of the KL algorithm for hypergraph partitioning. They proposed vertex move
concept instead of vertex swap. This modification, aswell as proper data structures, e.g., bucket lists, reduced the
time complexity of a single pass of the KL agorithm to linear in the size of the graph and the hypergraph. Here,
size refers to the number of edges and pinsin agraph and hypergraph, respectively.

The performance of the FM algorithm deteriorates for large and very sparse graphs/hypergraphs. Here, sparsity
of graphs and hypergraphs refer to their average vertex degrees. Furthermore, the solution quality of FM is
not stable (predictable), i.e., average FM solution is significantly worse than the best FM solution, which is
a common weakness of the move-based iterative improvement approaches. Random multi-start approach is
used in VLS| layout design to alleviate this problem by running the FM algorithm many times starting from
random initial partitions to return the best solution found [1]. However, this approach is not viable in parallel
computing since decompositionisa preprocessing overhead introduced to increase the efficiency of the underlying
paralel algorithm/program. Most users will rely on one run of the decomposition heuristic, so the quality of the
decomposition tool depends equally on the worst and average decompositionsthan on just the best decomposition.

These considerations have motivated the two-phase application of the move-based algorithmsin hypergraph
partitioning [12]. In this approach, a clustering is performed on the original hypergraph Hg to induce a coarser
hypergraph H;. Clustering corresponds to coalescing highly interacting vertices to supernodes as a preprocessing
to FM. Then, FM is run on H; to find a bipartition I'1;, and this bipartition is projected back to a bipartition
Iy of Ho. Finally, FM isre-run on Hy using Ig as an initia solution. Recently, the two—phase approach has
been extended to multilevel approaches [4, 13, 21] leading to successful graph partitioning tools Chaco [14] and
MeTiS [22]. These multilevel heuristics consist of 3 phases: coarsening, initial partitioning and uncoarsening.
In the first phase, a multilevel clustering is applied starting from the original graph by adopting various matching
heuristics until the number of vertices in the coarsened graph reduces below a predetermined threshold value.
In the second phase, the coarsest graph is partitioned using various heuristics including FM. In the third phase,
the partition found in the second phase is successively projected back towards the original graph by refining the
projected partitions on the intermediate level uncoarser graphs using various heuristics including FM.

In this work, we exploit the multilevel partitioning schemes for the experimental verification of the proposed
hypergraph modelsin two approaches. In the first approach, multilevel graph partitioning tool MeTiSisused asa
black box by transforming hypergraphs to graphs using the randomized clique-net model proposed in [2]. In the
second approach, we have implemented a multilevel hypergraph partitioning tool PaToH, and tested both PaToH
and multilevel hypergraph partitioning tool hMeTiS [23, 24] which was released very recently.

4.1 Randomized Clique-Net Model for Graph Representation of Hypergraphs

In the clique-net transformation model, the vertex set of the target graph is equal to the vertex set of the given
hypergraph with the same vertex weights. Each net of the given hypergraph is represented by a clique of vertices
corresponding to its pins. That is, each net induces an edge between every pair of its pins. The multiple edges

connecting each pair of vertices of the graph are contracted into a single edge of which cost is equal to the sum

12

of the costs of the edges it represents. In the standard clique-net model [29], a uniform cost of 1/(s; —1) is
assigned to every clique edge of net n; with size s;. Various other edge weighting functions are also proposed
in the literature [1]. If an edge isin the cut set of a graph partitioning then all nets represented by this edge are
in the cut set of hypergraph partitioning, and vice versa. Ideally, no matter how vertices of a net are partitioned,
the contribution of a cut net to the cutsize should always be one in a bipartition. However, the deficiency of
the clique-net model is that it is impossible to achieve such a perfect clique-net model [18]. Furthermore, the
transformation may result in very large graphs since the number of clique edges induced by the nets increase
quadratically with their sizes.

Recently, a randomized clique-net model implementation is proposed [2] which yields very promising results
when used together with graph partitioning tool MeTiS. In thismodel, al nets of size larger than 7' are removed
during the transformation. Furthermore, for each net »; of size s;, I x s; random pairs of its pins (vertices) are
selected and an edge with cost one is added to the graph for each selected pair of vertices. The multiple edges
between each pair of vertices of the resulting graph are contracted into a single edge as mentioned earlier. In
this scheme, the nets with size smaller than 2F'+ 1 (small nets) induce larger number of edges than the standard
clique-net model, whereas the nets with size larger than 2F'+ 1 (large nets) induce smaller number of edges than
the standard clique-net model. Considering the fact that MeTiS acceptsinteger edge costsfor theinput graph, this
scheme has two nice featurest. First, it simulates the uniform edge-weighting scheme of the standard clique-net
model for small netsin arandom manner since each clique edge (if induced) of anet »n; withsize s; <2F +1 will
be assigned an integer cost close to 2F'/(s; — 1) on the average. Second, it prevents the quadratic increase in the
number of clique edgesinduced by large netsin the standard model since the number of clique edgesinduced by a
net in this schemeislinear in the size of the net. 1n our implementation, we use the parameters T'=50 and F' =5

in accordance with the recommendations givenin [2].

4.2 PaToH: A Multilevel Hypergraph Partitioning Tool

In this work, we exploit the successful multilevel methodology [4, 13, 21] proposed and implemented for graph
partitioning [14, 22] to devel op a new multilevel hypergraph partitioning tool, called PaToH (PaToH: Partitioning
Toolsfor Hypergraphs).

The data structures used to store hypergraphs in PaToH mainly consist of the following arrays. The NETLST
array storesthe net lists of the vertices. The PINLST array storesthe pin lists of the nets. The size of both arrays
isequal to the total number of pinsinthe hypergraph. Two auxiliary index arrays VTXS and NETS of sizes|V|+1
and |V|+1 hold the starting indices of the net listsand pinlistsof theverticesand netsinthe NETL ST and PINL ST
arrays, respectively. In sparse matrix storage terminology, this scheme corresponds to storing the given matrix
both in Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC) formats [27] without storing the
numerical data. In the column-net model proposed for rowwise decomposition, the VTXS and NETLST arrays
correspond to the CSR storage scheme, and the NETS and PINL ST arrays correspond to the CSC storage scheme.

! private communication with Alpert.

13

Figure 5: Cut-net splitting during recursive bisection.

This correspondence is dual in the row-net model proposed for columnwise decomposition.

The K -way graph/hypergraph partitioning problem is usually solved by recursive bisection. In this scheme,
first a 2-way partition of G/’H is obtained, and then this bipartition is further partitioned in a recursive manner.
After Ig, K phases, graph G/'H is partitioned into K parts. PaToH achieves K-way hypergraph partitioning by
recursive bisection for any K value (i.e., K isnot restricted to be a power of 2).

The connectivity cutsize metric given in (3.b) needs special attention in K -way hypergraph partitioning by
recursive bisection. Notethat the cutsize metricsgivenin(3.a) and (3.b) become equivalent in hypergraph bisection.
Consider ahipartition V4 and Vi of V obtained after a bisection step. Itisclear that V4 and V3 and the internal
nets of parts.4 and B will become the vertex and net setsof 7 4 and 7, respectively, for the following recursive
bisection steps. Note that each cut net of this bipartition already contributes 1 to the total cutsize of the final
K -way partition to be obtained by further recursive bisections. However, the further recursive bisections of V4
and Vi may increase the connectivity of these cut nets. In parallel SpMxV view, while each cut net already incurs
the communication of a single word, these nets may induce additional communication because of the following
recursive bisection steps. Hence, after every hypergraph bisection step, each cut net »; is split into two pin-wise
digoint nets n: = pins[n;] (V4 and n? = pins[n;] Vi, and then these two nets are added to the net lists of
H4 and Hp if || > Land |n| > 1, respectively. Note that the single-pin nets are discarded during the split
operation since such nets cannot contribute to the cutsize in the following recursive bisection steps. Thus, the total
cutsize according to (3.b) will become equal to the sum of the number of cut nets at every bisection step by using
the above cut-net split method. Figure 5 illustratestwo cut nets »; and n;, in a bipartition, and their splitsinto nets
n’, n! and n},, nf, respectively. Note that net n; becomes a single-pin net and it is discarded.

Similar to multilevel graph and hypergraph partitioning tools Chaco [14], MeTiS [22] and hMeTiS [24], the
multilevel hypergraph bisection algorithm used in PaToH consists of 3 phases: coarsening, initial partitioning and
uncoarsening. The following sections briefly summarize our multilevel bisection agorithm. Although PaToH
works on weighted nets, we will assume unit cost nets both for the sake of simplicity of presentation and for the

fact that all nets are assigned unit cost in the hypergraph representation of sparse matrices.

14

4.2.1 Coarsening Phase

In this phase, the given hypergraph H = Ho = (Vo, No) is coarsened into a sequence of smaller hypergraphs
Hi=(V1,N1), Ho= Vo, N2), ..y Hi = (Vin, N) Satisfying [Vo| > [Vi|> [Vo| > ... > |V,,,|. Thiscoarsening is
achieved by coalescing digjoint subsets of vertices of hypergraph #; into multinodes such that each multinodein
H; formsasingle vertex of H;,1. Theweight of each vertex of H, 1 becomes equal to the sum of its constituent
vertices of the respective multinode in 7;. The net set of each vertex of 74,1 becomes equal to the union of the
net sets of the constituent vertices of the respective multinode in ;. Here, multiple pinsof anet n € A; in a
multinode cluster of #; are contracted to a single pin of the respective net »’ € N1 of H;y1. Furthermore, the
single-pin nets obtained during this contraction are discarded. Note that such single-pin nets correspond to the
internal nets of the clustering performed on ;. The coarsening phase terminates when the number of verticesin
the coarsened hypergraph reduces below 100 (i.e. |V,,| <100).

Clustering approaches can be classified as agglomerative and hierarchical. 1n the agglomerative cluster-
ing, new clusters are formed one at atime, whereas in the hierarchical clustering several new clusters may be
formed simultaneously. In PaToH, we have implemented both randomized matching—based hierarchical clustering
and randomized hierarchic—agglomerative clustering. The former and latter approaches will be abbreviated as
matching-based clustering and agglomerative clustering, respectively.

The matching-based clustering works as follows. Vertices of H; are visited in a random order. If a vertex
u € V; has not been matched yet, one of its unmatched adjacent vertices is selected according to a criterion. If
such avertex » exists, we merge the matched pair » and » into a cluster. If there is no unmatched adjacent vertex
of u, then vertex « remains unmatched, i.e., » remains as a singleton cluster. Here, two vertices « and » are said
to be adjacent if they share at least one net, i.e., nets[u] N nets[v] # . The selection criterion used in PaToH for
matching chooses avertex » with the highest connectivity value N,,,,. Here, connectivity Ny, = [nets[u] N nets[v]]
refers to the number of shared nets between « and v. This matching-based scheme is referred to here as Heavy
Connectivity Matching (HCM).

The matching-based clustering allows the clustering of only pairs of verticesin alevel. In order to enable the
clustering of more than two vertices at each level, we have implemented a randomized agglomerative clustering
approach. In this scheme, each vertex u is assumed to constitute a singleton cluster €', = {«} at the beginning
of each coarsening level. Then, vertices are visited in arandom order. If avertex « has already been clustered
(i.e. |Cy|> 1) itisnot considered for being the source of anew clustering. However, an unclustered vertex « can
choose to join a multinode cluster as well as a singleton cluster. That is, al adjacent vertices of an unclustered
vertex « are considered for selection according to a criterion. The selection of avertex » adjacent to « corresponds
to including vertex u to cluster C', to grow a new multinode cluster ¢, =C, =, U {u}. Note that no singleton
cluster remains at the end of this process as far as there exists no isolated vertex. The selection criterion used in
PaToH for agglomerative clustering chooses a singleton or multinode cluster C',, with the highest N, ¢, /W, c,

vaue, where N, ¢, = |nets[u] N U, o, nets[z]| and W, ¢, is the weight of the multinode cluster candidate

15

1 2 3 4 5 6 7 8
; v v v v 1 2 3 4 56 7 8
3 vz z v 1,3 r r @ r @ z
4 roEr T 2,6 r v = r r @
Ag= vz AHOM — 4,5 z r =z
5 T r 1 7 o v
6 z z r x @ p
7 z r @ z z
8 z z
1 2 3 4 5 6 7 8 1 4 5 6 8
1,2,3 r x r @ z 123 z r x @
A{{CC: 4,5 T r - 4,5 r T =
6,7,8 z z r r @ 6,7,8 r @ r =z

Figure 6: Matching-based clustering A{’“™ and agglomerative clustering A7 ““ of the rows of matrix Ao.

{u} U C,. Thedivisionof N, , by W, ¢, isan effort for avoiding the polarization towards very large clusters.
This agglomerative clustering scheme isreferred to here as Heavy Connectivity Clustering (HCC).

The objectivein both HCM and HCC isto find highly connected vertex clusters. Connectivity values N,,,, and
Ny, used for selection serve this objective. Note that N, (V. c,) aso denotes the lower bound in the amount
of decrease in the number of pinsbecause of the pin contractionsto be performed when « joinsv (C,). Recal that
there might be additional decrease inthe number of pinsbecause of single-pin netsthat may occur after clustering.
Hence, the connectivity metric is also an effort towards minimizing the complexity of the following coarsening
levels, partitioning phase and refinement phase since the size of a hypergraph is equal to the number of its pins.

In rowwise matrix decomposition context (i.e. column-net model), the connectivity metric corresponds to the
number of common column indices between two rows or row groups. Hence, both HCM and HCC try to combine
rows or row groups with similar sparsity patterns. This in turn corresponds to combining rows or row groups
which need similar sets of x-vector components in the pre-communication scheme. A dual discussion holds for
the row-net model. Figure 6 illustrates a single level coarsening of an 8x 8 sample matrix Ag in the column-net
model using HCM and HCC. The original decimal ordering of the rows is assumed to be the random vertex visit
order. Asseenin Fig. 6, HCM matches row pairs {1, 3}, {2, 6} and {4, 5} with the connectivity values of 3, 2
and 2, respectively. Note that the total number of nonzeros of Ag reduces from 28 to 21in AJ’“M after clustering.
Thisdifferenceisequal tothe sum 3+2+2 =7 of the connectivity values of the matched row-vertex pairssince pin
contractions do not lead to any single-pin nets. As seenin Fig. 6, HCC constructs three clusters {1, 2, 3}, {4, 5}
and {6, 7, 8} through the clustering sequence of {1, 3}, {1, 2, 3}, {4,5}, {6, 7} and {6, 7, 8} with the connectivity
valuesof 3, 4, 2, 3and 2, respectively. Note that pin contractions lead to three single-pin nets ny, n3 and ny, thus
columns 2, 3 and 7 are removed. Asalso seenin Fig. 6, although rows 7 and 8 remain unmatched in HCM, every
row isinvolvedin at |least one clustering in HCC.

Both HCM and HCC necessitate scanning the pin lists of all nets in the net list of the source vertex to find
its adjacent vertices for matching and clustering. In the column-net (row-net) model, the total cost of these scan
operations can be as expensive as the total number of multiply and add operations which lead to nonzero entries

in the computation of AAT (AT A). In HCM, the key point to efficient implementation is to move the matched

16

vertices encountered during the scan of the pinlist of anet to theend of itspin list through asimple swap operation.
This scheme avoids the re-visits of the matched vertices during the following matching operations at that level.
Although this scheme requires an additional index array to maintain the temporary tail indices of the pin lists,
it achieves substantial decrease in the run-time of the coarsening phase. Unfortunately, this simple yet effective
scheme cannot be fully used in HCC. Since a singleton vertex can select a multinode cluster, the re-visits of the
clustered vertices are partially avoided by maintaining only a single vertex to represent the multinode cluster in
the pin-list of each net connected to the cluster, through simple swap operations. Through the use of these efficient
implementation schemes the total cost of the scan operations in the column-net (row-net) model can be as low
as the total number of nonzerosin AAT (AT A). In order to maintain this cost within reasonable limits, all nets
of size greater than 4s,,, are not considered in a bipartitioning step, where s,,,, denotes the average net size of
the hypergraph to be partitioned in that step. Note that such nets can be reconsidered during the further levels of
recursion because of net splitting.

The cluster growing operation in HCC requires digjoint-set operations for maintaining the representatives of
the clusters, where the union operations are restricted to the union of a singleton source cluster with a singleton or
amultinodetarget cluster. Thisrestriction is exploited by always choosing the representative of the target cluster
as the representative of the new cluster. Hence, it is sufficient to update the representative pointer of only the
singleton source cluster joining to a multinode target cluster. Therefore, each digjoint-set operation required in

this schemeis performed in O(1) time.

4.2.2 Initial Partitioning Phase
Thegoal inthisphaseisto find abipartition on the coarsest hypergraph H,,,. InPaToH, we use Greedy Hypergraph

Growing (GHG) algorithm for bisecting #,,,. This agorithm can be considered as an extension of the GGGP
algorithm used in MeTiS to hypergraphs. In GHG, we grow a cluster around a randomly selected vertex. During
the coarse of the algorithm, the selected and unselected vertices induce a bipartition on 7,,. The unselected
vertices connected to the growing cluster are inserted into a priority queue according to their FM gains. Here,
the gain of an unselected vertex corresponds to the decrease in the cutsize of the current bipartition if the vertex
moves to the growing cluster. Then, a vertex with the highest gain is selected from the priority queue. After a
vertex movesto the growing cluster, the gains of its unselected adjacent vertices which are currently in the priority
gueue are updated and those not in the priority queue are inserted. Thiscluster growing operation continuesuntil a
predetermined bipartition balance criterion isreached. As also mentioned in MeTiS, the quality of this algorithm
is sensitive to the choice of the initial random vertex. Since the coarsest hypergraph H,,, issmall, we run GHG 4
timesstarting from different random vertices and select the best bipartition for refinement during the uncoarsening

phase.

4.2.3 Uncoarsening Phase
At each level ¢ (for i = m,m—1,...,1), bipartition I1; found on H; is projected back to a bipartition IT;_1

on H;_1. The constituent vertices of each multinode in H;_; is assigned to the part of the respective vertex in

17

H;. Obviously, IT;_1 of H;_; hasthe same cutsize with TT; of ;. Then, we refine this bipartition by running a
Boundary FM (BFM) hypergraph bipartitioning algorithm on H;_; starting from initial bipartition IT;_1. BFM
moves only the boundary vertices from the overloaded part to the under-loaded part, where avertex issaid to be a
boundary vertex if it is connected to an at least one cut net.

BFM requires maintaining the pin-connectivity of each net for both initial gain computations and gain updates.
The pin-connectivity oi[n] = |n N Py| of anet n to apart P, denotes the number of pins of net » that lie in part
Pr, for k£ = 1, 2. In order to avoid the scan of the pin lists of al nets, we adopt an efficient scheme to initialize
the o valuesfor thefirst BFM passin alevel. Itisclear that initial bipartition I'l;_, of H;_1 has the same cut-net
set with IT; of H;. Hence, we scan only the pin lists of the cut nets of I1;_; to initiaize their o values. For each
other net n, o1[n] and o[n] values are easily initiaized as o1[n] = s,, and o2[n] = O if net n isinternal to part
P1, and o1[n] = 0 and o[n] = s,, otherwise. After initializing the gain value of each vertex » as g[v] = —d,,, we
exploit o values as follows. We re-scan the pinlist of each external net » and update the gain value of each vertex
v € pins[n] asg[v] = g[v] + 2 0or g[v] = g[v] + 1 depending on whether net » is critical to the part containing v
or not, respectively. An external net » issaid to becritical to apart & if o;[n] = 1 so that moving the single vertex
of net » that liesin that part to the other part removes net » from the cut. Note that two-pin cut nets are critical to
both parts. The vertices visited while scanning the pin-lists of the external nets are identified as boundary vertices
and only these vertices are inserted into the priority queue according to their computed gains.

In each pass of the BFM algorithm, a sequence of unmoved vertices with the highest gains are sel ected to move
to the other part. Asintheorigina FM agorithm, a vertex move necessitates gain updates of its adjacent vertices.
However, in the BFM agorithm, some of the adjacent vertices of the moved vertex may not be in the priority
queue, because they may not be boundary vertices before the move. Hence, such vertices which become boundary
vertices after the move are inserted into the priority queue according to their updated gain values. The refinement
process within a pass terminates when no feasible move remains or the sequence of last max{50, 0.001|V;|}
moves does not yield a decrease in the total cutsize. A move issaid to be feasible if it does not disturb the load
balance criterion (1) with K = 2. At the end of a BFM pass, we have a sequence of tentative vertex moves and
their respective gains. We then construct from this sequence the maximum prefix subsequence of moves with the
maximum prefix sum which incurs the maximum decrease in the cutsize. The permanent realization of the moves
in this maximum prefix subsegquence is efficiently achieved by rolling back the remaining moves at the end of the
overall sequence. Theinitial gain computationsfor the following passin alevel isachieved through this rollback.
The overall refinement processin a level terminatesif the maximum prefix sum of a passis not positive. In the

current implementation of PaToH, at most 2 BFM passes are allowed at each level of the uncoarsening phase.

5 EXPERIMENTAL RESULTS

We have tested the validity of the proposed hypergraph models by running MeTiS on the graphs obtained by
randomized clique-net transformation, and running PaToH and hMeTiS directly on the hypergraphsfor the decom-

positions of various realistic sparse test matrices arising in different application domains. These decomposition

18

results are compared with the decompositions obtained by running MeTiS using the standard and proposed graph

models for the symmetric and nonsymmetric test matrices, respectively. The most recent version (Version 3.0)

of MeTiS [22] was used in the experiments. As both hMeTiS and PaToH achieve K -way partitioning through
recursive bisection, recursive MeTiS (pMeTiS) was used for the sake of a fair comparison. Another reason for
using pMeTiS isthat direct K -way partitioning version of MeTiS (kMeTiS) produces 9% worse partitions than
pMeTiS in the decomposition of the nonsymmetric test matrices, athough it is 2.5 times faster, on the average.

pMeTiS was run with the default parameters: sorted heavy-edge matching, region growing and early-exit bound-
ary FM refinement for coarsening, initia partitioning and uncoarsening phases, respectively. The current version
(Version 1.0.2) of hMeTiS[24] wasrun with the parameters: greedy first-choice scheme (GFC) and early-exit FM
refinement (EE-FM) for coarsening and uncoarsening phases, respectively. The V-cycle refinement scheme was
not used, because in our experimentationsit achieved at most 1% (much less on the average) better decompositions
at the expense of approximately 3 times slower execution time (on the average) in the decomposition of the test

matrices. The GFC scheme wasfound to be 28% faster than the other clustering schemes while producing slightly
(1%-2%) better decompositionson the average. The EE-FM scheme was observed to be 30% faster than the other
refinement schemes without any difference in the decomposition quality on the average.

Tablel illustratesthe properties of thetest matriceslisted in the order of increasing number of nonzeros. Inthis
table, the “description” column displays both the nature and the source of each test matrix. The sparsity patterns
of the Linear Programming matrices used as symmetric test matrices are obtained by multiplying the respective
rectangular constraint matrices with their transposes. In Table I, the total number of nonzeros of a matrix also
denotes the total number of pinsin both column-net and row-net models. The minimum and maximum number
of nonzeros per row (column) of a matrix correspond to the minimum and maximum vertex degree (net size) in
the column-net model, respectively. Similarly, the standard deviation std and coefficient of variation cov values
of nonzeros per row (column) of a matrix correspond to the std and cov values of vertex degree (net size) in the
column-net model, respectively. Dual correspondences hold for the row-net model.

All experimentswere carried out on aworkstation equipped with a133 MHz PowerPC processor with 512-Kbyte
external cache and 64 Mbytes of memory. We have tested K = 8, 16, 32 and 64 way decompositions of every
test matrix. For a specific K value, K-way decomposition of a test matrix constitutes a decomposition instance.
pMeTiS, hMeTiS and PaToH were run 50 times starting from different random seeds for each decomposition
instance. The average performance results are displayed in Tables 11—V and Figs. 7-9 for each decomposition
instance. The percent load imbalance values are below 3% for all decomposition resultsdisplayed in these figures,
where percent imbalance ratio is defined as 100 X (W00 — Wayg)/ Wy

Tablell displaysthe decomposition performance of the proposed hypergraph model stogether with the standard
graph model in the rowwise/columnwise decomposition of the symmetric test matrices. Note that the rowwise
and columnwise decomposition problems become equivalent for symmetric matrices. Tables 111 and IV display

the decomposition performance of the proposed column-net and row-net hypergraph models together with the

19

proposed graph models in the rowwise and columnwise decompositions of the nonsymmetric test matrices,
respectively. Due to lack of space, the decomposition performance results for the clique-net approach are not
displayed in Tables1-1V, instead they are summarized in Table V. Although the main objective of thiswork is
the minimization of the total communication volume, the results for the other performance metrics such as the
maximum volume, average number and maximum number of messages handled by a single processor are also
displayed in Tables I1-1V. Note that the maximum volume and maximum number of messages determine the
concurrent communication volume and concurrent number of messages, respectively, under the assumption that
Nno congestion occurs in the network.

Asseenin Tables|1-1V, the proposed hypergraph models produce substantially better partitionsthan the graph
model at each decompositioninstanceintermsof total communicationvolumecost. |nthe symmetric test matrices,
the hypergraph model produces 7%-48% better partitionsthan the graph model (see Tablell). Inthe nonsymmetric
test matrices, the hypergraph models produce 12%—-63% and 9%-56% better partitions than the graph modelsin
the rowwise (see Table I11) and columnwise (see Table 1V) decompositions, respectively. Asseenin Tables1I-IV,
thereisno clear winner between hMeTiS and PaToH in terms of decomposition quality. In some matriceshMeTiS
produces slightly better partitionsthan PaToH, whereas the situation isthe other way round in some other matrices.
Asseenin Tables Il and I, there is aso no clear winner between clustering schemes HCM and HCC in PaToH.
However, asseenin Table 1V, PaToH-HCC produces dlightly better partitionsthan PaToH-HCM inall columnwise
decomposition instances for the nonsymmetric test matrices.

Tables [1-1V show that the performance gap between the graph and hypergraph modelsin terms of the total
communication volume costsis preserved by almost the same amountsin terms of the concurrent communication
volume costs. For example, in the decomposition of the symmetric test matrices, the hypergraph model using
PaToH-HCM incurs 30% less total communication volume than the graph model while incurring 28% less
concurrent communication volume, onthe overall average. Inthe columnwise decomposition of the nonsymmetric
test matrices, PaToH-HCM incurs 35% less total communication volume than the graph model while incurring
37% less concurrent communication volume, on the overall average.

Although the hypergraph models perform better than the graph models in terms of number of messages, the
performance gap isnot as large as in the communi cation volume metrics. However, the performance gap increases
withincreasing K. AsseeninTablell, inthe 64-way decomposition of the symmetrictest matrices, the hypergraph
model using PaToH-HCC incurs 32% and 10% lesstotal and concurrent number of messagesthan the graph model,
respectively. As seenin Table 11, in the rowwise decomposition of the nonsymmetric test matrices, PaToH-HCC
incurs 32% and 26% less total and concurrent number of messages than the graph model, respectively.

The performance comparison of the graph/hypergraph partitioning based 1D decomposition schemes with the
conventional agorithmshbased on 1D and 2D [15, 30] decomposition schemesisasfollows. Asmentioned earlier,
in K -way decompositionsof m x m matrices, the conventional 1D and 2D schemesincur the total communication

volume of (K — 1)m and 2(v/K — 1)m words, respectively. For example, in 64-way decompositions, the

20

conventional 1D and 2D schemes incur the total communication volumes of 63m and 14m words, respectively.
As seen at the bottom of Tables Il and 111, PaToH-HCC reduces the total communication volume to 1.91m and
0.90m words in the 1D 64-way decomposition of the symmetric and nonsymmetric test matrices, respectively,
on the overall average. In 64-way decompositions, the conventional 1D and 2D schemes incur the concurrent
communication volumes of approximately m and 0.22m words, respectively. As seen in Tables Il and Il
PaToH-HCC reduces the concurrent communication volume to 0.052m and 0.025m words in the 1D 64-way
decomposition of the symmetric and nonsymmetric test matrices, respectively, on the overall average.

Figure 7 illustrates the relative run-time performance of the proposed hypergraph model compared to the
standard graph model in the rowwise/columnwise decomposition of the symmetric test matrices. Figures 8
and 9 display the relative run-time performance of the column-net and row-net hypergraph models compared to
the proposed graph models in the rowwise and columnwise decompositions of the nonsymmetric test matrices,
respectively. In Figs. 7-9, for each decomposition instance, we plot the ratios of the average execution times
of the tools using the respective hypergraph model to that of pMeTiS using the respective graph model. The
results displayed in Figs. 7-9 are obtained by assuming that the test matrix is given either in CSR or in CSC
form which are commonly used for SpMxV computations. The standard graph model does not necessitate any
preprocessing since CSR and CSC forms are equivalent in symmetric matrices and both of them correspond to
the adjacency list representation of the standard graph model. However, in nonsymmetric matrices, construction
of the proposed graph model requires some amount of preprocessing time, although we have implemented a very
efficient construction code which totally avoids index search. Thus, the execution time averages of the graph
models for the nonsymmetric test matrices include this preprocessing time. The preprocessing time constitutes
approximately 3% of the total execution time on the overall average. In the clique-net model, transforming
the hypergraph representation of the given matrices to graphs using the randomized clique-net model introduces
considerable amount of preprocessing time, despite the efficient implementation scheme we have adopted. Hence,
the execution time averages of the clique-net model include this transformation time. The transformation time
constitutes approximately 23% of the total execution time on the overall average. Asmentioned earlier, the PaToH
and hMeTi S tools use both CSR and CSC forms such that the construction of the other form from the given oneis
performed within the respective tool.

As seen in Figs. 7-9, the tools using the hypergraph models run slower than pMeTiS using the the graph
models in most of the instances. The comparison of Fig. 7 with Figs. 8 and 9 shows that the gap between the
run-time performances of the graph and hypergraph modelsis much lessin the decomposition of the nonsymmetric
test matrices than that of the symmetric test matrices. These experimental findings were expected, because the
execution times of graph partitioning tool pMeTiS, and hypergraph partitioning tools hMeTiS and PaToH are
proportional to the sizes of the graph and hypergraph, respectively. In the representation of an m x m square matrix
with Z off-diagonal nonzeros, the graph models contain || = Z/2 and Z/2 < |£| < Z edges for symmetric

and nonsymmetric matrices, respectively. However, the hypergraph models contain p = m + Z pins for both

21

symmetric and nonsymmetric matrices. Hence, the size of the hypergraph representation of a matrix is always
greater than the size of itsgraph representation, and thisgap in the sizesdecreasesin favor of the hypergraph models
in nonsymmetric matrices. Figure 9 displays an interesting behavior that pMeTiS using the clique-net model runs
faster than pMeTiS using the graph model in the columnwise decomposition of 4 out of 9 nonsymmetric test
matrices. In these 4 test matrices, the edge contractions during the hypergraph-to-graph transformation through
randomized clique-net approach lead to less number of edges than the graph model.

As seen in Figs. 7-9, both PaToH-HCM and PaToH-HCC run considerably faster than hMeTiS in each
decomposition instance. This situation can be most probably due to the design considerations of hMeTiS.
hMeTiS mainly aims at partitioning VLSI circuits of which hypergraph representations are much more sparse
than the hypergraph representations of the test matrices. In the comparison of the HCM and HCC clustering
schemes of PaToH, PaToH-HCM runs dlightly faster than PaToH-HCC in the decomposition of almost all test
matrices except in the decomposition of symmetric matrices KEN-11 and KEN-13, and nonsymmetric matrices
ONETONEL and ONETONE2. As seen in Fig. 7, PaToH-HCM using the hypergraph model runs 1.47-2.93
times slower than pMeTiS using the graph model in the decomposition of the symmetric test matrices. As seen
in Figs. 8 and 9, PaToH-HCM runs 1.04-1.63 times and 0.83-1.79 times slower than pMeTiS using the graph
model in the rowwise and columnwise decomposition of the nonsymmetric test matrices, respectively. Note that
PaToH-HCM runs 17%, 8% and 6% faster than pMeTiS using the graph model in the 8-way, 16-way and 32-
way columnwise decompositions of nonsymmetric matrix LHR34, respectively. PaToH-HCM achieves 64-way
rowwise decomposition of the largest test matrix BCSSTK 32 containing 44.6K rows/columnsand 1030K nonzeros
in only 25.6 seconds, which is equal to the sequential execution time of multiplying matrix BCSSTK32 with a
dense vector 73.5 times.

The relative performance results of the hypergraph models with respect to the graph models are summarized
in Table V in terms of total communication volume and execution time by averaging over different K values.
This table also displays the averages of the best and worst performance results of the tools using the hypergraph
models. In Table V, the performance results for the hypergraph models are normalized with respect to those of
pMeTiS using the graph models. In the symmetric test matrices, direct approaches PaToH and hMeTiS produce
30%—-32% better partitions than pMeTiS using the graph model, whereas the clique-net approach produces 16%
better partitions, on the overall average. In the nonsymmetric test matrices, the direct approaches achieve 34%-—
38% better decomposition quality than pMeTiS using the graph model, whereas the clique-net approach achieves
21%-24% better decomposition quality. As seen in Table V, the clique-net approach is faster than the direct
approaches in the decomposition of the symmetric test matrices. However, PaToH-HCM achieves nearly equal
run-time performance as pMeTiS using the clique-net approach in the decomposition of the nonsymmetric test
matrices. It isinteresting to note that the execution time of the clique-net approach relative to the graph model
decreases with increasing number of processors KA. This is because of the fact that the percent preprocessing

overhead due to the hypergraph-to-graph transformationin the total execution time of pMeTiS using the clique-net

22

approach decreases with increasing K .

As seen in Table V, hMEeTiS produces dlightly (2%) better partitions at the expense of considerably larger
execution time in the decomposition of the symmetric test matrices. However, PaToH-HCM achieves the same
decomposition quality as hMeTiS for the nonsymmetric test matrices, whereas PaToH-HCC achieves dightly
(2%-3%) better decomposition quality. In the decomposition of the nonsymmetric test matrices, athough PaToH-
HCC performs dlightly better than PaToH-HCM in terms of decomposition quality, it is 13%—14% slower.

In the symmetric test matrices, the use of the proposed hypergraph model instead of the graph model achieves
30% decrease in the communication volumereguirement of asingle parallel SpMxV computation at the expense of
130% increase in the decomposition time by using PaToH-HCM for hypergraph partitioning. In the nonsymmetric
test matrices, the use of the proposed hypergraph model sinstead of the graph model achieves 34%—-35% decrease in
the communication volume requirement of asingle parallel SpMxV computation at the expense of only 34%-39%

increase in the decomposition time by using PaToH-HCM.

6 CONCLUSION

Two computational hypergraph models were proposed to decompose sparse matrices for minimizing communi-
cation volume while maintaining load balance during repeated parallel matrix-vector product computations. The
proposed models enable the representation and hence the decomposition of structurally nonsymmetric matrices
as well as structurally symmetric matrices. Furthermore, they introduce a much more accurate representation for
the communi cation requirement than the standard computational graph model widely used in the literature for the
paralelization of various scientific applications. The proposed models reduce the decomposition problem to the
well-known hypergraph partitioning problem thus enabling the use of circuit partitioning heuristicswidely used in
VLS design. The successful multilevel graph partitioning tool MeTiS was used for the experimental eval uation of
thevalidity of the proposed hypergraph model sthrough hypergraph-to-graph transformation using the randomized
cligue-net model. A successful multilevel hypergraph partitioning tool PaToH was also implemented, and both
PaToH and recently released multilevel hypergraph partitioning tool hMeTiS were used for testing the validity of
the proposed hypergraph models. Experimental results carried out on awide range of sparse test matrices arising
in different application domains confirmed the validity of the proposed hypergraph models. In the decomposition
of the test matrices, the use of the proposed hypergraph models instead of the graph models achieved 30%-38%
decrease in the communi cation volume requirement of asingleparallel matrix-vector multiplication at the expense
of only 34%-130% increase in the decomposition time by using PaToH, on the average. Thiswork was also an
effort towards showing that the computational hypergraph model is more powerful than the standard computa-
tional graph model asit provides amore versatile representation for the interactions among the atomic tasks of the

computational domains.

23

References

[1]

[2]

(3]

[4]

[5]

6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

C. J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning: A survey,” VLS Journal, vol. 19,
no. 1-2, pp. 1-81, 1995.

C. J. Alpert, L. W. Hagen, and A. B. Kahng, “A hybrid multilevel/genetic approach for circuit partitioning,”
tech. rep., UCLA Computer Science Department, 1996.

C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan, “Iterative algorithmsfor solution of large sparse systems
of linear equations on hypercubes,” |EEE Transactions on Computers, vol. 37, no. 12, pp. 1554-1567, Dec.
1988.

T. Bui, and C. Jones, “A heuristic for reducing fill in sparse matrix factorization,” in Proc. 6th SAM Conf.
Parallel Processing for Scientific Computing, pp. 445-452, 1993.

T. Bultan and C. Aykanat, “A new mapping heuristic based on mean field annealing,” J. Parallel and
Distributed Computing, vol. 16, pp. 292-305, 1992.

W. Camp, S. J. Plimpton, B. Hendrickson, and R. W. Leland, “Massively parallel methods for engineering
and science problems,” Communication of ACM, vol. 37, pp. 31-41, April 1994.

W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wichmann, “An empirical evaluation of the
korbx algorithmsfor military airlift applications,” Operations Research, vol. 38, no. 2, pp. 240-248, 1990.

U. V. Catalyirek and C. Aykanat, “Decomposing irregularly sparse matrices for parallel matrix-vector
multiplications,” in Proc. 3rd Int. Workshop on Parallel Algorithms for Irregularly Structured Problems
(IRREGULAR 96), pp. 175-181, 1996.

I. S. Duff, R. Grimes, and J. Lewis, “Sparse matrix test problems,” ACM Transactions on Mathematical
Software, vol. 15, pp. 1-14, March 1989.

C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network partitions,” in Pro-
ceedings of the 19th ACM/IEEE Design Automation Conference, pp. 175-181, 1982.

M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems,” Theoretical
Computer Science, vol. 1, pp. 237-267, 1976.

M. K. Goldberg, and M. Burstein, “Heuristic improvement techniques for bisection of visi networks,” in
Proc. |IEEE Intl. Conf. Computer Design, pp. 122-125, 1983.

B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning graphs,” tech. rep., Sandia National
Laboratories, 1993.

B. Hendrickson and R. Leland, The Chaco user’'s guide, version 2.0, tech. rep. SAND95-2344, Sandia
National Laboratories, Alburquerque, NM, 87185, 1995.

B. Hendrickson, R. Leland, and S. Plimpton, “An efficient parallel algorithm for matrix-vector multiplication,”
Int. J. High Speed Computing, vol. 7, no. 1, pp. 73-88, 1995.

B. Hendrickson, “Graph partitioning and parallel solvers. has the emperor no clothes?” Lecture Notes in
Computer Science, vol. 1457, pp. 218-225, 1998.

B. Hendrickson and T. G. Kolda “Partitioning rectangular and structurally nonsymmetric sparse matrices for
paralel processing,” submitted to SSAM Journal on Scientific Computing.

E. Ihler, D. Wagner, and F. Wagner, “Modeling hypergraphs by graphs with the same mincut properties,”
Information Processing Letters, vol. 45, pp. 171-175, March 1993.

IOWA Optimization Center, Linear programming problems, ftp://col.biz.uiowa.edu: pub/testprob/Ip/gondzio.

24

[20] M. Kaddoura, C. W. Qu, and S. Ranka, “Partitioning unstructured computational graphs for nonuniform and
adaptive environments,” | EEE Parallel and Distributed Technology, pp. 63-69, 1995.

[21] G. Karypisand V. Kumar, “A fast and high quality multilevel schemefor partitioningirregular graphs,” S AM
Journal on Scientific Computing, to appear.

[22] G. Karypis and V. Kumar, MeTiS A Software Package for Partitioning Unstructured Graphs, Partitioning
Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Version 3.0. University of Minnesota,
Department of Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[23] G. Karypis, V. Kumar, R. Aggarwal, and S. Shekhar, “Hypergraph partitioning using multilevel approach:
applicationsin VLS| domain,” IEEE Transactionson VLS Systems, to appear.

[24] G. Karypis, V. Kumar, R. Aggarwal, and S. Shekhar, hMeTiS A Hypergraph Partitioning Package Ver-
sion 1.0.1. University of Minnesota, Department of Comp. Sci. and Eng., Army HPC Research Center,
Minneapolis, 1998.

[25] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” The Bell System
Technical Journal, vol. 49, pp. 291-307, Feb. 1970.

[26] T. G. Kolda, “Partitioning sparse rectangular matrices for parallel processing,” Lecture Notes in Computer
Science, vol. 1457, pp. 68-79, 1998.

[27] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and Analysis
of Algorithms. Redwood City, CA: Benjamin/Cummings Publishing Company, 1994.

[28] V. Lakamsani, L. N. Bhuyan, and D. S. Linthicum, “Mapping molecular dynamics computations on to
hypercubes,” Parallel Computing, vol. 21, pp. 993-1013, 1995.

[29] T.Lengauer, Combinatorial Algorithmsfor Integrated Circuit Layout. Chichester, U.K.: Wiley, 1990.

[30] J. G.LewisandR. A.vande Geijn, “Distributed memory matrix-vector multiplicationand conjugate gradient
algorithms,” in Proc. Supercomputing’ 93, pp. 15-19, 1993.

[31] O.C.Martinand S. W. Otto, “Partitioning of unstructured meshesfor load balancing,” Concurrency: Practice
and Experience, vol. 7, no. 4, pp. 303-314, 1995.

[32] S. G. Nastea, O. Frieder, and T. El-Ghazawi, “L oad-balanced sparse matrix-vector multiplication on parallel
computers,” J. Parallel and Distributed Computing, vol. 46, pp. 439-458, 1997.

[33] A.T. Ogielski and W. Aielo, “Sparse matrix computations on parallel processor arrays,” SAM J. Sientific
Comput., 1993.

[34] A. Pinar, U. V. Catalyiirek, C. Aykanat, and M. Pinar, “Decomposing linear programs for parallel solution,”
Lecture Notesin Computer Science, vol. 1041, pp. 473-482, 1996.

[35] C. Pommerell, M. Annaratone, and W. Fichtner, “A set of new mapping and coloring heuristicsfor distributed-
memory parallel processors,” SAM J. Scientific and Statistical Computing, vol. 13, pp. 194-226, Jan. 1992.

[36] C.-W. Qu and S. Ranka, “Paralel incremental graph partitioning,” IEEE Trans. Parallel and Distributed
Systems, val. 8, no. 8, pp. 884-896, 1997.

[37] Y. Saad, K. Wu, and S. Petiton, “Sparse matrix computations on the CM-5,” in Proc. 6th SAM Conf. on
Parallel Processing for Scientifical Computing, 1993.

[38] D. G. Schweikert and B. W. Kernighan, “A proper model for the partitioning of electrical circuits,” in
Proceedings of the 9th ACM/IEEE Design Automation Conference, pp. 57-62, 1972.

[39] T. Davis, University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/ davis/sparse/, NA Digest,
vol. 92/96/97, no. 42/28/23, 1994/1996/1997.

25

Table |: Properties of test matrices.

number number of nonzeros

matrix name | description of total avg. per per column per row

rows/cols row/col | min max std cov | min max std cov

Structurally Symmetric Matrices
SHERMANS3 | [9] 3D finite differencegrid 5005 20033 4.00 1 7 266 0.67 1 7 266 0.67
KEN-11 [7] linear programming 14694 82454 5.61 2 243 1454 259 2 243 1454 259
NL [19] linear programming 7039 105089 14.93 1 361 2848 191 1 361 2848 191
KEN-13 [7] linear programming 28632 161804 5.65 2 339 1684 298 2 339 1684 298
CQ9 [19] linear programming 9278 221590 23.88 1 702 5446 228 1 702 5446 228
COo9 [19] linear programming 10789 249205 23.10 1 707 5217 226 1 707 5217 226
CRE-D [7] linear programming 8926 372266 41.71 1 845 7646 1.83 1 845 7646 1.83
CRE-B [7] linear programming 9648 398806 41.34 1 904 7469 181 1 904 7469 181
FINANS512 [39] stochastic programming 74752 615774 8.24 3 1449 2000 243 3 1449 2000 243
Structurally Nonsymmetric Matrices

GEMAT11 [9] optimal power flow 4929 38101 7.73 1 28 296 0.38 1 29 338 044
LHRO7 [39] light hydrocarbon recovery 7337 163716 22.31 1 64 2619 117 2 37 16.00 0.72
ONETONE2 | [39] nonlinear analog circuit 36057 254595 7.06 2 34 513 073 2 66 6.67 094
LHR14 [39] light hydrocarbon recovery 14270 321988 22.56 1 64 2626 116 2 37 1598 071
ONETONE1 | [39] nonlinear analog circuit 36057 368055 10.21 2 82 1432 140 2 162 1785 175
LHR17 [39] light hydrocarbonrecovery 17576 399500 22.73 1 64 2632 116 2 37 1596 0.70
LHR34 [39] light hydrocarbon recovery 35152 799064 22.73 1 64 2632 116 2 37 1596 0.70
BCSSTK32 [9] 3D stiffness matrix 44609 | 1029655 23.08 1 141 1010 044 1 192 1045 045
BCSSTK30 [9] 3D stiffness matrix 28924 | 1036208 35.83 1 159 2199 0.61 1 104 1527 043

26

TableI1: Average communication requirementsfor rowwise/columnwise decomposition of structurally symmetric

test matrices.
Graph Model Hypergraph Model: Column-net Model = Row-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.

per proc. volume per proc. volume per proc. volume per proc. volume
avg max tot max avg max tot max avg max tot max avg max tot max
8 36 49 020 0.033 36 50 017 0.029 34 49 016 0.030 33 48 016 0.030
16 53 82 031 0.028 52 78 027 0024 | 45 74 025 0.024 4.7 78 025 0.025
SHERMANS3 | 32 65 11.0 046 0.021 6.7 109 039 0.018 57 101 037 0.019 59 105 037 0019
64 75 136 064 0.016 79 136 055 0.013 70 131 053 0.014 70 134 053 0.014
8 7.0 70 070 0.116 6.9 70 047 0.078 6.9 70 051 0.083 7.0 70 055 0.094
16 || 138 150 092 0080 || 124 150 057 0.047 |128 150 059 0046 |[137 150 0.66 0.057
KEN-11 32| 261 305 116 005 || 198 303 070 0032 [21.2 310 073 0033 |221 305 079 0.034
64 || 409 549 144 0038 || 301 586 090 0024 |321 604 092 0025 |301 542 096 0025
8 7.0 70 133 0.192 6.8 70 072 0110 6.8 70 076 0124 7.0 70 079 0135
16 || 150 150 171 0147 || 135 150 099 008 |132 150 105 0097 [137 150 114 0101
NL 32] 281 310 226 0101 || 195 265 140 0060 |200 276 152 0.068 |203 275 157 0.070
64 || 382 591 306 0.073 ||244 393 208 0045 |264 405 220 0048 |260 429 223 0050
8 7.0 70 075 0120 7.0 70 047 0.070 7.0 70 048 0.075 6.9 70 048 0.076
16 || 148 150 094 0078 || 132 150 054 0.043 |140 150 055 0041 [134 150 055 0.042
KEN-13 32 || 292 310 116 0051 || 227 310 064 0029 |[228 310 063 0.025 |21.8 31.0 063 0.027
64 || 51.0 622 141 0.034 || 359 628 080 0022 |358 630 079 0020 |347 630 078 0019
8 7.0 70 111 0173 7.0 70 065 0.104 7.0 70 071 0154 6.9 70 071 0.166
16 || 149 150 169 0172 || 127 150 088 0.097 |129 150 099 0120 [127 149 09 0112
CQ9 32 || 21.8 307 242 0148 || 186 266 136 0075 [180 270 147 0.08 |176 269 140 0.082
64 || 321 564 371 0115 || 237 384 227 0061 |227 410 234 0065 |227 395 231 0064
8 7.0 70 09 0.156 7.0 70 067 0110 7.0 70 068 0.133 7.0 70 067 0139
16 || 148 150 151 0157 || 124 149 087 0.091 |127 149 094 0110 |(127 149 092 0.107
CO9 32 || 195 297 208 0120 (| 176 266 133 0079 |176 263 137 0.077 |181 267 134 0.079
64 || 299 523 314 0093 || 2.7 373 213 0061 |21.8 388 216 0059 |219 386 214 0062
8 7.0 70 181 0.292 6.9 70 139 0.226 6.4 70 133 0.214 6.2 70 125 0.208
16 || 149 150 281 0238 || 130 150 209 0177 |11.8 150 200 0176 [11.2 150 189 0.163
CRE-D 32 || 287 310 413 0188 || 213 310 297 0136 (193 310 289 0133 |184 31.0 273 0124
64 || 479 630 601 0142 || 312 613 416 0104 |297 608 419 0104 |279 605 396 0.098
8 7.0 70 170 0.267 6.9 70 140 0224 6.7 70 133 0.213 6.6 70 128 0212
16 || 148 150 262 0230 || 134 150 207 0177 |122 150 201 0175 (122 150 195 0.180
CRE-B 32| 285 310 389 0179 || 225 309 290 0138 |200 31.0 288 0148 [193 310 275 0154
64 || 466 630 572 0136 || 31.3 614 407 0111 |300 617 412 0121 |283 615 393 0125
8 29 43 013 0.047 28 42 011 0.045 3.0 46 012 0.047 34 56 012 0.047
16 43 72 020 0.034 3.0 6.7 014 0.024 33 72 016 0.025 4.0 94 017 0.027
FINAN512 32 6.3 136 027 0.020 34 132 018 0.015 42 138 021 0.016 47 173 022 0017
64 88 265 038 0.013 42 258 028 0.010 55 264 031 0011 59 310 032 0.012

Averagesover K

8 6.2 65 097 0.155 6.1 65 067 0111 6.0 65 068 0.119 6.0 6.6 0.67 0123
16 || 125 134 141 0129 || 11.0 133 093 0085 |108 133 095 0091 (109 136 0.94 0.090
32 || 216 266 198 0098 || 168 252 132 0065 |[165 254 134 0.067 |165 258 131 0.067
64 || 336 501 283 0.073 || 234 443 192 0050 |234 451 195 0052 |227 450 191 0052

Inthe “# of mssgs” column, “avg” and “max” denote the average and maximum number of messages, respectively, handled by
asingle processor. In the “comm. volume” column, “tot” denotes the total communication volume, whereas “max” denotes
the maximum communication volume handled by a single processor. Communication volume values (in terms of the number
of words transmitted) are scaled by the number of rows/columns of the respective test matrices.

27

Table I11: Average communication requirement for rowwise decomposition of structurally nonsymmetric test

matrices.
Graph Model Hypergraph Model: Column-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.

per proc. volume per proc. volume per proc. volume per proc. volume
avg max tot max avg max tot max avg max tot max avg max tot max
8 7.0 70 133 0.201 7.0 70 079 0111 7.0 70 075 0.109 7.0 70 073 0.106
16 || 150 150 185 0144 || 148 150 100 0071 |147 150 096 0070 146 150 093 0.067
GEMAT11 32 || 298 310 231 0092 || 266 308 118 0044 |[258 306 115 0.043 |251 304 110 0.042
64 || 477 588 271 0.056 || 343 467 133 0026 |335 462 132 0026 |319 442 127 0.025
8 6.8 70 109 0.179 6.2 70 064 0111 6.0 70 065 0.106 5.8 70 066 0.116
16 || 13.0 150 152 0130 || 103 139 093 0.089 97 138 091 0.081 92 131 090 0.083
LHRO7 32 (1201 291 196 0094 (| 139 223 130 0081 [130 217 124 0.066 |125 205 124 0064
64 || 244 448 249 0.079 || 168 335 184 0077 |156 300 165 005 |159 307 164 0.059
8 2.8 43 0.08 0.014 26 38 0.06 0.010 24 35 006 0.011 25 36 006 0.010
16 4.9 75 017 0.015 49 73 011 0.010 47 69 012 0011 4.7 6.8 012 0011
ONETONE2 | 32 70 119 028 0.014 75 133 020 0.009 80 119 0.22 0.009 71 109 021 0.009
64 94 186 039 0.011 || 101 201 0.29 0.007 |10.7 172 031 0.008 94 158 031 0.008
8 7.0 70 099 0.157 6.6 70 061 0.100 6.4 70 059 0.095 6.2 70 059 0.097
16 || 140 150 133 0116 || 114 146 084 0074 |103 135 081 0071 [100 136 082 0.072
LHR14 32| 29 294 171 0078 || 155 232 110 0056 |135 207 105 0.050 |131 209 107 0053
64 || 299 486 214 0.054 || 181 315 144 0048 |154 275 134 0040 |156 290 136 0.041
8 51 65 042 0.067 37 50 016 0.025 35 49 016 0.026 36 49 016 0.025
16 85 118 059 0.050 79 104 029 0.023 7.6 9.8 030 0.026 78 101 029 0.024
ONETONE1 | 32 || 136 191 0.78 0035 || 142 197 042 0017 |138 191 045 0.020 |142 189 042 0.019
64 || 187 289 097 0.025 || 220 330 057 0013 |193 292 061 0016 |198 297 056 0.015
8 7.0 70 094 0143 6.9 70 062 0.094 6.7 70 057 0.090 6.5 70 060 0.095
16 || 143 150 128 0110 || 124 148 082 0068 |11.0 138 0.77 0066 |108 137 0.80 0.068
LHR17 32 || 235 296 162 0074 || 171 238 107 0052 |[144 210 100 0.047 |141 215 103 0.047
64 || 303 469 204 0.048 || 196 330 138 0041 (164 294 129 0036 |160 303 130 0.036
8 35 48 0.61 0.088 36 53 042 0.063 35 50 0.38 0.056 34 45 040 0.061
16 7.3 95 095 0.075 73 101 062 0.049 7.0 9.7 057 0.046 6.8 88 0.60 0.050
LHR34 32 || 145 175 128 005 || 126 168 084 0037 |[11.1 153 O0.77 0.034 |109 146 080 0035
64 || 237 306 163 0.038 || 172 249 108 0027 |146 227 100 0025 |143 225 103 0.025
8 35 54 007 0.015 37 57 005 0.012 35 54 005 0.013 36 55 005 0.012
16 44 76 012 0.013 42 83 0.09 0.011 4.0 73 009 0011 4.0 73 009 0011
BCSSTK32 32 51 94 020 0011 47 106 014 0.008 47 9.6 015 0.009 4.6 9.7 014 0.008
64 57 113 030 0.008 48 116 022 0.006 49 110 024 0.007 47 108 022 0.006
8 2.3 39 010 0.018 23 36 0.09 0.018 22 34 009 0.017 2.2 34 008 0.017
16 37 6.3 021 0.022 33 54 018 0.018 33 56 018 0.018 33 56 016 0.017
BCSSTK30 32 49 87 036 0.019 44 79 029 0.015 4.6 80 031 0.016 44 78 028 0014
64 58 11.3 057 0.016 53 106 045 0.013 56 103 048 0.013 53 100 045 0.012

Averagesover K

8 5.0 59 063 0.098 4.7 57 038 0.060 4.6 56 037 0.058 45 55 037 0.060
16 95 114 089 0.075 85 111 054 0.046 80 106 053 0.045 79 104 052 0.045
32 || 157 206 117 0052 || 129 187 073 0036 |[121 175 070 0.033 |11.8 173 070 0.032
64 || 21.7 333 147 0.037 || 165 272 09 0029 |151 248 092 0025 |148 248 090 0.025

Inthe “# of mssgs” column, “avg

” and “max” denote the average and maximum number of messages, respectively, handled by

asingle processor. In the “comm. volume” column, “tot” denotes the total communication volume, whereas “max” denotes
the maximum communication volume handled by a single processor. Communication volume values (in terms of the number
of words transmitted) are scaled by the number of rows/columns of the respective test matrices.

28

Table IV: Average communication requirements for columnwise decomposition of structurally nonsymmetric test

matrices.
Graph Model Hypergraph Model: Row-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.

per proc. volume per proc. volume per proc. volume per proc. volume
avg max tot max avg max tot max avg max tot max avg max tot max
8 7.0 70 144 0213 7.0 70 075 0.108 7.0 70 076 0.110 7.0 70 072 0.108
16 || 150 150 198 0145 || 147 150 095 0071 |147 150 097 0072 146 150 093 0.069
GEMAT11 32 || 299 310 246 0091 || 256 300 113 0043 [259 303 115 0.043 |250 299 110 0.042
64 || 479 585 285 0.056 || 327 439 128 0026 |336 453 133 0026 |31.6 438 127 0.025
8 6.9 70 110 0.188 6.5 70 075 0123 6.4 70 067 0.107 6.4 70 066 0.105
16 || 125 150 154 0141 || 111 150 110 0.094 |106 150 096 0081 |[108 150 095 0.081
LHRO7 32| 193 303 205 0112 || 164 287 152 0068 |[151 295 132 0.059 |156 290 131 0.059
64 || 235 567 260 0.088 |[220 392 203 0050 |19.7 405 176 0042 |198 412 174 0.042
8 2.6 38 009 0.017 24 32 0.07 0012 22 31 008 0.013 31 45 0.08 0.013
16 4.8 74 020 0.019 4.7 66 013 0.012 4.6 62 016 0.014 5.4 87 015 0.014
ONETONE2 | 32 75 127 034 0.016 76 112 024 0.010 76 111 027 0011 83 148 025 0.011
64 || 102 214 046 0.013 96 158 033 0.008 | 105 164 035 0008 [104 235 0.34 0.009
8 7.0 70 105 0.168 6.6 70 067 0.109 6.6 70 061 0.096 6.7 70 061 0.09
16 || 139 150 143 0123 || 114 147 095 0077 |116 150 085 0069 |11.7 150 0.84 0.069
LHR14 32 || 229 304 18 0087 || 168 279 126 0054 |[164 296 111 0.047 |165 305 111 0.049
64 || 293 553 232 0069 || 21.3 457 165 0038 |198 542 145 0035 |203 562 144 0.036
8 51 65 044 0.067 37 50 019 0.031 35 47 021 0.033 35 49 020 0.034
16 87 116 062 0.051 78 102 034 0.026 7.6 96 038 0.032 78 101 036 0.029
ONETONEL | 32 || 144 200 081 0035 || 133 186 049 0021 |134 186 054 0.026 |140 191 051 0024
64 || 199 302 108 0.024 || 199 315 065 0017 |196 305 072 0018 |193 304 0.69 0.019
8 7.0 70 102 0.164 6.8 70 066 0.100 6.8 70 059 0.087 6.9 70 058 0.087
16 || 144 150 140 0117 || 122 150 091 0074 |123 150 081 0064 |123 150 0.80 0.063
LHR17 32 || 242 306 178 0080 (| 180 300 122 0052 [171 306 106 0.044 |172 308 105 0044
64 || 314 533 221 0062 || 229 519 158 0037 |20.7 550 137 0031 |208 558 136 0.032
8 34 45 0.67 0.103 34 41 043 0.065 34 41 039 0.056 34 41 039 0.055
16 7.3 86 102 0.086 7.1 84 066 0.053 7.2 83 059 0.046 7.1 83 059 0.046
LHR34 32 || 147 168 140 0061 || 124 159 092 0040 |124 156 081 0.033 |125 157 0.80 0.033
64 || 242 314 178 0.043 || 182 303 122 0028 |173 308 106 0023 |173 310 106 0.023
8 36 53 007 0.016 31 46 005 0.013 39 58 006 0.014 34 52 005 0.012
16 43 73 012 0014 39 70 0.08 0.010 44 79 010 0.012 4.1 77 008 0011
BCSSTK32 32 51 95 019 0.011 44 89 014 0.008 4.7 99 015 0.009 4.6 94 014 0.009
64 55 116 029 0.009 45 101 021 0.007 49 114 023 0.008 47 112 021 0.007
8 25 40 0.08 0.017 28 46 0.08 0.017 22 34 007 0.014 24 42 006 0.013
16 3.6 6.2 018 0.018 34 60 014 0.015 3.0 50 014 0.016 31 52 013 0.014
BCSSTK30 32 4.7 82 031 0.015 4.0 80 022 0.012 4.0 69 024 0.013 39 71 021 0012
64 57 100 050 0.013 4.6 9.0 034 0.010 4.5 84 037 0.010 45 93 034 0.010

Averagesover K

8 5.0 58 066 0.106 4.7 55 040 0.064 4.7 55 038 0.059 4.8 57 037 0.058
16 94 112 094 0.079 85 109 059 0.048 84 108 055 0.045 86 111 054 0.04
32 || 1568 211 124 0057 || 132 199 079 0034 |[130 202 074 0.032 |131 207 072 0031
64 || 220 365 157 0.042 || 173 308 103 0024 |167 325 096 0022 |165 336 094 0.023

Inthe “# of mssgs” column, “avg” and “max” denote the average and maximum number of messages, respectively, handled by
asingle processor. In the “comm. volume” column, “tot” denotes the total communication volume, whereas “max” denotes
the maximum communication volume handled by a single processor. Communication volume values (in terms of the number
of words transmitted) are scaled by the number of rows/columns of the respective test matrices.

29

10.0 10.0
8.0 8.0
6.0 6.0
4.0 4.0
2.0 20
0.0 0.0
2 N & ° & & & & & & o R & & & 2 ¢
& & & S § & o & N &S & & & S
o ® & « & S
%\2{0 & & ((\é 6\3{0 &
140 Relative run-times for 32-way decompositions 160 Relative run-times for 64-way decompositions
I Clique-Net C———JhMeTiS INEEEEEPaToH-HCM ———JPaToH-HCC pMeTiS I Clique-Net C———JhMeTiS I PaToH-HCM C———JPaToH-HCC pMeTiS
120 4 B 1404 - - - - - - - T T
12.0
004 — - - - - - - |------M - -==--------- B
wot+ - --11--1--~--11---MN---------
so+ - --/0--11--11--0---11---------
8.0
6.0
6.0
4.0
4.0
2.0 4
0.0 4
& N ¥ > S & o & g & N 54 > I Iod & & &
\a X > © © & & < \a N N < © & & S
& ¢ & S A & ¢ & S & 8
B < & <

Figure 7: Relative run-time performance of the proposed column-net/row-net hypergraph model (Clique-net,
hMeTiS, PaToH-HCM and PaToH-HCC) to the graph model (pMeTiS) in rowwise/columnwise decomposition of
symmetric test matrices. Bars above 1.0 indicate that the hypergraph model leads to slower decomposition time
than the graph model.

Relative run-times for 8-way decompositions Relative run-times for 16-way decompositions

80 I Clique-Net C—JhMeTiS NP aToH-HCM [C———IPaToH-HCC e \cTiS e _ I Clique-Net C——JhMeTis IEEEEEEPaToH-HCM CC—JPaToH-HCC pMeTiS
8.0 Ll sot |- - - - - - - - - - oo oo oo oo
2%+ T T [T S [
6.0 6.0

5.0 5.0

4.0 [- S N e I - N 4.0

3.0 [- - - - N - N - N 3.0

20 20

100 Relative run-times for 32-way decompositions 12.0 - Relative run-times for 64-way decompositions
I Clique-Net C———IhMeTiS IEEEEPaToH-HCM [—IPaToH-HCC eyl eTiS EEEEEIClique-Net C———IhMeTiS EEEEEENPaToH-HCM [1PaToH-HCC pMeTiS
9.0 B
100+ - - - - - - - - - - o o o o oo oo oo oo
8.0
LA A [so+ - Z
6.0
501 T 1 [N e [6.0 4
4.0
4,0 4
30

Figure 8: Relative run-time performance of the proposed column-net hypergraph model (Clique-net, hMeTiS,
PaToH-HCM and PaToH-HCC) tothegraph model (pMeTi S) in rowwise decomposition of symmetric test matrices.
Bars above 1.0 indicate that the hypergraph model leads to slower decomposition time than the graph model.

30

Relative run-times for 8-way decompositions 90 Relative run-times for 16-way decompositions

I Clique-Net C———JhMeTiS I PaToH-HCM C——PaToH-HCC eV cTiS I Clique-Net C———JhMeTiS INEEEENPaToH-HCM C———PaToH-HCC pMeTiS
8.0 804

9.0

7.0 7.04

60+ |- - - - - - - - - oo oo - sot |- - - - - - - - - - oo

sot |- - - - - - - - - - - - - - oo - - - T S I e [

4.0 4.0 4

Relative run-times for 32-way decompositions
[Clique-Net C———JhMeTiS I PaToH-HCM [C———JPaToH-HCC e, \1cTiS I Clique-Net C———JhMeTiS I PaToH-HCM C———JPaToH-HCC pMeTiS

Relative run-times for 64-way decompositions

6o+ |- - - -- -0 ------- - -~ - - -~~~} - - - - -
5.0
5.0
4.0
4.0

3.0
3.0

20

Figure 9: Relative run-time performance of the proposed row-net hypergraph model (Clique-net, hMeTiS, PaToH-
HCM and PaToH-HCC) to the graph model (pMeTiS) in columnwise decomposition of symmetric test matrices.
Bars above 1.0 indicate that the hypergraph model leads to slower decomposition time than the graph model.

Table V: Overall performance averages of the proposed hypergraph models normalized with respect to those of
the graph modelsusing pMeTiS.

pMeTiS (clique-net model) hMeTiS PaToH-HCM PaToH-HCC
K Tot. Comm. Volume | Time | Tot. Comm. Volume | Time Tot. Comm. Volume | Time | Tot. Comm. Volume | Time
best worst avg best worst avg best worst avg best worst avg

Symmetric Matrices: Column-net Model = Row-net Model
8 | 0.86 084 0.85 | 208 | 0.73 070 071 8.13 | 0.73 073 073 | 219 |0.73 073 073 | 242
16 | 0.86 084 083 | 190 | 0.70 066 0.66 895 | 0.70 069 068 | 225 |071 069 069 | 243
32| 085 084 084 | 1.79 | 0.68 065 0.66 9.72 | 0.69 068 068 | 233 |0.69 068 068 | 244
64 | 0.85 084 084 | 178 | 0.71 068 0.69 | 10.64 | 0.72 069 070 | 241 |072 069 070 | 256
avg | 0.86 084 084 | 189 | 0.70 0.67 0.68 936 | 0.71 070 070 | 230 |[071 070 0.70 | 2.46
Nonsymmetric Matrices: Column-net Model
8 | 0.78 078 0.78 | 1.48 | 0.68 063 0.64 531 | 0.67 064 064 | 1.32 | 066 062 063 | 1.50
16 | 0.80 078 0.78 | 1.44 | 0.66 063 0.64 553 | 0.67 064 065 | 1.37 | 065 062 063 | 156
32 | 0.79 078 078 | 1.34 | 0.66 064 0.66 5.88 | 0.67 065 066 | 144 | 065 063 064 | 161
64 | 0.80 079 079 | 1.34 | 0.69 0.68 0.68 6.17 | 0.69 068 068 | 145 | 067 066 0.66 | 1.62
avg | 0.79 078 0.79 | 1.40 | 0.67 064 0.66 572 | 0.67 065 066 | 1.39 |066 063 064 | 157
Nonsymmetric Matrices: Row-net Model
8075 074 076 | 125 | 0.64 062 0.63 522 | 0.64 063 063 | 1.29 |0.62 060 061 | 1.50
16 | 0.75 074 075 | 115 | 065 063 0.64 534 | 0.65 063 065 | 133 |062 061 062 | 154
32 | 075 075 075 | 1.12 | 0.67 065 0.66 555 | 0.66 064 066 | 1.38 |063 062 063 | 158
64 | 0.76 077 076 | 1.09 | 0.67 0.67 0.67 5.84 | 0.66 065 066 | 136 |064 063 063 | 150
avg | 0.75 075 076 | 1.15 | 0.66 064 0.65 549 | 0.65 064 065 | 1.34 |063 061 062 | 153

Intotal communication volume, aratio smaller than 1.00 indicates that the hypergraph model produces better decompositions
than the graph model. In execution time, a ratio greater than 1.00 indicates that the hypergraph model leads to slower
decomposition time than the graph mode!.

31

Umit V. Catalyiirek received the B.S. and M.S. degrees in computer engineering and information science from
Bilkent University, Ankara, Turkey, in 1992 and 1994, respectively. He is currently working towards the Ph.D.
degree in the Department of Computer Engineering and Information Science, Bilkent University, Ankara, Turkey.
His current research interests are parallel computing and graph/hypergraph partitioning.

Cevdet Aykanat received the B.S and M.S. degrees from Middle East Technical University, Ankara, Turkey,
in 1977 and 1980, respectively, and the Ph.D. degree from Ohio State University, Columbus, in 1988, al in
electrical engineering. Hewasa Fulbright scholar during hisPh.D. studies. Heworked at the Intel Supercomputer
Systems Division, Beaverton, OR, as a research associate. Since October 1988 he has been with the Department
of Computer Engineering and Information Science, Bilkent University, Ankara, Turkey, where he is currently an
associate professor. His research interests include paralel computer architectures, parallel algorithms, applied
paralel computing, neural network algorithms and graph/hypergraph partitioning. He is a member of the ACM,
IEEE and IEEE Computer Society.

32

