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Abstract

In this work, we show that the standard graph-partitioning based decomposition of sparse matrices does not reflect

the actual communication volume requirement for parallel matrix-vector multiplication. We propose two compu-

tational hypergraph models which avoid this crucial deficiency of the graph model. The proposed models reduce

the decomposition problem to the well-known hypergraph partitioning problem. The recently proposed successful

multilevel framework is exploited to develop a multilevel hypergraph partitioning tool PaToH for the experimental

verification of our proposed hypergraph models. Experimental results on a wide range of realistic sparse test

matrices confirm the validity of the proposed hypergraph models. In the decomposition of the test matrices, the

hypergraph models using PaToH and hMeTiS result in up to 63% less communication volume (30%–38% less on

the average) than the graph model using MeTiS, while PaToH is only 1.3–2.3 times slower than MeTiS on the

average.

Index Terms—Sparse matrices, matrix multiplication, parallel processing, matrix decomposition, computational

graph model, graph partitioning, computational hypergraph model, hypergraph partitioning.
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1 INTRODUCTION

Iterative solvers are widely used for the solution of large, sparse, linear system of equations on multicomputers.

Two basic types of operations are repeatedly performed at each iteration. These are linear operations on dense

vectors and sparse-matrix vector product (SpMxV) of the form y=Ax, where A is an m�m square matrix with

the same sparsity structure as the coefficient matrix [3, 5, 8, 35], and y and x are dense vectors. Our goal is the

parallelization of the computations in the iterative solvers through rowwise or columnwise decomposition of the

A matrix as

A =

2
66666664

Ar
1

...
Ar
k

...
Ar
K

3
77777775

and A =
�
Ac

1 � � �Ac
k � � �Ac

K

�
;

where processor Pk owns row stripe Ar
k or column stripe Ac

k, respectively, for a parallel system withK processors.

In order to avoid the communication of vector components during the linear vector operations, a symmetric parti-

tioning scheme is adopted. That is, all vectors used in the solver are divided conformally with the row partitioning

or the column partitioning in rowwise or columnwise decomposition schemes, respectively. In particular, the x and

y vectors are divided as [x1; : : : ;xK]t and [y1; : : : ;yK]t, respectively. In rowwise decomposition, processor Pk is

responsible for computing yk = Ar
kx and the linear operations on the k-th blocks of the vectors. In columnwise

decomposition, processor Pk is responsible for computing yk = Ac
kxk (where y =

PK
k=1 y

k) and the linear

operations on the k-th blocks of the vectors. With these decomposition schemes, the linear vector operations

can be easily and efficiently parallelized [3, 35], such that only the inner-product computations introduce global

communication overhead of which its volume does not scale up with increasing problem size. In parallel SpMxV,

the rowwise and columnwise decomposition schemes require communication before or after the local SpMxV

computations, thus they can also be considered as pre and post communication schemes, respectively. Depending

on the way in which the rows or columns of A are partitioned among the processors, entries in x or entries in yk

may need to be communicated among the processors. Unfortunately, the communication volume scales up with

increasing problem size. Our goal is to find a rowwise or columnwise partition of A that minimizes the total

volume of communication while maintaining the computational load balance.

The decomposition heuristics [32, 33, 37] proposed for computational load balancing may result in extensive

communication volume, because they do not consider the minimization of the communication volume during the

decomposition. In one-dimensional (1D) decomposition, the worst-case communication requirement isK(K�1)

messages and (K � 1)mwords, and it occurs when each submatrix Ar
k (Ac

k) has at least one nonzero in each column

(row) in rowwise (columnwise) decomposition. The approach based on 2D checkerboard partitioning [15, 30]

reduces the worst-case communication to 2K(
p
K � 1) messages and 2(

p
K � 1)m words. In this approach, the

worst-case occurs when each row and column of each submatrix has at least one nonzero.
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The computational graph model is widely used in the representation of computational structures of various

scientific applications, including repeated SpMxV computations, to decompose the computational domains for

parallelization [5, 6, 20, 21, 27, 28, 31, 36]. In this model, the problem of sparse matrix decomposition for

minimizing the communication volume while maintaining the load balance is formulated as the well-known

K-way graph partitioning problem. In this work, we show the deficiencies of the graph model for decomposing

sparse matrices for parallel SpMxV. The first deficiency is that it can only be used for structurally symmetric

square matrices. In order to avoid this deficiency, we propose a generalized graph model in Section 2.3 which

enables the decomposition of structurally nonsymmetric square matrices as well as symmetric matrices. The

second deficiency is the fact that the graph models (both standard and proposed ones) do not reflect the actual

communication requirement as will be described in Section 2.4. These flaws are also mentioned in a concurrent

work [16]. In this work, we propose two computational hypergraph models which avoid all deficiencies of the graph

model. The proposed models enable the representation and hence the decomposition of rectangular matrices [34]

as well as symmetric and nonsymmetric square matrices. Furthermore, they introduce an exact representation for

the communication volume requirement as described in Section 3.2. The proposed hypergraph models reduce the

decomposition problem to the well-known K-way hypergraph partitioning problem widely encountered in circuit

partitioning in VLSI layout design. Hence, the proposed models will be amenable to the advances in the circuit

partitioning heuristics in VLSI community.

Decomposition is a preprocessing introduced for the sake of efficient parallelization of a given problem.

Hence, heuristics used for decomposition should run in low order polynomial time. Recently, multilevel graph

partitioning heuristics [4, 13, 21] are proposed leading to fast and successful graph partitioning tools Chaco [14]

and MeTiS [22]. We have exploited the multilevel partitioning methods for the experimental verification of the

proposed hypergraph models in two approaches. In the first approach, MeTiS graph partitioning tool is used

as a black box by transforming hypergraphs to graphs using the randomized clique-net model as presented in

Section 4.1. In the second approach, the lack of a multilevel hypergraph partitioning tool at the time of this work

was carried led us to develop a multilevel hypergraph partitioning tool PaToH for a fair experimental comparison of

the hypergraph models with the graph models. Another objective in our PaToH implementation was to investigate

the performance of multilevel approach in hypergraph partitioning as described in Section 4.2. Recently released

multilevel hypergraph partitioning tool hMeTiS [24] is also used in the second approach. Experimental results

presented in Section 5 confirm both the validity of our proposed hypergraph models and the appropriateness of

the multilevel approach to hypergraph partitioning. The hypergraph models using PaToH and hMeTiS produce

30%–38% better decompositions than the graph models using MeTiS, while the hypergraph models using PaToH

are only 34%–130% slower than the graph models using the most recent version (Version 3.0) of MeTiS, on the

average.
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2 GRAPH MODELS AND THEIR DEFICIENCIES

2.1 Graph Partitioning Problem

An undirected graph G=(V ; E) is defined as a set of vertices V and a set of edges E . Every edge eij 2E connects

a pair of distinct vertices vi and vj . The degree di of a vertex vi is equal to the number of edges incident to vi.

Weights and costs can be assigned to the vertices and edges of the graph, respectively. Let wi and cij denote the

weight of vertex vi2V and the cost of edge eij2E , respectively.

Π=fP1;P2; : : : ;PKg is a K-way partition of G if the following conditions hold: each part Pk; 1 � k � K, is

a nonempty subset of V , parts are pairwise disjoint (Pk \P` = ; for all 1 � k < ` � K), and union of K parts is

equal to V (i.e.
SK
k=1 Pk=V). A K-way partition is also called a multiway partition if K>2 and a bipartition if

K=2. A partition is said to be balanced if each part Pk satisfies the balance criterion

Wk � Wavg(1 + "); for k = 1; 2; : : : ; K: (1)

In (1), weightWk of a partPk is defined as the sum of the weights of the vertices in that part (i.e. Wk=
P

vi2Pk
wi),

Wavg=(
P

vi2V
wi)=K denotes the weight of each part under the perfect load balance condition, and " represents

the predetermined maximum imbalance ratio allowed.

In a partition Π of G, an edge is said to be cut if its pair of vertices belong to two different parts, and uncut

otherwise. The cut and uncut edges are also referred to here as external and internal edges, respectively. The set

of external edges of a partition Π is denoted as EE . The cutsize definition for representing the cost �(Π) of a

partition Π is

�(Π) =
X

eij2EE

cij : (2)

In (2), each cut edge eij contributes its cost cij to the cutsize. Hence, the graph partitioning problem can be

defined as the task of dividing a graph into two or more parts such that the cutsize is minimized, while the balance

criterion (1) on part weights is maintained. The graph partitioning problem is known to be NP-hard even for

bipartitioning unweighted graphs [11].

2.2 Standard Graph Model for Structurally Symmetric Matrices

A structurally symmetric sparse matrix A can be represented as an undirected graph GA = (V ; E), where the

sparsity pattern of A corresponds to the adjacency matrix representation of graph GA. That is, the vertices of GA
correspond to the rows/columns of matrix A, and there exist an edge eij 2E for i 6= j if and only if off-diagonal

entries aij and aji of matrix A are nonzeros. In rowwise decomposition, each vertex vi2V corresponds to atomic

task i of computing the inner product of row i with column vector x. In columnwise decomposition, each vertex

vi2V corresponds to atomic task i of computing the sparse SAXPY/DAXPY operation y=y+xia�i, where a�i

denotes column i of matrix A. Hence, each nonzero entry in a row and column of A incurs a multiply-and-add

operation during the local SpMxV computations in the pre and post communication schemes, respectively. Thus,

computational load wi of row/column i is the number of nonzero entries in row/column i. In graph theoretical
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notation,wi=di when aii=0 and wi=di+1 when aii 6=0. Note that the number of nonzeros in row i and column

i are equal in a symmetric matrix.

This graph model displays a bidirectional computational interdependency view for SpMxV. Each edge eij 2E
can be considered as incurring the computations yi yi+aijxj and yj yj+ajixi. Hence, each edge represents

the bidirectional interaction between the respective pair of vertices in both inner and outer product computation

schemes for SpMxV. If rows (columns) i and j are assigned to the same processor in a rowwise (columnwise)

decomposition, then edge eij does not incur any communication. However, in the pre-communication scheme,

if rows i and j are assigned to different processors then cut edge eij necessitates the communication of two

floating–point words because of the need of the exchange of updated xi and xj values between atomic tasks i and

j just before the local SpMxV computations. In the post-communication scheme, if columns i and j are assigned

to different processors then cut edge eij necessitates the communication of two floating–point words because of

the need of the exchange of partial yi and yj values between atomic tasks i and j just after the local SpMxV

computations. Hence, by setting cij = 2 for each edge eij 2E , both rowwise and columnwise decompositions of

matrix A reduce to theK-way partitioning of its associated graphGA according to the cutsize definition given in (2).

Thus, minimizing the cutsize is an effort towards minimizing the total volume of interprocessor communication.

Maintaining the balance criterion (1) corresponds to maintaining the computational load balance during local

SpMxV computations.

Each vertex vi2V effectively represents both row i and column i inGA although its atomic task definition differs

in rowwise and columnwise decompositions. Hence, a partition Π of GA automatically achieves a symmetric

partitioning by inducing the same partition on the y-vector and x-vector components since a vertex vi 2 Pk
corresponds to assigning row i (column i), yi and xi to the same part in rowwise (columnwise) decomposition.

In matrix theoretical view, the symmetric partitioning induced by a partition Π of GA can also be considered

as inducing a partial symmetric permutation on the rows and columns of A. Here, the partial permutation cor-

responds to ordering the rows/columns assigned to part Pk before the rows/columns assigned to part Pk+1, for

k = 1; : : : ; K � 1, where the rows/columns within a part are ordered arbitrarily. Let AΠ denote the permuted

version of A according to a partial symmetric permutation induced by Π. An internal edge eij of a part Pk
corresponds to locating both aij and aji in diagonal block AΠ

kk . An external edge eij of cost 2 between parts Pk
andP` corresponds to locating nonzero entry aij of A in off-diagonal block AΠ

k` and aji of A in off-diagonal block

AΠ
`k, or vice versa. Hence, minimizing the cutsize in the graph model can also be considered as permuting the

rows and columns of the matrix to minimize the total number of nonzeros in the off-diagonal blocks.

Figure 1 illustrates a sample 10�10 symmetric sparse matrix A and its associated graph GA. The numbers

inside the circles indicate the computational weights of the respective vertices (rows/columns). This figure also

illustrates a rowwise decomposition of the symmetric A matrix and the corresponding bipartitioning of GA for a

two–processor system. As seen in Fig. 1, the cutsize in the given graph bipartitioning is 8 which is also equal to

the total number of nonzero entries in the off-diagonal blocks. The bipartition illustrated in Fig. 1 achieves perfect
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Figure 1: Two-way rowwise decomposition of a sample structurally symmetric matrix A and the corresponding
bipartitioning of its associated graph GA.

load balance by assigning 21 nonzero entries to each row stripe. This number can also be obtained by adding the

weights of the vertices in each part.

2.3 Generalized Graph Model for Structurally Symmetric/Nonsymmetric Square Matrices

The standard graph model is not suitable for the partitioning of nonsymmetric matrices. A recently proposed bipar-

tite graph model [17, 26] enables the partitioning of rectangular as well as structurally symmetric/nonsymmetric

square matrices. In this model, each row and column is represented by a vertex, and the sets of vertices representing

the rows and columns form the bipartition, i.e. V = VR [ VC . There exists an edge between a row vertex i 2 VR
and a column vertex j 2 VC if and only if the respective entry aij of matrix A is nonzero. Partitions ΠR and

ΠC on VR and VC, respectively, determine the overall partition Π = fP1; : : : ;PKg, where Pk = VRk
[ VCk for

k = 1; : : : ; K. For rowwise (columnwise) decomposition, vertices in VR (VC) are weighted with the number of

nonzeros in the respective row (column) so that the balance criterion (1) is imposed only on the partitioning of

VR (VC). As in the standard graph model, minimizing the number of cut edges corresponds to minimizing the

total number of nonzeros in the off-diagonal blocks. This approach has the flexibility of achieving nonsymmetric

partitioning. In the context of parallel SpMxV, the need for symmetric partitioning on square matrices is achieved

by enforcing ΠR � ΠC . Hendrickson and Kolda [17] propose several bipartite-graph partitioning algorithms that

are adopted from the techniques for the standard graph model and one partitioning algorithm that is specific to

bipartite graphs.

In this work, we propose a simple yet effective graph model for symmetric partitioning of structurally non-

symmetric square matrices. The proposed model enables the use of the standard graph partitioning tools without

any modification. In the proposed model, a nonsymmetric square matrix A is represented as an undirected graph

GR=(VR; E) and GC=(VC ; E) for the rowwise and columnwise decomposition schemes, respectively. Graphs GR
and GC differ only in their vertex weight definitions. The vertex set and the corresponding atomic task definitions

are identical to those of the symmetric matrices. That is, weight wi of a vertex vi2 VR (vi2 VC) is equal to the

total number of nonzeros in row i (column i) in GR (GC). In the edge set E ; eij 2 E if and only if off-diagonal

entries aij 6= 0 or aji 6= 0. That is, the vertices in the adjacency list of a vertex vi denote the union of the column

indices of the off-diagonal nonzeros at row i and the row indices of the off-diagonal nonzeros at column i. The

cost cij of an edge eij is set to 1 if either aij 6= 0 or aji 6= 0, and it is set to 2 if both aij 6= 0 and aji 6= 0. The
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Figure 2: Two-way rowwise decomposition of a sample structurally nonsymmetric matrix A and the corresponding
bipartitioning of its associated graph GR.

proposed scheme is referred to here as a generalized model since it automatically produces the standard graph

representation for structurally symmetric matrices by computing the same cost of 2 for every edge.

Figure 2 illustrates a sample 10�10 nonsymmetric sparse matrix A and its associated graph GR for rowwise

decomposition. The numbers inside the circles indicate the computational weights of the respective vertices

(rows). This figure also illustrates a rowwise decomposition of the matrix and the corresponding bipartitioning of

its associated graph for a two–processor system. As seen in Fig. 2, the cutsize of the given graph bipartitioning

is 7 which is also equal to the total number of nonzero entries in the off-diagonal blocks. Hence, similar to the

standard and bipartite graph models, minimizing cutsize in the proposed graph model corresponds to minimizing

the total number of nonzeros in the off-diagonal blocks. As seen in Fig. 2, the bipartitioning achieves perfect load

balance by assigning 16 nonzero entries to each row stripe. As mentioned earlier, the GC model of a matrix for

columnwise decomposition differs from the GR model only in vertex weights. Hence, the graph bipartitioning

illustrated in Fig. 2 can also be considered as incurring a slightly imbalanced (15 versus 17 nonzeros) columnwise

decomposition of sample matrix A (shown by vertical dash line) with identical communication requirement.

2.4 Deficiencies of the Graph Models

Consider the symmetric matrix decomposition given in Fig. 1. Assume that parts P1 and P2 are mapped to

processors P1 and P2, respectively. The cutsize of the bipartition shown in this figure is equal to 2�4= 8, thus

estimating the communication volume requirement as 8 words. In the pre-communication scheme, off-block-

diagonal entries a4;7 and a5;7 assigned to processor P1 display the same need for the nonlocal x-vector component

x7 twice. However, it is clear that processor P2 will send x7 only once to processor P1. Similarly, processor P1 will

send x4 only once to processor P2 because of the off-block-diagonal entries a7;4 and a8;4 assigned to processor P2.

In the post-communication scheme, the graph model treats the off-block-diagonal nonzeros a7;4 and a7;5 in P1 as

if processor P1 will send two multiplication results a7;4x4 and a7;5x5 to processor P2. However, it is obvious that

processor P1 will compute the partial result for the nonlocal y-vector component y07 = a7;4x4+a7;5x5 during the

local SpMxV phase and send this single value to processor P2 during the post-communication phase. Similarly,

processor P2 will only compute and send the single value y 04 =a4;7x7+a4;8x8 to processor P1. Hence, the actual

communication volume is in fact 6 words instead of 8 in both pre and post communication schemes. A similar

analysis of the rowwise decomposition of the nonsymmetric matrix given in Fig. 2 reveals the fact that the actual
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communication requirement is 5 words (x4, x5, x6, x7 and x8) instead of 7 determined by the cutsize of the given

bipartition of GR.

In matrix theoretical view, the nonzero entries in the same column of an off-diagonal block incur the commu-

nication of a single x value in the rowwise decomposition (pre-communication) scheme. Similarly, the nonzero

entries in the same row of an off-diagonal block incur the communication of a single y value in the columnwise

decomposition (post-communication) scheme. However, as mentioned earlier, the graph models try to minimize

the total number of off-block-diagonal nonzeros without considering the relative spatial locations of such nonzeros.

In other words, the graph models treat all off-block-diagonal nonzeros in an identical manner by assuming that

each off-block-diagonal nonzero will incur a distinct communication of a single word.

In graph theoretical view, the graph models treat all cut edges of equal cost in an identical manner while

computing the cutsize. However, r cut edges, each of cost 2, stemming from a vertex vi1 in part Pk to r

vertices vi2; vi3; : : : ; vir+1 in part P` incur only r+1 communications instead of 2r in both pre and post com-

munication schemes. In the pre-communication scheme, processor Pk sends xi1 to processor P` while P` sends

xi2; xi3; : : : ; xir+1 to Pk . In the post-communication scheme, processor P` sends y0i2 ; y
0
i3
; : : : ; y0ir+1

to processor

Pk while Pk sends y0i1 to P`. Similarly, the amount of communication required by r cut edges, each of cost 1,

stemming from a vertex vi1 in part Pk to r vertices vi2 ; vi3; : : : ; vir+1 in part P` may vary between 1 and r words

instead of exactly r words determined by the cutsize of the given graph partitioning.

3 HYPERGRAPH MODELS FOR DECOMPOSITION

3.1 Hypergraph Partitioning Problem

A hypergraphH=(V ;N ) is defined as a set of vertices V and a set of nets (hyperedges) N among those vertices.

Every net nj 2 N is a subset of vertices, i.e., nj � V . The vertices in a net nj are called its pins and denoted

as pins[nj ]. The size of a net is equal to the number of its pins, i.e., sj = jpins[nj]j. The set of nets connected

to a vertex vi is denoted as nets[vi]. The degree of a vertex is equal to the number of nets it is connected to,

i.e., di= jnets[vi]j. Graph is a special instance of hypergraph such that each net has exactly two pins. Similar to

graphs, let wi and cj denote the weight of vertex vi2V and the cost of net nj 2N , respectively.

Definition of K-way partition of hypergraphs is identical to that of graphs. In a partition Π of H, a net that

has at least one pin (vertex) in a part is said to connect that part. Connectivity set Λj of a net nj is defined as the

set of parts connected by nj . Connectivity �j= jΛj j of a net nj denotes the number of parts connected by nj . A

net nj is said to be cut if it connects more than one part (i.e. �j > 1), and uncut otherwise (i.e. �j = 1). The

cut and uncut nets are also referred to here as external and internal nets, respectively. The set of external nets of

a partition Π is denoted asNE . There are various cutsize definitions for representing the cost �(Π) of a partition

Π. Two relevant definitions are:

(a) �(Π) =
X

nj2NE

cj and (b) �(Π) =
X

nj2NE

cj(�j � 1): (3)

In (3.a), the cutsize is equal to the sum of the costs of the cut nets. In (3.b), each cut net nj contributes cj(�j � 1)
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to the cutsize. Hence, the hypergraph partitioning problem [29] can be defined as the task of dividing a hypergraph

into two or more parts such that the cutsize is minimized, while a given balance criterion (1) among the part weights

is maintained. Here, part weight definition is identical to that of the graph model. The hypergraph partitioning

problem is known to be NP-hard [29].

3.2 Two Hypergraph Models for Decomposition

We propose two computational hypergraph models for the decomposition of sparse matrices. These models are re-

ferred to here as the column-net and row-net models proposed for the rowwise decomposition(pre-communication)

and columnwise decomposition (post-communication) schemes, respectively.

In the column-net model, matrix A is represented as a hypergraphHR=(VR;NC) for rowwise decomposition.

Vertex and net sets VR and NC correspond to the rows and columns of matrix A, respectively. There exist one

vertex vi and one netnj for each row i and column j, respectively. Netnj�VR contains the vertices corresponding

to the rows which have a nonzero entry in column j. That is, vi2nj if and only if aij 6=0. Each vertex vi 2 VR
corresponds to atomic task i of computing the inner product of row i with column vector x. Hence, computational

weight wi of a vertex vi 2 VR is equal to the total number of nonzeros in row i. The nets of HR represent the

dependency relations of the atomic tasks on the x-vector components in rowwise decomposition. Each net nj

can be considered as incurring the computation yi yi+aijxj for each vertex (row) vi 2 nj . Hence, each net

nj denotes the set of atomic tasks (vertices) that need xj . Note that each pin vi of a net nj corresponds to a

unique nonzero aij thus enabling the representation and decomposition of structurally nonsymmetric matrices as

well as symmetric matrices without any extra effort. Figure 3(a) illustrates the dependency relation view of the

column-net model. As seen in this figure, net nj = fvh; vi; vkg represents the dependency of atomic tasks h, i, k

to xj because of the computations yh yh+ahjxj , yi yi+aijxj and yk yk+akjxj . Figure 4(b) illustrates the

column-net representation of the sample 16�16 nonsymmetric matrix given in Fig. 4(a). In Fig. 4(b), the pins of

net n7 = fv7; v10; v13g represent nonzeros a7;7, a10;7, and a13;7. Net n7 also represents the dependency of atomic

tasks 7, 10 and 13 to x7 because of the computations y7 y7+a7;7x7, y10 y10+a10;7x7 and y13 y13+a13;7x7.

The row-net model can be considered as the dual of the column-net model. In this model, matrix A is represented

as a hypergraph HC = (VC;NR) for columnwise decomposition. Vertex and net sets VC and NR correspond to

the columns and rows of matrix A, respectively. There exist one vertex vi and one net nj for each column i and

row j, respectively. Net nj �VC contains the vertices corresponding to the columns which have a nonzero entry

in row j. That is, vi 2nj if and only if aji 6= 0. Each vertex vi2VC corresponds to atomic task i of computing

the sparse SAXPY/DAXPY operation y = y+xia�i. Hence, computational weight wi of a vertex vi 2 VC is

equal to the total number of nonzeros in column i. The nets of HC represent the dependency relations of the

computations of the y-vector components on the atomic tasks represented by the vertices of HC in columnwise

decomposition. Each net nj can be considered as incurring the computation yj  yj+ajixi for each vertex

(column) vi 2nj . Hence, each net nj denotes the set of atomic task results needed to accumulate yj . Note that

each pin vi of a net nj corresponds to a unique nonzero aji thus enabling the representation and decomposition of
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structurally nonsymmetric matrices as well as symmetric matrices without any extra effort. Figure 3(b) illustrates

the dependency relation view of the row-net model. As seen in this figure, net nj = fvh; vi; vkg represents the

dependency of accumulating yj=yhj + yij+y
k
j on the partial yj resultsyhj =ajhxh,yij=ajixi andykj =ajkxk. Note

that the row-net and column-net models become identical in structurally symmetric matrices.

By assigning unit costs to the nets (i.e. cj = 1 for each net nj), the proposed column-net and row-net

models reduce the decomposition problem to the K-way hypergraph partitioning problem according to the cutsize

definition given in (3.b) for the pre and post communication schemes, respectively. Consistency of the proposed

hypergraph models for accurate representation of communication volume requirement while maintaining the

symmetric partitioning restriction depends on the condition that “vj 2 nj for each net nj”. We first assume that

this condition holds in the discussion throughout the following four paragraphs and then discuss the appropriateness

of the assumption in the last paragraph of this section.

The validity of the proposed hypergraph models is discussed only for the column-net model. A dual discussion

holds for the row-net model. Consider a partition Π of HR in the column-net model for rowwise decomposition

of a matrix A. Without loss of generality, we assume that part Pk is assigned to processor Pk for k=1; 2; : : : ; K:

As Π is defined as a partition on the vertex set ofHR, it induces a complete part (hence processor) assignment for

the rows of matrix A and hence for the components of the y vector. That is, a vertex vi assigned to part Pk in Π

corresponds to assigning row i and yi to part Pk. However, partition Π does not induce any part assignment for

the nets of HR. Here, we consider partition Π as inducing an assignment for the internal nets of HR hence for

the respective x-vector components. Consider an internal net nj of part Pk (i.e. Λj = fPkg) which corresponds

to column j of A. As all pins of net nj lie in Pk, all rows (including row j by the consistency condition) which

need xj for inner-product computations are already assigned to processor Pk . Hence, internal net nj of Pk, which

does not contribute to the cutsize (3.b) of partition Π, does not necessitate any communication if xj is assigned

to processor Pk . The assignment of xj to processor Pk can be considered as permuting column j to part Pk, thus

respecting the symmetric partitioning of A since row j is already assigned to Pk. In the 4-way decomposition

given in Fig. 4(b), internal nets n1, n10, n13 of part P1 induce the assignment of x1, x10, x13 and columns 1, 10,

13 to part P1. Note that part P1 already contains rows 1, 10, 13 thus respecting the symmetric partitioning of A.

Consider an external net nj with connectivity set Λj , where �j = jΛj j and �j > 1. As all pins of net nj lie

in the parts in its connectivity set Λj , all rows (including row j by the consistency condition) which need xj for
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Figure 4: (a) A 16�16 structurally nonsymmetric matrix A. (b) Column-net representationHR of matrix A and
4-way partitioning Π ofHR. (c) 4-way rowwise decomposition of matrix AΠ obtained by permuting A according
to the symmetric partitioning induced by Π.

inner-product computations are assigned to the parts (processors) in Λj . Hence, contribution �j�1 of external net

nj to the cutsize according to (3.b) accurately models the amount of communication volume to incur during the

parallel SpMxV computations because of xj if xj is assigned to any processor in Λj . Let map[j]2Λj denote the

part and hence processor assignment for xj corresponding to cut net nj . In the column-net model together with the

pre-communication scheme, cut net nj indicates that processor map[j] should send its local xj to those processors

in connectivity set Λj of net nj except itself (i.e., to processors in the set Λj�fmap[j]g). Hence, processor map[j]

should send its local xj to jΛj j�1=�j�1 distinct processors. As the consistency condition “vj 2 nj” ensures

that row j is already assigned to a part in Λj , symmetric partitioning of A can easily be maintained by assigning

xj hence permuting column j to the part which contains row j. In the 4-way decomposition shown in Fig. 4(b),

external net n5 (with Λ5 = fP1;P2;P3g) incurs the assignment of x5 (hence permuting column 5) to part P1 since

row 5 (v5 2 n5) is already assigned to part P1. The contribution �5 � 1 = 2 of net n5 to the cutsize accurately

models the communication volume to incur due to x5, because processor P1 should send x5 to both processors P2

and P3 only once since Λ5 � fmap[5]g = Λ5 � fP1g = fP2; P3g.
In essence, in the column-net model, any partition Π of HR with vi 2 Pk can be safely decoded as assigning

row i, yi and xi to processor Pk for rowwise decomposition. Similarly, in the row-net model, any partition Π ofHC
with vi 2 Pk can be safely decoded as assigning column i, xi and yi to processorPk for columnwise decomposition.

Thus, in the column-net and row-net models, minimizing the cutsize according to (3.b) corresponds to minimizing

the actual volume of interprocessor communication during the pre and post communication phases, respectively.

Maintaining the balance criterion (1) corresponds to maintaining the computational load balance during the local

SpMxV computations. Figure 4(c) displays a permutation of the sample matrix given in Fig. 4(a) according to the

symmetric partitioning induced by the 4-way decomposition shown in Fig. 4(b). As seen in Fig. 4(c), the actual

communication volume for the given rowwise decomposition is 6 words since processor P1 should send x5 to both

P2 and P3, P2 should send x11 to P4, P3 should send x7 to P1, and P4 should send x12 to both P2 and P3. As
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seen in Fig. 4(b), external nets n5, n7, n11 and n12 contribute 2, 1, 1 and 2 to the cutsize since �5 = 3, �7 = 2,

�11 = 2 and �12 = 3, respectively. Hence, the cutsize of the 4-way decomposition given in Fig. 4(b) is 6, thus

leading to the accurate modeling of the communication requirement. Note that the graph model will estimate the

total communication volume as 13 words for the 4-way decomposition given in Fig. 4(c) since the total number

of nonzeros in the off-diagonal blocks is 13. As seen in Fig. 4(c), each processor is assigned 12 nonzeros thus

achieving perfect computational load balance.

In matrix theoretical view, let AΠ denote a permuted version of matrix A according to the symmetric partitioning

induced by a partition Π ofHR in the column-net model. Each cut-netnj with connectivity set Λj andmap[j]=P`
corresponds to column j of A containing nonzeros in �j distinct blocks (AΠ

k`, for Pk 2 Λj ) of matrix AΠ. Since

connectivity set Λj of net nj is guaranteed to contain part map[j], column j contains nonzeros in �j�1 distinct

off-diagonal blocks of AΠ. Note that multiple nonzeros of column j in a particular off-diagonal block contributes

only one to connectivity �j of net nj by definition of �j. So, the cutsize of a partition Π of HR is equal to the

number of nonzero column segments in the off-diagonal blocks of matrix AΠ. For example, external net n5 with

Λ5 = fP1;P2;P3g and map[5] = P1 in Fig. 4(b) indicates that column 5 has nonzeros in two off-diagonal blocks

AΠ
2;1 and AΠ

3;1 as seen in Fig. 4(c). As also seen in Fig. 4(c), the number of nonzero column segments in the

off-diagonal blocks of matrix AΠ is 6 which is equal to the cutsize of partition Π shown in Fig. 4(b). Hence, the

column-net model tries to achieve a symmetric permutation which minimizes the total number of nonzero column

segments in the off-diagonal blocks for the pre-communication scheme. Similarly, the row-net model tries to

achieve a symmetric permutation which minimizes the total number of nonzero row segments in the off-diagonal

blocks for the post-communication scheme.

Nonzero diagonal entries automatically satisfy the condition “vj 2 nj for each net nj”, thus enabling both

accurate representation of communication requirement and symmetric partitioning of A. A nonzero diagonal entry

ajj already implies that net nj contains vertex vj as its pin. If however some diagonal entries of the given matrix

are zeros then the consistency of the proposed column-net model is easily maintained by simply adding rows,

which do not contain diagonal entries, to the pin lists of the respective column nets. That is, if ajj=0 then vertex

vj (row j) is added to the pin list pins[nj ] of net nj and net nj is added to the net list nets[vj ] of vertex vj . These

pin additions do not affect the computational weight assignments of the vertices. That is, weight wj of vertex vj

inHR becomes equal to either dj or dj�1 depending on whether ajj 6=0 or ajj=0, respectively. The consistency

of the row-net model is preserved in a dual manner.

4 DECOMPOSITION HEURISTICS

Kernighan-Lin (KL) based heuristics are widely used for graph/hypergraph partitioning because of their short

run-times and good quality results. The KL algorithm is an iterative improvement heuristic originally proposed for

graph bipartitioning [25]. The KL algorithm, starting from an initial bipartition, performs a number of passes until

it finds a locally minimum partition. Each pass consists of a sequence of vertex swaps. The same swap strategy was

applied to the hypergraph bipartitioning problem by Schweikert-Kernighan [38]. Fiduccia-Mattheyses (FM) [10]
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introduced a faster implementation of the KL algorithm for hypergraph partitioning. They proposed vertex move

concept instead of vertex swap. This modification, as well as proper data structures, e.g., bucket lists, reduced the

time complexity of a single pass of the KL algorithm to linear in the size of the graph and the hypergraph. Here,

size refers to the number of edges and pins in a graph and hypergraph, respectively.

The performance of the FM algorithm deteriorates for large and very sparse graphs/hypergraphs. Here, sparsity

of graphs and hypergraphs refer to their average vertex degrees. Furthermore, the solution quality of FM is

not stable (predictable), i.e., average FM solution is significantly worse than the best FM solution, which is

a common weakness of the move-based iterative improvement approaches. Random multi-start approach is

used in VLSI layout design to alleviate this problem by running the FM algorithm many times starting from

random initial partitions to return the best solution found [1]. However, this approach is not viable in parallel

computing since decomposition is a preprocessing overhead introduced to increase the efficiency of the underlying

parallel algorithm/program. Most users will rely on one run of the decomposition heuristic, so the quality of the

decomposition tool depends equally on the worst and average decompositions than on just the best decomposition.

These considerations have motivated the two–phase application of the move-based algorithms in hypergraph

partitioning [12]. In this approach, a clustering is performed on the original hypergraph H0 to induce a coarser

hypergraphH1. Clustering corresponds to coalescing highly interacting vertices to supernodes as a preprocessing

to FM. Then, FM is run on H1 to find a bipartition Π1, and this bipartition is projected back to a bipartition

Π0 of H0. Finally, FM is re-run on H0 using Π0 as an initial solution. Recently, the two–phase approach has

been extended to multilevel approaches [4, 13, 21] leading to successful graph partitioning tools Chaco [14] and

MeTiS [22]. These multilevel heuristics consist of 3 phases: coarsening, initial partitioning and uncoarsening.

In the first phase, a multilevel clustering is applied starting from the original graph by adopting various matching

heuristics until the number of vertices in the coarsened graph reduces below a predetermined threshold value.

In the second phase, the coarsest graph is partitioned using various heuristics including FM. In the third phase,

the partition found in the second phase is successively projected back towards the original graph by refining the

projected partitions on the intermediate level uncoarser graphs using various heuristics including FM.

In this work, we exploit the multilevel partitioning schemes for the experimental verification of the proposed

hypergraph models in two approaches. In the first approach, multilevel graph partitioning tool MeTiS is used as a

black box by transforming hypergraphs to graphs using the randomized clique-net model proposed in [2]. In the

second approach, we have implemented a multilevel hypergraph partitioning tool PaToH, and tested both PaToH

and multilevel hypergraph partitioning tool hMeTiS [23, 24] which was released very recently.

4.1 Randomized Clique-Net Model for Graph Representation of Hypergraphs

In the clique-net transformation model, the vertex set of the target graph is equal to the vertex set of the given

hypergraph with the same vertex weights. Each net of the given hypergraph is represented by a clique of vertices

corresponding to its pins. That is, each net induces an edge between every pair of its pins. The multiple edges

connecting each pair of vertices of the graph are contracted into a single edge of which cost is equal to the sum
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of the costs of the edges it represents. In the standard clique-net model [29], a uniform cost of 1=(si�1) is

assigned to every clique edge of net ni with size si. Various other edge weighting functions are also proposed

in the literature [1]. If an edge is in the cut set of a graph partitioning then all nets represented by this edge are

in the cut set of hypergraph partitioning, and vice versa. Ideally, no matter how vertices of a net are partitioned,

the contribution of a cut net to the cutsize should always be one in a bipartition. However, the deficiency of

the clique-net model is that it is impossible to achieve such a perfect clique-net model [18]. Furthermore, the

transformation may result in very large graphs since the number of clique edges induced by the nets increase

quadratically with their sizes.

Recently, a randomized clique-net model implementation is proposed [2] which yields very promising results

when used together with graph partitioning tool MeTiS. In this model, all nets of size larger than T are removed

during the transformation. Furthermore, for each net ni of size si, F �si random pairs of its pins (vertices) are

selected and an edge with cost one is added to the graph for each selected pair of vertices. The multiple edges

between each pair of vertices of the resulting graph are contracted into a single edge as mentioned earlier. In

this scheme, the nets with size smaller than 2F+1 (small nets) induce larger number of edges than the standard

clique-net model, whereas the nets with size larger than 2F+1 (large nets) induce smaller number of edges than

the standard clique-net model. Considering the fact that MeTiS accepts integer edge costs for the input graph, this

scheme has two nice features1. First, it simulates the uniform edge-weighting scheme of the standard clique-net

model for small nets in a random manner since each clique edge (if induced) of a net ni with size si<2F+1 will

be assigned an integer cost close to 2F=(si�1) on the average. Second, it prevents the quadratic increase in the

number of clique edges induced by large nets in the standard model since the number of clique edges induced by a

net in this scheme is linear in the size of the net. In our implementation, we use the parameters T =50 and F =5

in accordance with the recommendations given in [2].

4.2 PaToH: A Multilevel Hypergraph Partitioning Tool

In this work, we exploit the successful multilevel methodology [4, 13, 21] proposed and implemented for graph

partitioning [14, 22] to develop a new multilevel hypergraph partitioning tool, called PaToH (PaToH: Partitioning

Tools for Hypergraphs).

The data structures used to store hypergraphs in PaToH mainly consist of the following arrays. The NETLST

array stores the net lists of the vertices. The PINLST array stores the pin lists of the nets. The size of both arrays

is equal to the total number of pins in the hypergraph. Two auxiliary index arrays VTXS and NETS of sizes jVj+1

and jN j+1 hold the starting indices of the net lists and pin lists of the vertices and nets in the NETLST and PINLST

arrays, respectively. In sparse matrix storage terminology, this scheme corresponds to storing the given matrix

both in Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC) formats [27] without storing the

numerical data. In the column-net model proposed for rowwise decomposition, the VTXS and NETLST arrays

correspond to the CSR storage scheme, and the NETS and PINLST arrays correspond to the CSC storage scheme.

1private communication with Alpert.
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This correspondence is dual in the row-net model proposed for columnwise decomposition.

The K-way graph/hypergraph partitioning problem is usually solved by recursive bisection. In this scheme,

first a 2-way partition of G/H is obtained, and then this bipartition is further partitioned in a recursive manner.

After lg2 K phases, graph G/H is partitioned into K parts. PaToH achieves K-way hypergraph partitioning by

recursive bisection for any K value (i.e., K is not restricted to be a power of 2).

The connectivity cutsize metric given in (3.b) needs special attention in K-way hypergraph partitioning by

recursive bisection. Note that the cutsize metrics given in (3.a) and (3.b) become equivalent in hypergraph bisection.

Consider a bipartition VA and VB of V obtained after a bisection step. It is clear that VA and VB and the internal

nets of parts A and B will become the vertex and net sets ofHA andHB , respectively, for the following recursive

bisection steps. Note that each cut net of this bipartition already contributes 1 to the total cutsize of the final

K-way partition to be obtained by further recursive bisections. However, the further recursive bisections of VA
and VB may increase the connectivity of these cut nets. In parallel SpMxV view, while each cut net already incurs

the communication of a single word, these nets may induce additional communication because of the following

recursive bisection steps. Hence, after every hypergraph bisection step, each cut net ni is split into two pin-wise

disjoint nets n0i = pins[ni]
TVA and n00i = pins[ni]

TVB, and then these two nets are added to the net lists of

HA and HB if jn0ij > 1 and jn00i j > 1, respectively. Note that the single-pin nets are discarded during the split

operation since such nets cannot contribute to the cutsize in the following recursive bisection steps. Thus, the total

cutsize according to (3.b) will become equal to the sum of the number of cut nets at every bisection step by using

the above cut-net split method. Figure 5 illustrates two cut nets ni and nk in a bipartition, and their splits into nets

n0i, n
00
i and n0k , n00k , respectively. Note that net n00k becomes a single-pin net and it is discarded.

Similar to multilevel graph and hypergraph partitioning tools Chaco [14], MeTiS [22] and hMeTiS [24], the

multilevel hypergraph bisection algorithm used in PaToH consists of 3 phases: coarsening, initial partitioning and

uncoarsening. The following sections briefly summarize our multilevel bisection algorithm. Although PaToH

works on weighted nets, we will assume unit cost nets both for the sake of simplicity of presentation and for the

fact that all nets are assigned unit cost in the hypergraph representation of sparse matrices.
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4.2.1 Coarsening Phase

In this phase, the given hypergraph H = H0 = (V0;N0) is coarsened into a sequence of smaller hypergraphs

H1=(V1;N1), H2 =(V2;N2), : : :, Hm=(Vm;Nm) satisfying jV0j> jV1j> jV2j> : : : > jVmj. This coarsening is

achieved by coalescing disjoint subsets of vertices of hypergraph Hi into multinodes such that each multinode in

Hi forms a single vertex of Hi+1. The weight of each vertex of Hi+1 becomes equal to the sum of its constituent

vertices of the respective multinode in Hi. The net set of each vertex of Hi+1 becomes equal to the union of the

net sets of the constituent vertices of the respective multinode in Hi. Here, multiple pins of a net n 2 Ni in a

multinode cluster of Hi are contracted to a single pin of the respective net n02Ni+1 of Hi+1. Furthermore, the

single-pin nets obtained during this contraction are discarded. Note that such single-pin nets correspond to the

internal nets of the clustering performed on Hi. The coarsening phase terminates when the number of vertices in

the coarsened hypergraph reduces below 100 (i.e. jVmj�100).

Clustering approaches can be classified as agglomerative and hierarchical. In the agglomerative cluster-

ing, new clusters are formed one at a time, whereas in the hierarchical clustering several new clusters may be

formed simultaneously. In PaToH, we have implemented both randomized matching–based hierarchical clustering

and randomized hierarchic–agglomerative clustering. The former and latter approaches will be abbreviated as

matching–based clustering and agglomerative clustering, respectively.

The matching-based clustering works as follows. Vertices of Hi are visited in a random order. If a vertex

u2 Vi has not been matched yet, one of its unmatched adjacent vertices is selected according to a criterion. If

such a vertex v exists, we merge the matched pair u and v into a cluster. If there is no unmatched adjacent vertex

of u, then vertex u remains unmatched, i.e., u remains as a singleton cluster. Here, two vertices u and v are said

to be adjacent if they share at least one net, i.e., nets[u] \ nets[v] 6= ;. The selection criterion used in PaToH for

matching chooses a vertex v with the highest connectivity valueNuv. Here, connectivityNuv= jnets[u]\nets[v]j
refers to the number of shared nets between u and v. This matching-based scheme is referred to here as Heavy

Connectivity Matching (HCM).

The matching-based clustering allows the clustering of only pairs of vertices in a level. In order to enable the

clustering of more than two vertices at each level, we have implemented a randomized agglomerative clustering

approach. In this scheme, each vertex u is assumed to constitute a singleton cluster Cu = fug at the beginning

of each coarsening level. Then, vertices are visited in a random order. If a vertex u has already been clustered

(i.e. jCuj>1) it is not considered for being the source of a new clustering. However, an unclustered vertex u can

choose to join a multinode cluster as well as a singleton cluster. That is, all adjacent vertices of an unclustered

vertex u are considered for selection according to a criterion. The selection of a vertex v adjacent to u corresponds

to including vertex u to cluster Cv to grow a new multinode cluster Cu=Cv=Cv [ fug. Note that no singleton

cluster remains at the end of this process as far as there exists no isolated vertex. The selection criterion used in

PaToH for agglomerative clustering chooses a singleton or multinode cluster Cv with the highest Nu;Cv=Wu;Cv

value, where Nu;Cv = jnets[u] \ Sx2Cv
nets[x]j and Wu;Cv is the weight of the multinode cluster candidate
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Figure 6: Matching-based clustering AHCM
1 and agglomerative clustering AHCC

1 of the rows of matrix A0.

fug [ Cv. The division of Nu;Cv by Wu;Cv is an effort for avoiding the polarization towards very large clusters.

This agglomerative clustering scheme is referred to here as Heavy Connectivity Clustering (HCC).

The objective in both HCM and HCC is to find highly connected vertex clusters. Connectivity values Nuv and

Nu;Cv used for selection serve this objective. Note that Nuv (Nu;Cv ) also denotes the lower bound in the amount

of decrease in the number of pins because of the pin contractions to be performed when u joins v (Cv). Recall that

there might be additional decrease in the number of pins because of single-pin nets that may occur after clustering.

Hence, the connectivity metric is also an effort towards minimizing the complexity of the following coarsening

levels, partitioning phase and refinement phase since the size of a hypergraph is equal to the number of its pins.

In rowwise matrix decomposition context (i.e. column-net model), the connectivity metric corresponds to the

number of common column indices between two rows or row groups. Hence, both HCM and HCC try to combine

rows or row groups with similar sparsity patterns. This in turn corresponds to combining rows or row groups

which need similar sets of x-vector components in the pre-communication scheme. A dual discussion holds for

the row-net model. Figure 6 illustrates a single level coarsening of an 8�8 sample matrix A0 in the column-net

model using HCM and HCC. The original decimal ordering of the rows is assumed to be the random vertex visit

order. As seen in Fig. 6, HCM matches row pairs f1; 3g, f2; 6g and f4; 5g with the connectivity values of 3, 2

and 2, respectively. Note that the total number of nonzeros of A0 reduces from 28 to 21 in AHCM
1 after clustering.

This difference is equal to the sum 3+2+2=7 of the connectivity values of the matched row-vertex pairs since pin

contractions do not lead to any single-pin nets. As seen in Fig. 6, HCC constructs three clusters f1; 2; 3g, f4; 5g
and f6; 7; 8g through the clustering sequence of f1; 3g, f1; 2; 3g, f4; 5g, f6; 7g and f6; 7; 8gwith the connectivity

values of 3, 4, 2, 3 and 2, respectively. Note that pin contractions lead to three single-pin nets n2, n3 and n7, thus

columns 2, 3 and 7 are removed. As also seen in Fig. 6, although rows 7 and 8 remain unmatched in HCM, every

row is involved in at least one clustering in HCC.

Both HCM and HCC necessitate scanning the pin lists of all nets in the net list of the source vertex to find

its adjacent vertices for matching and clustering. In the column-net (row-net) model, the total cost of these scan

operations can be as expensive as the total number of multiply and add operations which lead to nonzero entries

in the computation of AAT (ATA). In HCM, the key point to efficient implementation is to move the matched
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vertices encountered during the scan of the pin list of a net to the end of its pin list through a simple swap operation.

This scheme avoids the re-visits of the matched vertices during the following matching operations at that level.

Although this scheme requires an additional index array to maintain the temporary tail indices of the pin lists,

it achieves substantial decrease in the run-time of the coarsening phase. Unfortunately, this simple yet effective

scheme cannot be fully used in HCC. Since a singleton vertex can select a multinode cluster, the re-visits of the

clustered vertices are partially avoided by maintaining only a single vertex to represent the multinode cluster in

the pin-list of each net connected to the cluster, through simple swap operations. Through the use of these efficient

implementation schemes the total cost of the scan operations in the column-net (row-net) model can be as low

as the total number of nonzeros in AAT (ATA). In order to maintain this cost within reasonable limits, all nets

of size greater than 4savg are not considered in a bipartitioning step, where savg denotes the average net size of

the hypergraph to be partitioned in that step. Note that such nets can be reconsidered during the further levels of

recursion because of net splitting.

The cluster growing operation in HCC requires disjoint-set operations for maintaining the representatives of

the clusters, where the union operations are restricted to the union of a singleton source cluster with a singleton or

a multinode target cluster. This restriction is exploited by always choosing the representative of the target cluster

as the representative of the new cluster. Hence, it is sufficient to update the representative pointer of only the

singleton source cluster joining to a multinode target cluster. Therefore, each disjoint-set operation required in

this scheme is performed in O(1) time.

4.2.2 Initial Partitioning Phase

The goal in this phase is to find a bipartition on the coarsest hypergraphHm. In PaToH, we use Greedy Hypergraph

Growing (GHG) algorithm for bisecting Hm. This algorithm can be considered as an extension of the GGGP

algorithm used in MeTiS to hypergraphs. In GHG, we grow a cluster around a randomly selected vertex. During

the coarse of the algorithm, the selected and unselected vertices induce a bipartition on Hm. The unselected

vertices connected to the growing cluster are inserted into a priority queue according to their FM gains. Here,

the gain of an unselected vertex corresponds to the decrease in the cutsize of the current bipartition if the vertex

moves to the growing cluster. Then, a vertex with the highest gain is selected from the priority queue. After a

vertex moves to the growing cluster, the gains of its unselected adjacent vertices which are currently in the priority

queue are updated and those not in the priority queue are inserted. This cluster growing operation continues until a

predetermined bipartition balance criterion is reached. As also mentioned in MeTiS, the quality of this algorithm

is sensitive to the choice of the initial random vertex. Since the coarsest hypergraph Hm is small, we run GHG 4

times starting from different random vertices and select the best bipartition for refinement during the uncoarsening

phase.

4.2.3 Uncoarsening Phase

At each level i (for i = m;m�1; : : : ; 1), bipartition Πi found on Hi is projected back to a bipartition Πi�1

on Hi�1. The constituent vertices of each multinode in Hi�1 is assigned to the part of the respective vertex in
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Hi. Obviously, Πi�1 of Hi�1 has the same cutsize with Πi of Hi. Then, we refine this bipartition by running a

Boundary FM (BFM) hypergraph bipartitioning algorithm on Hi�1 starting from initial bipartition Πi�1. BFM

moves only the boundary vertices from the overloaded part to the under-loaded part, where a vertex is said to be a

boundary vertex if it is connected to an at least one cut net.

BFM requires maintaining the pin-connectivity of each net for both initial gain computations and gain updates.

The pin-connectivity �k[n] = jn \ Pkj of a net n to a part Pk denotes the number of pins of net n that lie in part

Pk, for k = 1; 2. In order to avoid the scan of the pin lists of all nets, we adopt an efficient scheme to initialize

the � values for the first BFM pass in a level. It is clear that initial bipartition Πi�1 of Hi�1 has the same cut-net

set with Πi of Hi. Hence, we scan only the pin lists of the cut nets of Πi�1 to initialize their � values. For each

other net n, �1[n] and �2[n] values are easily initialized as �1[n] = sn and �2[n] = 0 if net n is internal to part

P1, and �1[n]= 0 and �2[n]= sn otherwise. After initializing the gain value of each vertex v as g[v]=�dv, we

exploit � values as follows. We re-scan the pin list of each external net n and update the gain value of each vertex

v 2 pins[n] as g[v] = g[v] + 2 or g[v] = g[v] + 1 depending on whether net n is critical to the part containing v

or not, respectively. An external net n is said to be critical to a part k if �k [n] = 1 so that moving the single vertex

of net n that lies in that part to the other part removes net n from the cut. Note that two-pin cut nets are critical to

both parts. The vertices visited while scanning the pin-lists of the external nets are identified as boundary vertices

and only these vertices are inserted into the priority queue according to their computed gains.

In each pass of the BFM algorithm, a sequence of unmoved vertices with the highest gains are selected to move

to the other part. As in the original FM algorithm, a vertex move necessitates gain updates of its adjacent vertices.

However, in the BFM algorithm, some of the adjacent vertices of the moved vertex may not be in the priority

queue, because they may not be boundary vertices before the move. Hence, such vertices which become boundary

vertices after the move are inserted into the priority queue according to their updated gain values. The refinement

process within a pass terminates when no feasible move remains or the sequence of last maxf50, 0:001jVijg
moves does not yield a decrease in the total cutsize. A move is said to be feasible if it does not disturb the load

balance criterion (1) with K = 2. At the end of a BFM pass, we have a sequence of tentative vertex moves and

their respective gains. We then construct from this sequence the maximum prefix subsequence of moves with the

maximum prefix sum which incurs the maximum decrease in the cutsize. The permanent realization of the moves

in this maximum prefix subsequence is efficiently achieved by rolling back the remaining moves at the end of the

overall sequence. The initial gain computations for the following pass in a level is achieved through this rollback.

The overall refinement process in a level terminates if the maximum prefix sum of a pass is not positive. In the

current implementation of PaToH, at most 2 BFM passes are allowed at each level of the uncoarsening phase.

5 EXPERIMENTAL RESULTS

We have tested the validity of the proposed hypergraph models by running MeTiS on the graphs obtained by

randomized clique-net transformation, and running PaToH and hMeTiS directly on the hypergraphs for the decom-

positions of various realistic sparse test matrices arising in different application domains. These decomposition
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results are compared with the decompositions obtained by running MeTiS using the standard and proposed graph

models for the symmetric and nonsymmetric test matrices, respectively. The most recent version (Version 3.0)

of MeTiS [22] was used in the experiments. As both hMeTiS and PaToH achieve K-way partitioning through

recursive bisection, recursive MeTiS (pMeTiS) was used for the sake of a fair comparison. Another reason for

using pMeTiS is that direct K-way partitioning version of MeTiS (kMeTiS) produces 9% worse partitions than

pMeTiS in the decomposition of the nonsymmetric test matrices, although it is 2.5 times faster, on the average.

pMeTiS was run with the default parameters: sorted heavy-edge matching, region growing and early-exit bound-

ary FM refinement for coarsening, initial partitioning and uncoarsening phases, respectively. The current version

(Version 1.0.2) of hMeTiS [24] was run with the parameters: greedy first-choice scheme (GFC) and early-exit FM

refinement (EE-FM) for coarsening and uncoarsening phases, respectively. The V-cycle refinement scheme was

not used, because in our experimentations it achieved at most 1% (much less on the average) better decompositions

at the expense of approximately 3 times slower execution time (on the average) in the decomposition of the test

matrices. The GFC scheme was found to be 28% faster than the other clustering schemes while producing slightly

(1%–2%) better decompositions on the average. The EE-FM scheme was observed to be 30% faster than the other

refinement schemes without any difference in the decomposition quality on the average.

Table I illustrates the properties of the test matrices listed in the order of increasing number of nonzeros. In this

table, the “description” column displays both the nature and the source of each test matrix. The sparsity patterns

of the Linear Programming matrices used as symmetric test matrices are obtained by multiplying the respective

rectangular constraint matrices with their transposes. In Table I, the total number of nonzeros of a matrix also

denotes the total number of pins in both column-net and row-net models. The minimum and maximum number

of nonzeros per row (column) of a matrix correspond to the minimum and maximum vertex degree (net size) in

the column-net model, respectively. Similarly, the standard deviation std and coefficient of variation cov values

of nonzeros per row (column) of a matrix correspond to the std and cov values of vertex degree (net size) in the

column-net model, respectively. Dual correspondences hold for the row-net model.

All experiments were carried out on a workstation equipped with a 133 MHz PowerPC processor with 512-Kbyte

external cache and 64 Mbytes of memory. We have tested K = 8, 16, 32 and 64 way decompositions of every

test matrix. For a specific K value, K-way decomposition of a test matrix constitutes a decomposition instance.

pMeTiS, hMeTiS and PaToH were run 50 times starting from different random seeds for each decomposition

instance. The average performance results are displayed in Tables II–IV and Figs. 7–9 for each decomposition

instance. The percent load imbalance values are below 3% for all decomposition results displayed in these figures,

where percent imbalance ratio is defined as 100� (Wmax �Wavg)=Wavg.

Table II displays the decomposition performance of the proposed hypergraph models together with the standard

graph model in the rowwise/columnwise decomposition of the symmetric test matrices. Note that the rowwise

and columnwise decomposition problems become equivalent for symmetric matrices. Tables III and IV display

the decomposition performance of the proposed column-net and row-net hypergraph models together with the
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proposed graph models in the rowwise and columnwise decompositions of the nonsymmetric test matrices,

respectively. Due to lack of space, the decomposition performance results for the clique-net approach are not

displayed in Tables II–IV, instead they are summarized in Table V. Although the main objective of this work is

the minimization of the total communication volume, the results for the other performance metrics such as the

maximum volume, average number and maximum number of messages handled by a single processor are also

displayed in Tables II–IV. Note that the maximum volume and maximum number of messages determine the

concurrent communication volume and concurrent number of messages, respectively, under the assumption that

no congestion occurs in the network.

As seen in Tables II–IV, the proposed hypergraph models produce substantially better partitions than the graph

model at each decomposition instance in terms of total communication volume cost. In the symmetric test matrices,

the hypergraph model produces 7%–48% better partitions than the graph model (see Table II). In the nonsymmetric

test matrices, the hypergraph models produce 12%–63% and 9%–56% better partitions than the graph models in

the rowwise (see Table III) and columnwise (see Table IV) decompositions, respectively. As seen in Tables II–IV,

there is no clear winner between hMeTiS and PaToH in terms of decomposition quality. In some matrices hMeTiS

produces slightly better partitions than PaToH, whereas the situation is the other way round in some other matrices.

As seen in Tables II and III, there is also no clear winner between clustering schemes HCM and HCC in PaToH.

However, as seen in Table IV, PaToH-HCC produces slightly better partitions than PaToH-HCM in all columnwise

decomposition instances for the nonsymmetric test matrices.

Tables II–IV show that the performance gap between the graph and hypergraph models in terms of the total

communication volume costs is preserved by almost the same amounts in terms of the concurrent communication

volume costs. For example, in the decomposition of the symmetric test matrices, the hypergraph model using

PaToH-HCM incurs 30% less total communication volume than the graph model while incurring 28% less

concurrent communication volume, on the overall average. In the columnwise decomposition of the nonsymmetric

test matrices, PaToH-HCM incurs 35% less total communication volume than the graph model while incurring

37% less concurrent communication volume, on the overall average.

Although the hypergraph models perform better than the graph models in terms of number of messages, the

performance gap is not as large as in the communication volume metrics. However, the performance gap increases

with increasingK. As seen in Table II, in the 64-way decomposition of the symmetric test matrices, the hypergraph

model using PaToH-HCC incurs 32% and 10% less total and concurrent number of messages than the graph model,

respectively. As seen in Table III, in the rowwise decomposition of the nonsymmetric test matrices, PaToH-HCC

incurs 32% and 26% less total and concurrent number of messages than the graph model, respectively.

The performance comparison of the graph/hypergraph partitioning based 1D decomposition schemes with the

conventional algorithms based on 1D and 2D [15, 30] decomposition schemes is as follows. As mentioned earlier,

inK-way decompositions of m�m matrices, the conventional 1D and 2D schemes incur the total communication

volume of (K � 1)m and 2(
p
K� 1)m words, respectively. For example, in 64-way decompositions, the
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conventional 1D and 2D schemes incur the total communication volumes of 63m and 14m words, respectively.

As seen at the bottom of Tables II and III, PaToH-HCC reduces the total communication volume to 1:91m and

0:90m words in the 1D 64-way decomposition of the symmetric and nonsymmetric test matrices, respectively,

on the overall average. In 64-way decompositions, the conventional 1D and 2D schemes incur the concurrent

communication volumes of approximately m and 0:22m words, respectively. As seen in Tables II and III,

PaToH-HCC reduces the concurrent communication volume to 0:052m and 0:025m words in the 1D 64-way

decomposition of the symmetric and nonsymmetric test matrices, respectively, on the overall average.

Figure 7 illustrates the relative run-time performance of the proposed hypergraph model compared to the

standard graph model in the rowwise/columnwise decomposition of the symmetric test matrices. Figures 8

and 9 display the relative run-time performance of the column-net and row-net hypergraph models compared to

the proposed graph models in the rowwise and columnwise decompositions of the nonsymmetric test matrices,

respectively. In Figs. 7–9, for each decomposition instance, we plot the ratios of the average execution times

of the tools using the respective hypergraph model to that of pMeTiS using the respective graph model. The

results displayed in Figs. 7–9 are obtained by assuming that the test matrix is given either in CSR or in CSC

form which are commonly used for SpMxV computations. The standard graph model does not necessitate any

preprocessing since CSR and CSC forms are equivalent in symmetric matrices and both of them correspond to

the adjacency list representation of the standard graph model. However, in nonsymmetric matrices, construction

of the proposed graph model requires some amount of preprocessing time, although we have implemented a very

efficient construction code which totally avoids index search. Thus, the execution time averages of the graph

models for the nonsymmetric test matrices include this preprocessing time. The preprocessing time constitutes

approximately 3% of the total execution time on the overall average. In the clique-net model, transforming

the hypergraph representation of the given matrices to graphs using the randomized clique-net model introduces

considerable amount of preprocessing time, despite the efficient implementation scheme we have adopted. Hence,

the execution time averages of the clique-net model include this transformation time. The transformation time

constitutes approximately 23% of the total execution time on the overall average. As mentioned earlier, the PaToH

and hMeTiS tools use both CSR and CSC forms such that the construction of the other form from the given one is

performed within the respective tool.

As seen in Figs. 7–9, the tools using the hypergraph models run slower than pMeTiS using the the graph

models in most of the instances. The comparison of Fig. 7 with Figs. 8 and 9 shows that the gap between the

run-time performances of the graph and hypergraph models is much less in the decomposition of the nonsymmetric

test matrices than that of the symmetric test matrices. These experimental findings were expected, because the

execution times of graph partitioning tool pMeTiS, and hypergraph partitioning tools hMeTiS and PaToH are

proportional to the sizes of the graph and hypergraph, respectively. In the representation of anm�m square matrix

with Z off-diagonal nonzeros, the graph models contain jEj = Z=2 and Z=2 < jEj � Z edges for symmetric

and nonsymmetric matrices, respectively. However, the hypergraph models contain p = m + Z pins for both
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symmetric and nonsymmetric matrices. Hence, the size of the hypergraph representation of a matrix is always

greater than the size of its graph representation, and this gap in the sizes decreases in favor of the hypergraph models

in nonsymmetric matrices. Figure 9 displays an interesting behavior that pMeTiS using the clique-net model runs

faster than pMeTiS using the graph model in the columnwise decomposition of 4 out of 9 nonsymmetric test

matrices. In these 4 test matrices, the edge contractions during the hypergraph-to-graph transformation through

randomized clique-net approach lead to less number of edges than the graph model.

As seen in Figs. 7–9, both PaToH-HCM and PaToH-HCC run considerably faster than hMeTiS in each

decomposition instance. This situation can be most probably due to the design considerations of hMeTiS.

hMeTiS mainly aims at partitioning VLSI circuits of which hypergraph representations are much more sparse

than the hypergraph representations of the test matrices. In the comparison of the HCM and HCC clustering

schemes of PaToH, PaToH-HCM runs slightly faster than PaToH-HCC in the decomposition of almost all test

matrices except in the decomposition of symmetric matrices KEN-11 and KEN-13, and nonsymmetric matrices

ONETONE1 and ONETONE2. As seen in Fig. 7, PaToH-HCM using the hypergraph model runs 1.47–2.93

times slower than pMeTiS using the graph model in the decomposition of the symmetric test matrices. As seen

in Figs. 8 and 9, PaToH-HCM runs 1.04–1.63 times and 0.83–1.79 times slower than pMeTiS using the graph

model in the rowwise and columnwise decomposition of the nonsymmetric test matrices, respectively. Note that

PaToH-HCM runs 17%, 8% and 6% faster than pMeTiS using the graph model in the 8-way, 16-way and 32-

way columnwise decompositions of nonsymmetric matrix LHR34, respectively. PaToH-HCM achieves 64-way

rowwise decomposition of the largest test matrix BCSSTK32 containing 44.6K rows/columns and 1030K nonzeros

in only 25.6 seconds, which is equal to the sequential execution time of multiplying matrix BCSSTK32 with a

dense vector 73.5 times.

The relative performance results of the hypergraph models with respect to the graph models are summarized

in Table V in terms of total communication volume and execution time by averaging over different K values.

This table also displays the averages of the best and worst performance results of the tools using the hypergraph

models. In Table V, the performance results for the hypergraph models are normalized with respect to those of

pMeTiS using the graph models. In the symmetric test matrices, direct approaches PaToH and hMeTiS produce

30%–32% better partitions than pMeTiS using the graph model, whereas the clique-net approach produces 16%

better partitions, on the overall average. In the nonsymmetric test matrices, the direct approaches achieve 34%–

38% better decomposition quality than pMeTiS using the graph model, whereas the clique-net approach achieves

21%–24% better decomposition quality. As seen in Table V, the clique-net approach is faster than the direct

approaches in the decomposition of the symmetric test matrices. However, PaToH-HCM achieves nearly equal

run-time performance as pMeTiS using the clique-net approach in the decomposition of the nonsymmetric test

matrices. It is interesting to note that the execution time of the clique-net approach relative to the graph model

decreases with increasing number of processors K. This is because of the fact that the percent preprocessing

overhead due to the hypergraph-to-graph transformation in the total execution time of pMeTiS using the clique-net
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approach decreases with increasing K.

As seen in Table V, hMeTiS produces slightly (2%) better partitions at the expense of considerably larger

execution time in the decomposition of the symmetric test matrices. However, PaToH-HCM achieves the same

decomposition quality as hMeTiS for the nonsymmetric test matrices, whereas PaToH-HCC achieves slightly

(2%–3%) better decomposition quality. In the decomposition of the nonsymmetric test matrices, although PaToH-

HCC performs slightly better than PaToH-HCM in terms of decomposition quality, it is 13%–14% slower.

In the symmetric test matrices, the use of the proposed hypergraph model instead of the graph model achieves

30% decrease in the communication volume requirement of a single parallel SpMxV computation at the expense of

130% increase in the decomposition time by using PaToH-HCM for hypergraph partitioning. In the nonsymmetric

test matrices, the use of the proposed hypergraph models instead of the graph model achieves 34%–35% decrease in

the communication volume requirement of a single parallel SpMxV computation at the expense of only 34%–39%

increase in the decomposition time by using PaToH-HCM.

6 CONCLUSION
Two computational hypergraph models were proposed to decompose sparse matrices for minimizing communi-

cation volume while maintaining load balance during repeated parallel matrix-vector product computations. The

proposed models enable the representation and hence the decomposition of structurally nonsymmetric matrices

as well as structurally symmetric matrices. Furthermore, they introduce a much more accurate representation for

the communication requirement than the standard computational graph model widely used in the literature for the

parallelization of various scientific applications. The proposed models reduce the decomposition problem to the

well-known hypergraph partitioning problem thus enabling the use of circuit partitioning heuristics widely used in

VLSI design. The successful multilevel graph partitioning tool MeTiS was used for the experimental evaluation of

the validity of the proposed hypergraph models through hypergraph-to-graph transformation using the randomized

clique-net model. A successful multilevel hypergraph partitioning tool PaToH was also implemented, and both

PaToH and recently released multilevel hypergraph partitioning tool hMeTiS were used for testing the validity of

the proposed hypergraph models. Experimental results carried out on a wide range of sparse test matrices arising

in different application domains confirmed the validity of the proposed hypergraph models. In the decomposition

of the test matrices, the use of the proposed hypergraph models instead of the graph models achieved 30%-38%

decrease in the communication volume requirement of a single parallel matrix-vector multiplication at the expense

of only 34%–130% increase in the decomposition time by using PaToH, on the average. This work was also an

effort towards showing that the computational hypergraph model is more powerful than the standard computa-

tional graph model as it provides a more versatile representation for the interactions among the atomic tasks of the

computational domains.
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Table I: Properties of test matrices.

number number of nonzeros
matrix name description of total avg. per per column per row

rows/cols row/col min max std cov min max std cov
Structurally Symmetric Matrices

SHERMAN3 [9] 3D finite difference grid 5005 20033 4.00 1 7 2.66 0.67 1 7 2.66 0.67
KEN-11 [7] linear programming 14694 82454 5.61 2 243 14.54 2.59 2 243 14.54 2.59
NL [19] linear programming 7039 105089 14.93 1 361 28.48 1.91 1 361 28.48 1.91
KEN-13 [7] linear programming 28632 161804 5.65 2 339 16.84 2.98 2 339 16.84 2.98
CQ9 [19] linear programming 9278 221590 23.88 1 702 54.46 2.28 1 702 54.46 2.28
CO9 [19] linear programming 10789 249205 23.10 1 707 52.17 2.26 1 707 52.17 2.26
CRE-D [7] linear programming 8926 372266 41.71 1 845 76.46 1.83 1 845 76.46 1.83
CRE-B [7] linear programming 9648 398806 41.34 1 904 74.69 1.81 1 904 74.69 1.81
FINAN512 [39] stochastic programming 74752 615774 8.24 3 1449 20.00 2.43 3 1449 20.00 2.43

Structurally Nonsymmetric Matrices
GEMAT11 [9] optimal power flow 4929 38101 7.73 1 28 2.96 0.38 1 29 3.38 0.44
LHR07 [39] light hydrocarbon recovery 7337 163716 22.31 1 64 26.19 1.17 2 37 16.00 0.72
ONETONE2 [39] nonlinear analog circuit 36057 254595 7.06 2 34 5.13 0.73 2 66 6.67 0.94
LHR14 [39] light hydrocarbon recovery 14270 321988 22.56 1 64 26.26 1.16 2 37 15.98 0.71
ONETONE1 [39] nonlinear analog circuit 36057 368055 10.21 2 82 14.32 1.40 2 162 17.85 1.75
LHR17 [39] light hydrocarbon recovery 17576 399500 22.73 1 64 26.32 1.16 2 37 15.96 0.70
LHR34 [39] light hydrocarbon recovery 35152 799064 22.73 1 64 26.32 1.16 2 37 15.96 0.70
BCSSTK32 [9] 3D stiffness matrix 44609 1029655 23.08 1 141 10.10 0.44 1 192 10.45 0.45
BCSSTK30 [9] 3D stiffness matrix 28924 1036208 35.83 1 159 21.99 0.61 1 104 15.27 0.43
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Table II: Average communication requirements for rowwise/columnwise decomposition of structurally symmetric
test matrices.

Graph Model Hypergraph Model: Column-net Model� Row-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.
per proc. volume per proc. volume per proc. volume per proc. volume

avg max tot max avg max tot max avg max tot max avg max tot max
8 3.6 4.9 0.20 0.033 3.6 5.0 0.17 0.029 3.4 4.9 0.16 0.030 3.3 4.8 0.16 0.030

16 5.3 8.2 0.31 0.028 5.2 7.8 0.27 0.024 4.5 7.4 0.25 0.024 4.7 7.8 0.25 0.025
SHERMAN3 32 6.5 11.0 0.46 0.021 6.7 10.9 0.39 0.018 5.7 10.1 0.37 0.019 5.9 10.5 0.37 0.019

64 7.5 13.6 0.64 0.016 7.9 13.6 0.55 0.013 7.0 13.1 0.53 0.014 7.0 13.4 0.53 0.014
8 7.0 7.0 0.70 0.116 6.9 7.0 0.47 0.078 6.9 7.0 0.51 0.083 7.0 7.0 0.55 0.094

16 13.8 15.0 0.92 0.080 12.4 15.0 0.57 0.047 12.8 15.0 0.59 0.046 13.7 15.0 0.66 0.057
KEN-11 32 26.1 30.5 1.16 0.055 19.8 30.3 0.70 0.032 21.2 31.0 0.73 0.033 22.1 30.5 0.79 0.034

64 40.9 54.9 1.44 0.038 30.1 58.6 0.90 0.024 32.1 60.4 0.92 0.025 30.1 54.2 0.96 0.025
8 7.0 7.0 1.33 0.192 6.8 7.0 0.72 0.110 6.8 7.0 0.76 0.124 7.0 7.0 0.79 0.135

16 15.0 15.0 1.71 0.147 13.5 15.0 0.99 0.085 13.2 15.0 1.05 0.097 13.7 15.0 1.14 0.101
NL 32 28.1 31.0 2.26 0.101 19.5 26.5 1.40 0.060 20.0 27.6 1.52 0.068 20.3 27.5 1.57 0.070

64 38.2 59.1 3.06 0.073 24.4 39.3 2.08 0.045 26.4 40.5 2.20 0.048 26.0 42.9 2.23 0.050
8 7.0 7.0 0.75 0.120 7.0 7.0 0.47 0.070 7.0 7.0 0.48 0.075 6.9 7.0 0.48 0.076

16 14.8 15.0 0.94 0.078 13.2 15.0 0.54 0.043 14.0 15.0 0.55 0.041 13.4 15.0 0.55 0.042
KEN-13 32 29.2 31.0 1.16 0.051 22.7 31.0 0.64 0.029 22.8 31.0 0.63 0.025 21.8 31.0 0.63 0.027

64 51.0 62.2 1.41 0.034 35.9 62.8 0.80 0.022 35.8 63.0 0.79 0.020 34.7 63.0 0.78 0.019
8 7.0 7.0 1.11 0.173 7.0 7.0 0.65 0.104 7.0 7.0 0.71 0.154 6.9 7.0 0.71 0.166

16 14.9 15.0 1.69 0.172 12.7 15.0 0.88 0.097 12.9 15.0 0.99 0.120 12.7 14.9 0.96 0.112
CQ9 32 21.8 30.7 2.42 0.148 18.6 26.6 1.36 0.075 18.0 27.0 1.47 0.086 17.6 26.9 1.40 0.082

64 32.1 56.4 3.71 0.115 23.7 38.4 2.27 0.061 22.7 41.0 2.34 0.065 22.7 39.5 2.31 0.064
8 7.0 7.0 0.96 0.156 7.0 7.0 0.67 0.110 7.0 7.0 0.68 0.133 7.0 7.0 0.67 0.139

16 14.8 15.0 1.51 0.157 12.4 14.9 0.87 0.091 12.7 14.9 0.94 0.110 12.7 14.9 0.92 0.107
CO9 32 19.5 29.7 2.08 0.120 17.6 26.6 1.33 0.079 17.6 26.3 1.37 0.077 18.1 26.7 1.34 0.079

64 29.9 52.3 3.14 0.093 21.7 37.3 2.13 0.061 21.8 38.8 2.16 0.059 21.9 38.6 2.14 0.062
8 7.0 7.0 1.81 0.292 6.9 7.0 1.39 0.226 6.4 7.0 1.33 0.214 6.2 7.0 1.25 0.208

16 14.9 15.0 2.81 0.238 13.0 15.0 2.09 0.177 11.8 15.0 2.00 0.176 11.2 15.0 1.89 0.163
CRE-D 32 28.7 31.0 4.13 0.188 21.3 31.0 2.97 0.136 19.3 31.0 2.89 0.133 18.4 31.0 2.73 0.124

64 47.9 63.0 6.01 0.142 31.2 61.3 4.16 0.104 29.7 60.8 4.19 0.104 27.9 60.5 3.96 0.098
8 7.0 7.0 1.70 0.267 6.9 7.0 1.40 0.224 6.7 7.0 1.33 0.213 6.6 7.0 1.28 0.212

16 14.8 15.0 2.62 0.230 13.4 15.0 2.07 0.177 12.2 15.0 2.01 0.175 12.2 15.0 1.95 0.180
CRE-B 32 28.5 31.0 3.89 0.179 21.5 30.9 2.90 0.138 20.0 31.0 2.88 0.148 19.3 31.0 2.75 0.154

64 46.6 63.0 5.72 0.136 31.3 61.4 4.07 0.111 30.0 61.7 4.12 0.121 28.3 61.5 3.93 0.125
8 2.9 4.3 0.13 0.047 2.8 4.2 0.11 0.045 3.0 4.6 0.12 0.047 3.4 5.6 0.12 0.047

16 4.3 7.2 0.20 0.034 3.0 6.7 0.14 0.024 3.3 7.2 0.16 0.025 4.0 9.4 0.17 0.027
FINAN512 32 6.3 13.6 0.27 0.020 3.4 13.2 0.18 0.015 4.2 13.8 0.21 0.016 4.7 17.3 0.22 0.017

64 8.8 26.5 0.38 0.013 4.2 25.8 0.28 0.010 5.5 26.4 0.31 0.011 5.9 31.0 0.32 0.012

Averages overK

8 6.2 6.5 0.97 0.155 6.1 6.5 0.67 0.111 6.0 6.5 0.68 0.119 6.0 6.6 0.67 0.123
16 12.5 13.4 1.41 0.129 11.0 13.3 0.93 0.085 10.8 13.3 0.95 0.091 10.9 13.6 0.94 0.090
32 21.6 26.6 1.98 0.098 16.8 25.2 1.32 0.065 16.5 25.4 1.34 0.067 16.5 25.8 1.31 0.067
64 33.6 50.1 2.83 0.073 23.4 44.3 1.92 0.050 23.4 45.1 1.95 0.052 22.7 45.0 1.91 0.052

In the “# of mssgs” column, “avg” and “max” denote the average and maximum number of messages, respectively, handled by
a single processor. In the “comm. volume” column, “tot” denotes the total communication volume, whereas “max” denotes
the maximum communication volume handled by a single processor. Communication volume values (in terms of the number
of words transmitted) are scaled by the number of rows/columns of the respective test matrices.
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Table III: Average communication requirement for rowwise decomposition of structurally nonsymmetric test
matrices.

Graph Model Hypergraph Model: Column-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.
per proc. volume per proc. volume per proc. volume per proc. volume

avg max tot max avg max tot max avg max tot max avg max tot max
8 7.0 7.0 1.33 0.201 7.0 7.0 0.79 0.111 7.0 7.0 0.75 0.109 7.0 7.0 0.73 0.106

16 15.0 15.0 1.85 0.144 14.8 15.0 1.00 0.071 14.7 15.0 0.96 0.070 14.6 15.0 0.93 0.067
GEMAT11 32 29.8 31.0 2.31 0.092 26.6 30.8 1.18 0.044 25.8 30.6 1.15 0.043 25.1 30.4 1.10 0.042

64 47.7 58.8 2.71 0.056 34.3 46.7 1.33 0.026 33.5 46.2 1.32 0.026 31.9 44.2 1.27 0.025
8 6.8 7.0 1.09 0.179 6.2 7.0 0.64 0.111 6.0 7.0 0.65 0.106 5.8 7.0 0.66 0.116

16 13.0 15.0 1.52 0.130 10.3 13.9 0.93 0.089 9.7 13.8 0.91 0.081 9.2 13.1 0.90 0.083
LHR07 32 20.1 29.1 1.96 0.094 13.9 22.3 1.30 0.081 13.0 21.7 1.24 0.066 12.5 20.5 1.24 0.064

64 24.4 44.8 2.49 0.079 16.8 33.5 1.84 0.077 15.6 30.0 1.65 0.056 15.9 30.7 1.64 0.059
8 2.8 4.3 0.08 0.014 2.6 3.8 0.06 0.010 2.4 3.5 0.06 0.011 2.5 3.6 0.06 0.010

16 4.9 7.5 0.17 0.015 4.9 7.3 0.11 0.010 4.7 6.9 0.12 0.011 4.7 6.8 0.12 0.011
ONETONE2 32 7.0 11.9 0.28 0.014 7.5 13.3 0.20 0.009 8.0 11.9 0.22 0.009 7.1 10.9 0.21 0.009

64 9.4 18.6 0.39 0.011 10.1 20.1 0.29 0.007 10.7 17.2 0.31 0.008 9.4 15.8 0.31 0.008
8 7.0 7.0 0.99 0.157 6.6 7.0 0.61 0.100 6.4 7.0 0.59 0.095 6.2 7.0 0.59 0.097

16 14.0 15.0 1.33 0.116 11.4 14.6 0.84 0.074 10.3 13.5 0.81 0.071 10.0 13.6 0.82 0.072
LHR14 32 22.9 29.4 1.71 0.078 15.5 23.2 1.10 0.056 13.5 20.7 1.05 0.050 13.1 20.9 1.07 0.053

64 29.9 48.6 2.14 0.054 18.1 31.5 1.44 0.048 15.4 27.5 1.34 0.040 15.6 29.0 1.36 0.041
8 5.1 6.5 0.42 0.067 3.7 5.0 0.16 0.025 3.5 4.9 0.16 0.026 3.6 4.9 0.16 0.025

16 8.5 11.8 0.59 0.050 7.9 10.4 0.29 0.023 7.6 9.8 0.30 0.026 7.8 10.1 0.29 0.024
ONETONE1 32 13.6 19.1 0.78 0.035 14.2 19.7 0.42 0.017 13.8 19.1 0.45 0.020 14.2 18.9 0.42 0.019

64 18.7 28.9 0.97 0.025 22.0 33.0 0.57 0.013 19.3 29.2 0.61 0.016 19.8 29.7 0.56 0.015
8 7.0 7.0 0.94 0.143 6.9 7.0 0.62 0.094 6.7 7.0 0.57 0.090 6.5 7.0 0.60 0.095

16 14.3 15.0 1.28 0.110 12.4 14.8 0.82 0.068 11.0 13.8 0.77 0.066 10.8 13.7 0.80 0.068
LHR17 32 23.5 29.6 1.62 0.074 17.1 23.8 1.07 0.052 14.4 21.0 1.00 0.047 14.1 21.5 1.03 0.047

64 30.3 46.9 2.04 0.048 19.6 33.0 1.38 0.041 16.4 29.4 1.29 0.036 16.0 30.3 1.30 0.036
8 3.5 4.8 0.61 0.088 3.6 5.3 0.42 0.063 3.5 5.0 0.38 0.056 3.4 4.5 0.40 0.061

16 7.3 9.5 0.95 0.075 7.3 10.1 0.62 0.049 7.0 9.7 0.57 0.046 6.8 8.8 0.60 0.050
LHR34 32 14.5 17.5 1.28 0.055 12.6 16.8 0.84 0.037 11.1 15.3 0.77 0.034 10.9 14.6 0.80 0.035

64 23.7 30.6 1.63 0.038 17.2 24.9 1.08 0.027 14.6 22.7 1.00 0.025 14.3 22.5 1.03 0.025
8 3.5 5.4 0.07 0.015 3.7 5.7 0.05 0.012 3.5 5.4 0.05 0.013 3.6 5.5 0.05 0.012

16 4.4 7.6 0.12 0.013 4.2 8.3 0.09 0.011 4.0 7.3 0.09 0.011 4.0 7.3 0.09 0.011
BCSSTK32 32 5.1 9.4 0.20 0.011 4.7 10.6 0.14 0.008 4.7 9.6 0.15 0.009 4.6 9.7 0.14 0.008

64 5.7 11.3 0.30 0.008 4.8 11.6 0.22 0.006 4.9 11.0 0.24 0.007 4.7 10.8 0.22 0.006
8 2.3 3.9 0.10 0.018 2.3 3.6 0.09 0.018 2.2 3.4 0.09 0.017 2.2 3.4 0.08 0.017

16 3.7 6.3 0.21 0.022 3.3 5.4 0.18 0.018 3.3 5.6 0.18 0.018 3.3 5.6 0.16 0.017
BCSSTK30 32 4.9 8.7 0.36 0.019 4.4 7.9 0.29 0.015 4.6 8.0 0.31 0.016 4.4 7.8 0.28 0.014

64 5.8 11.3 0.57 0.016 5.3 10.6 0.45 0.013 5.6 10.3 0.48 0.013 5.3 10.0 0.45 0.012

Averages overK

8 5.0 5.9 0.63 0.098 4.7 5.7 0.38 0.060 4.6 5.6 0.37 0.058 4.5 5.5 0.37 0.060
16 9.5 11.4 0.89 0.075 8.5 11.1 0.54 0.046 8.0 10.6 0.53 0.045 7.9 10.4 0.52 0.045
32 15.7 20.6 1.17 0.052 12.9 18.7 0.73 0.036 12.1 17.5 0.70 0.033 11.8 17.3 0.70 0.032
64 21.7 33.3 1.47 0.037 16.5 27.2 0.96 0.029 15.1 24.8 0.92 0.025 14.8 24.8 0.90 0.025

In the “# of mssgs” column, “avg” and “max” denote the average and maximum number of messages, respectively, handled by
a single processor. In the “comm. volume” column, “tot” denotes the total communication volume, whereas “max” denotes
the maximum communication volume handled by a single processor. Communication volume values (in terms of the number
of words transmitted) are scaled by the number of rows/columns of the respective test matrices.
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Table IV: Average communication requirements for columnwise decomposition of structurally nonsymmetric test
matrices.

Graph Model Hypergraph Model: Row-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.
per proc. volume per proc. volume per proc. volume per proc. volume

avg max tot max avg max tot max avg max tot max avg max tot max
8 7.0 7.0 1.44 0.213 7.0 7.0 0.75 0.108 7.0 7.0 0.76 0.110 7.0 7.0 0.72 0.108

16 15.0 15.0 1.98 0.145 14.7 15.0 0.95 0.071 14.7 15.0 0.97 0.072 14.6 15.0 0.93 0.069
GEMAT11 32 29.9 31.0 2.46 0.091 25.6 30.0 1.13 0.043 25.9 30.3 1.15 0.043 25.0 29.9 1.10 0.042

64 47.9 58.5 2.85 0.056 32.7 43.9 1.28 0.026 33.6 45.3 1.33 0.026 31.6 43.8 1.27 0.025
8 6.9 7.0 1.10 0.188 6.5 7.0 0.75 0.123 6.4 7.0 0.67 0.107 6.4 7.0 0.66 0.105

16 12.5 15.0 1.54 0.141 11.1 15.0 1.10 0.094 10.6 15.0 0.96 0.081 10.8 15.0 0.95 0.081
LHR07 32 19.3 30.3 2.05 0.112 16.4 28.7 1.52 0.068 15.1 29.5 1.32 0.059 15.6 29.0 1.31 0.059

64 23.5 56.7 2.60 0.088 22.0 39.2 2.03 0.050 19.7 40.5 1.76 0.042 19.8 41.2 1.74 0.042
8 2.6 3.8 0.09 0.017 2.4 3.2 0.07 0.012 2.2 3.1 0.08 0.013 3.1 4.5 0.08 0.013

16 4.8 7.4 0.20 0.019 4.7 6.6 0.13 0.012 4.6 6.2 0.16 0.014 5.4 8.7 0.15 0.014
ONETONE2 32 7.5 12.7 0.34 0.016 7.6 11.2 0.24 0.010 7.6 11.1 0.27 0.011 8.3 14.8 0.25 0.011

64 10.2 21.4 0.46 0.013 9.6 15.8 0.33 0.008 10.5 16.4 0.35 0.008 10.4 23.5 0.34 0.009
8 7.0 7.0 1.05 0.168 6.6 7.0 0.67 0.109 6.6 7.0 0.61 0.096 6.7 7.0 0.61 0.096

16 13.9 15.0 1.43 0.123 11.4 14.7 0.95 0.077 11.6 15.0 0.85 0.069 11.7 15.0 0.84 0.069
LHR14 32 22.9 30.4 1.85 0.087 16.8 27.9 1.26 0.054 16.4 29.6 1.11 0.047 16.5 30.5 1.11 0.049

64 29.3 55.3 2.32 0.069 21.3 45.7 1.65 0.038 19.8 54.2 1.45 0.035 20.3 56.2 1.44 0.036
8 5.1 6.5 0.44 0.067 3.7 5.0 0.19 0.031 3.5 4.7 0.21 0.033 3.5 4.9 0.20 0.034

16 8.7 11.6 0.62 0.051 7.8 10.2 0.34 0.026 7.6 9.6 0.38 0.032 7.8 10.1 0.36 0.029
ONETONE1 32 14.4 20.0 0.81 0.035 13.3 18.6 0.49 0.021 13.4 18.6 0.54 0.026 14.0 19.1 0.51 0.024

64 19.9 30.2 1.08 0.024 19.9 31.5 0.65 0.017 19.6 30.5 0.72 0.018 19.3 30.4 0.69 0.019
8 7.0 7.0 1.02 0.164 6.8 7.0 0.66 0.100 6.8 7.0 0.59 0.087 6.9 7.0 0.58 0.087

16 14.4 15.0 1.40 0.117 12.2 15.0 0.91 0.074 12.3 15.0 0.81 0.064 12.3 15.0 0.80 0.063
LHR17 32 24.2 30.6 1.78 0.080 18.0 30.0 1.22 0.052 17.1 30.6 1.06 0.044 17.2 30.8 1.05 0.044

64 31.4 53.3 2.21 0.062 22.9 51.9 1.58 0.037 20.7 55.0 1.37 0.031 20.8 55.8 1.36 0.032
8 3.4 4.5 0.67 0.103 3.4 4.1 0.43 0.065 3.4 4.1 0.39 0.056 3.4 4.1 0.39 0.055

16 7.3 8.6 1.02 0.086 7.1 8.4 0.66 0.053 7.2 8.3 0.59 0.046 7.1 8.3 0.59 0.046
LHR34 32 14.7 16.8 1.40 0.061 12.4 15.9 0.92 0.040 12.4 15.6 0.81 0.033 12.5 15.7 0.80 0.033

64 24.2 31.4 1.78 0.043 18.2 30.3 1.22 0.028 17.3 30.8 1.06 0.023 17.3 31.0 1.06 0.023
8 3.6 5.3 0.07 0.016 3.1 4.6 0.05 0.013 3.9 5.8 0.06 0.014 3.4 5.2 0.05 0.012

16 4.3 7.3 0.12 0.014 3.9 7.0 0.08 0.010 4.4 7.9 0.10 0.012 4.1 7.7 0.08 0.011
BCSSTK32 32 5.1 9.5 0.19 0.011 4.4 8.9 0.14 0.008 4.7 9.9 0.15 0.009 4.6 9.4 0.14 0.009

64 5.5 11.6 0.29 0.009 4.5 10.1 0.21 0.007 4.9 11.4 0.23 0.008 4.7 11.2 0.21 0.007
8 2.5 4.0 0.08 0.017 2.8 4.6 0.08 0.017 2.2 3.4 0.07 0.014 2.4 4.2 0.06 0.013

16 3.6 6.2 0.18 0.018 3.4 6.0 0.14 0.015 3.0 5.0 0.14 0.016 3.1 5.2 0.13 0.014
BCSSTK30 32 4.7 8.2 0.31 0.015 4.0 8.0 0.22 0.012 4.0 6.9 0.24 0.013 3.9 7.1 0.21 0.012

64 5.7 10.0 0.50 0.013 4.6 9.0 0.34 0.010 4.5 8.4 0.37 0.010 4.5 9.3 0.34 0.010

Averages overK

8 5.0 5.8 0.66 0.106 4.7 5.5 0.40 0.064 4.7 5.5 0.38 0.059 4.8 5.7 0.37 0.058
16 9.4 11.2 0.94 0.079 8.5 10.9 0.59 0.048 8.4 10.8 0.55 0.045 8.6 11.1 0.54 0.044
32 15.8 21.1 1.24 0.057 13.2 19.9 0.79 0.034 13.0 20.2 0.74 0.032 13.1 20.7 0.72 0.031
64 22.0 36.5 1.57 0.042 17.3 30.8 1.03 0.024 16.7 32.5 0.96 0.022 16.5 33.6 0.94 0.023

In the “# of mssgs” column, “avg” and “max” denote the average and maximum number of messages, respectively, handled by
a single processor. In the “comm. volume” column, “tot” denotes the total communication volume, whereas “max” denotes
the maximum communication volume handled by a single processor. Communication volume values (in terms of the number
of words transmitted) are scaled by the number of rows/columns of the respective test matrices.
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Figure 7: Relative run-time performance of the proposed column-net/row-net hypergraph model (Clique-net,
hMeTiS, PaToH-HCM and PaToH-HCC) to the graph model (pMeTiS) in rowwise/columnwise decomposition of
symmetric test matrices. Bars above 1.0 indicate that the hypergraph model leads to slower decomposition time
than the graph model.
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Figure 8: Relative run-time performance of the proposed column-net hypergraph model (Clique-net, hMeTiS,
PaToH-HCM and PaToH-HCC) to the graph model (pMeTiS) in rowwise decomposition of symmetric test matrices.
Bars above 1.0 indicate that the hypergraph model leads to slower decomposition time than the graph model.
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Figure 9: Relative run-time performance of the proposed row-net hypergraph model (Clique-net, hMeTiS, PaToH-
HCM and PaToH-HCC) to the graph model (pMeTiS) in columnwise decomposition of symmetric test matrices.
Bars above 1.0 indicate that the hypergraph model leads to slower decomposition time than the graph model.

Table V: Overall performance averages of the proposed hypergraph models normalized with respect to those of
the graph models using pMeTiS.

pMeTiS (clique-net model) hMeTiS PaToH-HCM PaToH-HCC
K Tot. Comm. Volume Time Tot. Comm. Volume Time Tot. Comm. Volume Time Tot. Comm. Volume Time

best worst avg best worst avg best worst avg best worst avg
Symmetric Matrices: Column-net Model� Row-net Model

8 0.86 0.84 0.85 2.08 0.73 0.70 0.71 8.13 0.73 0.73 0.73 2.19 0.73 0.73 0.73 2.42
16 0.86 0.84 0.83 1.90 0.70 0.66 0.66 8.95 0.70 0.69 0.68 2.25 0.71 0.69 0.69 2.43
32 0.85 0.84 0.84 1.79 0.68 0.65 0.66 9.72 0.69 0.68 0.68 2.33 0.69 0.68 0.68 2.44
64 0.85 0.84 0.84 1.78 0.71 0.68 0.69 10.64 0.72 0.69 0.70 2.41 0.72 0.69 0.70 2.56

avg 0.86 0.84 0.84 1.89 0.70 0.67 0.68 9.36 0.71 0.70 0.70 2.30 0.71 0.70 0.70 2.46
Nonsymmetric Matrices: Column-net Model

8 0.78 0.78 0.78 1.48 0.68 0.63 0.64 5.31 0.67 0.64 0.64 1.32 0.66 0.62 0.63 1.50
16 0.80 0.78 0.78 1.44 0.66 0.63 0.64 5.53 0.67 0.64 0.65 1.37 0.65 0.62 0.63 1.56
32 0.79 0.78 0.78 1.34 0.66 0.64 0.66 5.88 0.67 0.65 0.66 1.44 0.65 0.63 0.64 1.61
64 0.80 0.79 0.79 1.34 0.69 0.68 0.68 6.17 0.69 0.68 0.68 1.45 0.67 0.66 0.66 1.62

avg 0.79 0.78 0.79 1.40 0.67 0.64 0.66 5.72 0.67 0.65 0.66 1.39 0.66 0.63 0.64 1.57
Nonsymmetric Matrices: Row-net Model

8 0.75 0.74 0.76 1.25 0.64 0.62 0.63 5.22 0.64 0.63 0.63 1.29 0.62 0.60 0.61 1.50
16 0.75 0.74 0.75 1.15 0.65 0.63 0.64 5.34 0.65 0.63 0.65 1.33 0.62 0.61 0.62 1.54
32 0.75 0.75 0.75 1.12 0.67 0.65 0.66 5.55 0.66 0.64 0.66 1.38 0.63 0.62 0.63 1.58
64 0.76 0.77 0.76 1.09 0.67 0.67 0.67 5.84 0.66 0.65 0.66 1.36 0.64 0.63 0.63 1.50

avg 0.75 0.75 0.76 1.15 0.66 0.64 0.65 5.49 0.65 0.64 0.65 1.34 0.63 0.61 0.62 1.53

In total communication volume, a ratio smaller than 1.00 indicates that the hypergraph model produces better decompositions
than the graph model. In execution time, a ratio greater than 1.00 indicates that the hypergraph model leads to slower
decomposition time than the graph model.

31
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