
Dynamic Algebraic Algorithms Lecture Notes
CS8803 Fall’22

Lecturer: Jan van den Brand
TA: Mehrdad Ghadiri

2023/09/04

Dynamic Algebraic Algorithms (v. 2023/09/04) 2

Contents

I Combinatorial Matrix Multiplication 7

1 Linear Least Squares Regression 9
1.1 Dynamic Least Squares . 10

1.1.1 Initialization . 10
1.2 Exercises . 12

1.2.1 Dynamic Determinant . 12
1.2.2 Dynamic Weighted Least Squares . 12

1.3 Further Resources . 13

2 Dynamic All-Pairs-Reachability 15
2.1 Dynamic Path Counting for DAGs . 15

2.1.1 Initialization . 17
2.2 An Algebraic Perspective . 18
2.3 Dynamic APR for General Graphs . 18

2.3.1 Determinants and Cycle-Covers . 19
2.3.2 Inverse and Reachability . 21

2.4 Exercise . 22
2.5 Further Resources . 23

3 Dynamic All-Pairs-Distances 25
3.1 Polynomial Matrices . 25
3.2 Dynamic Polynomial Matrix Inverse . 27
3.3 Hitting Sets . 30
3.4 Combining the Tools . 31
3.5 Exercises . 32

3.5.1 Polynomial Matrix Inverse . 32
3.5.2 Distances in Weighted Graphs . 32
3.5.3 Dynamic Distances in Weighted Graphs 33

3.6 Further Resources . 33

4 Solving Linear Programs in nd2 + n1.5d time 35
4.1 Linear Programs . 35

4.1.1 Example for Duality . 37
4.2 Framework for solving Linear Programs . 38

3

Dynamic Algebraic Algorithms (v. 2023/09/04) 4

4.3 Primal-Dual Central Path Method . 42
4.3.1 Initial Point . 46

4.4 Improvements via Approximate Inverse . 47

5 Solving Linear Programs in nd2 time 53
5.1 Idea for a faster Algorithm . 53
5.2 Robust Interior Point Method . 54

5.2.1 Feasibility . 55
5.2.2 Maintaining small Φ . 56

5.3 Vector Maintenance . 60
5.3.1 Heavy Hitter . 62
5.3.2 Maintaining Approximate Vectors . 64

II Fast Matrix Multiplication 71

6 Fast Matrix Multiplication 73
6.0.1 Strassen Matrix Multiplication . 73
6.0.2 Rectangular Matrix Multiplication . 74

7 Dynamic Matrix Inverse 75
7.1 Faster data structure for few updates . 75
7.2 Worst-case update time . 77
7.3 Rank and non-invertible matrices . 78
7.4 Exercises . 80

7.4.1 Matrix Data Structure, Faster Column Updates 80
7.4.2 Matrix Data Structure, Faster element Updates 80

8 Conditional Lower Bounds 83
8.1 Lower Bounds for combinatorial algorithms and data structures 83
8.2 OMv-Problem and Conjecture . 85

8.2.1 Conditional Lower Bounds . 87
8.3 Exercises . 91

8.3.1 Reducing OuMv to OMv . 91
8.3.2 Lower Bound for Row and Column Updates 91

III Approximation and Adaptivity 93

9 Sketching and Subspace Embeddings 95
9.1 Subspace embedding . 95
9.2 Leverage Scores . 98

(version 2023/09/04) 5

10 Dynamic Approximate Least Squares 103
10.0.1 Preliminaries . 104

10.1 Main Result . 105
10.2 Exercises . 108

10.2.1 Finding a large entry . 108
10.2.2 Counter example for regression . 109
10.2.3 Faster linear program solver via leverage scores 109
10.2.4 Sketching for solving linear systems 110

11 Approximate Distances 111
11.1 Approximate Distances via Linear Algebra . 111
11.2 Exercise . 114

12 Handling Adaptive Adversaries via Random Noise 117
12.1 Exercises . 121

12.1.1 Recursive Laplace Noise . 121
12.1.2 High Dimensional Laplace Noise . 121

Dynamic Algebraic Algorithms (v. 2023/09/04) 6

Part I

Combinatorial Matrix
Multiplication

7

Chapter 1

Linear Least Squares Regression

In this chapter, we consider the dynamic linear least squares regression problem. The least
squares regression for a matrix A ∈ Rn×d and vector b ∈ Rn (n ≥ d) can be stated as the
following.

min
x∈Rd

∥Ax− b∥2

In the dynamic version of this problem, we are allowed to insert and delete rows to A and
b. We want to construct a data structure that returns the new optimal solution x after each
insertions/deletion.

Example Problem for Dynamic Regression Let us start with a quick example where a
problem can be modelled by dynamic regression.

Suppose at time ti ∈ R, we receive the position information pi ∈ R2 of an object (e.g. an
airplane). Our goal is to predict the location of the object at other times. This can be
achieved by equation c(t) = s+ tv, where s ∈ R2 is the starting location, and v ∈ R2 is the
velocity. Therefore our goal is to estimate/retrieve s and v from the position information we
receive. We also want to update our estimate efficiently when we receive new information.
The problem can be formulated as the following optimization problem.

min
s,v∈R2

∑
i

∥pi − (s+ tiv)∥22 =

∥∥∥∥∥∥∥∥A

sx
sy
vx
vy

− b

∥∥∥∥∥∥∥∥ ,
where

A =


1 0 t1 0
0 1 0 t1
1 0 t2 0
0 1 0 t2
...

...
...

...

 , and b =


p1,x
p1,y
p2,x
p2,y

...

 .

9

Dynamic Algebraic Algorithms (v. 2023/09/04) 10

Adding position information pi for time ti is equivalent to adding the rows[
1 0 ti 0
0 1 0 ti

]
to A and adding the rows [

pi,x
pi,y

]
to b. Similarly removing position information is equivalent to removing rows from A and b.
Therefore we need to construct a data structure with the following operations:

• Initialization: Given A ∈ Rn×d and b ∈ Rn, return x = argmin ∥Ax− b∥2.

• Add (a, b′) where a ∈ Rd, b′ ∈ R: Update

A←
[
A
a⊤

]
, and b←

[
b
b′

]
,

and return x = argmin ∥Ax− b∥2.

• Remove i: remove i’th row from A and b, and return x = argmin ∥Ax− b∥2.

1.1 Dynamic Least Squares

In this section we prove the following Theorem 1.1.1.

Theorem 1.1.1. There exists a data structure with the following operations:

• Initialization: Given A ∈ Rn×d and b ∈ Rn, return x⋆ = argmin ∥Ax− b∥2 in O(nd2)
time.

• Add (a, b′) where a ∈ Rd, b′ ∈ R: Update

A←
[
A
a⊤

]
, and b←

[
b
b′

]
,

and return x⋆ = argmin ∥Ax− b∥2 in O(d2) time.

• Remove i: remove i’th row from A and b, and return x⋆ = argmin ∥Ax− b∥2 in O(d2)
time.

1.1.1 Initialization

We assume A is full column rank and therefore n ≥ d, and A⊤A is full-rank and invertible.
Initialization in Theorem 1.1.1 can be achieved by setting x⋆ = (A⊤A)−1A⊤b.

Claim 1.1.2. x⋆ = (A⊤A)−1A⊤b minimizes ∥Ax− b∥2.

(version 2023/09/04) 11

Proof. First note that ∥Ax− b∥2 is minimized, if Ax − b is orthogonal to the hyperplane
Im(A). This is because for any possible shift v ∈ Rd of x we have

∥A(x+ v)− b∥2 = ∥Ax− b∥2 + 2(Ax− b)⊤Av + ∥Av∥2︸ ︷︷ ︸
≥0

.

So the distance can only decrease if ⟨Ax− b,Av⟩ < 0 but this is impossible when Ax− b is
orthogonal to the hyperplane Im(A) (i.e. the set of vectors {Av | v ∈ Rd}).

So we only need to show that (Ax⋆ − b) ⊥ Av, for all v ∈ Rd. We have

(Ax⋆ − b)⊤Av = (A(A⊤A)−1A⊤b− b)⊤Av

= b⊤A(A⊤A)−1A⊤Av − b⊤Av

= b⊤Av − b⊤Av = 0.

To analyse the running time note that A⊤A can be computed in O(nd2) time. The
inverse of A⊤A can be computed in O(d3) time, and and multiplying A⊤ by b can be done
in O(nd) time. Therefore the total running time is O(nd2) to compute x∗ = (A⊤A)−1Ab.

When we add (a, b′) to A and b, the solution can be updated as follows:

x⋆ = (

[
A
a⊤

]⊤ [
A
a⊤

]
)−1(

[
A
a⊤

]⊤ [
b
b′

]
) = (A⊤A+ aa⊤)−1(A⊤b+ ab′).

Having stored A⊤A, we can compute A⊤A+aa⊤ in O(d2) time and compute its inverse
in time O(d3). Moreover having stored A⊤b, we can compute A⊤b + ab′ in O(d) time and
multiply it by (A⊤A + aa⊤)−1 in O(d2) time. Therefore the add update can be done in
O(d3) time. Removing a row can also be done in similar fashion and with the same running
time. Using the following lemma, one can see that we do not need to recompute the inverse
from scratch in each iteration and update the inverse matrix in O(d2) time. This lemma
has several names in the literature, including, “Sherman-Morrison identity,” “Woodbury
identity,” and “inversion lemma.”

Lemma 1.1.3 (Sherman-Morrison 1950 [SM50], Woodbury 1950 [Woo50]). Let F be a
field, M ∈ Fn×n, and u, v ∈ Fn, such that M and M+ uv⊤ are invertible. Then

(M+ uv⊤)−1 = M−1 − M−1uv⊤M−1

1 + v⊤M−1u

The above lemma shows that the inverse matrix can be updated in O(d2) time and
therefore the total running time of updated goes down to O(d2).

Theorem 1.1.4 (Theorem 1.1.1). For A ∈ Rn×d and b ∈ Rn, a solution x⋆ ∈ Rd to the
dynamic least squares problem minx∈Rd ∥Ax− b∥2, subject to insertion and deletion of rows
can be maintained in O(d2) time per update. The initialization cost is O(nd2).

Dynamic Algebraic Algorithms (v. 2023/09/04) 12

Later in the course, we prove that Ω(d2) time per update is necessary if we want to
maintain and exact solution (Theorem 8.2.7). However, when allowing for approximation
error it is possible to beat O(n2) time per update. One can maintain an approximate solution
x⋆ such that ∥Ax⋆ − b∥2 ≤ (1 + ϵ)minx ∥Ax− b∥2 in Õ(d/poly(ϵ)) time per update. Both
these results (the lower and upper bound) are due to Jiang, Peng and Weinstein (2022)
[JPW22]. This will be discussed later, in Chapter 10.

1.2 Exercises

1.2.1 Dynamic Determinant

Let F be a field. Show there exists a data structure with the following operations:

• INITIALIZE(A ∈ Fn×n): Returns det(A) in O(n3) field operations.

• UPDATE(u, v ∈ Fn): Sets A ← A + uv⊤ and return the new det(A) in O(n2) field
operations.

You are allowed to assume that A is initially invertible and stays invertible throughout all
updates. We can compute the determinant det(A) and inverse A−1 in O(n3) field opera-
tions. You are also allowed to use the following lemma without proof

Lemma 1.2.1. det(A+ uv⊤) = det(A) · (1 + v⊤A−1u)

1.2.2 Dynamic Weighted Least Squares

Remark. Theorem 1.1.1 supports both insertions and deletions of rows (measurements).
Sometimes we do not want to completely remove old measurements and instead want to
slowly reduce their impact on the solution over time. For this, consider the following variant
of regression:

Let λ ∈ (0, 1), A ∈ Rn×d, b ∈ Rn and consider the regression task minx∈Rd

∑n
i=1 λ

i(Ax−
b)2i . By λ ∈ (0, 1) the impact of the bottom coordinates of (Ax− b) to this sum is exponen-
tially decaying.

This weighted least-squares-regression can also be written as follows. Let D be the n×n
diagonal matrix with Di,i =

√
λi. We minimize minx∈Rd ∥D(Ax− b)∥22.

Problem. Show there exists a data structure with the following operations:

• INITIALIZE(A ∈ Rn×d, b ∈ Rn, λ ∈ (0, 1)): Returns x minimizing
∑n

i=1 λ
i(Ax − b)2i in

O(nd2) time.

• INSERT(a ∈ Rd, b′ ∈ R): Inserts a⊤ and b′ at the top of A and b (so a⊤ becomes
the first row of A and b′ becomes the first entry of b). Then returns x minimizing∑n

i=1 λ
i(Ax− b)2i in O(d2) time.

You are allowed to assume that (A⊤A) is invertible during initialization.

(version 2023/09/04) 13

1.3 Further Resources

Dynamic least-squares-regression The same problem is also known as “streaming least
squares” since the measurements come via some active data stream, see e.g. the lecture notes
of ECE6250 by Mark Davenport. In other areas of computer science this is also referred to as
“recursive least squares” and has connections to the “Kalman Filter” from signal processing.

https://mdav.ece.gatech.edu/ece-6250-fall2019/notes/21-notes-6250-f19.pdf

Dynamic Algebraic Algorithms (v. 2023/09/04) 14

Chapter 2

Dynamic All-Pairs-Reachability

In this chapter we discuss the dynamic reachability problems on graphs. Our goal is to
devise a data structure with the following operations.

• Initialize on a directed graph G = (V,E) with n vertices and m edges, and return an
n×n matrix M, where Mu,v = 1 if v can be reached from u, and Mu,v = 0, otherwise.

• Insert/delete an edge from G and maintain the reachability matrix M on the new
graph.

An application of this problem is in compilers and garbage collectors where the goal is
to find unreachable code and variables/data, respectively. In such applications the directed
graph changes dynamically according to the running code.

The insertion/deletion of an edge can be maintained naively by running a breadth
first search (BFS) from each vertex. This naive approach will have a running time of
O(nm) = O(n3) for any insertion/deletion. In this chapter, our goal is to give an algo-
rithm with O(n2) running time for each insertion/deletion. This has been elusive by graph
theoretic techniques for a long time. King and Sagert (1999) brought a fresh combinato-
rial perspective to this dynamic reachability problem [KS02]. We will later show that their
combinatorial algorithm can be interpreted as a special case of another algebraic algorithm
that has been around since 1950 [SM50], but that connection hadn’t been made until much
later [San04].

2.1 Dynamic Path Counting for DAGs

We first consider the following path counting problem which also implies reachability.

• Initialize on a directed acyclic graph (DAG) G = (V,E) with n vertices and m edges,
and return an n × n matrix P, where Ps,t = # of paths from s to t. Note that the
number of distinct paths is finite < nn because a DAG does not contain any cycles. So
matrix P is well-defined. We later discuss in Section 2.1.1 how to efficiently compute
this initial matrix P.

15

Dynamic Algebraic Algorithms (v. 2023/09/04) 16

• Insert/delete an edge from G and maintain the matrix P that represents the number
of paths from each vertex to another. Since the graph is a DAG, the updates to P can
be computed as follows:

– Insert (u, v) edge: ∀s, t ∈ V,Ps,t ← Ps,t + Ps,u · Pv,t. The equivalent matrix
operation is P← P+Peue

⊤
v P.

– Delete (u, v) edge: ∀s, t ∈ V,Ps,t ← Ps,t − Ps,u · Pv,t. The equivalent matrix
operation is P← P−Peue

⊤
v P.

Here the update to Ps,t correctly gives the new number of paths because after an insertion
of edge (u, v) the following new st-paths are created: For any path s→ u we can connect it
with new edge (u, v) and any path v → t to obtain a new st-path. Thus we create Ps,u ·Pv,t

new paths by inserting edge (u, v). This leads to the update rule Ps,t ← Ps,t + Ps,u · Pv,t.
For edge deletions we simply replace + (plus) by a − (minus) as we remove the respective
paths by deleting edge (u, v).

Note that for s, t ∈ V , if Ps,t ̸= 0, then s can reach t. The complexity of update for
the above problem is O(n2) operations. However because the number of paths from s to t
can be exponential in n (see Figure 2.1), we need Ω(n) bits to represent the numbers in P.
Therefore the total time complexity of an update is Ω(n3).

Figure 2.1: There is an exponential number of paths (2n/3) from the left-most to the right-
most vertex.

To decrease the time complexity that arises from the bit complexity of number of paths,
we use the following “fingerprinting” technique.

Lemma 2.1.1. There exists constant c such that the following holds. Let k ≤ 2N and let p be a
uniformly random prime number smaller than or equal to c·N logN . Then P [k mod p = 0] ≤
1/2.

Proof. Any k ≤ 2N can have at most N prime factors because 2 is the smallest prime. By the
prime number theorem we can lower bound the number of primes of size at most c ·N logN
by Ω(Nc). So the chance tat any one of these primes is a factor of k is at most

#prime factors of k
#pimes ≤ cN logN

≤ N

Ω(Nc)
= O(1/c).

By picking large enough constant c this is at most 1/2.

We simply perform all our computations modulo p, i.e. we count the number of paths
mod p. So for any u, v ∈ V we have with probability at least 1/2 that Pu,v ̸= 0 mod p
whenever u can reach v. This is how we obtain Theorem 2.1.2.

(version 2023/09/04) 17

Theorem 2.1.2. The dynamic APR problem can be solved in O(n2 log n) time per update (in-
sertion or deletion) with high probability. More specifically, after each update, the output is
correct with probability at least 1− 1

n100 .

Proof. We run O(log n) copies of the algorithm. Each copy maintains the matrix P (which
counts the number of paths) modulo a uniformly random prime p ≤ c · n log n. Here each
copy picks its own independent random prime p. Note that if there is no path from s to
t, then Ps,t = 0. Alternatively, if there is a path from s to t, then for each copy of the
algorithm we have Ps,t ̸= 0 with probability ≥ 1/2 by Lemma 2.1.1. Therefore if there
is a path from s to t, the probability that for all copies Ps,t = 0 is bounded by at most
≤ (1/2)O(logn) ≤ n−102. Taking the union bound over all n2 pairs of vertices, the output is
correct with probability at least 1− n−100.

The prime numbers used in the algorithm are bounded by O(n log n), and we perform
all arithmetic operations modulo p (i.e. over Zp). Thus each arithmetic operation takes only
O(1) time in the word-RAM model. Therefore the total running time of an update in the
algorithm is O(n2 log n) since we have O(log n) copies and computations for each copy takes
O(n2) time.

2.1.1 Initialization

We now turn our attention to initializing the matrix P.

Lemma 2.1.3. Let G = (V,E) be a directed acyclic graph (DAG). The matrix P with Ps,t =
of paths from s to t in G can be computed with O(n3) operations.

Proof. Let A be the adjacency matrix of G, i.e., Au,v = 1 if (u, v) ∈ E, and Au,v = 0,
otherwise. By induction over k, we can show that (Ak)s,t = # of paths from s to t in G
with k edges. Therefore since G is a DAG, Ak = 0 for k ≥ n since there are no paths with
n edges in a DAG (otherwise there exists a cycle). Therefore P =

∑n
k=0 A

k. Moreover we
have (

n∑
k=0

Ak

)
· (I−A) =

(
n∑

k=0

Ak

)
−

(
n∑

k=0

Ak+1

)
=

(
n∑

k=0

Ak

)
−

(
n+1∑
k=1

Ak

)

=

(
n∑

k=0

Ak

)
−

(
n∑

k=1

Ak

)
= A0 = I.

Therefore P = (I − A)−1. Since we can find the inverse of an n-by-n matrix in O(n3)
operations, P can be computed in O(n3) operations.

Remark 2.1.4. Algorithms for computing a matrix inverse usually perform divisions. Note
that Zp is a field so it has a well-defined division operation. Thus we can use a matrix inver-
sion algorithm that internally uses division to compute the inverse of (I −A) ∈ (Zp)

n×n. In
particular, this yields the number of paths modulo p.

Dynamic Algebraic Algorithms (v. 2023/09/04) 18

2.2 An Algebraic Perspective

In the previous section we described how to maintain all-pairs-reachability on a dynamic
graph by counting the number of paths. We gave a combinatorial argument for how the
number of paths changes when inserting/deleting and edge (e.g. inserting (u, v) creates
Ps,u ·Pv,t many new st-paths).

With the identity P = (I−A)−1 (Lemma 2.1.3), we can view the updates to the matrix
P (as described at the start of Section 2.1) in light of the following algebraic identity that
gives the inverse of a matrix that is perturbed by a rank one matrix.

Lemma 1.1.3 (Sherman-Morrison 1950 [SM50], Woodbury 1950 [Woo50]). Let F be a
field, M ∈ Fn×n, and u, v ∈ Fn, such that M and M+ uv⊤ are invertible. Then

(M+ uv⊤)−1 = M−1 − M−1uv⊤M−1

1 + v⊤M−1u

Consider adding the edge (u, v) to the graph. This is equivalent to updating the adja-
cency matrix as A+ eue

⊤
v . Then the update to the matrix (I−A)−1 is as follows:

(I−A− eue
⊤
v)

−1 = (I−A)−1 +
(I−A)−1eue

⊤
v (I−A)−1

1− e⊤v (I−A)−1eu
.

Therefore the update to P is given by

P← P+
Peue

⊤
v P

1−Pv,u
= P+Peue

⊤
v P,

where the last equality holds because Pv,u = 0 since otherwise adding (u, v) will create a
cycle which would contradict the DAG assumption.

In summary, updating the inverse (I−A)−1 via the Sherman-Morrison identity is equiv-
alent to updating the path-counting matrix P with the combinatorial idea (i.e. the new
number of paths is given by Ps,t ← Ps,t +Ps,u ·Pv,t for all s, t ∈ V).

2.3 Dynamic APR for General Graphs

The approach we presented in Sections 2.1 and 2.2 only works on DAGs. This is due to the
fact that number of paths on general graphs is not well-defined. If we count the paths with
cycles, then the number of paths could be infinite. If we count the paths without cycles,
then the update P← P+Peue

⊤
v P is not valid anymore since a path from s to u might have

an edge in common with a path from v to t. In this case combining these two path results
in a path with a cycle.

However, Sankowski (2004) [San04] showed that using uniformly random numbers in
{0, . . . , p − 1} instead of the 1s in the adjacency matrix can solve the problem for general
direction graphs [San04].

(version 2023/09/04) 19

Theorem 2.3.1. Let p be a prime and let G = (V,E) be a directed graph. Add self-loops (u, u)
to E for all u ∈ V . Then define the n-by-n matrix M ∈ (Zp)

n×n as follows

Mu,v =

{
A uniformly chosen random number {0, . . . , p− 1}, if (u, v) ∈ E,

0, else.

Then (M−1)s,t = 0 if there is no path from s to t, and if there is a path from s to t, then
(M−1)s,t ̸= 0 with probability at least 1− 2n

p .

We can pick p ≈ n100 to achieve a high-probability result using the above theorem. To-
gether with the Sherman-Morrison identity (Lemma 1.1.3) we directly obtain the following
corollary.

Corollary 2.3.2. There exists a data structure with the following operations:

• INITIALIZE(G): Initializes on a directed n-node graph G in Õ(n3) time.

• INSERT/DELETE(u, v): Inserts (or deletes) an edge (u, v) in Õ(n2) time and returns for
all pairs s, t ∈ V if s can reach t.

The data structure is randomized and correct with high probability.

Note that the structure of non-zero entries of M in Theorem 2.3.1 is the same as (I−A)
for adjacency matrix A. Both have non-zero entries on the diagonal and a non-zero entry
in position (u, v) if edge (u, v) exists. For DAGs we showed in the previous section that
(I − A)−1

s,t ̸= 0 iff s can reach t. Intuitively, Theorem 2.3.1 states that the same is true
for general graphs if we replace the non-zero entries in (I − A) by random numbers and
compute everything modulo some prime p.

Note that in Theorem 2.3.1 the randomness is over the non-zero entries, while the prime
p is fixed, whereas previously the path counting argument used fixed non-zero entries (±1)
in (I−A) but a random prime p.

To prove Theorem 2.3.1, we need the following Lemma 2.3.3. The finite field version of
this lemma was proven by Ore (1922) [Ore22], and the general field version was indepen-
dently proven by Schwartz, Zippel, and DeMillo and Lipton [DL77, Zip79, Sch80].

Lemma 2.3.3 ([Ore22, DL77, Zip79, Sch80]). Let F be a field and g be a polynomial of degree
d over F with variables x1, . . . , xm, i.e., g ∈ F[x1, . . . , xm]. Let r1, . . . , rm be uniformly random
numbers picked from F. Then

P [g(r1, . . . , rm) = 0] ≤ d

|F|
.

2.3.1 Determinants and Cycle-Covers

Before proving Theorem 2.3.1, we first need to show that matrix M is invertible with some
good probability. Note that a matrix is invertible if and only if its determinant is non-zero.
Therefore we first discuss the connection between a graph G and the determinant of its
adjacency matrix A.

Dynamic Algebraic Algorithms (v. 2023/09/04) 20

Let A be the adjacency matrix of some graph G = (V,E). In general, the determinant of
a matrix can be written as

det(A) =
∑
σ∈Sn

sign(σ)

n∏
i=1

Ai,σ(i). (2.1)

Here Sn is the set of permutations on n elements. In other words, each σ : {1, ..., n} →
{1, ..., n} is a reordering of n numbers. The function sign : Sn → {+1,−1} is some function
that just maps each permutation σ to plus or minus 1, and its exact definition can be ignored
for now1. For now it suffices to observe that some terms of the sum are subtracted instead
of added when sign(σ) = −1.

Note that, since A is an adjacency matrix,

n∏
i=1

Ai,σ(i) =

{
1, if (i, σ(i)) ∈ E for all i,
0, otherwise. (2.2)

Further, by looking at the cycle decomposition2 of σ, we have that this product is non-zero
if and only if, the cycles in the cycle decomposition of σ are using edges of G. In particular,
the product is non-zero if and only if σ describes a cycle cover3 of G.

So we have det(A) ̸= 0 if there exists exactly one cycle cover in G, since the determinant
(2.1) is just a sum of (2.2)-terms. However, if there exists more than one cycle cover in G,
then it could happen that the determinant is still 0. This is because sign(σ) ∈ {+1,−1} so
two non-zero products (2.2) for different σ could cancel out in the sum (2.1).

The intuition now is that, if we simply replace all the non-zero entries in A by a random
number, then each product (2.2) will be a random number (if σ describes a cycle cover of
G), so it is unlikely that the cycle covers with +1 sign cancel the cycle covers with −1 sign
in (2.1).

Formally, this is stated as the following.

Lemma 2.3.4. Let G = (V,E) be a directed graph, p be a prime, and A ∈ Zp where for
each edge (u, v) ∈ E, entry Au,v is an independent uniformly at random chosen number from
{1, ..., p− 1}. All other entries of A are 0.

Then with probability at least 1− n/p, det(M) ̸= 0 if and only if G has a cycle cover.

We already outlined why we would expect this lemma to be true. To formally prove it, we
will use the Schwartz-Zippel Lemma 2.3.3. To formally prove Lemma 2.3.4 via Lemma 2.3.3,
we must argue that det(A) is a non-zero polynomial.

Lemma 2.3.5. Let G = (V,E) be a directed graph with n vertices and m edges. For each
edge (u, v) ∈ E let x(u,v) be some symbol/variable. Define Au,v = x(u,v) for (u, v) ∈ E and

1The sign(σ) = (−1)N(σ), where N(σ) is the number of displaced pairs (also called inversions). For example
if 2 is before 1 in the permutation, that counts as one inversion. A permutation with sign(σ) = +1 is called an
even permutation and it is called an odd permutation, otherwise.

2The cycle decomposition of a permutation is defined as the following. Consider a directed a graph with vertices
in {1, . . . , n} such that node i is connected to node j, if σ maps i to j. One can observe that this graph consists of
only a set of vertex disjoint cycles that cover all vertices. We call this graph the cycle decomposition of σ.

3A cycle cover of some graph G is a set of vertex disjoint cycles where each vertex is in exactly one cycle. The
cycles must use edges that exist in the graph.

(version 2023/09/04) 21

Au.v = 0 otherwise. So det(A) =: p(xe1 , ..., xem) is a polynomial with m input variables x(u,v)

for (u, v) ∈ E.
Then det(A) is a non-zero polynomial if and only if G has a cycle cover.

Proof. We can write

p(xe1 , ..., xem) := det(A) =
∑
σ∈Sn

sign(σ)

n∏
i=1

Ai,σ(i))

=
∑

σ ∈ Sn

σ is cycle cover in G

sign(σ)

n∏
i=1

xi,σ(i)

So if p(xe1 , ..., xem) is a non-zero polynomial then there must be a σ ∈ Sn where
∏n

i=1 Ai,σ(i))

is a non-zero polynomial. This σ satisfies (i, σ(i)) ∈ E for all i, so this σ represents a cycle
cover in G. So there exists a cycle cover in G.

Conversely, if there exists a cycle cover in G then we will argue why this implies p being
a non-zero polynomial. We assign value xe = 1 for all edges e used by the cycle cover and
xe′ = 0 for all other edges. Then

∏n
i=1 Ai,σ(i)) = 1 if and only if σ represents that one cycle

cover and thus p(xe1 , ..., xem) = 1 for that particular input. Since there exists an input for
which the polynomial evaluates to non-zero, p is a non-zero polynomial.

Lemma 2.3.4 now follows directly by applying Schwartz-Zippel Lemma 2.3.3 to the poly-
nomial in Lemma 2.3.5, and observing that the polynomial is of degree n.

2.3.2 Inverse and Reachability

In ?? we saw that the determinant of an adjacency matrix of a graph G is related to the
existence of cycle covers in G. We now want to use these insights to prove Theorem 2.3.1,
i.e. we want to argue that Ms,t tells us about the existence of an st-path.

We first give some intuition again before writing the formal proof. Let A�ij be the matrix
A where we replaced the ith row and jth column with all 0, except for entry (i, j) which is
1. So

A�ijs,t :=


As,t if s ̸= i and t ̸= j
1 if s = i and t = j
0 if s = i and t ̸= j
0 if s ̸= i and t = j

Now let G be some graph where we added self-loops (v, v) to every vertex and let A be the
adjacency matrix. Note that A��uv can be seen as another adjacency matrix of some graph G′

that is obtained as follows: Start by G′ = G, then delete all outgoing edges from u (because
we set the uth row to 0 in A��uv) and delete all incoming edges to v (because we set the vth
column to 0 in A��uv), and then insert edge (u, v) (because we set entry (u, v) to 1 in A��uv).
Now observe that any cycle cover in G′ must use edge (u, v) because every vertex must be
visited by some cycle and vertex u only has the outgoing edge (u, v). So any cycle cover in
G′ must contain a cycle u → v and then some path back to u. This path also exists in G.
Conversely, if there exists a vu-path in G, then there exists a cycle cover in G′ where we use

Dynamic Algebraic Algorithms (v. 2023/09/04) 22

the cycle u → v and then some path back to u, and all remaining vertices are covered by
the trivial cycles from the self-loops (v, v) we added initially. In summary, G has a vu-path
if and only if G′ has a cycle cover.

We can now prove Theorem 2.3.1.

Proof of Theorem 2.3.1. Given graph G = (V,E) with self-loops (v, v) on each edge v ∈ V ,
let xe1 , ..., xem be m variables, one for each ei ∈ E. Let G′ be the graph G after removing all
incoming edges into s and all outgoing edges from t, except for the single edge (t, s) which
is added to G′. We have that G′ has a cycle cover if and only if G has an st-path.

Further, let A(u,v) = xu,v for all (u, v) ∈ E and consider the polynomial det(A�ts). This
is a non-zero polynomial if and only if the graph G′ has a cycle cover, i.e. graph G has an
st-path.

By Cramer’s rule, the inverse of a matrix can be written as (A−1)s,t =
det(A��t,s)
det(A) , where

the denominator is a non-zero polynomial by G having a cycle cover (every vertex v is
covered by (v, v)) and the numerator is a non-zero polynomial if and only if there exists an
st-path in G.

We now use Lemma 2.3.3 (Schwartz-Zippel lemma). By plugging independent uniformly
at random numbers {0, ..., p− 1} into each x(u,v), we have with probability at least 1− 2n/p

that both det(A) and det(A��t,s) evaluate to non-zero for this random input, if there exists an
st-path. If there is no st-path, then det(A��t,s) is a 0 polynomial and must evaluate to 0.

The matrix M as described in Theorem 2.3.1 is this matrix A for the random input,
so with probability at least 1 − 2n/p we have (M−1)s,t ̸= 0 if and only if there exists an
st-path.

2.4 Exercise

Show there exists a data structure with the following operations:

• INITIALIZE(G): Initializes on a directed n-node graph G in Õ(n3) time.

• INSERT/DELETE(u, v): Inserts (or deletes) an edge (u, v) in Õ(nk) time, where k is the
number of updates (insertions or deletion) we had so far.

• QUERY(s, t): For the two given vertices s, t ∈ V , in Õ(k) time, returns whether s can
reach t. Here k is the number of updates (insertions or deletion) we had so far.

The Õ notation ignores polylog factors. E.g. O(n logc n) = Õ(n) for any constant c. Depend-
ing on how you prove the result, you might not have any polylog factors.

Hint: You might want to start by proving the following result first.

• INITIALIZE(A ∈ Fn×n): Initializes on an invertible matrix A in O(n3) field operations.

• UPDATE(i, j ∈ {1, ..., n}, f ∈ F): Sets A ← A + eie
⊤
j · f in Õ(nk) operations, where k

is the number of updates we had so far. We assume A stays invertible.

• QUERY(s, t ∈ {1, ..., n}): In Õ(k) operations, returns (A−1)s,t. Here k is the number
of updates we had so far.

(version 2023/09/04) 23

2.5 Further Resources

Finite Fields There was a request to provide some reading material on finite fields. These
lecture notes by David Forney might be helpful.

Applied Algorithms There were questions on what tools are used in practice. I recom-
mend the survey on experimental evaluation of dynamic graph algorithms by Hanauer,
Henzinger and Schulz [HHS21].

Some experimental evaluation of (other) reachability algorithms: [FMNZ01], [KZ08].
These evaluations do not consider the matrix approach discussed in Chapter 2. They ex-
plicitly write “Regarding future work, it would be interesting to investigate the practicality
of the algorithms in King and Sagert 1999 [KS02] and the recent one in Sankowski 2004
[San04]”. Even though this was published ∼15 years ago, no one has done a proper exper-
imental evaluation yet.

https://web.stanford.edu/~marykw/classes/CS250_W19/readings/Forney_Introduction_to_Finite_Fields.pdf
https://web.stanford.edu/~marykw/classes/CS250_W19/readings/Forney_Introduction_to_Finite_Fields.pdf

Dynamic Algebraic Algorithms (v. 2023/09/04) 24

Chapter 3

Dynamic All-Pairs-Distances

In this chapter we want to construct a data structure that maintains all-pairs-distances.
This data structure follows from ideas by Sankowski (2004, 2005) [San04, San05], though
the result was not explicitly stated in these references. Abraham, Chechik and Forster1

(2017) [ACK17] is the first reference stating that this result is possible using Sankowski’s
techniques.

Theorem 3.0.1. There exists a data structure with the following operations:

• INITIALIZE(G = (V,E)) Initialize on an n-node graph and return all-pairs-distances in
Õ(n3.5) time.

• UPDATE(v ∈ V,E′ ⊂ ({v} × V) ∪ V × {v}) Inserts edges E′ to G or removes any such
edge if it already exists in G. (All edges in E′ are incident to the same vertex v.) Then
return all-pairs-distances in Õ(n2.5) time.

This type of update is often referred to as “node update” because it allows us to change
all edges incident to some node v. In Chapter 2 we looked at “edge updates”, i.e. updates
that only add/remove a single edge.

Let us compare Theorem 3.0.1 to the trivial solution of just recomputing all-pairs-distances
from scratch every time the graph changes, e.g. by running the Floyd-Warshall algorithm.
This algorithm would need O(n3) time per update as opposed to our Õ(n2.5) time.

3.1 Polynomial Matrices

In Chapter 2, we argued that computing the inverse of some matrix allows us to retrieve
information about the reachability in graphs (i.e. Theorem 2.3.1). We now want to extend
this to retrieving information about the distances instead of just the reachability. For this
purpose, we will use something referred to as “polynomial matrices”, which are matrices
that have polynomials as entries instead of numbers.

1Forster’s last name was Krinninger at time of publication.

25

Dynamic Algebraic Algorithms (v. 2023/09/04) 26

Polynomials modulo xh First some quick basics about polynomials and modulo opera-
tions. Given a polynomial p(x), computing modulo xh for some integer h is equivalent to
just truncating all high degree terms (i.e. degree h or higher). For example:

x5 + 2x3 − 2x2 + 1 ≡ x2 · x3 + 2x3 − 3x2 + 1 ≡ x2 · 0 + 2 · 0− 3x2 + 1 ≡ −3x2 + 1 mod x3

For some ring R we write R[x] for the ring of polynomials with coefficients from R. For
example Z[x] are polynomials with integer coefficients. We write p ∈ R[x]/⟨xh⟩ for the ring
of polynomials where every operation is performed modulo xh. In particular, this means
we just truncate all high degree terms after each arithmetic operation. We will often use
Z[x]/⟨xh⟩, i.e. the ring of polynomials with integer coefficients where we always truncate
terms of degree h or higher.

From a computational point of view this modulo operation is useful because adding or
multiplying two degree h polynomials takes O(h) and O(h log h) operations respectively. So
by considering polynomials modulo xh we always have an upper bound on the degree.

Polynomial Matrices When we think of matrices, we usually think of some objects with
numbers inside them. However, one can also define matrices with polynomial entries. Ma-
trix multiplication works just as we are used to (i.e.“multiplying rows with columns”) but
now when we multiply two entries of a matrix we must multiply polynomials. Consider the
following example:x2 + 1 x x2

x2 + x x2 + 1 x
x x2 1

 1 −x 0
−x 1 −x
−x 0 1

 =

1− x3 −x3 0
−2x3 −x3 + 1 −x3

−x3 0 −x3 + 1

 (3.1)

Here the top left entry of the right-hand matrix comes from (x2+1) ·1+x ·(−x)+x2 ·(−x) =
1−x3. We write M ∈ (Z[x])n×n to declare M an n×n matrix whose entries are polynomials
with integer coefficients.

We can also extend the modulo arithmetic to matrices. Here we simply consider each
entry of the matrix a polynomial and after each operation, we truncate all high degree terms
that occur in the matrix. We write M ∈ (Z[x]/⟨xh⟩)n×n to denote that the entries of M are
polynomials with integer coefficients where we always truncate all terms of degree h or
higher.

We note that some polynomial matrices do have an inverse thanks to our modulo arith-
metic. For example, note that the right-hand matrix in (3.1) is just the identity when we
perform arithmetic modulo x3. So the two matrices on the left-hand side in (3.1) are the
inverse matrix of each other if we consider them to be matrices from (Z[x]/⟨x3⟩)n×n.

Connections to graphs Consider the graph as in Figure 3.1 which also displays the dis-
tances between each pair of vertices. Let A be the incidence matrix of this graph and
compute (I− xA)−1 ∈ (Z[x]/⟨x3⟩)n×n. (Note that (I− xA) is one of the matrices in (3.1),
and we just argued in the previous paragraph that the other matrix in (3.1) is the inverse.)

(I− xA)−1 =

 1 −x 0
−x 1 −x
−x 0 1

−1

=

x2 + 1 x x2

x2 + x x2 + 1 x
x x2 1

 =

x2 + x0 x1 x2

x2 + x1 x2 + x0 x1

x1 x2 x0



(version 2023/09/04) 27

a

bc

(a) A small directed graph.

Target
a b c

St
ar

t a 0 1 2
b 1 0 1
c 1 2 0

(b) Matrix of distances.

Figure 3.1: A small directed graph and the matrix of distances between its vertices.

Note that for each entry of this inverse, the smallest exponent we find in each entry corre-
sponds exactly to the distance value in Figure 3.1. So by inverting the polynomial matrix
(I−xA) ∈ (Z[x]/⟨x3⟩)n×n we can compute all-pairs-distances. The following Theorem 3.1.1
states that this property holds for all graphs.

Theorem 3.1.1. Given directed graph G = (V,E) let A be its incidence matrix. Then for
(I−xA) ∈ (Z[x]/⟨xh⟩)n×n and any s, t ∈ V entry (I−xA)−1

s,t =
∑h−1

i=0 pix
i is some polynomial

with pi = 0 for i < dist(s, t) and pi ̸= 0 for i = dist(s, t).

Proof. We have

(I− xA)−1 =

h∑
i=0

xiAi

which can be verified as follows

(I− xA) · (
h∑

i=0

xiAi) =

h∑
i=0

xiAi −
h+1∑
i=1

xiAi = x0A0 − xh+1Ai+1 = I

where in the last step we used x0A0 = I, and xh+1Ai+1 = 0 because we perform all
computations modulo xh.

Since A is the adjacency matrix, (Ak)s,t = #st-paths using k steps. So the smallest k for
which (Ak)s,t ̸= 0 is exactly the smallest number of steps required to reach t from s, i.e. the
st-distance.

Theorem 3.1.1 was first used by Sankowski [San05] (2005), though he used the adjoint
of matrix (I− xA) instead of its inverse. This needed a more complicated proof but comes
with the benefit that the adjoint of a polynomial matrix is always well-defined, even without
modulo xh. In comparison, our Theorem 3.1.1 uses the inverse instead of the adjoint. This
allows for a shorter proof of Theorem 3.1.1 but we must perform all arithmetic modulo xh

otherwise the inverse of the polynomial matrix is not well-defined. To my knowledge, the
variant using matrix inverse was first used in [BNS19].

3.2 Dynamic Polynomial Matrix Inverse

As outlined in the previous chapter (Theorem 3.1.1), we can compute all-pairs-distances (up
to distance h) of some graph by computing the inverse of a polynomial matrix (I−xA)−1 ∈

Dynamic Algebraic Algorithms (v. 2023/09/04) 28

(Z[x]/⟨xh⟩)n×n. So one idea to obtaining the desired data structure from Theorem 3.0.1
would be to maintain this inverse using the Sherman-Morrison identity (Lemma 1.1.3).

(M+ uv⊤)−1 = M−1 − M−1u v⊤M−1

1 + v⊤M−1u
(3.2)

For our use-case, we would just let M = I − xA for adjacency matrix A. Then when an
update occurs to graph G, we are changing one row and one column of A (because all
inserted/deleted edges are incident to the same vertex). Changing one row can be done by
letting vector u = ei (a standard unit vector that is 0 everywhere except for entry i which is
0) so uv⊤ is a matrix that is all 0 except for the ith row which is the vector v⊤. Likewise we
can change an entire column by letting v = ei. In summary, we can construct our distance
data structure (Theorem 3.0.1) via the following data structure

Lemma 3.2.1. For any ring R (e.g. R = Z), there exists a data structure with the following
operations:

• INITIALIZE(A ∈ Rn×n, h ∈ N) Return (I − xA)−1 ∈ (R[x]/⟨xh⟩)n×n in O(hn3) opera-
tions.

• UPDATE(u, v ∈ Rn) Set A ← A + uv⊤, then return (I − xA)−1 ∈ (R[x]/⟨xh⟩)n×n in
Õ(hn2) operations.

Here the complexity is measured in arithmetic operations performed over R.

Note that the update operation here can change a row or a column. To change both a
row and a column (e.g. to model the update to the graph as in Theorem 3.1.1), we must
call the update function twice.

We remark that Lemma 3.2.1 can only maintain the distance up to h. We will later
develop tools to handle distances larger than h in Section 3.3.

The high-level idea for proving Lemma 3.2.1 is to just use the Sherman-Morrison identity
(3.2) to maintain the inverse. However, at first it is not clear that the Sherman-Morrison
identity still holds when we consider matrices with polynomials as entries. This is because
the identity (3.2) attempts a division, i.e. attempts to invert (1 + v⊤M−1u). This value is a
polynomial since M is a polynomial matrix. The set of polynomials form a ring, not a field,
so it is not clear that such inverse polynomial even exists. So we must first show that such a
polynomial can be inverted.

Lemma 3.2.2. For any ring R (e.g. R = Z), let p(x) ∈ (R[x]/⟨xh⟩) be a polynomial with
coefficients from R where all arithmetic is performed modulo xh. If p(x) is of the form p(x) =
1−x ·q(x) for some q(x) ∈ (R[x]/⟨xh⟩), then p(x) is invertible and the inverse can be computed
in Õ(h) operations over R.

Proof. The inverse is given by p(x)−1 = (1− x · q(x))−1 =
∑h

i=0 x
iq(x)i, because

(1− x · q(x)) · (
h∑

i=0

xiq(x)i) =

h∑
i=0

xiq(x)i −
h+1∑
i=1

xiq(x)i = x0q(x)0 − xh+1q(x)h+1 = 1

(version 2023/09/04) 29

where the last step used that we perform all arithmetic modulo xh, i.e. we truncate high
degree terms.

We now argue that such inverse can be computed in O(h log2 h) operations. For this,
note that for any k ∈ N we have

k∏
i=0

(1 + (x · q(x))2
i

) =

2k+1−1∑
i=0

(x · q(x))i

as can be proven by induction over k. So for k = O(log h) we can compute the inverse. Here
(x·q(x))2i can be computed via repeated squaring, so in total we just need O(log h) products
of polynomials. Multiplying two polynomials of degree h takes O(h log h) operations via
Fast-Fourier transform.

Using Lemma 3.2.2 we can now prove Lemma 3.2.1 via the Sherman-Morrison identity.

Proof of Lemma 3.2.1. During initialization we compute (I− xA)−1 =
∑h

i=0 x
iAi. Since A

is not polynomial, we can compute all the Ai for i = 1, ..., h in O(hn3) operations.
We now maintain (I− xA)−1 via the Sherman-Morrison identity.

(I− x(A+ uv⊤))−1 = (I− xA)−1 − (I− xA)−1uxv⊤(I− xA)−1

1− x(v⊤(I− xA)−1u)

Here each matrix-vector product takes O(hn2) operations as we have n×n matrices, each of
degree h. The outer product takes Õ(hn2) operations as we need to multiply n2 polynomials,
each of degree h. The inverse of (1 − x(v⊤(I − xA)−1u)) exists and can be computed in
Õ(h) operations by Lemma 3.2.2. In total, we need Õ(n2h) operations.

We now use Lemma 3.2.1 to obtain a dynamic algorithm for maintaining distances up
to h in a graph G. We write disth(s, t) for the “h-bounded distance”, that is, disth(s, t) =
dist(s, t) if the distance is at most h and disth(s, t) = ∞ if the distance is larger than h.
Using the polynomial matrix inverse, we can maintain h-bounded distances in a graph that
undergoes edge insertions and deletions.

Corollary 3.2.3. There exists a data structure with the following operations:

• INITIALIZE(G = (V,E), h) Initialize on an n-node graph and return all-pairs-distances
in Õ(hn3) time.

• UPDATE(v ∈ V,E′ ⊂ ({v} × V) ∪ V × {v}) Inserts edges E′ to G or removes any such
edge if it already exists in G. (All edges in E′ are incident to the same vertex v.) Then
return h-bounded all-pairs-distances in Õ(hn2) time.

Proof. We simply maintain the inverse of (I − xA)−1 ∈ (Z[x]/⟨xh+1⟩)n×n for adjacency
matrix A using Lemma 3.2.1. By Theorem 3.1.1 the inverse tells us the distance if the
distance is at most h.

Whenever an update occurs, we change a row or column of A and obtain the new inverse
via Lemma 3.2.1 in Õ(hn2) operations.

Dynamic Algebraic Algorithms (v. 2023/09/04) 30

Technically, the coefficients used in the inverse could be very large numbers so perform-
ing one arithmetic operation might need a lot of time. We can assume each arithmetic
operation takes only O(1) time, by using Zp instead of Z for a random prime p (i.e. we use
the fingerprinting technique Lemma 2.1.1). Then with probability at most 1/2 do we return
an incorrect distance (which happens if (Adist(s,t))s,t is a multiple of p). By running O(log n)
copies in parallel for independent random p, the result is correct with high probability.

3.3 Hitting Sets

In the previous section, we showed that we can maintain h-bounded distances efficiently for
small h. In general, a shortest path might be as long as O(n), so Corollary 3.2.3 might need
up to Õ(n3) time to properly maintain the distance in the graph. This is not an improvement
over trivially recomputing the distance from scratch via Floyd-Warshall algorithm.

We now show that it suffices to maintain the distance only up to some small h and that
we can then extend the h-bounded distances to general distances. The larger h (i.e. the
better our bounded distances reflect the true distance) the less time we need to extend the
h-bounded distances to general distances.

Theorem 3.3.1. Let G = (V,E) be an n-node graph and h ∈ N. Given h-bounded all-pairs-
distances of G, we can compute the general all-pairs-distances in Õ(n3/h) time.

The idea for proving Theorem 3.3.1 is the following: Sample some Õ(n/h) random
vertices R ⊂ V and then consider some shortest st-path of length at least h. Then by R
being random, we would expect that some of these random vertices are visited by the st-
path. Further, one can show that it is unlikely to visit more than h consecutive vertices none
of which are in R. That means the st-path can be split into segments s→ r1 → r2 → ...→ t
where each ri ∈ R and each segment is of length at most h. We know the length of each
segment from the h-bounded distances. So to prove Theorem 3.3.1, we just need to combine
the right segments. Before discussing how to do that, we first want to formally prove the
claim that the st-path is split into segments of length at most h.

Lemma 3.3.2. Let G = (V,E) be an n-node graph and h, p ∈ N . Let R ⊂ V be a random
sample of size ≥ pn/h. Then with probability at least 1− n2/2Ω(p) we have the following: For
every s, t ∈ V with dist(s, t) ≥ h there is a shortest st-path that can be split into segments
s→ r1 → r2 → ...→ t where each ri ∈ R and each segment has length at most h.

By picking p = Θ(log n) we get that sampling Õ(n/h) vertices is enough to have Lemma 3.3.2
hold with high probability.

Proof of Lemma 3.3.2. Let s, t ∈ V and consider a shortest st-path. The probability that the
shortest path does not visit any r ∈ R ⊂ V within the first h steps can be bounded by

(1− |R|
n

)h = (1− |R|
n

)(n/|R|)(|R|/n)h ≤ e(|R|/n)h = eΩ(p) ≤ 2Ω(p)

Via union bound over all possible pairs s, t ∈ V , we can say with probability at least 1 −
n2/2Ω(p) that for every s, t ∈ V there is a shortest st-path that visits some r ∈ R within the

(version 2023/09/04) 31

first h steps. That in turn implies that we can segment any st-path with dist(s, t) ≥ h into
s → r1 → r2 → ... → t. This is because we just argued that we can split s → r1 → t where
the first segment s → r1 is of length at most h, and now we just apply the same argument
again recursively on the shortest r1t-path. This r1t-path can be split into r1 → r2 → t with
the first segment being of length at most h, and so on.

Proof of Theorem 3.3.1. For two graphs G,H we write distG(s, t) and distH(s, t) for the dis-
tance in the respective graphs. Similarly, we write disthG(s, t) for the h-bounded distance in
G.

We first describe the algorithm for Theorem 3.3.1, then argue why it is correct.
• Sample a random R ⊂ V of size O(n/h log n).
• We construct a new graph H = (V,E′) on the same vertex set as the original G but

with different edges.
• For every v ∈ V , r ∈ R we add an edge (v, r) and (r, v) to H ′ with weights cv,r =

disthG(v, r) and cr,v = disthG(r, v) respectively.
• Run Dijkstra’s Algorithm for each v ∈ V on graph H to compute all-pairs-distances in

H.
• Return for every s, t ∈ V the value min{disthG(s, t),distH(s, t)}.
We claim the returned values are exactly the st-distance in G, i.e.,

distG(s, t) = min{disthG(s, t),distH(s, t)}.

Note that distH(s, t) ≥ distG(s, t) because every shortest path in H uses edges that
correspond to paths in G. So any path we construct find in H has a corresponding path in
G.

If distG(s, t) ≤ h, then

distG(s, t) = disthG(s, t) = min{disthG(s, t),distH(s, t)}

where the last equality comes from distH(s, t) ≥ distG(s, t) = disthG(s, t).
If distG(s, t) > h, then there is a shortest st-path in G that can be segmented s →

r1 → r2 → ... → t for ri ∈ R and each segment is of length at most h (see Lemma 3.3.2).
Thus each of these segments corresponds to an edge in H whose edge weight is exactly the
length of the segment. So there exists an st-path in H of length distG(s, t), so distH(s, t) ≤
distG(s, t). Together with distG(s, t) ≤ distH(s, t) this implies distH(s, t) = distG(s, t) so
distG(s, t) = min{disthG(s, t),distH(s, t)}.

Complexity Constructing graph H takes O(|V | · |R|) = O((n2/h) log n) time as we already
know the h-bounded distances in G. Running n instances of Dijkstra’s Algorithm takes time
O(n · |E′|) = O((n3/h) log n).

3.4 Combining the Tools

We now prove Theorem 3.0.1 by combining Corollary 3.2.3 (which maintains h-bounded
distances) with Section 3.3 (which extends the bounded distances to general distances).

Dynamic Algebraic Algorithms (v. 2023/09/04) 32

Theorem 3.0.1. There exists a data structure with the following operations:

• INITIALIZE(G = (V,E)) Initialize on an n-node graph and return all-pairs-distances in
Õ(n3.5) time.

• UPDATE(v ∈ V,E′ ⊂ ({v} × V) ∪ V × {v}) Inserts edges E′ to G or removes any such
edge if it already exists in G. (All edges in E′ are incident to the same vertex v.) Then
return all-pairs-distances in Õ(n2.5) time.

Proof. We run Corollary 3.2.3 to maintain h-bounded distances. This data structure ini-
tializes in Õ(hn3) time and an update takes Õ(hn2) time. After each update, we obtain
the h-bounded all-pairs-distances. We then extend these distances to general distances via
Theorem 3.3.1 in Õ(n3/h) time. We return these distances. In summary, an update takes
Õ(hn2 + n3/h) time, which is Õ(n2.5) when we set h =

√
n.

3.5 Exercises

3.5.1 Polynomial Matrix Inverse

Let F be some field and let A ∈ (F[x]/⟨xh⟩)n×n be of the form A = N− xM for N ∈ Fn×n,
det(N) ̸= 0, M ∈ (F[x]/⟨xh⟩)n×n. We remark that here the entries of M can be of degree as
large as h − 1 and the entries of N are of degree 0. In particular, let p(x) =

∑h−1
k=0 pkx

k be
the polynomial of some entry Ai,j , then p0 = Ni,j and xMi,j =

∑h−1
k=1 pkx

k.

Problem 1 Show we can compute A−1 ∈ (F[x]/⟨xh⟩)n×n in Õ(hn3) operations.
Hint: It might help to first consider the case N = I, i.e. A = I − xM. For inspiration,

you might want to check the lecture notes how to efficiently invert a polynomial of the form
p(x) = 1− q(x) ∈ Z/⟨xh⟩.

3.5.2 Distances in Weighted Graphs

Consider a directed weighted graph G = (V,E, c) on n vertices where cu,v ∈ N≥1 is the
cost/weight of edge (u, v) ∈ E. Define M ∈ (Z[x]/⟨xh⟩)n×n where Mv,v = 1 for all v ∈ V
and Mu,v = −xc(u,v) for all (u, v) ∈ E. All other entries of M are 0. We observe that for
an unweighted graph (i.e. c(u, v) = 1 for all (u, v) ∈ E) and adjacency matrix A we have
M = I− xA.

Problem 2 For any s, t ∈ V let p(x) ∈ Z[x]/⟨xh⟩ be the polynomial in entry M−1
s,t . Show

that p(x) =
∑h−1

k=0 x
k · #number of st-paths of length exactly k. In particular, the smallest

k, for which xk has a non-zero coefficient in M−1
s,t , is the st-distance (if the distance is less

than h).

(version 2023/09/04) 33

3.5.3 Dynamic Distances in Weighted Graphs

Construct a data structure with the following operations:

• INITIALIZE(G = (V,E, c)) We initialize on a directed graph with integer edge-weights
in {1, ...,W}. Then return all-pairs-distances in Õ(

√
Wn3.5) time.

• UPDATE(v ∈ V,E′ ⊂ ({v}×V)∪(V ×{v}), edge weights c′e ∈ {1, ...,W} for all e ∈ E′))
We insert (or delete) the edges e ∈ E′ with edge weight c′e (these edges are all incident
to v). Then we return the new all-pairs-distances in Õ(

√
Wn2.5) time.

For simplicity you may assume that adding and multiplying two elements from Z takes
O(1) time, even if they are large numbers. (This assumption could be removed via the
Fingerprinting technique (Lemma 2.1.1), but that is not required for this exercise.) You are
also allowed to use Problem 1 and Problem 2 even if you have not solved them.

3.6 Further Resources

Maintaining the Paths The algorithm from Theorem 3.0.1 maintains the distances be-
tween every pair of vertices in Õ(n2.5) time per update, but not the shortest paths. Section
4.2 in [ACK17] shows how to maintain the paths in the same Õ(n2.5) update time. That
algorithm is not algebraic and purely graph theoretic.

Dynamic Algebraic Algorithms (v. 2023/09/04) 34

Chapter 4

Solving Linear Programs in
nd2 + n1.5d time

Jan: I start with a very quick recap of linear programs in case some students haven’t
seen them before. Actual algorithms for solving linear programs start in Section 4.2.

4.1 Linear Programs

Consider the following problem: We own a bakery and currently have 6 units of flour and
6 unit of egg available to us. We have a recipe for “Bread A” which requires 2 units of flour
and 1 unit of egg. This bread sells for $3. We could also bake “Bread B” which needs 1 unit
of flour and 2 units of egg, and sells for $2. The task is to maximize our profit.

We can model the task via the following problem

max 3a+ 2b subject to (4.1)

2a+ b ≤ 6 (we can use at most 6 flour)

a+ 2b ≤ 6 (we can use at most 6 eggs)

a ≥ 0, b ≥ 0 (we can not bake a negative number of bread)

where variables a and b are the number of “Bread A” and “Bread B” we bake.
The first intuitive idea would be to bake the largest possible number of “Bread A” since it

has the highest price. We can bake 3 “Bread A” (as that needs 3 · 2 = 6 units of flour) which
yields $3 · 3 = $9 profit. However, it turns out that baking 2 “Bread A” and 2 “Bread B” is the
better choice. This would need 6 units of flour and 6 unit of egg, and sells for $10.

Geometric Interpretation The problem has the following geometric interpretation. We
can interpret possible solutions (a, b) as points in a 2-dimensional plane. Each constraint
can be interpreted as a “half-space”, i.e. a line for which point (a, b) must be on a certain
side of the line. For example, a ≥ 0 means we only consider points (a, b) that are on the
right half (see Figure 4.1). All these half-spaces together form a polytope (each side is one

35

Dynamic Algebraic Algorithms (v. 2023/09/04) 36

Bread B

Bread A32

2

3

Flour Constraint

Egg Constraint

Price Vector

Figure 4.1: The geometric interpretation of the linear program associated with the bread
problem (4.1).

of the constraints). The problem (4.1) can thus be modelled as finding the point inside the
polytope that maximizes (3, 2)⊤(a, b), i.e. the point furthest in direction (3, 2).

Matrix formulation We can also write (4.1) as follows:

max

[
3
2

]⊤ [
a
b

]
subject to

2 1
1 2
−1 0
0 −1

[ab
]
≤


6
6
0
0


Note that here the inequality holds for each coordinate. In particular, we have a problem of
the following form

max b⃗⊤y⃗ subject to (4.2)

Ay⃗ ≤ c⃗

where Ay⃗ ≤ c⃗ is defined to mean (Ay⃗)i ≤ c⃗i for all i. Problems of form (4.2) are called
“linear programs”. The example showed that it is a common problem when it comes to
creating production plans. Many optimization problems can be written as linear programs:
shortest paths, matching, optimal transport, transshipment, linear ℓ1-regression, Markov
decision processes to name just a few. In this class, we will discuss efficient algorithm for
solving linear programs.

(version 2023/09/04) 37

4.1.1 Example for Duality

In the previous section we motivated problems of the following form:

max b⊤y subject to (4.3)

Ay ≤ c

This problem is closely related to the following optimization problem for the same matrix
A and vectors b, c:

min c⊤x subject to (4.4)

A⊤x = b

x ≥ 0

This, too, is a linear program. We say these two problems are dual to each other (one
problem is the dual of the other). To get some intuition why these two problem should be
related (and are in-fact the same problem) consider the following example:

Shortest paths in form (4.3): Given a graph G = (V,E, c) with edge weights c(u,v)∈E

and two vertices s, t ∈ V , we want to compute the st-distance. The following is a physical
experiment that reflects computing the st-distance: Assume the graph is given via a net,
i.e. each edge (u, v) is a string/cord of length cu,v and a vertex is just the point where the
strings are knotted together. If we take knot s and knot t and stretch them apart as far as
possible, then eventually we can not stretch them any further because the strings are under
tension (see ?? Jan: todo figure). The strings under tension are exactly the edges on the
shortest paths.

Stretching the knots apart can be mathematically modelled as assigning each knot v ∈ V
a number yv which is the place of the knot along some number line. Then stretching the
knots can be modelled via:

max yt − ys (stretch s and t as far apart as possible)

yv − yu ≤ cu,v ∀(u, v) ∈ E

(
we can not stretch to vertices further apart than the length

of the string. Otherwise we would rip the string apart.

)
This can be brought into the matrix shape as follows: We consider b ∈ RV with bv = 0 for
all v ∈ V, v ̸= s, t, and bs = −1, bt = 1. The vector c ∈ RE is just the vector representing
the length of an edge. Matrix A ∈ RE×V is a so called edge-vertex-incidence matrix, that
is, A(u,v),u = −1, A(u,v),v = 1, for (u, v ∈ E) and all other entries 0. Then above linear
program is the same as:

max b⊤y (4.5)

Ay ≤ c

The dual problem would be

max c⊤x (4.6)

A⊤x = b

x ≥ 0

Dynamic Algebraic Algorithms (v. 2023/09/04) 38

We now argue why these two problems are actually the same, i.e. they both compute the
st-distance.

Shortest paths in form (4.6): For (4.5) we just argued that it is the interpretation of the
st-distance being the furthest we can stretch knot (=vertex) s and t apart without ripping
any strings (=edges) apart. For the dual problem (4.6) note that we can write it as follows:

max
∑
e∈E

cexe∑
(u,v)∈E

x(u,v)︸ ︷︷ ︸
flow incoming to v

−
∑

(v,u)∈E

x(v,u)︸ ︷︷ ︸
flow outgoing of v

= bv ∀v ∈ V x ≥ 0

Here x ∈ RE is defined on the edge set, so it can be seen as a flow. Further, we said bv = 0
for all v ̸= s, t and bs = −1, bt = 1. So above linear program says that we have a flow that
routes 1 unit of flow from s to t. Since there are no capacities on the edges (only costs)
the flow of minimal cost is just the flow that goes along the shortest path (i.e. the path that
allows us to go from s to t with the minimum cost).

In summary, an optimal solution x ∈ RE to (4.6) is just the vector with xe = 1 if e is
used on the shortest path and xe = 0 otherwise. On the other hand, an optimal solution
y ∈ RV to (4.5) would be yv = sv-distance. So both problems compute the shortest paths,
it’s just that one considers the problem of computing the distance of vertices (y ∈ RV) while
the other consider the problem of computing the path itself (x ∈ RE).

4.2 Framework for solving Linear Programs

In the previous section we introduced the concept of linear programs and their dual. We
now want to prove some general properties of the dual and outline how it can be used to
find the optimal solution.

For the following theorem, note that Ay ≤ c can also be written as Ay + s = c, s ≥ 0.
Here the vector s = c−Ay is called the “slack vector” and it tells us how much space/slack
is left for the inequality. E.g. if si = 0 then that means (Ay)i = ci instead of just (Ay)i ≤ ci.

Theorem 4.2.1 (Weak duality). Given any x, s ∈ Rn, y ∈ Rd such that A⊤x = b, x ≥ 0,
Ay + s = c, s ≥ 0 we have c⊤x ≥ b⊤y. In particular, minA⊤x=b,x≥0 c

⊤x ≥ maxAy≤c b
⊤y.

In related literature, this property is called “weak duality”. We will later argue that
actually minA⊤x=b,x≥0 c

⊤x = maxAy≤c b
⊤y holds (equality “=” instead of inequality “≥”),

which is referred to as “strong duality”. Strong duality formalizes the claim from the previ-
ous section, where we said that a linear program and its dual are solving the same problem,
just viewed from a different perspective.

Proof of Theorem 4.2.1.

0 ≤ s⊤x = (c−Ay)⊤x = c⊤x− y⊤A⊤x = c⊤x− y⊤b (4.7)

(version 2023/09/04) 39

The first inequality holds because x ≥ 0, s ≥ 0 so the inner product of the two only adds
non-negative terms. In the next step we used s = c − Ay and the last step follows from
A⊤x = b. This then gives us

y⊤b ≤ c⊤x.

Note that this holds true for every x, y with A⊤x = b, x ≥ 0 and Ay ≤ c. So in particular, it
holds for the optimal solutions of the linear programs:

min
A⊤x=b,x≥0

c⊤x ≥ max
Ay≤c

b⊤y.

Weak duality is also useful to improve solutions. Assume we have some solution Ay ≤ c
(not necessarily optimal) and we want to know how close we are to being optimal. Then
we can just find some x ≥ 0 with A⊤x = b and compute s⊤x. More accurately, we can use
the following lemma

Lemma 4.2.2. Given any x, s ∈ Rn, y ∈ Rd such that A⊤x = b, x ≥ 0, Ay + s = c, s ≥ 0 we
have

b⊤y ≥ (min
Ay≤c

b⊤y)− s⊤x

and
c⊤x ≤ (min

A⊤x=b,x≥0
c⊤x) + s⊤x.

So the value s⊤x gives us an upper bound on how far away our solutions are to being optimal.

Proof. In the proof of Theorem 4.2.1 we proved

s⊤x = c⊤x− y⊤b

which leads to

c⊤x = y⊤b+ s⊤x ≤ (max
Ay≤c

y⊤b) + s⊤x ≤ (min
A⊤x=b,x≥0

y⊤b) + s⊤x.

The 2nd step comes from the optimal solution being larger than some y since it’s a maxi-
mization problem. The last step uses Theorem 4.2.1. In the same way we can bound

y⊤b = c⊤x− s⊤x ≥ (min
A⊤x=b,x≥0

y⊤b)− s⊤x ≥ (min
Ay≤c

y⊤b)− s⊤x.

Besides giving a bound on how good a solution is, Lemma 4.2.2 also implies an algorith-
mic framework for solving linear programs.

Dynamic Algebraic Algorithms (v. 2023/09/04) 40

Algorithmic Framework
• Find some t ∈ R>0 and x ∈ Rn

>0 with A⊤x = b, and some y ∈ Rd, s ∈ Rn
>0 with

Ay + s = c, such that xi · si ≈ t for all i = 1, ..., n.
• while t > ϵ/n

– Set t← t · (1− α)
– Set x ← x + δx, y ← y + δy, s + δs such that again x ≥ 0, A⊤x = b, s ≥ 0,
Ay + s = c, xisi ≈ t ∀i.
That is, we move our solution x and y a bit such that xisi ≈ t holds true again
after we decreased t a bit.

At the end of this algorithm we have by Lemma 4.2.2 that

b⊤y ≥ (max
Ay≤c

b⊤y)− s⊤x = (max
Ay≤c

b⊤y)−
n∑

i=1

sixi ≈ (max
Ay≤c

b⊤y)− n · t = (max
Ay≤c

b⊤y)− ϵ

because xisi ≈ t and our algorithm stops when t ≤ ϵ/n. Thus at the end of the algorithm,
we have a very accurate solution by picking ϵ small enough.

This framework is not yet a complete algorithm. There are several questions that must
be answered first

1. How do we find the initial x, y, s, t that satisfy all the requirements? (That is, how to
implement the very first step of the algorithm.)

2. How large can we choose α? Note that the number of iterations of the algorithm will
be O(1/α log(tstartn/ϵ)) so larger α will result in a faster algorithm. (tstart ·(1−α)k ≤
ϵ/n for k = O(1/α log(tstartn/ϵ)). Hence the number of iterations.)

3. How to pick and compute the movement of x, y, s, i.e. the vectors δx, δy, δs?

4. How to formalize xisi ≈ t for all i? What does it mean for these values to be close?

Depending on how these questions are answered, the algorithm will have a different com-
plexity.

Before answering these questions, we want to give a geometric interpretation of what
this algorithmic framework does. For this, consider the geometric interpretation of Ay ≤ c.
The set of y that satisfy the constraints Ay ≤ c forms a polytope. The optimal solution that
maximizes b⊤y is usually a corner of the polytope. Further, at the end of the algorithm,
we have very tiny xi · si ∀i, so the solution y is almost optimal, i.e. close to the optimal
corner. If we have some y with xiyi = t for some large t, then it is far from optimal but still
somewhere inside the polytope since it satisfies Ay ≤ c. In particular, we can define some
curve c(t) = {y | Ay = c,∃x ≥ 0,A⊤x = b, xisi = t∀i} (see Figure 4.2). That is, for any
given t > 0, c(t) is the point y that has some corresponding x where xisi = t for all i.

Note that during our algorithm we only have xisi ≈ t, so we are not exactly on this
curve, but we are close by. What our algorithm does is to initially find some point close to
this curve, and then repeatedly follow along the curve (by decreasing t) until it is very close
to the optimal solution (when t ≤ ϵ/n).

This algorithmic framework is often referred to as “central path method” because our
solution follows the curve (called the central path) from Figure 4.2. Central path methods

(version 2023/09/04) 41

y1

y2

xs ≈ 1

xs ≈ 0

c(t) = {y | Ay ≤ c,∃x ≥ 0,A⊤x = b, xs = t}

Figure 4.2: The geometric interpretation of the central path for linear programs. The central
path is the dotted curve. Our algorithm finds a point close to this curve (i.e. xs ≈ t for some
t) and then follows this curve towards the optimal solution. Following the curve is facilitated
by maintaining xs ≈ t while t decreases over time.

are a subclass of algorithms called “interior point methods” because throughout the algo-
rithm, we maintain a valid solution y, i.e. the point y is always in the interior of the polytope
(Figure 4.2).

Questions During the lecture the question was raised why we need xisi ≈ t for all i.
Wouldn’t xisi ≤ t be enough to argue x⊤s ≤ ϵ at the end of the algorithm?
Answer: Yes, generally it is possible to just use an inequality, but the algorithm will end up
needing more iterations. For an intuition why, consider the following: If xisi ≪ t is very
small for some i, then xi or si are very small. In that case we can not take very long steps,
i.e. x ← x + δx and s ← s + δs need small δx, δs otherwise x or s could become negative
(but we need x ≥ 0, s ≥ 0). Geometrically, what would happen is that we are not close to
the curve in Figure 4.2, i.e. we might not be neatly in the center of the polytope but very
close to some boundary. So by taking long steps we might step outside the polytope (which
corresponds to si < 0 for some i).

Dynamic Algebraic Algorithms (v. 2023/09/04) 42

4.3 Primal-Dual Central Path Method

Last lecture we defined the following algorithmic framework. This is often referred to as
“central path method” because our solution x, y, s follow the curve (called the central path)
from Figure 4.2. This framework fits into the class of “interior point methods” because
throughout the algorithm, we maintain a valid solution y, i.e. the point y is always in the
interior of the polytope (Figure 4.2).

Algorithmic Framework
• Find some t ∈ R>0 and x ∈ Rn

>0 with A⊤x = b, and some y ∈ Rd, s ∈ Rn
>0 with

Ay + s = c, such that xi · si ≈ t for all i = 1, ..., n.
• while t > ϵ/n

– Set t← t · (1− α)
– Set x ← x + δx, y ← y + δy, s ← s + δs such that again x ≥ 0, A⊤x = b, s ≥ 0,
Ay + s = c, xisi ≈ t ∀i.
That is, we move our solution x and y a bit such that xisi ≈ t holds true again
after we decreased t a bit.

This framework is not yet a complete algorithm. There are several questions that must be
answered first

1. How do we find the initial x, y, s, t that satisfy all the requirements? (That is, how to
implement the very first step of the algorithm.)

2. How large can we choose α? Note that the number of iterations of the algorithm will
be O(1/α log(tstartn/ϵ)) so larger α will result in a faster algorithm. (tstart ·(1−α)k ≤
ϵ/n for k = O(1/α log(tstartn/ϵ)). Hence the number of iterations.)

3. How to pick and compute the movement of x, y, s, i.e. the vectors δx, δy, δs?

4. How to formalize xisi ≈ t for all i? What does it mean for these values to be close?

Depending on how these questions are answered, the algorithm will have a different com-
plexity.

Notation Before answering above questions, let us quickly define some notation. For any
two vectors u, v we define uv as the vector resulting from multiplying each entry, i.e. (uv)i =
uivi. Note that for a diagonal matrix U with Ui,i = ui, we have uv = Uv.
We also define for a scalar t that v + t is the vector where we add t to each entry of v,
i.e. (u+ t)i = ui + t.

How to formalize xisi ≈ t for all i? Today, we will use the following definition for xisi ≈
t: √√√√ n∑

i=1

(
xisi − t

t

)2

≤ 1

10
.

(version 2023/09/04) 43

We will also write this in the following form (where we use that (xs− t)i = xisi − t by the
notation we defined at the start of this chapter.)

∥xs− t

t
∥2 ≤

1

10

Note that ∥(xs− t)/t∥∞ ≤ ∥(xs− t)/t∥2 ≤ 1
10 so we have

Lemma 4.3.1. If ∥(xs− t)/t∥2 ≤ ϵ, then (1− ϵ) t ≤ xisi ≤ (1 + ϵ) t for all i.

How to pick α? Throughout the algorithm, we want that we always have xs ≈ t, i.e.
∥(xs − t)/t∥2 should be small. We now analyze how much ∥(xs − t)/t∥2 changes when
decreasing t← t · (1− α).

Lemma 4.3.2. If ∥(xs − t)/t∥2 ≤ 1/10 and α ≤ 0.1, then for t′ ← t · (1 − α) we have
∥(xs− t′)/t′∥2 ≤ ∥(xs− t)/t∥2 + 1.2α

√
n.

Proof.

∥xs− t′

t′
∥2 =

1

1− α
∥xs− t′

t
∥2 =

1

1− α
∥xs− t+ αt

t
∥2 ≤

1

1− α
(∥xs− t

t
∥2 +

√
nα)

= (1 + 1.1α) · (∥xs− t

t
∥2 +

√
nα) ≤ ∥xs− t

t
∥2 + 1.2

√
nα

This tells us that, if we start with ∥(xs − t)/t∥2 ≤ 1/10 and pick α some value of size
roughly O(1/

√
n), then we end up with ∥xs−t′

t′ ∥2 ≤
2
10 . So after decreasing t we still have

0.8 t ≤ xs ≤ 1.2 t.
Next, the question is if by moving x ← x + δx, y ← y + δy, s ← s + δs, we can improve

the norm back to ∥xs−t
t ∥2 ≤

1
10 . If we can do this, the our algorithm converges in just

O(
√
n log(tstartn/ϵ)) iterations.

How to pick δx, δs, δy? We perform updates of the form x← x+δx, y ← y+δy, s← s+δs
and we want that these new solutions satisfy all the linear program constraints, so

A⊤(x+ δx) = b,

A(y + δy) + (s+ δs) = c,

x+ δx > 0, s+ δs > 0

Since we already had A⊤x = b and Ay + s = c before our update, these conditions are
equivalent to the following:

A⊤δx = 0, (4.8)

Aδy = −δs (4.9)

−δx/x < 1,−δs/s < 1 (4.10)

Dynamic Algebraic Algorithms (v. 2023/09/04) 44

Further, we want these updates to reduce ∥(xs − t)/t∥2. Let’s see how this value changes
when moving x and s by some small δx, δs:

(x+ δx)(s+ δs)− t = xs− t+ sδx + xδs + δxδs ≈ xs− t+ sδx + xδs.

For the last step, the idea is that, since we move x and s only by a small amount, the product
of two small values becomes even smaller. So δxδs is very close to 0. This now motivates
the following requirement for the vectors δx, δs.

sδx + xδs = γ(t− xs) (4.11)

for some small γ ∈ R>0. If this condition is true, then we would have (x+ δx)(s+ δs)− t ≈
(1− γ)(xs− t), so our new xs is much closer to t. Formally we have

Lemma 4.3.3. If xδs + sδx = γ(t− xs), and ∥xs−t
t ∥2 ≤ 2/10 then

∥ (x+ δx)(s+ δs)− t

t
∥2 ≤ (1− γ) · ∥xs− t

t
∥2 + 1.2 · ∥X−1δx∥2∥S−1δs∥2

So if δx and δs are small enough, then the norm decreases by roughly a (1− γ) factor.

Proof.

∥ (x+ δx)(s+ δs)− t

t
∥2 = ∥xs− t

t
+

xδs + sδx
t

+
δxδs
t
∥2 = ∥(1− γ)

xs− t

t
+

δxδs
t
∥2

≤ (1− γ)∥xs− t

t
∥+ ∥δxδs

t
∥2

Here the last term can be bounded as follows

∥δxδs
t
∥2 = ∥δx

x

δs
s

xs

t
∥2 ≤ ∥

δx
x
∥2∥

δs
s
∥∞∥

xs

t
∥∞ ≤ ∥

δx
x
∥2∥

δs
s
∥2 · 1.2

We now specify a construction for δx, δy, δs that satisfies requirements (4.8),(4.9),(4.11).

Lemma 4.3.4. Given x, y, s, t define

δs = A

=:−δy︷ ︸︸ ︷
(A⊤XS−1A)−1A⊤S−1(t− xs)γ

δx = S−1(t− xs)γ −XS−1δs

Then conditions (4.8),(4.9),(4.11) are all satisfied.

Proof. We have Aδy = −δs (4.9) by definition of δy and δs.
For condition (4.11) we have

Xδs + Sδx = Xδs + SS−1(t− xs)γ − SXS−1δs = Xδs + (t− xs)γ −Xδs = (t− xs)γ.

(version 2023/09/04) 45

Lastly, for (4.8) we have

A⊤δx = A⊤S−1(t− xs)γ −AXS−1δs

= A⊤S−1(t− xs)γ −A⊤XS−1A(A⊤XS−1A)−1︸ ︷︷ ︸
cancel each other

S−1(t− xs)γ

= A⊤S−1(t− xs)γ −A⊤S−1(t− xs)γ = 0

We are left with verifying (4.10). To prove it, we will need the following lemma.

Lemma 4.3.5 (Orthogonal Projection). For any n×d matrix M of rank d and n-dimensional
vector v, we have

∥v∥22 = ∥M(M⊤M)−1M⊤v∥22 + ∥(I−M(M⊤M)−1M⊤)v∥22

This implies ∥M(M⊤M)−1M⊤v∥22 ≤ ∥v∥22 since a norm is always positive. (Geometri-
cally, M(M⊤M)−1M⊤v is an orthogonal projection of v onto the image of M.)

Proof of Lemma 4.3.5.

∥v∥22 = v⊤v = v⊤M(M⊤M)−1M⊤v + v⊤(I−M(M⊤M)−1M⊤)v

= v⊤M(M⊤M)−1M⊤M(M⊤M)−1M⊤v

+ v⊤(I−M(M⊤M)−1M)(I−M(M⊤M)−1M⊤)v

= ∥M(M⊤M)−1M⊤v∥22 + ∥(I−M(M⊤M)−1M⊤)v∥22

We use Lemma 4.3.5 to prove Lemma 4.3.6 which then implies (4.10).

Lemma 4.3.6. For δx, δs as in Lemma 4.3.4 and for ∥(xs−t)/t∥2 ≤ 2/10 we have ∥X−1δx∥2 ≤
4γ, ∥S−1δs∥2 ≤ 4γ.

Note that by ∥X−1δx∥∞ ≤ ∥X−1δx∥2 and for small enough γ < 1/4, we have ∥X−1δx∥∞ <
1 and thus (4.10) holds true. The same argument can be made for ∥S−1δs∥∞ < 1.

Proof. Let’s start with δs

∥S−1δs∥2 = ∥S−1A(A⊤XS−1A)−1AS−1(t− xs)γ∥2
= ∥S−1/2X−1/2X1/2S−1/2A(A⊤XS−1A)−1AX1/2S−1/2X−1/2S−1/2(t− xs)γ∥2

≤ 1.2
1√
t
∥ X1/2S−1/2A(A⊤XS−1A)−1AX1/2S−1/2︸ ︷︷ ︸

orthogonal projection matrix, Lemma 4.3.5 for M=X1/2S1/2A

X−1/2S−1/2(t− xs)γ∥2

≤ 1.2
1√
t
∥X−1/2S−1/2(t− xs)γ∥2 = 1.2∥

√
tX−1/2S−1/2 t− xs

t
γ∥2

≤ 1.5γ∥xs− t

t
∥2 ≤ 2γ

Dynamic Algebraic Algorithms (v. 2023/09/04) 46

For δx we have

∥X−1δx∥2 = ∥X−1S−1(xs− t)γ − S−1δs∥2 ≤ γ∥X−1S−1(xs− t)∥2 + ∥S−1δs∥2

where we just bounded ∥S−1δs∥2 ≤ 2γ already and ∥X−1S−1(xs−t)∥2 ≤ 2∥(xs−t)/t∥2.

Maintaining xs ≈ t throughout all iterations: We now have all tools available to show
that our algorithm always has ∥(xs− t)/t∥2 ≤ 1/10 at the end of each iteration. We pick the
parameters as follows:
α = 16γ2/

√
n

γ := 0.01/
√
2 · 1.2 · 16 > 0.0016

Then by Lemma 4.3.2 we have for t′ ← t(1− α)

∥(xs− t′)/t′∥2 ≤ ∥(xs− t)/t∥2 + 1.2α
√
n ≤ ∥(xs− t)/t∥2 + 1.2 · 16γ2

While by Lemmas 4.3.3 and 4.3.6 we have ∥ (x+δs)(s+δs)−t′

t′ ∥2 ≤ (1−γ)∥xs−t′

t′ ∥2+1.2·16γ2

≤ (1 − γ)∥xs−t
t ∥2 + 2(1.2 · 16γ2) (we replaced t’ by t and get at most an extra (1.2 · 16γ2)

term as shown above)
≤ (1− γ)∥xs−t

t ∥2 + 0.012 = (1− γ)∥xs−t
t ∥2 + 0.0001 by our choice of γ

≤ (1−γ)0.1+0.0001 by assumption that at the start of each iteration we have ∥xs−t
t ∥2 ≤ 0.1

= 0.1− γ0.1 + 0.0001
≤ 0.1− 0.00016 + 0.0001 < 0.1 by choice of γ.

So at the end of an iteration when changing both t← (1−α)t and x← x+δx, s← s+δs
we again have ∥(xs− t)/t∥2 ≤ 0.1.

The final algorithm looks as follows:
• Find some t ∈ R>0 and x ∈ Rn

>0 with A⊤x = b, and some y ∈ Rd, s ∈ Rn
>0 with

Ay + s = c, such that ∥(xs− t)/t∥2 ≤ 1/10.
• while t > ϵ/n

– Set t← t · (1− 16γ2/
√
n) for γ = 0.01/

√
2 · 1.2 · 16.

– Set x← x+ δx, y ← y + δy, s← s+ δs where
δy = −γ(A⊤XS−1A)−1A⊤S−1(t− xs)
δs = −Aδy, δx = γS−1(t− xs)−XS−1δs.

Complexity Analysis: After O(
√
n log(tstartn/ϵ)) = Õ(

√
n) iterations the algorithm stops.

In each iteration we must compute δx, δs, δy. Multiplying a vector with A or A⊤ takes only
O(nd) time. Computing (A⊤XS−1A) takes O(nd2) time. Inverting this matrix takes O(d3)

time. In summary, one iteration can be performed in O(nd2) time, for a total of Õ(n1.5d2)
time over all iterations. This complexity was first achieved by Renegar (1988) [Ren88].

4.3.1 Initial Point

Last week we analyzed an algorithm that solves a linear program in O(
√
n log 1/ϵ) iterations.

The algorithm assumes that we have some initial point x, s ∈ Rn
≥0, y ∈ Rd, t ∈ R>0 such

that A⊤x = b, Ay + s = c and ∥(xs− t)/t∥2 ≤ 1/10.

(version 2023/09/04) 47

Such an initial point can be constructed via the following reduction by [YTM94] (for a
recent proof see Lemma A.6 in [CLS19]).

Lemma 4.3.7 ([YTM94, CLS19]). Consider a linear program minA⊤x=b,x≥0 c
⊤x with n vari-

ables and d constraints. Assume that for any x ≥ 0 with A⊤x = b, we have that ∥x∥∞ ≤ R.
For any 0 < δ ≤ 1, the modified linear program min

A
⊤
x=b,x≥0

c⊤x with

A =

 A 1
0 1

1
Rb⊤ − 1⊤A 0

 , b =

[
1
Rb

n+ 1

]
, and c =

 δ/∥c∥∞ · c
0
1


satisfies the following:

1. x =

 1n
1
1

, y =

[
0d
−1

]
and s =

 1n + δ
∥c∥∞

· c
1
1

 are satisfy the constraint of the

modified linear program.

2. For any solution (x, y, s) with
∑n

i=1 xisi ≤ δ2, consider the vector x̂ = R · x1:n (x1:n is
the first n coordinates of x) is an approximate solution to the original linear program in
the following sense

c⊤x̂ ≤ min
A⊤x=b,x≥0

c⊤x+ ∥c∥∞R · δ,

∥Ax̂− b∥1 ≤ 2δ ·

R
∑
i,j

|Ai,j |+ ∥b∥1

 ,

x̂ ≥ 0.

So for small enough δ > 0, we obtain an approximate solution of the linear program.
The algorithm from last lecture (Section 4.3) runs in O(

√
n log(n/δ)) iterations and each

iteration takes O(nd2) time, resulting in the following Theorem 4.3.8.

Theorem 4.3.8. Given A ∈ Rn×d of rank d, c ∈ Rn, b ∈ Rd, let R be a bound on ∥x∥1 for all
x ≥ 0 with Ax = b. Then for any 0 < δ ≤ 1 we can compute x ≥ 0 such that

c⊤x ≤ min
Ax=b,x≥0

c⊤x+ δ∥c∥∞R and ∥Ax− b∥1 ≤ δ

R
∑
i,j

|Ai,j |+ ∥b∥1


in time O(n1.5d2 log(n/δ)).

4.4 Improvements via Approximate Inverse

The linear program solver from Section 4.3 runs in O(
√
n log(n/δ)) iterations. In each

iterations, we must compute

δs = A(A⊤XS−1A)−1A⊤S−1(t− xs) · γ,
δx = S−1(t− xs)γ −XS−1δs.

Dynamic Algebraic Algorithms (v. 2023/09/04) 48

The time complexity of computing these two vectors is dominated by the cost of com-
puting A⊤XS−1A in O(nd2) time. This is done in each iteration so the total time is
O(n1.5d2 log(n/δ)).

We now want to improve this complexity to O((nd + n1.5d) log(n/δ)). This complexity
was first achieved by Vaidya (1987) [Vai87].

The idea is to maintain the matrix A⊤XS−1A (i.e., create a data structure for computing
this matrix) instead of recomputing it from scratch in each iteration. For this, consider what
happens if some entry xi changes a bit by adding some β > 0. Then the new matrix is given
by

A⊤(X+ eie
⊤
i β)S

−1A = A⊤XS−1A+A⊤eie
⊤
i βS

−1A = A⊤XS−1A+ aia
⊤
i · β/si

where ai is the ith row of A. So we can maintain the matrix in just O(d2) time per change
to any xi (and likewise per change to any si). The problem is that in general, every entry of
x could change from one iteration to the next, so it still needs O(nd2) time per iteration to
maintain this matrix.

Outline An idea for how to get around every entry of x changing, is to define some x ∈ Rn

such that
(1− ϵ)x ≤ x ≤ (1 + ϵ)x

for some small constant ϵ > 0. Then we want to use the matrix A⊤XS
−1

A instead of
A⊤XS−1A. This should lead to a speed up, because when we update x ← x + δx and an
entry xi does not change a lot, the old xi is still a good approximation of xi. So we can reuse
the old xi. Only when xi changes too much do we need to change xi and thus perform an
update to maintain A⊤XS

−1
A.

There are now two questions we must answer:

• Since changing an entry of x or s results in paying O(d2) time to maintain A⊤XS
−1

A,
we must bound how often these vectors change.

• Does the algorithm from last lecture (Section 4.3) still work when we replace A⊤XS−1A

by A⊤XS
−1

A?

Question 1: Bounding the number of changes.

Lemma 4.4.1. After T iteration of our algorithm, in total only O(T
√
n) changes are performed

to x and s.

Proof. Let x(t), x(t), δ
(t)
x be the vectors x, x, δx during the tth iteration of our algorithm. So

we have

• x(t+1) = x(t) + δ
(t)
x

• If (1− ϵ)x
(t+1)
i ≤ x

(t)
i ≤ (1 + ϵ)x

(t+1)
i , then x

(t+1)
i = x

(t)
i because we can reuse the old

value.

• Otherwise, x(t+1)
i = x

(t+1)
i .

(version 2023/09/04) 49

for all t = 1, ..., T and i = 1, ..., n.
To bound the number of times we change x, consider the following for any i. Let’s say

we are currently in iteration t and we must update x
(t)
i = x

(t)
i . Let k < t be the last time we

updated x
(k)
i = x

(k)
i . Then we have

x
(t)
i > x

(t−1)
i (1 + ϵ)

because otherwise we would not change x
(t)
i . Since x(t) is the sum of δx values, we have

x
(k)
i +

t−1∑
ℓ=k

(δ(ℓ)x)i = x
(t)
i > x

(t−1)
i (1 + ϵ) = x

(k)
i (1 + ϵ) = x

(k)
i (1 + ϵ).

Subtracting x(k) from both sides yields

t−1∑
ℓ=k

(δ(ℓ)x)i > ϵ · x(k)
i = ϵ · x(k)

i

which can in turn be transformed to
t−1∑
ℓ=k

(δ
(ℓ)
x)i

x
(ℓ)
i · ϵ

> 1

So whenever we perform an update, this sum is larger than 1. We can thus upper bound the
total number of changes over all iterations and all entries by

n∑
i=1

T∑
t=1

∣∣∣∣∣ (δ(ℓ)x)i

x
(ℓ)
i · ϵ

∣∣∣∣∣ =
T∑

t=1

∥∥∥∥∥ δ(ℓ)x

x(ℓ)

∥∥∥∥∥
1

· 1
ϵ
≤
√
n ·

T∑
t=1

∥∥∥∥∥ δ(ℓ)x

x(ℓ)

∥∥∥∥∥
2

· 1
ϵ
≤ O(

√
n) ·

T∑
t=1

∥∥∥∥∥ δ(ℓ)x

x(ℓ)

∥∥∥∥∥
2

· 1
ϵ

where the 2nd step comes from Cauchy-Schwarz and the last step uses that x is always a
(1 ± ϵ)-approximation of x. By Lemma 4.3.6 we know ∥δ(ℓ)x /x(ℓ)∥2 = O(1), so the total
number of changes is bounded by O(T

√
n/ϵ) = O(T

√
n) for constant ϵ > 0. The same

argument holds for the number of changes to s.

In summary, our algorithm needs only O(n log(n/δ)) changes to x and s as we have T =

O(
√
n log(n/δ)) iterations. Since each change costs us O(d2) to maintain (A⊤XS

−1
A)−1,

the total cost is bounded by O(nd2 log(n/δ)). To compute δx and δs we additionally need
O(nd) time per iteration for the product with A and A⊤. The total time over all iterations
is thus O((nd2 + n1.5d) log(n/δ)).

Question 2: Does the algorithm still work? In each iteration we will move x, y, s by the
following vectors

δs = A

=:−δy︷ ︸︸ ︷
(A⊤XS

−1
A)−1AS

−1
(t− xs) · γ (4.12)

δx = S
−1

(t− xs) · γ −XS
−1

δs

Dynamic Algebraic Algorithms (v. 2023/09/04) 50

We now need to verify that all the lemmas from last lecture (Lemmas 4.3.3, 4.3.4 and 4.3.6
still hold for our slightly different choice of δx, δy, δs.

Lemma 4.4.2 (Similar to Lemma 4.3.4). For δx, δs as defined in (4.12) we have

A⊤δx = 0

Aδy = −δs
Xδs + Sδx = γ · (t− xs)

This lemma implies that after moving x, y, s we still satisfy the constraints A⊤x = b and
Ay + s = c of the linear program.

Proof. Property Aδy = −δs holds by definition. We further have

A⊤δx = A⊤S
−1

(t− xs) · γ −A⊤XS
−1

A(A⊤XS
−1

A)−1AS
−1

(t− xs) · γ

= A⊤S
−1

(t− xs) · γ −A⊤S
−1

(t− xs) · γ = 0

and

Xδs + Sδx = Xδs + SS
−1

(t− xs) · γ − SXS
−1

δs = Xδs + (t− xs) · γ −Xδs = γ · (t− xs)

Note that unlike (4.11), we now satisfy xδs + sδx = γ · (t − xs). Thus we must reprove
Lemma 4.3.3 for this small variation.

Lemma 4.4.3 (Similar to Lemma 4.3.3). If xδs+ sδx = γ · (t−xs), x = (1± ϵ)x, s = (1± ϵ)s
and ∥(xs− t)/t∥2 ≤ 1/10 then

∥ (x+ δx)(s+ δs)− t

t
∥2 ≤ (1−γ)∥xs− t

t
∥2+2.2ϵ(∥X−1δx∥2+∥S−1δs∥2)+1.2∥X−1δx∥2∥S−1δs∥2

So similar to the old algorithm, if ∥X−1δx∥2, ∥S−1δs∥2 are small enough, we move xs
closer to t.

Proof.

∥ (x+ δx)(s+ δs)− t

t
∥2 = ∥xs− t

t
+

xδs + sδx
t

+
δxδs
t
∥2

= ∥xs− t

t
+

xδs + sδx
t

+
(x− x)δs + (s− s)δx

t
+

δxδs
t
∥2

≤ (1− γ) · ∥xs− t

t
∥2 + ∥

(x− x)δs
t

∥2 + ∥
(s− s)δx

t
∥2 + ∥

δxδs
t
∥2

Here the term ∥ δxδst ∥2 ≤ 1.2γ2 by the proof of Lemma 4.3.3. Further we can bound

∥ (x− x)δs
t

∥2 ≤ 1.1∥ (x− x)δs
xs

∥2 = 1.1∥ (x− x)

x
· δs
s
∥2 ≤ 1.1ϵ∥δs

s
∥2

(version 2023/09/04) 51

and the same bound can be proven in the same way for ∥ (s−s)δx
t ∥2. In summary,

∥ (x+ δx)(s+ δs)− t

t
∥2 ≤ (1−γ)∥xs− t

t
∥2+2.2ϵ(∥X−1δx∥2+∥S−1δs∥2)+1.2∥X−1δx∥2∥S−1δs∥2

At last, we must reprove Lemma 4.3.6

Lemma 4.4.4 (Similar to Lemma 4.3.6). For ∥(xs − t)/t∥2 ≤ 2/10, x = (1 ± 0.1)x, s =
(1± 0.1)s, and δx, δs as in (4.12), we have ∥X−1δx∥2 ≤ 4γ, ∥S−1δs∥2 ≤ 4γ.

Proof. The proof is essentially the same as in Lemma 4.3.6.

∥S−1δs∥2 = ∥S−1A(A⊤XS
−1

A)−1AS
−1

(t− xs) · γ∥2

= ∥S−1SX
−1/2

S
−1/2

X
1/2

S
−1/2

A(A⊤XS
−1

A)−1AS
−1/2

X
1/2

X
−1/2

S
−1/2

(t− xs) · γ∥2

≤ 1.1 · ∥X−1/2
S
−1/2

X
1/2

S
−1/2

A(A⊤XS
−1

A)−1AS
−1/2

X
1/2

X
−1/2

S
−1/2

(t− xs) · γ∥2

≤ 1.3 · ∥X−1/2S−1/2X
1/2

S
−1/2

A(A⊤XS
−1

A)−1AS
−1/2

X
1/2

X
−1/2

S
−1/2

(t− xs) · γ∥2

≤ 1.5
1√
t
· ∥X1/2

S
−1/2

A(A⊤XS
−1

A)−1AS
−1/2

X
1/2

X
−1/2

S
−1/2

(t− xs) · γ∥2

≤ 1.5
1√
t
· ∥X−1/2

S
−1/2

(t− xs) · γ∥2

≤ 1.7
1√
t
· ∥X−1/2S−1/2(t− xs) · γ∥2

≤ 1.9 · γ · ∥ t− xs

t
∥2

Here we use that xs ≈ t and x ≈ x, s ≈ s.

In summary, all the lemmas from the old algorithm still work if we replace x, s by ap-
proximate x, s as in (4.12). In particular, the algorithm from Section 4.3 still works. We
obtain Theorem 4.4.5, which is a faster version of Theorem 4.3.8.

Theorem 4.4.5. Given A ∈ Rn×d of rank d, c ∈ Rn, b ∈ Rd, let R be a bound on ∥x∥1 for all
x ≥ 0 with Ax = b. Then for any 0 < δ ≤ 1 we can compute x ≥ 0 such that

c⊤x ≤ min
Ax=b,x≥0

c⊤x+ δ∥c∥∞R and ∥Ax− b∥1 ≤ δ

R
∑
i,j

|Ai,j |+ ∥b∥1


in time O((nd2 + n1.5d) log(n/δ)).

Dynamic Algebraic Algorithms (v. 2023/09/04) 52

Chapter 5

Solving Linear Programs in nd2

time

5.1 Idea for a faster Algorithm

In the previous lecture we improved the complexity of the linear program solver to O((nd2+
n1.5d) log(n/δ)) time. Note that we generally have n ≫ d so in most cases the term n1.5d
will dominate. We now want to remove this term and further improve the complexity to
O(nd2 log(n/δ)) time.

For this, we first observe where this term comes from. In each iteration, our algorithm
computes

δs = A(A⊤XS
−1

A)−1A⊤S
−1

(t− xs).

Here the product A⊤S
−1

(t−xs) takes O(nd) time, as it is multiplying a d×n matrix by an n-
dimensional vector. So after O(

√
n log(n/δ)) iterations, this is where the O(n1.5d log(n/δ))

term in the overall complexity comes from. An intuitive idea for how to speed up this
computation would be to define t as some approximate t with (1− ϵ)t ≤ t ≤ (1+ ϵ)t, similar
to how x, s are approximate versions of x, s. Then we can maintain A⊤S

−1
(t− xs) in O(d)

timer per changed entry in x or s. Changing t would take O(nd) time.
Note that maintaining A⊤S

−1
(t − xs) takes only O(nd log(n/δ)) total time over all it-

erations. This is because by Lemma 4.4.1 we only have O(n log(nδ)) changes to x and s.
Further, it takes O(

√
n/ϵ) iterations until t changes by a (1 − ϵ)-factor (since in each itera-

tion we set t ← (1 − O(1/
√
n)) · t). So we change t only once every O(

√
n) iterations (for

constant ϵ > 0).
We will later argue why also the product with A on the far left in the definition of δs can

be accelerated. For now, we focus on the idea of maintaining A⊤S
−1

(t− xs).

Problems with this approach Unfortunately, we can not simply replace x, s, t in (t − xs)
by x, s, t. The algorithm will break. To see why, consider the case where x = (1+ ϵ)x, s = s,
t = t and xisi = (1 + ϵ)t for all i = 1, ..., n. Then each of x, s, t is a valid approximation

53

Dynamic Algebraic Algorithms (v. 2023/09/04) 54

of x, s, t. Further, (t − xs) = 0 so δs = δs = 0. However, ∥(xs − t)/t∥2 = O(
√
nϵ). This is

a problem, because the algorithm from Section 4.3 required ∥(xs − t)/t∥2 ≤ 1/10. In each
iteration, it moves x, s by δx, δs to decrease this norm. But now, even if this norm is much
larger, we might not be able to reduce it. This is because in our example δx = δs = 0 so we
are not moving our x, s at all.

One idea would be to use the norm ∥(xs − t)/t∥∞ instead. This norm would only be of
size O(ϵ) in above example. Unfortunately the proof of Lemma 4.3.3 breaks when replacing
the ∥ · ∥2-norm by the ∥ · ∥∞-norm, so we can not use it.1

The purpose of ∥(xs − t)/t∥2 was to measure how close the product xs is to t. We now
want to use a slightly different method of measuring the closeness of xs ≈ t.

Definition 5.1.1. For any λ > 0, define Φλ : Rn → R via

Φλ(v) =
1

2

n∑
i=1

exp(λvi) + exp(−λvi) =
n∑

i=1

cosh(λvi).

Note that this function Φλ is minimized for the all-zeros-vector. If any entry vi ̸= 0, then
the exponential function will blow-up and Φλ(v) becomes large. So we can use Φλ((xs−t)/t)
to measure how close (xs − t)/t is to 0, or equivalently, how close xs is to t. Further, note
that because of the exponential growth, the value of Φλ(v) will be dominated by the term
exp(λvi) for which vi is largest. So Φλ(v) behaves similarly to ∥v∥∞ in that it’s value will
depend (almost) exclusively on the largest entry of v. More formally, we can prove the
following:

Lemma 5.1.2. For any v ∈ Rn we have ∥v∥∞ ≤ ln(2Φλ(v))/λ.

This lemma tells us that if Φλ((xs− t)/t) ≤ 1
2 exp(λ/10), then 0.9 · t ≤ xs ≤ 1.1t.

For the algorithm in Section 4.3 we used to prove ∥(xs− t)/t∥2 ≤ 1/10 to argue 0.9 · t ≤
xs ≤ 1.1t. Now we want to modify this algorithm to promise Φλ((xs− t)/t) ≤ 0.5 exp(λ/10)
instead. We will later pick λ = c log(n) for some constant c, so we get ∥(xs− t)/t∥∞ = O(1)
when Φλ((xs − t)/t) ≤ poly(n). In particular for Φλ((xs − t)/t) ≤ 1

2 exp(λ/10) we get
0.9t ≤ xs ≤ 1.1t by Lemma 5.1.2.

5.2 Robust Interior Point Method

We recap the algorithmic framework from Section 4.3 for solving linear programs, together
with the changes proposed in the previous section. This modified framework is often called
“robust interior point method” [CLS19, LSZ19, ?, JSWZ21] because it is robust against
approximation errors. In particular, we can use some approximate x, s instead of exact x, s.

• Find initial point x, s ∈ Rn
≥0, y ∈ Rd, t ∈ R>0 such that A⊤x = b, Ay + s = c, and

Φλ((xs− t)/t) ≤ 1
2 exp(λ/10).

• while t > δ/n

1It’s possible to fix this by increasing the number of iterations to O(n log(n/δ)), but that would mean we have
a slower algorithm.

(version 2023/09/04) 55

– decrease t← (1− α) · t
– move x← x+ δx, s← s+ δs, y ← y+ δy, such that again x ≥ 0, A⊤x = b, s ≥ 0,
Ay + s = c, and Φλ((xs− t)/t) ≤ 1

2 exp(λ/10).

Here we define the movement δx, δy, δs to be

δs = A

=:−δy︷ ︸︸ ︷
(A⊤XS

−1
A)−1AS

−1
g (5.1)

δx = S
−1

g −XS
−1

δs

g = −γ · t · ∇Φλ(v)

∥∇Φ(v)∥2

for x ≈ϵ x, s ≈ϵ s, and v an approximate version of v := (xs− t)/t with ∥v − v∥∞ ≤ ϵ.
The intuition for δx, δs, δy as in (5.1) is as follows. If we were to let g = γ(t − xs), then

(5.1) would be exactly the same as (4.12). In our previous algorithm from ??, we wanted
to satisfy

(x+ δx)(s+ δs)− t

t
≈ xs− t+ g

t
= (1− γ)

xs− t

t

(see e.g. Lemma 4.4.3). Now the new algorithm instead picks g as in (5.1), so we have

(x+ δx)(s+ δs)− t

t
≈ xs− t+ g

t
≈ xs− t

t
− γ

∇Φλ((xs− t)/t)

∥∇Φλ((xs− t)/t)∥2
.

In other words, we move (xs − t)/t in direction −∇Φλ((xs − t)/t). That means we are
performing a gradient descent that reduces the value of Φλ((xs − t)/t). So by picking
δx, δsδy as in (5.1), we hope to be able to maintain Φλ((xs − t)/t) ≤ 0.5 exp(λ/10) which
then implies 0.9t ≤ xs ≤ 1.1t by Lemma 5.1.2.

To prove the algorithm works, and to analyze the number of iterations, we must analyze
the following questions:

• For movement δx, δs, δy, do the solutions x, y, s satisfy all linear program constraints?

• How large can we make α without blowing up Φλ((xs− t)/t) too much?

• How much can we decrease Φλ((xs− t)/t) when moving x, s by δx, δs?

Especially proving the last question requires a lot of work, because we do not perform a
perfect gradient descent. We move the value v := (xs − t)/t in direction ∇Φ(v) instead of
∇Φ(v). We must prove that even with the approximation of ∥v− v∥∞ ≤ ϵ, this approximate
gradient descent still works.

5.2.1 Feasibility

Let us first verify that our vectors x, y, s stay feasible (i.e. satisfy the linear program con-
straints).

Lemma 5.2.1. For δx, δy, δs as in (5.1) we have A⊤δx = 0, δs = −Aδy.

Dynamic Algebraic Algorithms (v. 2023/09/04) 56

This implies that A⊤x = b and Ay + s = c is satisfied after updating x and s.

Proof. Same proof as in Lemma 4.4.2. Just replace γ(t− xs) by the vector g from (5.1).

Lemma 5.2.2. For δx, δy, δs as in (5.1) and 0.8t ≤ xs ≤ 1.2t we have ∥X−1δx∥2 ≤ 4γ and
∥S−1δs∥2 ≤ O(γ).

For small enough constant γ > 0 this implies x > 0 and s > 0 after updating x and s.

Proof. Same proof as in Lemma 4.4.4. Just replace γ(t− xs) by the vector g from (5.1).

In summary, after moving x← x+ δx, y ← y + δy and s← s+ δs, we still satisfy all the
constraints of the linear program.

5.2.2 Maintaining small Φ

How much to decrease t We decrease t← (1−α) · t, but how large can we pick α so that
Φλ((xs− t)/t) does not change too much?

The following lemma implies some α = O(1/
√
n) works.

Lemma 5.2.3. Let t′ ← t · (1− α), then Φλ((xs− t′)/t′) ≤ (1 + λα) · Φλ((xs− t)).

This tells us that the maximum value for α is some O(1/λ), because we have ∥(xs −
t)/t∥∞ ≤ ln(Φλ((xs − t)/t))/λ (via Lemma 5.1.2) and want to guarantee ∥(xs − t)/t∥∞ ≤
2/10. We will later see though, the our update to x, y, s can decrease Φλ only by some
(1 − 1/

√
n)-factor. That means we have two options: Decrease t by (1 − O(1/λ)) and then

repeatedly move x, y, s for O(
√
n) iterations, or alternatingly decrease t by some O(1 −

O(1/(λ
√
n))) and then perform a single movement of x, y, s. Both variants would have the

same complexity.

Proof. Let v = (xs− t)/t and v′ = (xs− t′)/t′, then ∥v′ − v∥∞ ≤ α and

Φλ(v
′) = Φλ(v + (v′ − v)) =

n∑
i=1

exp(λvi) exp(λ(v
′
i − vi)) + exp(−λvi) exp(−λ(v′i − vi))

≤ exp(λ∥v′ − v∥∞)

n∑
i=1

exp(λvi) + exp(−λvi) = exp(λ∥v′ − v∥∞) · Φλ(v).

Here we can bound for ∥v′ − v∥ < 0.5/λ that exp(λ∥v′ − v∥∞) ≤ 1 + 2λ∥v′ − v∥∞ =
1 +O(λα).

How much do we decrease Φ? We now analyze how much the value of Φ((xs − t)/t)
decreases when moving x, y, s as defined in (5.1). We will prove the following lemma:

Lemma 5.2.4. For δx, δs as in (5.1), we have

Φ(
(x+ δx)(s+ δs)− t

t
) ≤

(
1 +

λ

2
√
n
(−γ +O(ϵγ + γ2λ2))

)
Φ

(
xs− t

t

)
+O(γλ

√
n)

(version 2023/09/04) 57

Note, this implies that for small enough 0 < ϵ, γ = O(1/λ) that Φ((xs − t)/t) ≤ cn
throughout all iterations for some constant c. So we pick λ = 10 ln(cn) which then implies
∥(xs − t)/t∥∞ ≤ ln(Φ((xs − t)/t))/λ ≤ 0.1. Thus after proving Lemma 5.2.4, we are done
with proving the correctness of our algorithm. The proof presented here is based on [?], but
similar proofs have also been given in [CLS19, LSZ19, ?, JSWZ21].

As previously outlined, we are essentially performing a gradient descent on the function
Φλ. However, (5.1) uses a bunch of approximate vectors (i.e. x ≈ϵ x, s ≈ϵ s) so we are not
actually moving in exactly the direction of the gradient. The following lemma bounds how
far off we are from the gradient.

Lemma 5.2.5. For δx, δs as in (5.1) and 0.8t ≤ xs ≤ t we have

∥ (x+ δx)(s+ δs)

t
+ γ

∇Φ(v))
∥∇Φ(v)∥2

∥2 ≤ O(ϵγ + γ2)

Proof.

(x+ δx)(s+ δs)

t
=

xs+ xδs + sδx + δxδs
t

=
xs+ xδs + sδx + (x− x)δs + (s− s)δx + δxδs

t

=
xs

t
− γ

∇ϕλ(v)

∥∇Φλ(v)∥2
+

(x− x)δs + (s− s)δx + δxδs
t

Thus we just need to bound the norm of the right-most terms.

∥ (x− x)δs + (s− s)δx + δxδs
t

∥2 ≤ ∥
(x− x)δs

t
∥2 + ∥

(s− s)δx
t

∥2 + ∥
δxδs
t
∥2

Here we can bound

∥ (x− s)δs
t

∥2 = O(1) · ∥ (x− s)δs
xs

∥2 = O(ϵ) · ∥δs
s
∥2 = O(ϵγ)

by xs ≈ t and Lemma 5.2.2. Further,

∥δxδs
t
∥2 = O(1) · ∥δxδs

xs
∥2 ≤ O(1) · ∥δx

x
∥2 · ∥

δs
s
∥2 = O(γ2).

Next, observe that in (5.1) we do not pick exactly the gradient ∇Φλ((xs − t)/t), but
some approximate ∇Φλ(v) for some ∥v − ((xs− t)/t)∥∞ ≤ ϵ. The following lemma bounds
how large the error is from such an approximation.

Lemma 5.2.6. For any v, δ ∈ Rn with ∥δ∥∞ ≤ ϵ/λ ≤ 1/(5λ) we have

∥∇Φλ(v))−∇Φλ(v + δ)∥2 ≤ ϵ(∥∇Φλ(v)∥2 +
√
nλ).

Dynamic Algebraic Algorithms (v. 2023/09/04) 58

Proof. Note that Φλ(v)i =
∑n

i=1 cosh(λvi), so (∇Φλ(v))i = λ sinh(λvi). Further, sinh(a +
b) = sinh(a) cosh(b) + cosh(a) sinh(b) and | cosh(a) − sinh(a)| ≤ 1. Thus we can bound for
b ≤ β ≤ 1/5

| sinh(a+ b)− sinh(a)| = | sinh(a) cosh(b) + cosh(a) sinh(b)− sinh(a)|
=|(cosh(b)− 1) · sinh(a) + cosh(a) sinh(b)|
≤ | cosh(b)− 1| · | sinh(a)|+ cosh(a) · | sinh(b)|
≤ | cosh(b)− 1| · | sinh(a)|+ (1 + | sinh(a)|) · | sinh(b)|
= (| cosh(b)− 1|+ | sinh(b)|) · | sinh(a)|+ | sinh(b)|
≤ β| sinh(a)|+ β.

where the last step used (| cosh(b)− 1|+ | sinh(b)| ≤ β for β ≤ 1/5. Thus we have

∥∇Φλ(v + δ)−∇Φ(v)∥2 ≤ ϵ(∥∇Φλ(v)∥2 +
√
nλ).

Combining the previous two lemmas, we can bound the overall error between our move-
ment of xs and the gradient that would reduce the function Φλ((xs− t)/t).

Corollary 5.2.7. For ∥v − v∥∞ ≤ ϵ/λ in (5.1) and 0.8t ≤ xs ≤ 1.2t we have

∥ (x+ δx)(s+ δs)

t
− γ
∇Φλ((xs− t)/t)

∇∥Φ(v)∥2
∥2 ≤ ϵγ · ∥∇Φλ((xs− t)/t)∥2 +

√
nλ

∇∥Φ(v)∥2
+O(ϵγ + γ2)

We now prove Lemma 5.2.4.

Proof of Lemma 5.2.4. Let v = (xs− t)/t then

Φ(
(x+ δx)(s+ δs)− t

t
) = Φ(v − γ

∇Φ(v)
∥∇Φ(v)∥2

+ w)

for some vector w with

∥w∥2 ≤ ϵγ · ∥∇Φλ((xs− t)/t)∥2 +
√
nλ

∇∥Φ(v)∥2
+O(ϵγ + γ2).

By Taylor approximation we have for any δ ∈ Rn with ∥δ∥∞ ≤ 1/λ that there exists some
v ≤ ζ ≤ v + δ with

Φ(v + δ) = Φ(v) + δ⊤∇Φ(v) + 1

2
δ⊤(∇2Φ(ζ))δ ≤ Φ(v) + δ⊤∇Φ(v) + 4δ⊤(∇2Φ(v))δ

where the last step uses ∥δ∥∞ ≤ 1/λ so we have 0 ≤ 0.5∇2Φ(v + δ) ≤ 4∇2Φ(v).
This then implies (by letting δ = γ ∇Φ(v)

∥∇Φ(v)∥2
+ w where ∥δ∥2 ≤ O(γ)) that

Φ(
(x+ δx)(s+ δs)− t

t
) ≤ Φ(v) + (−γ ∇Φ(v)

∥∇Φ(v)∥2
+ w)⊤∇Φ(v) + 4γ2∥ ∇Φ(v)

∥∇Φ(v)∥2
+ w∥2∇2Φ(v)

= Φ(v)− γ
∥∇Φ(v)∥22
∥∇Φ(v)∥2

+ w⊤∇Φ(v) + 4γ2∥δ∥2∇2Φ(v)

(version 2023/09/04) 59

Here we can bound by ∥v − v∥ ≤ ϵ/λ that

∥∇Φ(v)∥22 ≤
n∑

i=1

(λ(exp(λvi) + exp(−λvi)))2

≤
n∑

i=1

(λ exp(ϵ) · (exp(λvi) + exp(−λvi)))2

= exp(ϵ)∥∇Φ(v)∥22

So ∥∇Φ(v)∥2 ≤ exp(ϵ/2)∥∇Φ(v)∥2 and thus

−γ ∥∇Φ(v)∥
2
2

∥∇Φ(v)∥2
≥ −γ exp(−ϵ/2)∥∇Φ(v)∥2.

Next we bound w⊤∇Φ(v) via

w⊤∇Φ(v) ≤ ∥w∥2∥∇Φ(v)∥2

≤ (ϵγ · ∥∇Φλ(v)∥2 +
√
nλ

∥∇Φ(v)∥2
+O(ϵγ + γ2)) · ∥∇Φ(v)∥2

≤ (ϵγ · (exp(ϵ/2) +
√
nλ

∥∇Φ(v)∥2
) +O(ϵγ + γ2)) · ∥∇Φ(v)∥2

≤ O(ϵγ + γ2) · ∥∇Φ(v)∥2 +O(ϵγ
√
nλ)

And at last we bound

∥δ∥2∇2Φ(v) =

n∑
i=1

(δi)
2(λ2 cosh(λvi))

≤ ∥δ∥24λ2

(
n∑

i=1

cosh(λvi)
2

)1/2

≤ O(γ2)λ2

(
n∑

i=1

1 + sinh(λvi)
2

)1/2

≤ O(γ2)λ2(
√
n+ ∥∇Φ(v)∥2)

In summary, we can write

Φ(
(x+ δx)(s+ δs)− t

t
)

≤ Φ(v)− γ
∥∇Φ(v)∥22
∥∇Φ(v)∥2

+ w⊤∇Φ(v) + 4∥δ∥2∇2Φ(v)

≤ Φ(v)− γ exp(−ϵ/2)∥∇2Φ(v)∥2 +O(ϵγ + γ2) · ∥∇2Φ(v)∥2 +O(ϵγ
√
nλ)

+O(γ2λ2) · ∥∇2Φ(v)∥2 +O(γ2λ2
√
n)

= Φ(v) + (−γ exp(−ϵ/2) +O(ϵγ + γ2λ2)) · ∥∇2Φ(v)∥2 +O((ϵγλ+ γ2λ2)
√
n)

Dynamic Algebraic Algorithms (v. 2023/09/04) 60

Here we can bound

∥∇Φ(v)∥2 = (

n∑
i=1

λ2(sinh(λvi))
2)1/2

= (

n∑
i=1

λ2(cosh(λvi)
2 − 1))1/2

≥ 1√
n

n∑
i=1

λ
√
cosh(λvi)2 − 1

≥ 1√
n

n∑
i=1

λ(cosh(λvi)− 1)

= − λ
√
n+

λ√
n
Φ(v)

So

Φ(
(x+ δx)(s+ δs)− t

t
) ≤ Φ(v) + (−γ exp(−ϵ/2) +O(ϵγ + γ2λ2)) · (−λ

√
n+

λ√
n
Φ(v))

+O((ϵγλ+ γ2λ2)
√
n)

≤ (1− λ√
n
(γ exp(−ϵ/2) +O(ϵγ + γ2λ2)))Φ(v) +O(γλ

√
n)

5.3 Vector Maintenance

In the previous section we showed that the linear program solver works, even if we replace
all x, s by some approximate x, s. That is, in each iteration it suffices to compute some

δs = −A(A⊤XS
−1

A)−1A⊤S
−1 tγ · ∇(Φ(v))
∥∇Φ(v)∥2

.

Here the vector S
−1∇(Φ(v)) changes in only a single entry whenever we change an entry

of s or v. The vector v is such that ∥v − (xs− t)/t∥∞ ≤ ϵ, in other words, it suffices to pick
v := ((xs−t)/t) for some x ≈ϵ/10 x, s ≈ϵ/10 s, t ≈ϵ/10 t. The total number of changed entries

in S
−1∇(Φ(v)) can thus be bounded by Õ(n log(n/δ)) over all iterations of the algorithm

(Lemma 4.4.1). So maintaining the product A⊤S
−1 tγ·∇(Φ(v))

∥∇Φ(v)∥2
takes only Õ(nd log(n/δ))

total time over all iterations combined. We already argued in Section 4.4 that maintaining
(A⊤XS

−1
A)−1 can be done in O(nd2 log(n/δ)) total time. The last product with −A takes

O(nd) per iteration for a total cost of O(n1.5d log(n/δ)) over all iterations. Today we want
to outline how we can remove this last complexity term, so that the total time of our linear
program solver becomes just Õ(nd2 log(n/δ)).

(version 2023/09/04) 61

Outline Let xℓ, sℓ be the value of x and s during the ℓ-th iteration of our algorithm and
let xℓ ≈ϵ xℓ, sℓ ≈ϵ sℓ. Let gℓ be the vector ∇Φλ(x

ℓsℓ − t
ℓ
/t

ℓ
) from (5.1) during the ℓ-th

iteration, and let βℓ = tγ/∥gℓ∥2 be the respective normalization of the gradient. Based on
(5.1), we have

st = s0 +

t−1∑
ℓ=1

A(A⊤X
ℓ
(S

ℓ
)−1A)−1A⊤(S

ℓ
)−1gℓβℓ (5.2)

xt = x0 +

t−1∑
ℓ=1

(S
ℓ
)−1gℓ −X

ℓ
(S

ℓ
)−1A(A⊤X

ℓ
(S

ℓ
)−1A)−1A⊤(S

ℓ
)−1gℓβℓ

Note that xt and st do not need to be computed as we only require xt ≈ϵ xt, st ≈ϵ st

to compute above expression. Only at the very end of the algorithm, at some iteration
T = Õ(

√
n), do we need to compute xT in order to obtain the solution of the linear program.

Thus, it suffice to represent xt and st in some implicit form2 and to only compute/maintain
xt and st explicitly3 in each iteration.

Maintaining approx x and s The following is a data structure framework of [vdBLSS20]
to maintain these explicit approximate vectors xt and st. In [vdBLSS20], maintaining xt, st

explicitly is done via three data structure tasks:

(i) Maintain the vector A⊤(S
t
)−1gtβt.

(ii) Maintain the inverse (A⊤X
t
(S

t
)−1A)−1.

(iii) Maintain st ≈ϵ s
0+A

∑t−1
ℓ=1 h

ℓ and xi ≈ϵ x
0+(

∑t−1
ℓ=1(S

i
)−1gℓβℓ)−

∑t−1
ℓ=1 X

ℓ
(S

ℓ
)−1Ahℓ

for some sequence of vectors (hℓ)ℓ≥1.

Note that for hℓ = (A⊤X
ℓ
(S

ℓ
)−1A)−1A⊤(S

ℓ
)−1gℓβℓ, the vectors xt, st are exactly the ap-

proximations of xt, st in (5.2). Further, vector hℓ can be computed by using data structure
(i) and (ii).

A data structure for (ii) which runs in Õ(nd2) total time was already discussed in Sec-
tion 4.4. Computing (i) can be done in Õ(nd) total time, because whenever an entry of v
or s changes, only one entry of S

−1
g will change. In total there will be Õ(n) such entry

changes (as argued in Section 4.4). When an entry changes, we only need to spend O(d)

time to maintain A⊤S
−1

g.
We are left with constructing a data structure for (iii).

Data structure for (iii) We outline the maintenance of st as that is the easier case com-
pared to x. Note that we can easily maintain st in an implicit from via

st = s0 +A

t−1∑
ℓ=1

hℓ, (5.3)

2Maintaining some xt implicitly means we do not write down the vector xt in memory. Instead, we construct a
data structure with some Query(i) operation that returns the ith entry xt

i .
3“Explicit” means we write down the vector in memory.

Dynamic Algebraic Algorithms (v. 2023/09/04) 62

by just maintaining the sum of hℓ. Here the vector hℓ is obtained via data structures (i) and
(ii). Note that hℓ is just a d-dimensional vector, so maintaining the sum of these vectors only
incurs an additional O(d) time cost per iteration.

To maintain st explicitly, we follow the heavy hitter approach used in [vdBLSS20, vdBLN+20].
The task is to find a set of indices J ⊂ [n] containing all j where stj and st−1

j differ by some
Ω(st−1

j ϵ). The idea is that for those j ∈ J , our old st−1
j ≈ϵ st−1

j will no longer be a valid
approximation of the new stj , so those are the entries where we must update our approxi-
mation. Once we discovered these indices, we update stj ← stj for all j ∈ J , where any stj
can be computed in O(d) time by (5.3). For j /∈ J we use the old value of st−1

j for stj .
Remark: this approach only detects large changes of st within a single iteration. We can

also detect slower changes that occur over several iteration by checking every 2k iterations
if there are entries where st and st−2k differ a lot. This is done for every k = 0, ..., log

√
n

iterations. For simplicity, we for now focus only the case k = 0.
At last, I would like to point out that we can not even afford to write down s in each

iteration. It is an n-dimensional vector and we have Õ(
√
n) iterations, so just writing down

this vector in each iteration would take Õ(n1.5) total time which is larger than nd when
n ≫ d. So instead, we write down s once at the start of the algorithm, and then just store
the pointer to that location in memory. Then, throughout the algorithm, we only overwrite
values of entries si in memory whenever we detect that these entries must be changes to
maintain the valid approximation s ≈ s.

5.3.1 Heavy Hitter

As outlined above, we want to detect indices i where |sℓ−1
i − sℓi | > ϵsi, or equivalently,

|(S−1
Ah)i| > ϵ. For this purpose, we want to construct the following data structure:

Theorem 5.3.1. There exists a data structure with the following operations:

• INIT(A ∈ Rn×d,W ∈ Rn×n
≥0) Initialize in Õ(nd) time (we assume W is a diagonal

matrix).

• UPDATE(i ∈ {1, ..., n}, v ∈ R>0) Set Wi,i ← v in Õ(d) time.

• QUERY(h ∈ Rh, ϵ > 0) Return all indices i with |(WAh)i| > ϵ in Õ(d∥WAh∥22/ϵ2 + d)
time.

Note that there are up to O(∥WAh∥22/ϵ2) indices i with |(WAh)i| > ϵ that we may have
to return.

To construct Theorem 5.3.1, we will use the following lemma:

Lemma 5.3.2 (Johnson-Lindenstrauss). There exists a random matrix R ∈ Rk×n for k =
O(ϵ−2 log n) such that the following holds: For any v ∈ Rn we have

P
[
(1− ϵ)∥v∥22 ≤ ∥Rv∥22 ≤ (1 + ϵ)∥v∥22

]
≥ 1− 1/poly(n).

In other words, w.h.p. we can approximate ∥v∥22 by ∥Rv∥22.

(version 2023/09/04) 63

Proof sketch. Let each entry of R be randomly +1,−1. Then

E[∥Rv∥22] = E[
k∑

i=1

(

n∑
j=1

Ri,jvj)
2]

= E[
k∑

i=1

(

n∑
j=1

(Ri,jvj)
2) +

∑
j ̸=k

Ri,jRi,kvjvk]

=

k∑
i=1

(

n∑
j=1

E[R2
i,j]︸ ︷︷ ︸

=1

v2j) +
∑
j ̸=k

E[Ri,jRi,k]︸ ︷︷ ︸
=0

vjvk

=

k∑
i=1

(

n∑
j=1

v2j) = k∥v∥22

So by scaling R by 1/
√
k the expectation is exactly the norm ∥v∥22. For k = O(ϵ−2 log n) we

are w.h.p. close to the expectation by Chernoff-bound.

Proof of Theorem 5.3.1. Assume we computed RWA during the preprocessing for R from
Lemma 5.3.2. This is just a k× d matrix for k = O(log n) and then, for any vector h, we can
quickly get a 1.1-approximation of ∥Ah∥22 in Õ(d) time by simply computing ∥RWAh∥22. If
this norm is small (let’s say smaller than ϵ/2, then we know there can be no index i with
|(WAh)i| > ϵ. If it is larger, however, then we might have such an index.

The idea is now to binary-search for this larger entry. Let Bi,ℓ be the rows with index in
{i2ℓ + 1, ..., i2ℓ + 2ℓ} of WA. So for example:
Bi,0 is just the (i− 1)-th row of WA,
B0,ℓ for ℓ = log n is the entire matrix WA,
and B0,ℓ−1 is the top half of WA.

Init During initialization we compute Ri,ℓBi,ℓ for all i, ℓ and independent random matrices
Ri,ℓ from Lemma 5.3.2. Here Ri,ℓBi,ℓ has only O(log n) rows and computing all these
matrices takes Õ(nd) time.

Query We start with i = 0, ℓ = log n and compute ∥Ri,ℓBi,ℓh∥2 in Õ(d) time. If the norm
is larger than ϵ/2, then there might be some index j with |(Bi,ℓh)i| > ϵ. So we recurse by
computing the norms ∥R2i,ℓ−1B2i,ℓ−1h∥2 and ∥R2i+1,ℓ−1B2i+1,ℓ−1h∥2. These are estimates
of ∥B2i,ℓ−1h∥2 and ∥B2i+1,ℓ−1h∥2, i.e. the top and bottom half of Bi,ℓh.

So after recursing often enough, we find all indices j where ∥Bj,0h∥2 = |(WAh)j | > ϵ.
The total time is bounded by

logn∑
ℓ=0

n/2ℓ∑
i=0

Õ(d) · ∥Bi,ℓh∥22/ϵ2︸ ︷︷ ︸
recursion happens if this ≥ 1

=

logn∑
ℓ=0

Õ(d · ∥WAh∥22) = Õ(d∥WAh∥22)

and an extra +Õ(d) because we compute at least one such matrix-vector product.

Dynamic Algebraic Algorithms (v. 2023/09/04) 64

Update The query only works, assuming we have Ri,ℓBi,ℓ precomputed. When an entry
Wj,j changes, we must update these matrices. This takes only Õ(d) time, as for each ℓ a
change to Wj,j affects Ri,ℓBi,ℓ for only a single i. So we must update only O(log n) many
Ri,ℓBi,ℓ. Since Ri,ℓ has only O(log n) rows, updating one such matrix takes only O(d log n)
time.

5.3.2 Maintaining Approximate Vectors

In this section we prove the data structure that maintains the iterates x, s and their ap-
proximations x, s throughout the interior point method. The main result is the following
Theorem 5.3.3.

Theorem 5.3.3. There is a data structure with operations
• INIT(A ∈ Rn×d, x(0), s(0), g, ϵ > 0) Initialize in Õ(nd) time and set T = 0.
• UPDATE(i, c) Set gi ← c in Õ(d) time.
• ADD(h ∈ Rd, β ∈ R>0, I ⊂ {1, ..., n}, δg ∈ RI) Set T ← T + 1 and store h(T) = h,

β(T) = β. Let g(T) ← g(T−1) + δg. Then return

x(T) ≈ x(T) =: x(0) +

T∑
ℓ=1

(S
(ℓ)

)−1β(ℓ)g(ℓ) −X
(ℓ)

(S
(ℓ)

)−1Ah(ℓ)

s(T) =: s(T) ≈ s(0) +A

T∑
ℓ=1

h(ℓ).

The vectors are returned in sparse representation, i.e. a pointer to x(T), s(T) and a set
I ⊂ [n] where the entries differ compared to the previous output. For the first

√
n calls,

a call to ADD takes Õ(d|I| +
√
nd) amortized time if ∥(s(ℓ+1) − s(ℓ))/s(ℓ)∥2, ∥(x(ℓ+1) −

x(ℓ))/x(ℓ)∥2 = O(1).

Here the vector hℓ is just (A⊤X
ℓ
(S

ℓ
)−1A)−1S

−1
β(ℓ)g(ℓ) which is computed via (i) and

(ii). Further, g(ℓ) = ∇Φ((xs − t)/t) and β(ℓ) = γt/∥∇Φ((xs − t)/t)∥2. So in summary, the
vectors x, s and x, s are exactly as required for our linear program solver.

The set of indices I (returned by ADD) is required because those are the indices where
we will have to recompute (∇Φ((xs− t)/t))i.

The proof of Theorem 5.3.3 is based on three other data structures. The first two data
structures maintain x and s in implicit form, such that we can query any entry of these
vectors efficiently. The third data structure detects which entries of x and s changed by some
(1±O(ϵ))-factor from one iteration to the next. The idea is that if an entry xi changed a lot
for some i, then we set xi ← xi. Since other entries xj did not change by some (1± O(ϵ))-
factor, the old value of xj is still a valid approximation. This way we can maintain x in
sublinear time, because we only change a few entries per iteration.

Note that an entry xi might also change by some (1±ϵ)-factor over a longer time interval
but only a little in each iteration. To maintain x with xi ≈ϵ xi for these slowly changing
entries, we do the following: Every 2ℓ iterations, we detect all entries i where xi changed by

(version 2023/09/04) 65

some (1±O(ϵ/ log n))-factor over the past 2ℓ iterations. This is done for all 0 ≤ ℓ ≤ log
√
n.

If an entry changed sufficiently, we set xi ← xi. This way we make sure that xi is a (1± ϵ)-
approximation of xi, because xi can never change too much without our data structure
updating xi.

Implicit Maintenance

The following two Lemmas 5.3.4 and 5.3.5 allow us to maintain x and s implicitly, such that
we can query any entry in O(d) time.

Lemma 5.3.4 (Implicit Slack). There is a deterministic data structure with operations
• INIT(A ∈ Rn×d, s(0) ∈ Rn) Initialize in O(nd) time and set t = 0.
• UPDATE(h ∈ Rd) Increase t and store h(t) = h in O(d) time.
• QUERY(i) Return s

(t)
i := (s(0) +

∑t
ℓ=1 Ah(t))i in O(d) time.

Proof. Maintain v :=
∑t

ℓ=0 h
(ℓ) in O(d) time during each update. During a query return

(Av)i in O(d) time.

Lemma 5.3.5 (Implicit Primal). There is a deterministic data structure with operations
• INIT(A ∈ Rn×d, x(0), g(0), x(0), s(0) ∈ Rn) Initialize in O(nd) time and set t = 0.
• UPDATE(I ⊂ [n], δg, δx, δs ∈ RI , h ∈ Rd, β ∈ R) Increase t and store g(t) = g(t−1) + δg

(and likewise x(t) = x(t) + δx and s(t) = s(t−1) + δs) and h(t) = h, β(t) = β in O(d|I|)
time.

• QUERY(i) Return x
(t)
i := (x(0) +

∑t
ℓ=1 β

(t) ·S−1
g(t)−X

(t)
(S

(t)
)−1Ah(t))i in O(d) time.

Proof. We maintain a vector v ∈ Rn, z ∈ Nn and vectors (u(t))t≥0 ∈ Rd with the invariants

vi = x
(zi)
i for all i ∈ [n], u(t) =

t∑
ℓ=1

h(ℓ) for all t, b(t) =

t∑
ℓ=1

β(ℓ) for all t.

During the initialization we set v = x(0), b(0) = 0 and x, s, w, z, u to be zero vectors, thus
the invariants hold true.

During an update we increase t and update vi and zi for all i ∈ I such that the invariant
holds:

u(t) ← u(t−1) + h

b(t) ← b(t−1) + β

vi ← vi + (b(t) − b(zi))gi/si + β(δg)i/(si + δs)i

− xi/siA(u(t−1) − u(zi+1))− (x+ δx)i/(s+ δs)iAh

zi ← t

Note that the invariants hold because xi, si and wi stayed the same since the last time we
updated vi. At last, we set x ← x + δx, s ← s + δs, g ← g + δg. Updating vi this way takes
O(d) time and updating u(t) takes O(d) time.

For a query we perform an empty update for I = {i} and return vi.

Dynamic Algebraic Algorithms (v. 2023/09/04) 66

Algorithm 1: Primal Dual Vector Maintenance.

1 parameters
2 t = 0, x = x(0), s = s(0).
3 procedure ADD(h ∈ Rd, β ∈ R>0, I ⊂ {1, ...n}, δg ∈ Rn)
4 t← t+ 1, g ← g + δg
5 F k ← F k ∪ I for all k = 0, ..., log

√
n

6 Update implicit x(t) and s(t) via Lemmas 5.3.4 and 5.3.5.
7 for k ≤ log

√
n, if 2k divides t do

8 Let wi = 1/si for i /∈ F k, wi = 0 for i ∈ F k ; // i ∈ F k are indices where

xi, si,gi changed during the past 2k iterations.

// We now search for indices i /∈ F k where we must update xi or

si.

9 Ik ← set of i with |(WA
∑t

ℓ=2k+1 h
(ℓ))i| > ϵ/10.

10 Ik ← Ik∪ set of i ⊂ [n] \ F k with | 1
sixi
· gi ·

∑t
ℓ=t−2k+1 β

(ℓ)| > ϵ/10.
11 Jk ← Ik ∪ F k ; // Set of indices that we want to update.

12 Set xi and si to x
(t)
i and s

(t)
i for i ∈ Jk.

13 F k+1 ← F k+1 ∪ Jk, F k ← ∅ ; // Update set F k+1 so it contains

indices where xi and si have changed over past 2k iterations.

14 return x, s

Proof of Theorem 5.3.3

We now have all tools to prove Theorem 5.3.3. As outlined before, the proof is based on
detecting every 2ℓ iterations (for all 0 ≤ ℓ ≤ log

√
n) all entries i where xi or si changed a

lot over the past 2ℓ iterations.
The algorithm is given by Algorithm 1. We first prove correctness, i.e. that x, s returned

by the tth call to update satisfies x ≈ϵ x
(t) and s ≈ϵ s

(t).

Lemma 5.3.6. The output x, s ∈ Rn returned by the tth call to ADD satisfies x ≈ x(t), s ≈ s(t).

Proof. We maintain x(t) and s(t) implicitly via Lemmas 5.3.4 and 5.3.5. We now argue that
we set si ← s

(t)
i before si ̸≈ϵ s

(t)
i can occur (and likewise for x, x(t)). We start with the

analysis of s and then cover x afterward.

Correctness of s Consider a loop of Line 7 for some k. Note that set Ik contains all i /∈ F k

where

|s(t)i − s
(t−2k)
i | = |(A

t∑
ℓ=2k+1

h(ℓ))i| > ϵsiϵ/(10 log n). (5.4)

As Jk = Ik∪F k, the set Jk contains all i ∈ [n] that satisfy (5.4). The algorithms sets si ← s
(t)
i

for all i ∈ Jk, so for these indices i the approximation guarantee si ≈ϵ s
(t)
i holds.

(version 2023/09/04) 67

Now consider i /∈ Jk and let t′ < t be the last time we set si ← s
(t′)
i . Then there is a

sequence of length at most log(t′−t) many t1 < t2 < ... < tp where tj−tj−1 is a power of two
and t1 = t′, tp = t. More accurately, these tj are the time steps during which we previously
had that |s(tj) − s(tj−1)| ≤ ϵsiϵ/(10 log n) (as otherwise we would have set si ← s

(tj)
i). Thus

by triangle inequality we have

|s(t)i − si| = |s(t) − s
(t′)
i | < log(t− t′)siϵ/(10 log n).

For t <
√
n, this implies s ≈ϵ s

(t).

Correctness of x The correctness proof for x is almost the same to the previous proof for s.
We argue that an iteration of Line 7 for some k sets xi ← x

(t)
i if |x(t)

i −x
(t−2k)
i | > ϵxi/(5 log n).

By the same argument as before, this then implies xi ≈ϵ x
(t)
i for t ≤

√
n.

By definition of x(t) and β(t) we have for all i where xi and si stayed the same during
the past 2k − 1 iterations (i.e. all i /∈ F k) that

x
(t)
i − x

(t−2k)
i =

1

xi
gi

t∑
ℓ=t−2k+1

β(t) − xi/si(A

t∑
ℓ=t−2k+1

h(ℓ))i. (5.5)

So indices i /∈ F k with |x(t)
i − x

(t−2k)
i | ≥ xiϵ/(5 log n) can be found by detecting in-

dices i /∈ F k with (a) |(A
∑t

ℓ=t−2k+1 h
(ℓ))i| > siϵ/(10 log n) or (b) |gi

∑t
ℓ=t−2k+1 α

(t)| >
xiϵ/(10 log n). These are precisely the two checks performed in Lines 9 and 10.

Lemma 5.3.7. Consider an execution of Line 7 in Algorithm 1 for some k. Let Ik ⊂ [n] be the
sets after line 9 and 10. Then |Ik| = O(2

2k

ϵ2).

Proof. Note that Ik∩F k = ∅ and for i /∈ F k, the value of xi and si stayed the same over the
past 2k− 1 iterations and they were good approximations for x(ℓ), s(ℓ) for t− 2k ≤ ℓ ≤ t− 1,
so we can write

|Ik| =
∑
i/∈Fk

1i∈Ik

≤
∑
i/∈Fk

 (WA
∑t

ℓ=t−2k h
(ℓ))2i

ϵ2
+

(gi)
2

(xisi)2ϵ2

 t∑
ℓ=t−2k+1

β(ℓ)

−2


=
∑
i̸∈Fk

 (s(t) − s(t−2k+1))2i
siϵ2

+

(
s
(t)
i − s

(t−2k+1)
i

siϵ
+

x
(t)
i − x

(t−2k+1)
i

xiϵ

)2


≤ 2k
t−1∑

ℓ=t−2k

(∥(s(ℓ+1) − s(ℓ))/s(ℓ)∥22 + ∥(x(ℓ+1) − x(ℓ))/x(ℓ)∥22)/ϵ2

≤ 22k/ϵ2.

Where for the third line we used the definition of x and s and (5.5).

Dynamic Algebraic Algorithms (v. 2023/09/04) 68

Lemma 5.3.8. Assume we just performed the t-th call to ADD. Let k be the largest such that
t is a multiple of 2k. Let T be the total number of indices given over the past 2k calls to ADD.
Then most O(22k/ϵ2) entries changed in x and s after the most recent call to ADD.

Proof. After 2k iterations we change the entries xi and si for i ∈ F k and those i detected as
large in Lines 9 and 10 (i.e. i ∈ Ik). For any such k, the number of entries in Ik is bounded
by O(22k/ϵ2) by Lemma 5.3.7. The indices in F k are those that were in some Ik′ for k′ < k,
or indices that were given to ADD as input parameter over the past 2k calls to ADD. So the
size of F k is at most F k = O(T +

∑
k′<k 2

2k′
/ϵ2) = O(T + 22k/ϵ2).

Lemma 5.3.9. For the first
√
n calls to ADD, the amortized time per call is bounded by

Õ
(
nd
ϵ2 + |I|d

)
.

Proof. The cost analysis consists of the following parts: (i) the cost of maintaining implicit
x and s, (ii) the cost of updating xi and si for some i ∈ Jk, (iii) the cost of finding large
entries (Lines 9 and 10).

Our algorithm performs work every time an index of x or s changes, so we want to
bound how often this happens. Further, throughout this proof, let T be the sum of sizes of
set I given to all calls to ADD.

Number of changes to x and s By Lemma 5.3.8 the total number of changes to x and s
is bounded by

Õ(T +

log
√
n∑

k=1

d · 22k ·
√
n/2k) = Õ(nd).

Maintaining implicit x and s We maintain x(t) and s(t) implicitly via Lemmas 5.3.4
and 5.3.5. This takes O(d) per iteration plus O(d) per index i ∈ [n] where xi and si are
changed and O(d) per index i given as argument to ADD. So over all

√
n iterations, the time

is bounded by Õ(dT + nd).

Updating x and s Updating xi and si requires to compute xi and si which takes O(d)

time. So again, the total time is bounded by Õ(dT + nd).

Cost of finding large entries At last, we want to analyze the cost of Line 9 and Line 10.
Line 10 can be implemented to take O(log n) time per returned index, by simply maintaining
an ordered binary tree for the entries of the vector. This adds an additional O(log n) cost per
update to xi, si, gi but is subsumed by the cost we computed in the previous paragraphs.

(version 2023/09/04) 69

The cost of Line 9 is bounded by Theorem 5.3.1 to takes time

Õ(d∥WA

t∑
ℓ=t−2k+1

h(ℓ)∥22/ϵ2)

= Õ(d2k
t+1∑

ℓ=t−2k

∥(s(ℓ+1) − s(ℓ))/s(ℓ)∥22/ϵ2)

= O(d22k/ϵ2).

As this happens once every 2k iterations, and have k ≤ log
√
n, we get total cost over

√
n

iterations of
Õ(d22kϵ−1 ·

√
n/2k) = Õ(

√
n2kd/ϵ2) = Õ(nd/ϵ2).

Note that for Line 9 we must update the vector w. By Theorem 5.3.1, updating an
entry i takes time Õ(d). We only need to update the entries where si changed or that were
added/removed to/from F k. This cost can again be bounded by Õ(dT +nd/ϵ2) in total over
all iterations.

In summary, the total time over
√
n iterations is

Õ(dT + nd/ϵ2).

or just Õ(d+
√
nd) per call to ADD.

Dynamic Algebraic Algorithms (v. 2023/09/04) 70

Part II

Fast Matrix Multiplication

71

Chapter 6

Fast Matrix Multiplication

So far, we discussed many algorithms and data structures that rely on multiplying or invert-
ing matrices. We always used that matrix multiplication and inversion of n×n matrices take
O(n3) operations. However, it is actually possible to multiply matrices in fewer operations.
Such algorithms are referred to as “fast matrix multiplication” and the current best upper
bound is O(n2.373) [AW21, Gal14].

Definition 6.0.1. We define ω as the “matrix multiplication exponent”, that is, multiplying
two n×n matrices takes O(nω) operations. The current best bound is 2.373 [AW21]1. Many
researchers believe ω = 2 but so far no one could prove this.

The complexity bound O(nω) also holds for computing (i) inverse, (ii) rank, or (iii)
determinant of an n× n matrix.

This is still an active area of research and it’s not known what is the best possible com-
plexity. The algorithms with O(n2.373) complexity are rather complicated, so here we will
only present a slower O(n2.808) upper bound by Strassen [S+69].

Note that throughout, the complexity is measured in the number of arithmetic opera-
tions. So depending on the field being used, one might require more time. For instance, if
one arithmetic operation needs T time, then the time complexity would be O(nω · T).

Remark The algorithm community generally writes O(nω) for the complexity of multiply-
ing two n× n matrices. However, the formal definition of ω is actually

ω := inf{x | two n× n matrices can be multiplied in nx operations.}.

So technically, multiplying two n × n matrices actually needs nω+o(1) operations, but for
simplicity of notation the algorithm community uses O(nω) instead.

6.0.1 Strassen Matrix Multiplication

Here we quickly outline how to n× n matrices can be multiplied in O(n2.808) operations.

1Since writing these lecture notes, a new bound ω ≤ 2.372 has been published on Arxiv [DWZ22].

73

Dynamic Algebraic Algorithms (v. 2023/09/04) 74

Consider the product of two 2× 2 matrices A and B. Using the naive matrix multiplica-
tion algorithm of multiplying rows by columns, this would take 8 products and 4 additions:[

A1,1 A1,2

A2,1 A2,2

] [
B1,1 B1,2

B2,1 B2,2

]
=

[
A1,1B1,1 +A1,2B2,1 A1,1B1,2 +A1,2B2,2

A2,1B1,1 +A2,2B2,1 A2,1B1,2 +A2,2B2,2

]
Strassen [S+69] observed, that one can actually perform the computation in just 7 mul-

tiplications, by computing

M1 = (A1,1 +A2,2)(B1,1 +B2,2)

M2 = (A2,1 +A2,2)B1,1

M3 = A1,1(B1,2 −B2,2)

M4 = A2,2(B2,1 −B1,1)

M5 = (A1,1 +A2,2)B2,2

M6 = (A2,1 −A1,1)(B1,1 +B1,2)

M7 = (A1,2 −A2,2)(B2,1 +B2,2)

AB =

[
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M5 +M6

]
This algorithm for multiplying 2×2 matrices can be extended to n×n matrices (let’s assume
for simplicity n = 2k for some k) by using this multiplication algorithm recursively.

For n × n matrices, A1,1 is the topleft (n/2) × (n/2) block of A (and likewise for the
other parts of A and B). We then use the same algorithm recursively when computing the
products M1, ...,M7. The total time complexity is

T (n) := 7 · T (n/2) + 18(n/2)2 = O(nlog2(7)) ≤ O(n2.808).

Most improvements to fast matrix multiplication come from finding more efficient recur-
sions. For example, Pan [Pan78] showed that a matrix product of 70 × 70 matrices can
be computed using 143640 multiplications, leading to O(nlog70(143640)) = O(n2.79512). The
current best bounds are O(n2.373) by Alman and V.Williams [AW21].

6.0.2 Rectangular Matrix Multiplication

So far we discussed multiplying two square n × n matrices. We now briefly discuss rectan-
gular matrix multiplication. We will not present how these algorithms work but mention
existing state-of-the-art results, as we will use them in later chapters in a black box way.
For rectangular matrices, the matrix exponent ω is not just some constant, but actually a
function:

Definition 6.0.2. We write O(nω(a,b,c)) for the complexity of multiplying an na × nb matrix
with an nb × nc matrix.

Where for ease of notation we write just ω for ω(1, 1, 1) ≤ 2.373. It is known that
ω(1, 1, 0.319) = 2 and in general ω(a, b, c) ≥ a + b + c − min(a, b, c), and ω(a, b, c) is the
same for any order of the arguments, e.g. ω(a, b, c) = ω(b, c, a). Upper bounds on ω(1, 1, k)
were studied in [GU18] and in general ω(1, 1, k) < ω(1, 1, 1) ≤ 2.373 for k < 1 since smaller
matrices are involved.

Chapter 7

Dynamic Matrix Inverse

In this chapter we will prove the following data structure:

Theorem 7.0.1 ([San04]). There exists a data structure with the following operations

• INIT(A ∈ Fn×n) Initialize on a given invertible matrix A in O(n2.373) operations.

• UPDATE(i, j ∈ {1, ..., n}, c ∈ F) Set Ai,j ← c in O(n1.529) operations.

• QUERY(i, j ∈ {1, ..., n}) Return (A−1)i,j in O(n0.529) operations.

We assume that matrix A stays invertible throughout all updates.1

7.1 Faster data structure for few updates

We first show that the following variant of Theorem 7.0.1 exists which supports fast updates
and queries if there are not too many updates in total.

Lemma 7.1.1. There exists a data structure with the following operations

• INIT(A ∈ Fn×n) Initialize on a given invertible matrix A in O(n2.373) operations.

• UPDATE(i, j ∈ {1, ..., n}, f ∈ F) Set Ai,j ← Ai,j + f in O(nk) operations where k is the
number of updates so far.

• QUERY(i, j ∈ {1, ..., n}) Return (A−1)i,j in O(k) operations where k is the number of
updates so far.

We assume that matrix A stays invertible throughout all updates.

Proof. The data structure stores the inverse in the following form: Let A′ be the matrix A
as given during initialization, then we store A′−1 in memory. After k updates, we also have
some k vectors u1, ..., uk, v1, ..., vk in memory. We claim that A−1 = A′−1 +

∑k
i=1 uiv

⊤
i .

Before proving this claim, we define the operations of our data structure.
1We will prove in a later lecture that this assumption is not required.

75

Dynamic Algebraic Algorithms (v. 2023/09/04) 76

• INITIALIZE(A ∈ Fn×n): Compute and store A−1 as A′−1.

• UPDATE(i, j ∈ {1, ..., n}, f ∈ F): If this is the kth update, we store

uk = A′−1ei +

k−1∑
ℓ=1

uℓv
⊤
ℓ ei

vk =

(
−f · (e⊤j A′−1 +

∑k−1
ℓ=1 e⊤j uℓv

⊤
ℓ)

(1− (A′−1
j,i +

∑k−1
ℓ=1 (uℓ)j(vℓ)i) · f)

)⊤

.

• QUERY(s, t ∈ {1, ..., n}): Return A′−1
s,t +

∑k
ℓ=1(uℓ)s(vℓ)t.

Assuming A−1 = A′−1 +
∑k

ℓ=1 uℓv
⊤
ℓ , then QUERY correctly returns (A−1)s,t. This takes

O(k) operations because we have k products for which we take the sum.
The claim A−1 = A′−1 +

∑k
i=1 uiv

⊤
i holds by induction. For k = 0, there is no update,

and it follows from definition, i.e. only INITIALIZE was called so far, so A−1 = A′−1.
For the induction step, let A be the matrix A after k updates. We now perform the

(k + 1)st update. Then by Sherman-Morrison

A−1 = (A+ eie
⊤
j · f)−1 = A

−1 −
A

−1
eife

⊤
j A

−1

(1− e⊤j A
−1

ei · f)
.

Here uk+1 := A
−1

ei = (A′−1 +
∑k−1

ℓ=1 uℓv
⊤
ℓ)ei and

vk+1 :=

(
−fe⊤j A

−1

1− e⊤j A
−1

eif

)⊤

=

(
−f · e⊤j (A′−1 +

∑k−1
ℓ=1 uℓv

⊤
ℓ)

(1− e⊤j (A
′−1 +

∑k−1
ℓ=1 uℓv⊤ℓ)ei · f)

)⊤

.

So indeed A−1 = A
−1

+ uk+1v
⊤
k+1 = A′−1 +

∑k+1
ℓ=1 uℓv

⊤
ℓ .

The time complexity of an update is O(nk) because uk+1 and vk+1 are just one row or
column of A

−1
(though vk+1 is also scaled by −f/(1− (A′−1

j,i +
∑k−1

ℓ=1 (uℓ)j(vℓ)i) · f)). That

means we must query O(n) entries of A
−1

. Note that computing (A′−1
j,i +

∑k−1
ℓ=1 (uℓ)j(vℓ)i) for

the inverse also only takes O(k) times which is dominated by O(nk). We previously argued
that QUERY returns an entry of the inverse and takes O(k) operations. So we can just call
this function O(n) times to obtain uk+1 and vk+1 for a total cost of O(nk) operations.

Note that during initialization of Lemma 7.1.1 we compute the inverse of A. This can
be done in O(n2.373) operations using fast matrix multiplication.

Note that we could run the data structure from Lemma 7.1.1 for some T ≥ 1 many
updates, and after T updates we restart the data structure, i.e. perform the initialization
again. This would give an amortized update time of O(nT + nω/T), because each update
takes at most O(nT) time and once every T updates we pay O(nω) = O(n2.373) time to
restart. Picking T = n(ω−1)/2 would lead to an average update time of O(n(ω+1)/2) =
O(n1.687). To prove Theorem 7.0.1 we are left with two tasks:

• Reduce the update time further to O(n1.529) time.

(version 2023/09/04) 77

• Turn the amortized update time into a worst-case update time.

For the first task, we will use fast rectangular matrix multiplication.
We show that we can restart the data structure in just nω(1,1,µ) time after nµ updates,

which is less than the previously used restart cost of nω for µ < 1. In particular, we get an
amortized update time of O(n1+µ+nω(1,1,µ)−µ) if we restart our data structure after T = nµ

updates.

Lemma 7.1.2. When given A, A−1, and a matrix A′ that differs in A in at most nµ entries
for 0 ≤ µ ≤ 1, then we can compute A′−1 in O(nω(1,1,µ)) operations.

We prove this lemma via the following extension of the Sherman-Morrison identity

Lemma 7.1.3 (Woodbury-identity [Woo50]).

(A+UV⊤)−1 = A−1 −A−1U(I+V⊤A−1U)−1V⊤A−1

Proof. This can be proven by multiplying with (A+UV⊤) and verifying that the product is
just the identity matrix.

Proof of Lemma 7.1.2. If A′ and A differ in at most nµ entries, then we can write A′ =
A+UV⊤ where U,V are matrices of size n× nµ and each column has only one non-zero
entry. Because of this structure of U and V, the products A−1U and V⊤A−1 are just nµ

rows and columns of A−1 respectively. Likewise, V⊤A−1U is just a nµ × nµ submatrix of
A−1.

This implies (i) we can compute (I + V⊤A−1U)−1 in O((nµ)ω) = O(nω(µ,µ,µ)) oper-
ations. The product (I + V⊤A−1U)−1(V⊤A−1) then takes O(nω(µ,µ,1)) operations. And
lastly, we can compute

(A−1U)((I+V⊤A−1U)−1V⊤A−1)

in O(nω(1,µ,1)) = O(nω(1,1,µ)) operations. Thus by Lemma 7.1.3 we can compute the inverse
of A′−1 in O(nω(1,1,µ)) operations.

Proof of Theorem 7.0.1, amortized update time. We now obtain Theorem 7.0.1 where the
amortized (i.e. average) update time is O(n1.529) time. We simply run Lemma 7.1.1 for
T = nµ updates. Then after T updates, we restart the data structure. For this we must
compute the inverse which can be done in O(nω(1,1,µ)) operations as the matrix change in
only T = nµ entries. The amortized time per update is thus O(n1+µ+nω(1,1,µ)−µ). Using the
current best bounds on ω(1, 1, µ) by [GU18], we obtain O(n1.529) update time for µ = 0.529.
A query takes O(T) = O(nµ) = O(n0.529) time.2

7.2 Worst-case update time

We now describe how to turn the amortized time complexity into a worst-case bound, that
is, every update takes at most O(n1.529) time.

2https://www.ocf.berkeley.edu/~vdbrand/complexity/?terms=1%2Bx%0Aomega(1%2C1%2Cx)-x%0A

https://www.ocf.berkeley.edu/~vdbrand/complexity/?terms=1%2Bx%0Aomega(1%2C1%2Cx)-x%0A

Dynamic Algebraic Algorithms (v. 2023/09/04) 78

Lemma 7.2.1. Let A be a data structure with reset time O(r(k)), update time O(u(k)) and
query time O(q(k)), where k is the number of past updates, since the last reset or initialization.
For every T ∈ N there is a data structure B with worst-case update complexity O(u(T) +
r(T)/T) and query complexity O(q(T)).

Proof. Assume we run a copy of A while we receive updates. The copy of A will have the
following life-cycle:

1. For the first T/3 updates, we pass the updates directly into A.

2. We now perform a reset. This reset takes at most O(r(T)) time. Instead of performing
this reset all at once, we perform only a few steps of the reset operation every time we
receive an update, such that it takes T/3 updates until the reset is completed. These
T/3 updates are not passed to A as it is in the process of resetting, so we just put them
in a queue.

3. Once the reset is completed, the data structure A is missing the past T/3 updates. For
the next T/3 updates, we put each new update into the queue, but also remove two
updates from the queue and process them in A. After T/3 updates the queue is empty.

4. Go back to step 1.

Note that with each update we receive, we spend only O(u(T) + r(T)/T) time. Further,
while in phase 1, the data structure A can answer queries correctly. In phase 2 and 3 it
can not answer queries correctly because not all updates have been processed yet. To fix
this issue, we simply run 3 copies of this data structure in parallel, but with their life-cycle
slightly offset. The first copy starts with phase 1. The 2nd copy starts in phase 2 (i.e. we
reset it immediately), and the third copy starts in phase 3. This way, there is always one
copy that can answer the queries while the time per update incrases only by a constant
factor.

For r(nµ) = nω(1,1,µ), u(nµ) = n1+µ this implies Theorem 7.0.1 can have worst-case
update time O(n1+µ + nω(1,1,µ)−µ).

7.3 Rank and non-invertible matrices

Previously, we have proven Theorem 7.0.1 under the assumption that the input matrix A
stays invertible throughout all updates. We now extend the result to support non-invertible
matrices. That is, when querying some entry of the inverse A−1

i,j while the matrix is not
invertible, the data structure returns an error message, but the data structure does not
break/crash. It still supports updates and once the input matrix A is invertible again, queries
to A−1

i,j are correctly answered again.
This result is implies by the following lemma:

Lemma 7.3.1 ([San07]). Given A ∈ Fn×n, define

M =

A X 0
Y 0 I
0 I Ik



(version 2023/09/04) 79

where X and Y are n × n matrices and each entry is an independent uniformly at random
sampled from F, and Ik is a partial identity matrix, i.e. the first k diagonal entries being 1 and
the remaining n− k diagonal entries being 0.

Then with probability at least 1 − 3n
∥F∥ we have that det(M) ̸= 0 if and only if rank(A) ≥

n− k.
Further, for full rank A and k = 0 we have

M−1 =

 A−1 0 −A−1X
0 0 I

−A−1Y I −YA−1X


Note that we can run our matrix inverse data structure on matrix M. Assume for sim-

plicity that at the start, the matrix A is full rank and we pick k = 0. Then we can correctly
answer queries to A−1

i,j by returning M−1
i,j .

When changing an entry of A, then the rank of A changes by at most 1, i.e. it increases
by 1, decreases by 1, or stays the same. So whenever an entry of A is changed, we check
if we can decrease k, keep using the same k, or must increase k. This way we always
keep using the smallest possible k. This check is done using the property det(M + uv⊤) =
det(M)·(1−v⊤M−1u). So when changing an entry, we can quickly check if the determinant
becomes 0.

Proof of Lemma 7.3.1. We start with the last claim as it is easy to verify:A X 0
Y 0 I
0 I Ik

 ·
 A−1 0 −A−1X

0 0 I
−A−1Y I −YA−1X

 =

I 0 0
0 I 0
0 0 I


So the matrix is indeed the inverse of M.

Full-rankness of M We now prove the M is full rank when rank(A) ≥ n− k.
By expanding the determinant by minors we have det(M) =

∑
i(−1)i+jMi,j det(M��i,j)

for any j. Further, not that the last n−k rows and columns of M are all 0 except for a single
1. Thus we have

det(M) = ±det

 A XL 0
YT 0 Ik×k

0 Ik×k Ik×k


where YT are the k top rows of Y, XL are the left-most k columns of X, and Ik×k is the
k × k identity matrix.

Adding a row onto another does not change the determinant, so we can transform above
matrix to  A XL 0

YT −Ik×k 0
0 Ik×k Ik×k


and then use the expansion by minors again since the last k columns have only one non-zero
entry. This way we obtain [

A XL

YT −Ik×k

]

Dynamic Algebraic Algorithms (v. 2023/09/04) 80

Another set of row and column operations leads to[
A+YTXL 0

0 −Ik×k

]
Whp, the rank of this matrix is just k +min{rank(A) + k, n} because (YTXL) is a random
rank k matrix. Thus we the above matrix is full rank if and only if rank(A) ≥ n− k.

7.4 Exercises

7.4.1 Matrix Data Structure, Faster Column Updates

Show that for any 0 ≤ µ ≤ 1 there exists a data structure with the following operations

• INITIALIZE(A ∈ Fn×n): Initialize on the given matrix in O(nω) operations.

• UPDATE(i ∈ {1, ..., n}, v ∈ F): Set the ith column of A to v in O(n1+µ + nω(1,1,µ)−µ)
operations.

• QUERY(i ∈ {1, ..., n}): Return the ith row of A−1 in O(n1+µ) operations.

You are allowed to assume that A stays invertible throughout all updates, and it suffices to
show an amortized (i.e., average) update time.

Hint: In the lecture (Theorem 10.0.1 and Lemma 10.1.1 of lecture notes) we proved this
data structure for the case of entry updates. There we maintained the inverse in the implicit
form

A−1 = A′−1 −
k∑

i=1

uiv
⊤
i

where A′ is the matrix A during initialization, and u1, ..., uk, v1, ..., vk ∈ Rn, and k is
the number of updates so far. So instead of storing the n2 entries of A−1 explicitly in
memory, we stored this matrix implicitly by only storing the matrix A′−1 and the vectors
u1, ..., uk, v1, ..., vk.

For column updates, computing the vectors ui would be expensive. Instead try to store
the vectors in some implicit form.

7.4.2 Matrix Data Structure, Faster element Updates

Show that for any 0 ≤ µ ≤ 1 there exists a data structure with the following operations:

• INITIALIZE(A ∈ Fn×n): Initialize on the given matrix in O(nω) operations.

• UPDATE(i, j ∈ {1, ..., n}, f ∈ F): Set Ai,j ← f in O(n2µ + nω(1,1,µ)−µ) operations.

• QUERY(i, j ∈ {1, ..., n}): Return (A−1)i,j in O(n2µ) operations.

You are allowed to assume that A stays invertible throughout all updates, and it suffices to
show an amortized (i.e., average) update time.

(version 2023/09/04) 81

Hint: It might help to store the inverse A−1 implicitly in the form

A−1 = A′−1 − LCR⊤

where A′ is what matrix A looked like during initialization, C is a matrix of size at most
nµ × nµ, and L,R are matrices of size at most n× nµ. Then after each update to A, update
the matrices L,C,R so you again have A−1 = A′−1 − LCR⊤.

Remark: Just to give some additional background why this data structure is interesting:
For µ ≈ 0.723, this would be O(n1.447) operations per update and query.3 For comparison,
in the lecture we constructed a data structure with slower O(n1.529) operations per update
but faster O(n0.529) operations per query. So for applications with few queries, this new
data structure is faster.

3https://www.ocf.berkeley.edu/~vdbrand/complexity/?terms=2mu%0Aomega(1%2C1%2Cmu)-mu

https://www.ocf.berkeley.edu/~vdbrand/complexity/?terms=2mu%0Aomega(1%2C1%2Cmu)-mu

Dynamic Algebraic Algorithms (v. 2023/09/04) 82

Chapter 8

Conditional Lower Bounds

8.1 Lower Bounds for combinatorial algorithms and data
structures

We previously constructed a data structure Theorem 7.0.1 that beat O(n2) update time. This
data structure internally uses fast matrix multiplication, which is slow in practice. This raises
the question whether there might be a different way to beat O(n2) update time without
using fast matrix multiplication. In this section we prove that this is not possible. Algorithms
and data structures without fast matrix multiplication are often called “combinatorial”. So
we now want to prove a complexity lower bound for “combinatorial data structures”.

Definition 8.1.1. The “boolean semi-ring” is defined as {0, 1} with the operations 0 · 1 =
0, 1 · 1 = 1, 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 1, i.e. arithmetic works as we are used to except
that 1 + 1 = 1. Formally, multiplication is “logical and”, and addition is “logical or” when
interpreting 0 as false and 1 as true.

Boolean matrix multipliation is the the product of two matrices from {0, 1}n×n where all
operations are defined over the boolean semi-ring.

For intuition, boolean matrix multiplication can be interpreted as multiplying two reg-
ular matrices with non-negative entries, and then asking which entries of the result are
non-zero. I.e. we just care about the zero vs. non-zero profile of the matrix but not the
actual numbers involved. Example:[

0 2
3 4

]
·
[
2 0
1 0

]
=

[
2 0
10 0

]
regular product[

0 1
1 1

]
·
[
1 0
1 0

]
=

[
1 0
1 0

]
boolean product

Theorem 8.1.2 ([WW10]). If there exists an algorithm that can detect a triangle in an n-node
graph in O(n3−ϵ) time, then there exists an algorithm for computing a boolean matrix product
in O(n3−ϵ/3 log n) time.

83

Dynamic Algebraic Algorithms (v. 2023/09/04) 84

Note that we can find a triangle in a graph by computing just 2 matrix products. Given
adjacency matrix A, we simply compute A3 and check if a diagonal entry is non-zero. So
if we can multiply matrices in less than O(n3) time, then we can find a triangle in less than
O(n3) time.

The above theorem says that the reverse is also true: If we can detect a triangle in
subqubic time, then we can multiply matrices in subqubic time. This was proven by Williams
and Vassilevska Williams (2010) [WW10].

The reduction is somewhat surprising given that triangle detection gives only a single
bit of information “is there a triangle, or not”. Yet somehow we can blow up that single bit
into n2 many bits, since the result of a matrix product consists of n2 entries.

To prove the above theorem, we start with the following lemma.

Lemma 8.1.3. Given a triangle detection algorithm with complexity O(T (n)), two boolean
matrices A,B, and a set S ⊂ {1, ..., n}×{1, ..., n}. We can find all (i, j) ∈ S with (A·B)i,j ̸= 0
in time O(T (n) + (T (n) · k · log n), where k is the number of such non-zero entries.

Proof. We construct a graph with vertices u1, ..., un, v1, ..., vn, w1, ..., wn. We add edges
(ui, vj) for all i, j with Ai,j = 1, and edges (vi, wj) for all i, j with Bi,j = 1, and edges
(wi, uj) for all (i, j) ∈ S.

There exists a triangle in this graph, if and only if there is some (i, j) ∈ S with (A·B)i,j =
1. This is because (A ·B)i,j =

∑
k Ai,kBk,j which is non-zero if and only if there is k with

Ai,k = Bk,j = 1, i.e. we have a triangle uivkwj .
We can now find all the indices (i, j) ∈ S with (A ·B)i,j = 1 via binary search.

Proof of Theorem 8.1.2. Given A,B, we split the matrices into blocks of size n1/3 × n1/3.
Let’s call these blocks Ai,j ,Bi,j for i, j = 1, ..., n2/3. Let C = AB and perform the same
split on C, so we have

Ci,j =

n2/3∑
k=1

Ai,kBk,j .

Observe that since over the boolean semi-ring 1 + 1 = 1 (i.e. we only care about the non-
zero entries) we do not need to compute (Ai,kBk,j)i′,j′ for i′j,′ ∈ {1, ..., n1/3} if we know
(Ai,kBk′,j)i′,j′ ̸= 0 for some k′ ̸= k.

Thus we can compute all Ci,j via the following algorithm.

• For i, j = 1, ..., n2/3:

– //We now compute Ci,j

– S = {1, ..., n1/3} × {1, ..., n1/3}
– //We now check for all (i′, j′) ∈ S whether Ci,j

i′,j′ = 1.

– For k = 1, ..., n2/3

* Find all non-zeros in S of Ai,kBk,j via Lemma 8.1.3.

* For the discovered non-zero entries i′, j′, set Ci,j
i′,j′ = 1 and remove (i′, j′)

from S.

(version 2023/09/04) 85

Let Ki,j,k be the number of non-zero we found in product Ai,kBk,j . Since we only look
for non-zeros in set S and remove each (i′, j′) if (Ai,kBk,j)i′,j′ ̸= 0, we have for all i, j that

n2/3∑
k=1

Ki,j,k = n2/3.

Hence, by Lemma 8.1.3 the totaltime complexity of this is

O((n2/3)2(
∑
k

Ki,j,kT (n
1/3) log n)) = O(n4/3(n2/3n(3−ϵ)/3) log n) = O(n3−ϵ/3 log n).

Corollary 8.1.4. If there is a data structure that can maintain st-reachability with O(n3−ϵ

initialization time and O(n2−ϵ) time for an edge insertion or deletion for some constant ϵ > 0,
then we can compute a boolean matrix product in O(n3−ϵ′) time for some constant ϵ′ > 0.

Note that st-reachability can be trivially solved by just running BFS which takes at most
O(n2) time. This corollary thus tells us that to get any non-trivial data structure, we must
use fast matrix multiplication.

Proof. Given matrices A,B we reduce this matrix product to triangle detection. Trian-
gle detection can be reduced to st-reachability as follows. Given some graph G = (V =
{1, ..., n}, E) in which we want to detect a triangle, we create a graph

G′ = ({u1, ..., un, v1, ...vn, w1, ..., wn, x1, ..., xn}, E′).

For every edge (i, j) ∈ E we create edges (ui, vj), (vi, wj), (wi, xj) in graph G′. We further
add two isolated vertices s, t to G′. Note that a triangle exists in G, if and only if for some i
there exists a path ui → xi.

Now initialize the st-reachability data structure on G′. We insert edges (s, u1), (x1, t),
so if there now exists an st-path in G′, then there is a triangle in G involving vertex 1. We
then delete these two edges from G′ again an insert (s, u2), (x2, t) and so forth. After O(n)
deletion we checked for all i if there is a ui → xi path in G′, i.e. if there exists any triangle
in G.

So if the initialization of the data structure took less than O(n3−ϵ) time and each update
took less than O(n2−ϵ) time for some constant ϵ > 0, then we were able to detect a triangle
(and thus compute a boolean product) in less than O(n3−ϵ′) time for some constant ϵ′ >
0.

8.2 OMv-Problem and Conjecture

In previous lectures we learned that we can, for example, maintain reachability in a graph
in O(n1.529) time per update (edge insertion or deletion). A natural question is: what could
be the best possible complexity for this problem we could ever hope for? How much can
the update complexity be improved in future research? That is, we want to prove a lower
bound on the update complexity.

Dynamic Algebraic Algorithms (v. 2023/09/04) 86

In this section we will consider “conditional lower bounds”. A conditional lower bound
holds under some assumption. A simple example for a conditional lower bound would
be the following: Assuming P ̸= NP , there is no polynomial time algorithm for the TSP
problem.

Instead of P vs. NP , our lower bounds for data structures will be based on a differ-
ent conjecture called “OMv-conjecture”, introduced by Henzinger, Forster, Nanongkai and
Saranurak (2015) [HKNS15].

Definition 8.2.1 (OMv-Problem [HKNS15]). The OMv-problem consists of the following
two phases

• We are given an n× n matrix M ∈ {0, 1}n×n and are allowed to preprocess it.

• After the preprocessing, we receive an online sequence of vectors v1, ..., vn ∈ {0, 1}n.
We only receive vi+1 after we returned/computed Mvi.

The computation is performed over the boolean semiring.

Many people believe that this problem can not be solved in subqubic total time, i.e. there
is no algorithm that runs in O(n3−ϵ) time (for constant ϵ > 0) for both preprocessing and to
compute the n matrix-vector products. This is called the OMv-conjecture

Conjecture 8.2.2. The OMv-conjecture states that there is no algorithm for the OMv-problem
that runs in O(n3−ϵ) total time.

The OMv-problem and the conjecture are over the boolean semi-ring, but the problem
was also studied when the input is over some field. Chakraborty et al.[CKL18] showed that
any algorithm, that does not exploit the structure of the field, must have Ω(n3) complexity.
For example, the naive matrix-vector product where we multiply rows by columns works no
matter what field the matrix or vector are defined over, so this would be an algorithm that
does not exploit the structure of the field.

Preprocessing One might expect that the matrix-vector products need Ω(n3) time, be-
cause there just isn’t enough useful information that can be extracted during O(n3)-time
preprocessing. One could ask if maybe the problem becomes easier if we allow for more
than O(n3) preprocessing time. The following lemma shows this is not the case.

Lemma 8.2.3. Assume we have an algorithm for the OMv-problem with O(nc) preprocessing
time and O(n3−ϵ) time for computing the matrix-vector products. Here c, ϵ are constants.

Then there exists an algorithm for the OMv-problem with O(n3−ϵ′) total time for both
phases, for some constant ϵ′ > 0.

Proof. When we are given the matrix M, we split it into blocks of size nk × nk for some 0 <
k < 1. We initialize the assumed algorithm on each block. This takes O((nk)c · (n1−k)2) =
O(n2+k(c−2)) time. So for k ≤ (1− ϵ′)/(c− 2) this is subqubic time.

Next, we must multiply a matrix-vector product. Let Mi,j for i, j ∈ {1, ..., n1−k} be the
nk × nk-sized blocks of M. Given a vector v, let vj for j ∈ {1, ..., n1−k} be the same split of
the vector v. Then we can compute Mv by computing all products of form Mi,jvj .

(version 2023/09/04) 87

For a total of nk matrix-vector products, this will take O((nk)3−ϵ·n2(1−k)) = O(n2+k(1−ϵ))
time. As we must compute in total n matrix-vector products, we get O(n1−k · n2+k(1−ϵ)) =
O(n3−kϵ) which is again subqubic.

There also exists the so called OuMv-problem, where instead of just some vector vi for
which we must compute Mvi, we receive two vectors ui, vi and must compute u⊤

i Mvi.

Definition 8.2.4. The OuMv-problem consists of the following two phases

• We are given an n× n matrix M ∈ {0, 1}n×n and are allowed to preprocess it.

• After the preprocessing, we receive an online sequence of vectors v1, u1, ..., vn, un ∈
{0, 1}n. We only receive ui+1, vi+1 after we returned/computed u⊤

i Mvi.

The computation is performed over the boolean semiring.

Even though here we must return only a sinlge value u⊤
i Mvi instead of a vector Mvi,

the OuMv-problem is not easier than the OMv-problem.

Lemma 8.2.5. If there is an algorithm for the OuMv-problem with O(nc) preprocessing time
and O(n3−ϵ) time for the vector-matrix-vector products, then there is an algorithm for the OMv-
problem with O(nc′) preprocessing time and O(n3−ϵ′) time for the matrix-vector products.

In particular, the existence of such an algorithm for the OuMv-problem would contradict the
OMv-conjecture.

Proof. Problem set 4.

8.2.1 Conditional Lower Bounds

Theorem 8.2.6. Assuming the OMv-conjecture, there exists no data structure with the follow-
ing operations and complexities

• INITIALIZE(G) Preprocesses the given graph in polynomial time.

• UPDATE(u, v) Inserts (or deleted) the given edge in O(n1−ϵ) time for some constant ϵ > 0.

• QUERY(s, t) Returns if s can reach t in O(n2−ϵ) time for some constant ϵ > 0.

Note that just running BFS would already take O(n2) time, so above theorem states that
any non-trivial complexity for the queries must result in at least linear time for processing
the updates.

Proof. We show that if such a data structure exists, then we could break the OMv-conjecture,
i.e. we could solve the OMv-problem in subqubic time.

We show that the data structure could solve the OuMv-problem in polynomial prepro-
cessing time and O(n3−ϵ) time to compute all n vector-matrix-vector products. Via the
reduction from the previous section this woould imply we can solve the OMv-problem in
less than O(n3−ϵ′) total time which would contradict the OMv-conjecture.

Dynamic Algebraic Algorithms (v. 2023/09/04) 88

Preprocessing Given a matrix M we construct a bipartite graph with left vertices {1, ..., n}
and right vertices {1, ..., n}, and with edges (i, j) if Mi,j = 1. We further insert two extra
vertices s, t into the graph. This graph is given to the data structure durin initialization.

Vector-matrix-vector products Next, when we are given a vector u, we add edges (s, i)
for ui = 1. For the vector v we add edges (j, t) for vj = 1.

Now there exists a path from s to t if and only if uMv ̸= 0, because

u⊤Mv =
∑
i,j

uiMi,jvj ̸= 0⇔ ∃i, j : ui = Mi,j = vj = 1⇔ ∃i, j : (s, i), (i, j), (j, t) ∈ E

So we can answer u⊤Mv and then delete the edges from s and t again.
This takes O(n2−ϵ) time per vector-matrix-vector product and thus O(n3−ϵ) time for all

n such products, contradicting the OMv-conjecture.

At the start of this course, we talked about a data structure that solves least squares
regression. We are given a matrix A ∈ Rn×d and vector b ∈ Rn and must return the
minimizer x of ∥Ax − b∥2. The data structure supports updates that allow inserting now
rows into A and b. The data structure we constructed has update time O(d2) and we now
want to prove that this is optimal.

Theorem 8.2.7 ([JPW22]). Assuming the OMv-conjecture, there exists no data structure with
the following operations and complexities

• INITIALIZE(A ∈ Rn×d, b ∈ Rn) Preprocesses the matrix and vector in polynomial time.

• UPDATE(a ∈ Rd, f ∈ R) Appends a⊤ as new row into A and f as new entry into b. Then
return the minimizer x of ∥Ax− b∥2 in O(d2−ϵ) time for some constant ϵ > 0.

Proof. We show that if such a data structure exists, then we could solve the OMv-problem
in subqubic time.

Outline To solve the regression problem, we compute x = (A⊤A)−1A⊤b. If we now insert
a new row, the new solution is given by x′ = (A⊤A+ aa⊤)−1(A⊤b+ af). If we assume for
simplicity that the matrix (A⊤A+aa⊤)−1 = (A⊤A)−1, then we have x′−x = (A⊤A)−1bf .
So we computed a matrix-vector product.

In our reduction we want to construct an instance of the regression problem where this
matrix vector product can be sued to solve the OMv-problem.

Definitions Given a matrix M ∈ {0, 1}d×d for the OMv-problem, construct a matrix H ∈
R2d×2d as follows:

H =

[
2I 1

dM
1
dM

⊤ 2I

]
Here we consider M ∈ Rd×d, i.e. all computation is performed over the reals, not the
boolean semiring.

(version 2023/09/04) 89

Let vt be the vector given during the t iteration of the OMv-problem, then we define for
some scaling s > 0 (the exact value we will define later)

at :=

[
0

s · v

]
Note that

Hat :=

[
s
dMv
2s · v

]
so from the first d entries we can reconstruct the non-zero entries of Mv which are required
to solve the OMv-problem.

Initialization To initialize the data structure, we compute A ∈ R2d×2d with (A⊤A)−1 =
H. This can be computed by inverting H and then constructing the SVD. Note that this
requires all eigenvalues of H to be positive. Let λi(H) be the ith smallest eigenvalue, then
we have

1 ≤ λ1(H) ≤ λ2d(H) ≤ 3.

This is because of the 2 on the diagonal of H and because of the scaling 1/d on matrix M.

Update In the OMv-problem, we are given a vector vt to multiply with M. We construct
the vector at as previously defined. The update to our data structure is such that we append
this at as new row, and the new entry to b will just be the value 1.

Let At be the matrix A after appending t such vectors, likewise let bt be the vector b
after t updates. Let Ht = ((At)⊤A)−1, and xt be the tth output of the data structure. So
xt = Ht(At)⊤bt.

We claim that

• xt − xt−1 ≈ Htat

• Htat ≈ Hat

We are left with bounding how large these approximation errors are. If they are small
enough, then we can reconstruct the non-zero entries of Hat (and thus the product Mvt)
via xt − xt−1.

To prove this, we first need some additional bounds.

Bounds

∥at∥2 ≤
√
d

s
(8.1)

For any vector w ∈ R2d we have

w⊤(Ht)−1w = w⊤(H−1 +

t∑
k=1

ak(ak)⊤)w ≤ w⊤H−1w + ∥w∥2
t∑

k=1

∥ak∥22 ≤ ∥w∥2 + ∥w∥2 ·O(td/s2)

Since t ≤ d we have λ1(H
t) ≤ 1/2 for s ≤ O(1/d). Further, since we only add new outer

products to H−1, we also have λ2d(H
t) ≤ λ2d(H) ≤ 3. In summary

1/2 ≤ λ1(H) ≤ λ2d(H) ≤ 3 (8.2)

Dynamic Algebraic Algorithms (v. 2023/09/04) 90

Bounding the approximation

xt − xt−1 = Ht(At)⊤bt −Ht−1(At−1)⊤bt−1

= ((Ht−1)−1 + at(at)⊤)−1(At)⊤bt −Ht−1(At−1)⊤bt−1

= (Ht−1 − Ht−1at(at)⊤Ht−1

1 + (at)⊤H−1at
)(At)⊤bt −Ht−1(At−1)⊤bt−1

= Ht−1((At)⊤bt − (At−1)⊤bt−1)− Ht−1at(at)⊤Ht−1

1 + (at)⊤H−1at
(At)⊤bt

= Ht−1at − Ht−1at(at)⊤Ht−1

1 + (at)⊤H−1at
(At)⊤bt

Thus we can bound ∥(xt − xt−1)−Htat∥2 as by the following

∥H
t−1at(at)⊤Ht−1

1 + (at)⊤H−1at
(At)⊤bt∥2 ≤ ∥Ht−1at(at)⊤Ht−1(At)⊤bt∥2

≤ λ2d(H
t−1)2 · ∥at∥22∥(At)⊤bt∥2

≤ O(d/s2) · ∥(At)⊤bt∥2

≤ O(d/s2) ·
t∑

k=1

∥at∥2

≤ O(td1.5/s3) = O(d2.5/s3)

Next, consider

∥Htat −Ht−1at∥2 = ∥((Ht−1)−1 + at(at)⊤)−1at −Ht−1at∥2

= ∥(Ht−1 +
Ht−1at(at)⊤Ht−1

1 + (at)⊤Ht−1at
)at −Ht−1at∥2

= ∥H
t−1at(at)⊤Ht−1

1 + (at)⊤Ht−1at
at∥2

≤ ∥Ht−1at(at)⊤Ht−1at∥2
≤ λ2d(H

t−1)2∥at∥32 = O(d1.5/s3)

By triangle inequality we get

∥Htat −Hat∥2 ≤ O(td1.5/s3) ≤ O(d2.5/s3).

In summary, we have

∥(xt − xt−1)−Hat∥2 ≤ ∥(xt − xt−1)−Htat∥2 + ∥mHtat −Hat∥2 = O(d2.5/s3).

So for all 1 ≤ i ≤ d we have

(xt − xt−1)i = (Hat)i ±O(d2.5/s3) = (1/(ds)) ·Mv ±O(d2.5/s3).

So for s large enough, we can distinguish between zero and non-zero entries in Mv.

(version 2023/09/04) 91

8.3 Exercises

8.3.1 Reducing OuMv to OMv

In the lecture, we defined the OuMv-problem as follows:

• First, we are given a boolean n×n matrix M ∈ {0, 1}n×n and are allowed to preprocess
that matrix.

• After the preprocessing, we receive an online sequence of Boolean vectors u1, v1, u2, v2, . . . , un, vn ∈
{0, 1}n. We receive vectors ui+1, vi+1 only after computing/returning u⊤

i Mvi ∈ {0, 1}.

The OMv-problem is similarly defined, but we receive only a sequence of vectors v1, ..., vn
and must return Mvi ∈ {0, 1}n. For both the OMv- and OuMv-problem, all computation is
performed over the Boolean semi-ring, hence u⊤

i Mvi ∈ {0, 1} and Mvi ∈ {0, 1}n.

Problem: Reduce the OMv-problem to the OuMv-problem. That is, show the following:
Assume there exists an algorithm for the OuMv-problem with preprocessing time O(nc)

for some constant c, and O(n3−ϵ) total time for some constant ϵ > 0 to compute all n
vector-matrix-vector products (i.e., u⊤

i Mvi).
Then show there exists an algorithm for the OMv-problem with preprocessing time

O(nc′) for some constant c′, and O(n3−ϵ′) total time for some constant ϵ′ > 0 to compute all
n matrix-vector products (i.e., Mvi) — the constants c′, ϵ′ are allowed to be different from
c, ϵ.

Hint: Split the matrix M into blocks of size
√
n×
√
n. Adapt the proof of Theorem 12.1.2

and Lemma 12.1.3.

8.3.2 Lower Bound for Row and Column Updates

The OMv-conjecture implies that no algorithm exists for the OMv-problem with polynomial
preprocessing time and O(n3−ϵ) time for computing all n matrix-vector products.

Problem: Show that, assuming the OMv-conjecture, there is no data structure with the
following operations and complexities.

• INITIALIZE(M ∈ Fn×n): Preprocess matrix M in polynomial time.

• UPDATEROW(i ∈ {1, ..., n}, v ∈ Fn) and UPDATECOLUMN(i ∈ {1, ..., n}, v ∈ Fn):
Change the ith row or column of M respectively to v in O(n2−ϵ) time for some con-
stant ϵ > 0.

• QUERY(i, j ∈ {1, ..., n}): Return (M−1)i,j in O(n2−ϵ) time for some constant ϵ > 0.

You are allowed to use Problem 1’s result, even if you have not solved it.

Dynamic Algebraic Algorithms (v. 2023/09/04) 92

Part III

Approximation and Adaptivity

93

Chapter 9

Sketching and Subspace
Embeddings

At the start of this course we covered least square regression, i.e. minx ∥Ax − b∥2. We said
that this task can be solved by computing x = (A⊤A)−1A⊤b in O(nd2) time, or O(ndω−1)
time when using fast matrix multiplication.

In this chapter we will show that this task can be solved in O(nnz(A) + (d/ϵ2)ω) time
(where nnz(A) is the number of non-zeros in A) if we allow for an approximation error,
i.e. when our computed vector x satisfies ∥Ax − b∥2 ≤ (1 + ϵ)minx∗ ∥Ax∗ − b∥2. To prove
this, we will use a technique called Subspace embeddings.

9.1 Subspace embedding

Definition 9.1.1. A matrix S ∈ Rk×n is a subspace embedding of A ∈ Rn×d if for all v ∈ Rd

(1− ϵ)∥Av∥2 ≤ ∥SAv∥2 ≤ (1 + ϵ)∥Av∥2.

In this section we will prove the following lemma

Lemma 9.1.2. Let A ∈ Rn×d, k = Õ(d/ϵ2) and S ∈ Rk×n where each entry Si,j is indepen-
dently random ±1/

√
k. Then w.h.p S is a subspace embedding for A, i.e. for all v ∈ Rd we

have
(1− ϵ)∥Av∥2 ≤ ∥SAv∥2 ≤ (1 + ϵ)∥Av∥2.

This allows us to approximately solve the least squares regression problem. To see this,
consider

M :=
[
A b

]
and let S be a subspace embedding for M. Then for all x ∈ Rd we have

∥Ax− b∥2 = ∥M
[
x
−1

]
∥2 = (1± ϵ)∥SM

[
x
−1

]
∥2 = (1± ϵ)∥SAx− Sb∥2

95

Dynamic Algebraic Algorithms (v. 2023/09/04) 96

In particular, if we let x = argminx ∥SAx− Sb∥, then

∥Ax− b∥2 ≤ (1 + ϵ)min
x∗
∥Ax∗ − b∥2

so we have an approximate solution. Since SA is just a k × d matrix, computing this
approximate solution can be done much more efficiently.

Lemma 9.1.3. Assume we already computed SA for some subspace embedding S ∈ Rk×n

for matrix M and k = Õ(d/ϵ2) (e.g. as in Lemma 9.1.2). Then we can compute x =
argminx ∥SAx− Sb∥ in O(kω) time.

Proof. We compute x = (A⊤S⊤SA)−1A⊤S⊤Sb with can be done efficiently since SA is just
of size k = Õ(d/ϵ2).

Before we prove Lemma 9.1.2, we want to remind our-self of the following result (see
Lemma 5.3.2), that is somewhat similar:

Lemma 9.1.4 (Johnson-Lindenstrauss). Let v ∈ Rn and R ∈ Rk′×n for k = O(ϵ−2 log n)
with each entry Ri,j = ±1/

√
k′ independent at random. Then w.h.p (1 − ϵ)∥v∥2 ≤ ∥Rv∥2 ≤

(1 + ϵ)∥v∥2.

This lemma implies for any w ∈ Rd that w.h.p. ∥RAw∥2 = (1± ϵ)∥Aw∥2. This is similar
to the subspace embedding Lemma 9.1.2 with one crucial difference. The random matrix R
holds w.h.p for one vector w, whereas Lemma 9.1.2 holds w.h.p for all vectors w ∈ Rd.

Thus an intuitive idea to prove Lemma 9.1.2 would be to simply use Lemma 9.1.4 and
use union bound to bound the failure probability over all w ∈ Rd. The problem is that there
are infinitely elements in Rd, so the union bound does not result in a finite failure probability.
To prove Lemma 9.1.2, we will argue that the union bound over some exp(Õ(d)) vectors is
enough. This is a common technique: quite often one can reduce union bound over Rd to a
union bound over just exp(Õ(d)) many vectors.

Proof. Given A let QR be its QR-decomposition, i.e. the columns of Q ∈ Rn×d are orthog-
onal vectors with norm 1, and R ∈ Rd×d is an upper triangular matrix. For any w ∈ Rd let
h = Rw, in which case we have ∥Aw∥2 = ∥QRw∥2 = ∥Qh∥2 = ∥h∥2 where the last step
uses that Q has orthogonal columns of norm 1.

So to prove that S is a subspace embedding for A, it suffice to prove that for all h ∈ Rd

we have ∥SQh∥ = (1± ϵ)∥Qh∥2. We will do this via union bound, which first requires us to
reduce the infinite number of h ∈ Rd to some finite subset.

Finite set of vectors For any h ∈ Rd, we can assume without loss of generality that
∥hi∥2 = 1 by simply scaling the vector. We can now define h via

hi = ⌈hi ·
ϵ

d
⌉ · d

ϵ
for all i

so h is just the vector h where we rounded each entry to the next largest multiple of ϵ/d.
Note that ∥h−h∥2 ≤ ϵ and that by assumption ∥hi∥2 = 1, so ∥h∥2 = (1± ϵ)∥h∥2. Let S ⊂ Rd

be the set of all possible h vectors. We can bound |S| ≤ (2d/ϵ)d = exp(Õ(d)) because there
are only 2d/ϵ options for each of the d entries.

(version 2023/09/04) 97

Using the finite set to argue about all sets We will use union bound over this set S to
argue that for all h ∈ S we have ∥SQh∥2 = (1 ± ϵ)∥Qh∥2. This will then imply that S is a
valid subspace embedding for A as follows: For any h with ∥h∥2 = 1 and corresponding h
we have

∥SQh∥2 = ∥SQh∥2 ±
d∑

i=1

∥SQei∥ · |hi − hi|

= (1± ϵ)∥Qh∥2 ± (1± ϵ)

d∑
i=1

∥Qei∥ · ϵ/d

= (1± ϵ)∥h∥2 ± (1± ϵ)

d∑
i=1

∥ei∥ · ϵ/d

= (1±O(ϵ))∥h∥2
= (1±O(ϵ))∥h∥2
= (1±O(ϵ))∥Qh∥2

Here the first step uses triangle inequality. The 2nd step uses that ∥SQh∥2 approximates
∥Qh∥2 for every possible h ∈ S, which includes the standard unit vectors ei. The 3rd and
last step use that Q is has orthogonal columns with norm 1. The 4th and 5th step use that
∥h∥2 = (1± ϵ)∥h∥2 = 1.

So for any w where h = Rw has ∥h∥2 = 1 let h be the respective rounding of h. Then

∥SAv∥2 = ∥SQh∥2 = (1 +O(ϵ))∥Qh∥2 = (1 +O(ϵ))∥Av∥2

By simply scaling the vector w, the result extends to all w ∈ Rd even when ∥h∥2 ̸= 1.

Union Bound over the finite set Note that in expectation, the matrix S does return the
correct norm. For any v ∈ Rn (e.g. v = Qh) we have

E[∥Sv∥2] = E[
k∑

i=1

(Sv)2i]

= E[
k∑

i=1

(

n∑
j=1

Si,jvj)
2]

= E[
k∑

i=1

(

n∑
j=1

S2
i,jv

2
j +

∑
j ̸=k

Si,jSi,kvjvk)]

=

k∑
i=1

(

n∑
j=1

E[S2
i,j]v

2
j +

∑
j ̸=k

E[Si,j] · E[Si,k]vjvk)

=

k∑
i=1

(

n∑
j=1

1

k
v2j) = ∥v∥22

Dynamic Algebraic Algorithms (v. 2023/09/04) 98

We can argue via Chernoff-bound that this is also highly concentrated around this expec-
tation. In particular, via Chernoff bound the failure probability (i.e. the norm not being a
(1±ϵ)-approximation) is bounded by exp(−Õ(kϵ2)). As we want the failure probability to be
small enough to allow for a union bound over exp(Õ(d)) vectors, we pick k = Õ(d/ϵ2).

Note that computing SA to, e.g., solve the least squares regression problem, takes a
lot of time. We have a dense matrix S of size k × n for k = Õ(d/ϵ2). So computing SA
is not any faster than computing A⊤A. Thus we do not save anything when computing
x = (A⊤S⊤SA)−1A⊤S⊤Sb vs x = (A⊤A)−1A⊤b. There is, however, a more efficient
construction for S, proven by Clarkson and Woodruff (2013) [CW13].

Lemma 9.1.5 ([CW13]). Let A ∈ Rn×d and let S ∈ Rk×n for k = Õ(d/ϵ2) constructed as
follows:
For each i ∈ {1, ..., n} set one random entry of the ith column of S to ±1 at random.

Then w.h.p. S is a subspace embedding for A.
Note that by sparsity of S we can compute SS in O(nnz(A)) time.

We will not prove this here, but give an idea what additional property their proof uses.
In our proof, we argued that S approximates the norm of some vector v ∈ Rn very well with
failure probability exp(−Õ(kϵ)). Then we used union bound over exp(Õ(d) such vectors.
However, we don’t have a general set of exp(Õ(d)) such vectors from Rn. We have a set S of
vectors h and only need to perform union bound over the exp(Õ(d)) vectors of form ∥Qh∥.
In other words, we do not have a general set of exp(Õ(d)) vectors, but a set of exp(Õ(d))
vectors that all lie within the subspace spanned by Q. Such a set has additional structure that
is exploited in the proof of [CW13]

9.2 Leverage Scores

In the previous lecture we defined and constructed subspace embeddings, i.e. random
matrices S with the property that for all vector v ∈ Rd we can approximate ∥Av∥2 =
(1 ± ϵ)∥SAv∥22. The constructions we discussed so far worked w.h.p for any matrix A. In
this chapter, we discuss a construction of S that is tailored to the matrix A that we want to
embed.

The subspace embedding discussed in this chapter has the additional property that it just
samples the rows of A. That is, S is a diagonal matrix where most entries will be 0 and only
some Õ(d) entries are non-zero. When applied to the least-squares regression problem, this
means that we reduce our n-point data set to a smaller Õ(d)-point data set (i.e. we reduce n

rows of A to only Õ(d) rows). In a sense, that means we figure out which Õ(d) data points
of the n-points data set are important, and then restrict to those important points.

In a future lecture, we want to prove that dynamic least squares can be solved in Õ(d)
time per new row inserted to A. Our new subspace embedding helps us with that, because it
implies that only few rows of A are important. If a new row inserted into A is not important,
then we do not need to update our solution to the least-squares regression problem. Thus
such a row insertion is essentially free. We will prove in a future lecture that this implies
a good amortized complexity. The high-level idea being that not every inserted row can be
important and thus on average we do not need to spend a lot of time to update the solution.

(version 2023/09/04) 99

To formalize these ideas, we first must define some measure of “importance”. The fol-
lowing definition can be seen as an importance-score for each row of A (e.g. each data point
of the least-squares regression problem). In statistics, these scores is referred to as leverage
scores.

Definition 9.2.1 (Leverage Scores). For A ∈ Rn×d we define σ(A) ∈ Rn as σ(A)i =
(A(A⊤A)−1A⊤)i,i.

To give some intuition why these leverage scores measure the important of a data point,
consider the following example.

We take our data set, and move one point along the y-axis (todo, figure). If that data
point is “important” (or “unique”, “influential” etc.) then we would expect our solution
to the least-squares regression problem to change a lot. On the other hand, is the point
unimportant because it has, e.g., many other data points nearby, then the solution does not
change a lot. This interpretation also gives some motivation for the term “leverage score”
because important points behave like a lever moving the linear function in Figure ?? Jan:
todo, figure.

The following lemma formalizes the observation from Figure ?? Jan: todo. The lemma
shows that the quality of a solution changes exactly by σ(A)i when moving the ith point.

Lemma 9.2.2. Let A ∈ Rn×d, b, b′ ∈ Rn, ϵ > 0, b′ = b + ei · ϵ. Let x′ = argmin ∥Ax − b′∥2,
then

∥Ax′ − b∥22 = σ(A)i · ϵ2 +min
x
∥Ax− b∥2.

Proof.

∥Ax′ − b∥22 = ∥A(A⊤A)−1A⊤b′ − b∥22
= ∥A(A⊤A)−1A⊤b− b+A(A⊤A)−1A⊤eiϵ∥22
= ∥A(A⊤A)−1A⊤b− b∥22 + ∥A(A⊤A)−1A⊤eiϵ∥22

Here the last step comes from the Pythagorean theorem and uses that the two vectors are
orthogonal. To see this, note that A(A⊤A)−1A⊤eiϵ is in the span of A and (A⊤A)−1A⊤b−b
is orthogonal to the span of A since

A⊤((A⊤A)−1A⊤b− b) = 0.

At last, note that
∥A(A⊤A)−1A⊤b− b∥22 = min

x
∥Ax− b∥22

and

∥A(A⊤A)−1A⊤eiϵ∥22 = ϵ2 · e⊤i A(A⊤A)−1A⊤ A(A⊤A)−1A⊤ei

= ϵ2 · e⊤i A(A⊤A)−1A⊤ei

= ϵ2 · (A(A⊤A)−1A⊤)i,i

= ϵ2 · σ(A)i.

Dynamic Algebraic Algorithms (v. 2023/09/04) 100

We now show, that just sampling each row proportional to the leverage score result
w.h.p in a subspace embedding.

Theorem 9.2.3. There exists constant c > 0 such that for any A ∈ Rn×d and pi ≥ min{1, c ·
ϵ−2σ(A)i log n} the following holds:

Let S ∈ Rn×n be a random matrix with Si,i = 1/
√
pi independently with probability pi

and Si,i = 0 otherwise. Then w.h.p. for all v ∈ Rd we have ∥SAv∥22 = (1± ϵ)∥SA∥22, i.e. S is
a subspace embedding for A. Further, S has at most Õ(d/ϵ2) non-zero entries.

To prove this, we will use the following Matrix-Chernoff bound. It is the generalization
of the Chernoff bound to the sum of random matrices.

Lemma 9.2.4 (Matrix-Chernoff). Finite sequence X1, ..., XT of independent random matrices
with 0 ≺ Xk and λmax(Xk) ≤ K for all 1 ≤ k ≤ T . µmax := λmax(

∑
k EXk), µmin :=

λmin(
∑

k EXk).

P

[
λmax

∑
k

Xk ≥ (1 + ϵ)µmax

]
≤ d · exp(−ϵ2µmax/(3K))

P

[
λmin

∑
k

Xk ≤ (1− ϵ)µmin

]
≤ d · exp(−ϵ2µmin/(3K))

Proof of Theorem 9.2.3. Note that the Matrix-Chernoff bound only bounds the largest and
smallest eigenvalue, but Theorem 9.2.3 is supposed to hold for all vectors, not just the
eigenvectors of the largest and smallest eigenvalue.

To prove the result for all vectors, we shift the problem a bit so that the largest and
smallest eigenvalue are both 1. This way, all vectors are eigenvectors of the same eigenvalue,
so the Matrix-Chernoff bound applies to all vectors.

Shift Let M := A⊤A, then S is a valid subspace embedding for A, if for all v ∈ Rd

v⊤Iv = v⊤M−1/2A⊤AM−1/2v = (1± ϵ)v⊤M−1/2A⊤S2AM−1/2v

Note that here M−1/2A⊤S2AM−1/2 can be seen as the sum of random matrices Xk where
Xk is defined as

Xk =

{
1
pk
(M−1/2A⊤ek)(e

⊤
k AM−1/2) with probability pk

0 otherwise
.

Note that this is just sampling the outer product of the kth row of AM−1/2 with itself. We
now want to use Chernoff-bound on this sum of random Xk. For this we first want to bound
λmax(Xk) ≤ K := Θ(ϵ2/ log n). This holds because for all v ∈ Rd

p−1
k v⊤(M−1/2A⊤ek)(e

⊤
k AM−1/2)v ≤ p−1

k ∥M
−1/2A⊤ek∥22∥v∥22 = p−1

k (AM−1A⊤)k,k∥v∥22
= p−1

k σ(A)k∥v∥22 ≤ ∥v∥22

(version 2023/09/04) 101

where we used that pk ≥ σ(A)k ·Θ(ϵ−2 log n). Further, we have

µmax := λmax(
∑
k

EXk) = λmax(M
−1/2A⊤AM−1/2) = λmax(I) = 1

and the same for µmin := λmin(
∑

k EXk) = 1. By Chernoff we can thus write

P

[
λmax

∑
k

Xk ≥ (1 + ϵ)µmax

]
≤ d · exp(−ϵ2µmax/(3R))

= d · exp(−ϵ2O(ϵ−2/ log n))

= 1/poly(n)

and the same for P[λmin

∑
k Xk ≤ (1− ϵ)µmin]. Thus we have w.h.p. that for all v ∈ Rd

v⊤M−1/2A⊤S2AM−1/2 = (1± ϵ)v⊤Iv

which implies that w.h.p for all v ∈ Rd

v⊤A⊤S2A = (1± ϵ)v⊤Mv = (1± ϵ)v⊤A⊤Av.

The following lemma implies that w.h.p the leverage score sampling from Theorem 9.2.3
samples at most Õ(d) rows of A.

Lemma 9.2.5. For any full-rank A inRn×d we have
∑n

i=1 σ(A)i = d.

Proof.

n∑
i=1

σ(A)i =

n∑
i=1

(A(A⊤A)−1A⊤)i,i = tr(A(A⊤A)−1A⊤)

= tr(A⊤A(A⊤A)−1) = tr(Id×d) = d

Here we used the cyclic property of the trace, i.e. tr(MN) = tr(NM).

Graph Application, Example The property that our leverage score sampling yields a sub-
space embedding that is just a submatrix of the original A also has some uses outside of
matrices.

Given a (possibly weighted) graph G = (V,E, c) with edge weights (ce)e∈E , we call the
subgraph H = (V,E′, c′) (with possibly different edge weights c′e ̸= ce) a cut sparsifier if the
following holds: For every cut S∪̇T = V , the size of the cut between S and T is the same in
G and H up to some (1 + ϵ)-factor. That is∑

{u,v}∈E,u∈S,v∈T

cu,v = (1± ϵ) ·
∑

{u,v}∈E′,u∈S,v∈T

c′u,v

Dynamic Algebraic Algorithms (v. 2023/09/04) 102

Corollary 9.2.6. Let G = (V,E, c) be a graph and let A ∈ RE×V be a weighted incidence
matrix with A{u,v},u = ±√cu,v so that A⊤A is the weighted Laplacian of G. Let H be the
graph obtained by sampling each edge e ∈ E with probability pe = min{1, O(ϵ−2σ(A)i log n)}
and setting its edge weight to ce/pe if the edge is included in H.

Then w.h.p H is a (1 + ϵ)-approximate cut-sparsifier of G with Õ(n/ϵ2) many edges.

Proof. A cut S∪̇T = V can be identified with the vector w ∈ RV with wv = 1 for v ∈ S and
wv = 0 otherwise. Then the number of edges being cut is given by∑

{u,v}∈E,u∈S,v∈T

cu,v =
∑
e∈E

(Aw)2e = ∥Aw∥22

Since the sampling procedure resulting in H is exactly the leverage score sampling for spar-
sifying the matrix A, the graph H approximates every cut.

Remark: Technically the incidence matrix is not full rank, i.e. A⊤A is not invertible. One
can extend the notion of leverage scores and sampling thereof to non-invertible matrices by
using the Penrose-pseudoinverse.

This proof relies on SA being an incidence matrix when A is an incidence matrix. Since
leverage score sampling yields a submatrix, the subspace embedding we constructed in this
section is also an incidence matrix. In comparison, this property was not given by the
subspace embeddings from the previous chapter. There each row of SA is some linear
combination of different rows of A which breaks the incidence matrix structure.

Chapter 10

Dynamic Approximate Least
Squares

In Theorem 8.2.7 we showed that, unless the OMv-conjecture is wrong, no data structure
can maintain exact dynamic least squares in less than O(d2) time per update. Since the
lower bound holds only for the exact case, we now consider the approximate case. We show
that when allowing for (1 + ϵ)-approximation, one can solve dynamic regression in Õ(d)
amortized time per insertion.

Theorem 10.0.1 ([JPW22]). There exists a data structure with the following operations.

1. Init(A(0) ∈ Rd×d, b(0) ∈ Rd)

2. Insert(a ∈ Rd, β ∈ R): it sets

A(t+1) ←
[
A(t)

a⊤

]
, b(t+1) ←

[
b(t)

β

]
,

and returns x with∥∥∥A(t+1)x− b(t+1)
∥∥∥
2
≤ (1 + ϵ) ·min

x∗

∥∥∥A(t+1)x∗ − b(t+1)
∥∥∥
2

Moreover the total running time of the data structure is Õ(nnz(A(T)) + d3

ϵ2 log(TD/L)) in
expectation, where T is the number of insertions, L is a lower bound on the smallest singular
value of the initial matrix and D/2 is an upper bound on the ℓ2 norm of any row of the matrix
A(T), and absolute value of any entry of the vector b(T).

We start by outlining the idea of the data structure. Remember that in Section 9.1
(Lemma 9.1.3) we explained how to efficiently solve approximate regression in the static
setting using subspace embeddings. One such subspace embedding was obtained via lever-
age scores (Theorem 9.2.3, Section 9.2), i.e. a sparse diagonal matrix S was constructed
with the property that ∥SAv∥ ≈ ∥Av∥ for all vectors v. Then the approximate regression
could be solved (Section 9.1) by computing (A⊤S2A)−1A⊤Sb. Now consider the dynamic

103

Dynamic Algebraic Algorithms (v. 2023/09/04) 104

setting: we add a new row to A which means size of diagonal matrix S increases by 1.
Let A′, S′ be the new larger matrices. We will show that S′ is a valid subspace embedding
if we just reuse the old diagonal entries of S and only sample the new diagonal entry of
S′. If that new diagonal entry of S′ is 0, then there is no need to compute anything since
A⊤S2A = A′⊤S′2A′ and A⊤Sb = A′⊤S′b′. Only if the new diagonal entry of S′ is non-zero
do we need to update the solution. We will show that getting a new non-zero entry to S′

does not happen to often (on average only once every O(d/ϵ2) updates), which then leads
to the small amortized update time of Theorem 10.0.1.

10.0.1 Preliminaries

Here we list a few definitions and observations that will be useful for formally proving the
data structure outlined in the previous subsection.

Definition 10.0.2 (Spectral approximation). Let M,N be positive semi-definite matrices.
Then we say M is a ϵ-spectral approximation of N , and denote it by M ≈ϵ N , if for all
vectors v, (1 − ϵ)v⊤Nv ≤ v⊤Mv ≤ (1 + ϵ)v⊤Nv. One can show that if M ≈ϵ N , then
N−1 ≈ϵ M

−1.

The notion of spectral approximation is closely related to subspace embeddings.

Observation 10.0.3. Let S be a subspace embedding (Definition 9.1.1) of A with (1−ϵ) ∥Av∥2 ≤
∥SAv∥2 ≤ (1 + ϵ) ∥Av∥2. Then ATSTSA ≈ϵ A

TA.

Subspace embeddings (and spectral approximations) allow us to approximate the lever-
age scores (Definition 9.2.1)

Lemma 10.0.4. Let S be a subspace embedding for A. Then (1−ϵ)σ(A)i ≤ (A(A⊤S⊤SA)A)ii ≤
(1 + ϵ)σ(A)i, where σ(A)i := (A(A⊤A)A⊤)ii.

Proof. We have

(A(A⊤S⊤SA)A)ii = (e⊤i A)(A⊤S⊤SA)(A⊤ei).

Therefore by assumption,

(1− ϵ)(e⊤i A)(A⊤A)(A⊤ei) ≤ (A(A⊤S⊤SA)A)ii ≤ (1 + ϵ)(e⊤i A)(A⊤A)(A⊤ei).

Finally note that (e⊤i A)(A⊤A)(A⊤ei) = (A(A⊤A)A⊤)ii = σ(A)i.

We can write the leverage scores as the following norm.

Lemma 10.0.5.
∥∥A(A⊤A)−1Aei

∥∥2
2
= σ(A)i.

Proof. We have ∥∥A(A⊤A)−1A⊤ei
∥∥2
2
= eTi A(A⊤A)−1A⊤A(A⊤A)−1A⊤ei

= e⊤i A(A⊤A)−1A⊤ei

= σ(A)i.

(version 2023/09/04) 105

To approximate a norm, we do not need a full subspace embedding. Just a JL-matrix
(Lemma 9.1.4) does already suffice. So we can efficiently compute approximate leverage
scores as follows:

Corollary 10.0.6 (Johnson-Lindenstrauss projection for leverage score computation). Let
R be a random k-by-n matrix where each entry is uniformly picked from the set {− 1√

k
,+ 1√

k
}

and k = O(1
ϵ2 log(n)). Then

(1− ϵ) · σ(A)i ≤
∥∥RA(A⊤A)−1A⊤ei

∥∥2
2
≤ (1 + ϵ) · σ(A)i.

Moreover given A(A⊤A)−1A⊤, RA(A⊤A)−1A⊤ can be computed with Õ(1
ϵ2) matrix-vector

products.

Proof. The result easily follows from noting that a random Johnson-Lindenstrauss projection
preserves the norm approximately for all vectors with high probability, i.e., (1 − ϵ) ∥v∥ ≤
∥Rv∥2 ≤ (1 + ϵ) ∥v∥, for any v with a probability of at least 1− 1/poly(n).

Lemma 10.0.7. Given a matrix A, we can compute σ̃(A) ∈ Rn in Õ(nnz(A)+ dω

ϵ2) time, where
for all i ∈ [n],

(1− ϵ)σ(A)i ≤ σ̃(A)i ≤ (1 + ϵ)σ(A)i

Proof. Compute SA in Õ(nnz(A)) time for S as in Lemma 9.1.5. Compute (A⊤S⊤SA)−1 in
Õ(d

ω

ϵ2) time. Compute RSA(A⊤S⊤SA)−1 in Õ(nnz(A) + d2) time. For all i ∈ [n], compute∥∥RSA(A⊤S⊤SA)−1A⊤ei
∥∥2
2

in total Õ(n) time. Note that

(1− ϵ)σ(A)i ≤
∥∥RSA(A⊤S⊤SA)−1A⊤ei

∥∥2
2
≤ (1 + ϵ)σ(A)i

10.1 Main Result

We denote the matrix and the vector after t insertions with A(t) and b(t), respectively. More-
over, we denote the leverage score sampling matrix defined as the following with S(t),

S
(t)
ii =


1√
p
(t)
i

with probability p
(t)
i ,

0 otherwise.

The data structure of Theorem 10.0.1 works as Algorithm 2. The next lemma give bounds
on the running time of operations of this data structure.

Lemma 10.1.1. In Algorithm 2, Step 4 of the algorithms runs in time Õ(nnz(a)). If S(t+1)
t+1,t+1 ̸=

0, Step 5 takes Õ(d2) time, and Step 6 of the algorithm takes Õ(d2) time.

Dynamic Algebraic Algorithms (v. 2023/09/04) 106

Algorithm 2: Sampling algorithm after t+ 1 insertions

1 parameters
2 1 > ϵ > 0, c,t = 0, A(0) ∈ Rd×d, b(0) ∈ Rd, M (0) = R(0)A(0)((A(0))⊤A(0))−1,

where R is a k-by-n matrix where each entry is uniformly picked from the set
{− 1√

k
,+ 1√

k
}, k = O(log(n)) so that norms with R is preserved within 1± 1

10

factor, n is the total number of rows after all insertions, and R(0) is the matrix
obtained from R by taking the first d columns. N (0) = ((A(0))⊤A(0))−1 and set
S(0) to the d-by-d identity matrix. x(0) = ((A(0))⊤A(0))−1(A(0))⊤b(0).

3 procedure INSERTION(a ∈ Rd, β ∈ R0)

4 Given the new row a of A(t+1) and new entry β of b(t+1) (i.e., A(t+1)
t+1 = a and

b
(t+1)
t+1 = β), set S(t+1) to be a diagonal matrix where its t× t leading principle

submatrix is equal to S(t) and S
(t+1)
t+1,t+1 = 1√

p with probability

p = min{1, (c · ϵ−2 log n) · 100
81

∥∥∥M (t)a
∥∥∥2
2
},

and set S(t+1)
t+1,t+1 = 0, otherwise.

5 If S(t+1)
t+1,t+1 ̸= 0, compute a new inverse N (t+1) = ((A(t+1))⊤(S(t+1))2A(t+1))−1,

and a new sketch as

M (t+1) = R(t+1)S(t+1)A(t+1)((A(t+1))⊤(S(t+1))2A(t+1))−1,

where R(t+1) is the matrix obtained from R by taking the first t+ 1 columns. If
S
(t+1)
t+1,t+1 = 0, set M (t+1) = M (t).

6 If S(t+1)
t+1,t+1 ̸= 0, compute the new solution vector as

x(t+1) = ((A(t+1))⊤(S(t+1))2A(t+1))−1(A(t+1))⊤(S(t+1))2b(t+1),

and if S(t+1)
t+1,t+1 = 0, set x(t+1) = x(t).

Proof. Note that if S(t+1)
t+1,t+1 ̸= 0, then by Sherman-Morrison identity Lemma 1.1.3, we have,

M (t+1) = R(t+1)S(t+1)A(t+1)((A(t+1))⊤(S(t+1))2A(t+1))−1

= (R(t)S(t)A(t) + c · ra⊤)(N (t) − c2 ·N (t)aa⊤N (t)

1 + c2 · a⊤N (t)a
)

= M (t) + c · ra⊤N (t) − c2 ·M (t)aa⊤N (t)

1 + c2 · a⊤N (t)a
− c3 · ra⊤N (t)aa⊤N (t)

1 + c2 · a⊤N (t)a

= M (t) + c · ra⊤N (t) − c2 ·M (t)aa⊤N (t)

1 + c2 · a⊤N (t)a
− (c3a⊤N (t)a) · ra⊤N (t)

1 + c2 · a⊤N (t)a

where N (t) = ((A(t))⊤(S(t))2A(t))−1, and r is the last column of R(t+1). Since N (t) is a
d-by-d matrix, we can compute a⊤N (t)a in O(d2) time. Moreover, we have access to M (t).

(version 2023/09/04) 107

For the rest of the terms above, we first compute a⊤N (t) (in O(d2) time), which is a d-
vector, and then we multiply that with r, which can be done in Õ(d) time. Moreover by
Sherman-Morrison identity Lemma 1.1.3, we can compute

N (t+1) = N (t) − c2 ·N (t)aa⊤N (t)

1 + c2 · a⊤N (t)a
,

by first computing a⊤N (t). Now we have

x(t+1) = ((A(t+1))⊤(S(t+1))2A(t+1))−1(A(t+1))⊤(S(t+1))2b(t+1)

= (N (t) − c2 ·N (t)aa⊤N (t)

1 + c2 · a⊤N (t)a
)((A(t))⊤(S(t))2b(t) + βc2 · a)

= x(t) + βc2 ·N (t)a− c2 ·N (t)aa⊤x(t)

1 + c2 · a⊤N (t)a
− βc4a⊤N (t)a ·N (t)a

1 + c2 · a⊤N (t)a

= x(t) + βc2 ·N (t)a− c2a⊤x(t) ·N (t)a

1 + c2 · a⊤N (t)a
− βc4a⊤N (t)a ·N (t)a

1 + c2 · a⊤N (t)a
.

We can compute a⊤x and a⊤N (t)a in O(d) and O(d2) time, respectively. Then, the rest of
the computation can be carried out in O(d2) time by first computing N (t)a. Since M (t) has
O(log n) rows, we can compute M (t)a and its norm in Õ(nnz(a)) time.

The next lemma gives a bound on the sum of leverage score estimations we use in
Algorithm 2.

Lemma 10.1.2. Let T be the number of insertions, L be a lower bound on the smallest singular
value of the initial matrix A(0) and D/2 be an upper bound on the ℓ2 norm of any row of the
matrix A(T), and absolute value of any entry of the vector b(T). Then

T∑
t=1

σA(t−1)

(A(t))d+t ≤ O(d log(TD/L)),

where
σA(t−1)

(A(t))d+t = min{1, (a(t))⊤((A(t−1))⊤A(t−1))−1a(t)}

Proof. By Lemma 1.2.1, we have

det((A(t))⊤A(t)) = det((A(t−1))⊤A(t−1)) · (1 + (a(t−1))⊤((A(t−1))⊤A(t−1))−1a(t−1))

= det((A(t−1))⊤A(t−1)) · (1 + σA(t−1)

(A(t))d+t)

≥ det((A(t−1))⊤A(t−1)) · exp(σ
A(t−1)

(A(t))d+t

2
),

where the inequality holds since σA(t−1)

(A(t))d+t ≤ 1. Therefore

det((A(T))⊤A(T)) ≥ det((A(0))⊤A(0)) · exp(
T∑

t=1

σA(t−1)

(A(t))d+t

2
)

≥ L2d · exp(
T∑

t=1

σA(t−1)

(A(t))d+t

2
).

Dynamic Algebraic Algorithms (v. 2023/09/04) 108

Moreover by the AM-GM inequality (on the eigenvalues),

det((A(T))⊤A(T))1/d ≤ 1

d
tr((A(T))⊤A(T)) =

1

d

∥∥∥A(T)
∥∥∥2
F
≤ T + d

d
· D

2

4
.

Combining the above and taking logarithm, we have

2d log(L) +

T∑
t=1

σA(t−1)

(A(t))d+t

2
≤ d log(

T + d

d
· D

2

4
).

Therefore
T∑

t=1

σA(t−1)

(A(t))d+t = O(d log(TD/L)).

Proof of Theorem 10.0.1. The initial solution for A(0) and b(0) is trivially correct and the run-
ning time is O(dω) as presented in Algorithm 2. Since for t′ > t, (A(t′))⊤A(t′) ⪰ (A(t))⊤A(t),
((A(t′))⊤A(t′))−1 ⪯ ((A(t))⊤A(t))−1. Therefore, the leverage score estimations are always
larger than the actual leverage scores for the subsequent matrices. Thus, the sampling from
these estimations gives the guarantees of leverage score sampling for all matrices. There-
fore, by Theorem 9.2.3, S(t)A(t) is a subspace embedding of A(t). Let

x̃ = argmin
∥∥∥S(t)A(t)x− S(t)b(t)

∥∥∥
2
, and x∗ = argmin

∥∥∥A(t)x− b(t)
∥∥∥
2

Then since S(t)A(t) is a subspace embedding of A(t), we have∥∥∥S(t)A(t)x̃− S(t)b(t)
∥∥∥
2
≤
∥∥∥S(t)A(t)x∗ − S(t)b(t)

∥∥∥
2
≤ (1 + ϵ)

∥∥∥A(t)x∗ − b(t)
∥∥∥
2

To bound the expected running time of the algorithm, we note that by Lemma 10.1.2 and
definition of the probabilities of sampling in Algorithm 2, in expectation, we only sample
Õ(d

ϵ2 log(TD/L)) rows in expectation. By Lemma 10.1.1, any time a row is sampled, we
pay a cost of Õ(d2), and we pay a cost of Õ(nnz(a)) irrespective of the outcome of the
sampling. Therefore, the total cost over the whole course of the algorithm is Õ(nnz(A(T))+
d3

ϵ2 log(TD/L)) in expectation.

10.2 Exercises

10.2.1 Finding a large entry

For a vector v ∈ Rn we define vtail ∈ Rn as the vector v with the largest entry (in absolute
value) set to 0. So ∥vtail∥22 = ∥v∥22 − ∥v∥2∞.

We now want to construct a procedure that allows us to find this large entry.

(version 2023/09/04) 109

Problem: Prove the following claim.
We can construct random matrix R ∈ Rk×n for k = Õ(1/ϵ2) such that the following

holds:
We are given y = Rv ∈ Rk (but we are not given the vector v) for some v ∈ Rn. Then
w.h.p. we can find the index i where |vi| > (1+ ϵ)∥vtail∥2. We may return an incorrect index
if no such i exists.

Hint: Use JL-matrices to estimate the following norm of vectors. Let w be a sub-vector of
v (that is, we obtain w by setting some entries of v to 0). How large is ∥w∥22 if w contains
the large entry (that we must return) vs. how large is the norm if it does not contain the
large entry? You can use this to test if w contains the large entry. How many different w do
you need to reconstruct the position of the large entry?

10.2.2 Counter example for regression

Consider the dynamic least squares problem, that is, we start on a matrix A ∈ Rd×d and
vector b and then repeatedly receive new rows to be inserted into A and b. After each new
row, we must return an x with ∥Ax− b∥ ≤ (1 + ϵ)minx∗ ∥Ax∗ − b∥2.

In the lecture we discussed a data structure that takes Õ(nnz(A)/ϵ2 + (d/ϵ)ω) total time
over all insertions. This data structure used the assumption that the new row a ∈ Rd and
entry β ∈ R inserted to A and b have bounded norm, i.e. there is some D > 0 such that all
inserted rows satisfy ∥(a, β)∥2 ≤ D2. Under this assumption, we showed in the lecture that
the data structure must change its approximate solution x at most Õ(d) times over all row
insertions.

In this exercise, we want to show that guaranteeing only Õ(d) changes to x is not possible
without an assumption like ∥(a, β)∥2 ≤ D. We want to show that without this assumption,
the solution x may have to change after every new insertion. This is true for every possible
data structure, not just the one from the lecture.

Problem: Show there is an initial A(0) ∈ Rd×d, b(0) ∈ Rd and an (infinite) sequence of
insertions a(t) ∈ Rn, β(t) ∈ R, t ≥ 1 with the following property: Any data structure that
maintains x(t) with ∥A(t)x(t)− b(t)∥2 ≤ (1+ ϵ)minx∗ ∥A(t)x∗− b(t)∥2 must return a new x(t)

after the new insertion. That means, if x(t−1) is the value returned before the tth insertion,
then ∥A(t)x(t−1) − b(t)∥2 > (1 + ϵ)minx∗ ∥A(t)x∗ − b(t)∥2 for some constant ϵ > 0.

10.2.3 Faster linear program solver via leverage scores

On problem set 3, we showed that we can solve linear programs in Õ(
√
∥τ∥1) iterations for

any τ ∈ Rn with τi ≥ 1 for all i. Because of the lower bound on τ , we have ∥τ∥1 ≥ n so
with this approach we can not obtain less than Õ(

√
n) iterations.

To get a faster algorithm, one would want to pick vector τ that can have τi > 0 without
being lower bounded by 1. The lower bound on τ was required to guarantee ∥S−1δs∥∞ ≤
∥S−1δs∥τ ≤ 1 so that s+ δs > 0 stays positive.

Dynamic Algebraic Algorithms (v. 2023/09/04) 110

In this exercise, we will show that instead of τ ≥ 1, the condition τ ≥ σ(X1/2S−1/2A)
(where σ are the leverage scores) does already suffice. Since the sum of the leverage scores
is d, Lee and Sidford showed in 2014 that this leads to an Õ(

√
d) iteration algorithm.

Problem: Let A ∈ Rn×d, x, s ∈ Rn
>0, ∥xs−tτ

tτ ∥∞ < 0.1, ∥xs−tτ
tτ ∥τ < 0.1 for τ ∈ Rn and

τi ≥ σ(X1/2S−1/2A)i for all i. (Here the norm ∥v∥τ was defined as
√∑

i τi · v2i .) For
γ ∈ R≥0 let

δs = A(A⊤XS−1A)−1A⊤S−1(tτ − xs)γ.

Prove that ∥S−1δs∥∞ ≤ O(γ).

Hint:

|(S−1δs)i| = |e⊤i S−1A(A⊤XS−1A)−1A⊤S−1(tτ − xs)γ|
≤ ∥(A⊤XS−1A)−1/2A⊤S−1ei∥2 · ∥(A⊤XS−1A)−1/2A⊤S−1(tτ − xs)γ∥2

by Cauchy-Schwarz inequality.

10.2.4 Sketching for solving linear systems

In the lecture we used subspace embeddings S ∈ Rk×n for A ∈ Rn×d with k = Õ(d/ϵ2) to
obtain a spectral approximation A⊤S⊤SA ≈ϵ A

⊤A (so for all v ∈ Rd we have v⊤A⊤S⊤SAv =
(1± ϵ)v⊤A⊤Av).

This allows to solve the linear system (A⊤A)x = b approximately by letting x =
(A⊤S⊤SA)−1b. One can show that this solution satisfies

∥x− x∗∥A⊤A ≤ ϵ∥x∗∥A⊤A

where x∗ = (A⊤A)−1b is the exact solution and the norm is defined as ∥v∥A⊤A :=
√

v⊤(A⊤A)v
for any v ∈ Rd.

The complexity of this has a poly(1/ϵ) dependence to compute A⊤S⊤SA. We now want
to argue that one can solve the linear system approximately with just a log(1/ϵ) complexity
dependence.

Problem: Given a matrix M such that M ≈0.1 A⊤A, let x(0) = M−1b. Then define
recursively

x(k+1) = x(k) −M−1(A⊤Ax(k) − b).

Show that
for k = O(log 1/ϵ) we have ∥x(k) − x∗∥A⊤A ≤ ϵ∥x∗∥A⊤A.

Hint: Show there is a constant 0 < c < 1 with
∥∥x(k) − x∗

∥∥
M
≤ c

∥∥x(k−1) − x∗
∥∥
M

.

Chapter 11

Approximate Distances

In previous chapters we discussed various approximation techniques for linear algebra. In
this chapter, we want to look at approximate techniques for distances in graphs. We will
prove the following data structure for maintaining single source distances. The following
is a slightly slower (but simpler) version of a data structure by v.d.Brand and Nanongkai
(2019) [?].

Theorem 11.0.1. For any 0 ≤ µ, s ≤ 1, there exists a data structure with the following
operations:

• INITIALIZE(G = (V,E), ϵ > 0) in O(nω+s) time.

• INSERT/DELETE(u, v) Insert/delete edge (u, v) in time O(ns(n1+µ+nω(1,1,µ)−µ)+nω(1−s,s,1)/ϵ).

• QUERY(v ∈ V) Return a (1 + ϵ)-approximation of the single-source distances rooted at v
in O(n1+µ+s + n2−s) time.

This is O(n1.765/ϵ) update time and O(n1.765) query time for µ ≈ 0.529 and s ≈ 0.236.1

11.1 Approximate Distances via Linear Algebra

Earlier this semester we discussed that we can compute distances in graphs by computing
the inverse of a polynomial matrix. In particular, given graph G and its n × n adjacency
matrix A, the inverse (I − X · A)−1 ∈ (Z[X]/⟨Xh⟩)n×n encodes the h-bounded distance
(i.e. distance up to h). Using the following notation (Definition 11.1.1), we had that the
smallest 0 ≤ k ≤ d with ((I−X ·A)−1

s,t)
[k] ̸= 0 is exactly the st-distance in G.

Definition 11.1.1. For a vector v ∈ (Z[X]/⟨Xd⟩)n (or matrix M ∈ (Z[X]/⟨Xd⟩)n×n) we
write v[k] ∈ Zn for the vector consisting of he coefficients of Xk, i.e. v =

∑d−1
k=0 v

[k]Xk.
Likewise, M =

∑d−1
k=0 M

[k]Xk where M[k] ∈ Zn×n are the coefficients of Xk.

1https://www.ocf.berkeley.edu/~vdbrand/complexity/?terms=omega(1%2C1%2Cmu)-mu%2Bs%0A1%2Bmu%

2Bs%0Aomega(1-s%2Cs%2C1)

111

https://www.ocf.berkeley.edu/~vdbrand/complexity/?terms=omega(1%2C1%2Cmu)-mu%2Bs%0A1%2Bmu%2Bs%0Aomega(1-s%2Cs%2C1)
https://www.ocf.berkeley.edu/~vdbrand/complexity/?terms=omega(1%2C1%2Cmu)-mu%2Bs%0A1%2Bmu%2Bs%0Aomega(1-s%2Cs%2C1)

Dynamic Algebraic Algorithms (v. 2023/09/04) 112

We can extend this to approximate distances as follows. Take graph G and add self-loops
to every vertex. Then if there exists an st-path of length k, then there also exists a path of
length k′ for all k′ ≥ k. This is because we can simply use the self-loop to repeatedly go
from t to t.

Thus we can find a (1+ ϵ)-approximation of the st-distance by searching for the smallest
k of the form k = ⌊(1 + ϵ)i⌋ for some i ∈ Z, where ((I−X ·A)−1

s,t)
[k] ̸= 0.

In particular, this means to compute (1+ϵ)-approximate distances, we only need to com-
pute ((I−X ·A)−1)[k] for O(log(1+ϵ)(n)) = O(ϵ−1 log n) many different k. For comparison,
computing the exact distance requires to use k = 1, ..., n, i.e. n different values for k.

This motivates the following algebraic data structure, which corresponds to computing
(1 + ϵ)-approximate distances (up to h) for a set of pairs S × T .

Theorem 11.1.2. For any 0 ≤ µ ≤ 1, ϵ > 0, there exists a data structure with the following
operations:

• INITIALIZE(A ∈ Zn×n, S, T ⊂ {1, ..., n}, h ∈ {1, ..., n}) in O(h · nω) time.

• UPDATE(i, j ∈ {1, ..., n}, f ∈ Z) Set Ai,j ← f . Then return the submatrix ((I −
X · A)−1

S,T)
[k] for k = ⌊(1 + ϵ)0⌋, ⌊(1 + ϵ)1⌋, ..., ns. The complexity is O(ns(n1+µ +

nω(1,1,µ)−mu) + nω(x,s,y)/ϵ) where nx = |S|, ny = |T |, ns = h.

• QUERY(i, j ∈ {1, ..., n}) Return (I−XA)−1
i,j (i.e. all coefficients for all Xk, k = 1, ..., h)

in O(nµ+s) time for ns = h.

Proof. In a previous lecture we explained that we can maintain the inverse of some matrix
M in O(h(n1+µ + nω(1,1,µ)−µ)) time per update. Here an update changes one entry of M
and we can query any entry M−1

i,j in O(nµ) time.
We use this data structure to maintain (I − XA)−1 ∈ (Z/⟨Xh⟩)n×n supporting entry

updates to A in Õ(h(n1+µ + nω(1,1,µ)−µ)) time per update. The extra Õ(h) factor comes
from the fact that we now consider polynomials of degree up to h.

This data structure maintains the inverse of the form

M−1 = M′−1 =

ℓ∑
i=1

uiv
⊤
i

where M′ is the matrix M during initialization, ℓ is the number of updates so far, and after
each update we add one new outer product to the sum above.

We are left with describing how to compute (M−1
S,T)

[k] for the O(ϵ−1s log n) many differ-
ent k. Assume we already know these values from the previous update, then all we need to
compute is (during the ℓ-th update)

(M−1
S,T)

[k] ← (M−1
S,T)

[k] + (uℓv
⊤
ℓ)

[k]

This can be computed in O(nω(x,d,y)) time where nx = |S|, ny = |T |, ns = h via Lemma 11.1.3.
As we repeat that for O(ϵ−1 log ns) = O(sϵ−1 log n) different k, we get an extra Õ(nω(x,d,y)/ϵ)
per update.

(version 2023/09/04) 113

Lemma 11.1.3. For u ∈ (Z[X]/⟨Xnd⟩)nx

, v ∈ (Z[X]/⟨Xnd⟩)ny

and z := uv⊤, we can com-
pute z[k] for any one k in time O(nω(x,d,y)).

Proof.

(uv⊤)[k] =

k∑
i=0

u[i](v⊤)[k−i] =
[
u[0]|u[1]|...|u[k]

]


(v[k])⊤

(v[k−1])⊤

...
(v[0])⊤


Where the last expression is a matrix product of an nx × nd and nd × ny matrix, so we can
compute it in O(nω(x,d,y)) time.

Theorem 11.1.2 can be used to obtain approximate distances up to h. The following
Lemma 11.1.4 is a variation of Lemma 3.3.2 and theorem 3.3.1 to extend these h-bounded
distances to general distances without an upper bound.

Lemma 11.1.4. Let 1 ≤ h ≤ n, G = (V,E), and R ⊂ V be a uniformly at random samples
subset of size Õ(n/h).

If we are given (1 + ϵ)-approximate h-bounded distances for the pairs ({s} ∪ R) × V for
some s ∈ V , then we can compute (1 + ϵ)-approximate single source distances for source s in
time Õ(n2/h).

Proof. Similar to Lemma 3.3.2 and theorem 3.3.1. Construct a graph H = (V,E′) with
edges E′ = {s ∪ R} × V and the edge weight being the respective (1 + ϵ)-approximate
h-bounded distance. Then run Dijkstra’s algorithm from s in H and return for each pair
{s}×V the minimum of the distance in H and the (1+ ϵ)-approximate h-bounded distance
that we were given.

This is a good distance estimate because any path in H corresponds to a path in G of
the same distance (up to (1+ ϵ)-factor) because each edge in H corresponds to a path in G.
Conversely, any path that uses at most h steps is split into segments of length at most h by
Lemma 3.3.2. So each of these segments has a corresponding edge in G, so we can find the
path in H.

Only sv-paths in G that are too short (less than length h) might not exist in H. But for
such pairs s, v we already know their (approximate) distance from the provided h-bounded
distances.

The complexity is Õ(n2/h) as that is the number of edges in H and Dijkstra’s algorithm
runs in Õ(|E′|) time.

Lemma 11.1.5. Let 1 ≤ h ≤ n, G = (V,E), and R ⊂ V be a uniformly at random samples
subset of size Õ(n/h).

If we are given (1+ ϵ)-approximate h-bounded distances for the pairs ({s}∪R)× ({t}∪R)

for some s, t ∈ V , then we can compute (1 + ϵ)-approximate st-distance in time Õ(n2/h2).

Proof. Same as Lemma 11.1.4 but instead of edges from R to V we just have edges from R
to R ∪ {t}.

Together with Theorem 11.1.2 we now directly obtain Theorems 11.0.1 and 11.1.6.

Dynamic Algebraic Algorithms (v. 2023/09/04) 114

Theorem 11.1.6. For any 0 ≤ µ, s ≤ 1 there exists a data structure with the following opera-
tions:

• INITIALIZE(G = (V,E), ϵ > 0) in O(nω+s) time.

• INSERT/DELETE(u, v) Insert/delete edge (u, v) in time O(ns(n1+µ+nω(1,1,µ)−µ)+nω(1−s,s,1−s)/ϵ).

• QUERY(s, t) Return a (1 + ϵ)-approximation of the st-distance in O(n1+µ + n2−2s) time.

This is Õ(n1.686/ϵ) update time and Õ(n1.685) query time for µ ≈ 0.529 and s ≈ 0.157.2

Proof. We prove both Theorems 11.0.1 and 11.1.6

Theorem 11.0.1: We maintain the (1 + ϵ)-approx distances by adding self-loops to every
vertex in G. Then maintain (I − X ·A)−1 via Theorem 11.1.2 for S = R (the random set
from Lemma 11.1.4) and T = V . This way get ((I −X ·A)−1

R,V)
[k] for the different powers

of k = ⌊(1+ ϵ)i⌋ ≤ h. For any u ∈ R, v ∈ V , the smallest such k where ((I−X ·A)−1
u,v)

[k] ̸= 0
is at most a (1 + ϵ)-factor larger than the uv-distance. So we obtain (1 + ϵ)-approximate
distance estimates for the pairs R× V up to distance h.

This takes Õ(n1+µ+s+nω(1,1,µ)−µ+1+nω(1−s,s,1)/ϵ) time per update by Theorem 11.1.2,
as h = ns, |S| = Õ(n/h) = Õ(n1−s) and |T | = n.

Query Via Lemma 11.1.4 we can now compute the single source distances from any s by
computing the h-bounded distances from s to all v ∈ V in Õ(hn1+µ) = Õ(n1+s+µ) time,
and then using Lemma 11.1.4 in Õ(n2−s) time.

Theorem 11.1.6: The data structure is the same, but by Lemma 11.1.5 we only need
the distances for ({s} ∪ R) × ({t} ∪ R). The distances between R × R can be computed
in Õ(n1+µ+s + nω(1,1,µ)−µ + nω(1−s,s,1−s)/ϵ) time per update by S = T = R and |R| ==

Õ(n/h) = Õ(n1−s) for h = ns.
To apply Lemma 11.1.5 to answer a query we then only need to compute the distances

from s to each vertex in R, and from R to t in Õ(|R|hnµ) = Õ(n1+µ) time. Lemma 11.1.5
needs an additional Õ(n2/h2) = Õ(n2−2s) time.

11.2 Exercise

The diameter of a graph G is defined as the largest distance, i.e.

diam(G) = max
s,t∈V

dist(s, t)

2https://www.ocf.berkeley.edu/~vdbrand/complexity/?terms=omega(1%2C1%2Cmu)-mu%2Bs%0A1%2Bmu%

2Bs%0Aomega(1-s%2Cs%2C1-s)

https://www.ocf.berkeley.edu/~vdbrand/complexity/?terms=omega(1%2C1%2Cmu)-mu%2Bs%0A1%2Bmu%2Bs%0Aomega(1-s%2Cs%2C1-s)
https://www.ocf.berkeley.edu/~vdbrand/complexity/?terms=omega(1%2C1%2Cmu)-mu%2Bs%0A1%2Bmu%2Bs%0Aomega(1-s%2Cs%2C1-s)

(version 2023/09/04) 115

Problem: Construct a data structure with the following operations and complexity.

Theorem 11.2.1. For any 0 ≤ µ ≤ 1, 0 ≤ s ≤ 1 , ϵ > 0 there exists a data structure with the
following operations:

• INITIALIZE(G = (V,E), ϵ > 0) in Õ(nω+s) time.

• INSERT/DELETE(u, v): Inserts/deletes the edge (u, v) in time Õ(ns(n1+µ+nω(1,1,µ)−µ)+
nω(1,s,1)

ϵ + n3(1−s)). Then returns a (1 + ϵ)-approximation of the diameter.

The graph is unweighted and directed.

Dynamic Algebraic Algorithms (v. 2023/09/04) 116

Chapter 12

Handling Adaptive Adversaries via
Random Noise

We discussed several randomized algorithms and data structures. These randomized tech-
niques work if we assume the input to be independent of the random choices. For algorithms
this independence is usually given, but for data structures we might encounter issues.

For example, the user might perform updates that change the input. So if the previous
outputs of the data structure depend on the randomness, then now the input depends on
the randomness as well.

Here we want to discuss a technique to solve this issue, i.e. make sure the output of the
data structure can not depend on the random choices performed by the data structure.

Random noise We will hide any information about the random choices of the data struc-
ture by adding random noise to the output. For example, an approximate data structure
might leak information about the internal random choices via the approximation error
(e.g. whether the returned approximation is slightly larger or smaller than the correct exact
result). On an intuitive level, adding noise will hide any information about the internal
random choices because the user does not know if the approximation error comes from the
random noise or from the internal randomness of the data structure.

We will use Laplace noise, i.e. add a random Laplace distributed random variable to the
output of the data structure.

Definition 12.0.1. We say X ∈ R is Laplace distributed (notation X ∼ L(µ, b)) if the density
function of the distribution is

f(x|µ, b) = 1

2b
exp(−|x− µ|

b
)

so PX∈[ℓ,r] [=]
∫ r

ℓ
f(x|µ, b) dx.

Note that µ is the expectation an b is a parameter that controls the variance (the variance
is 2b2). One can generate a sample a random X ∼ L(µ, b) as follows:

Sample two independent and uniform y1, y2 ∈ [0, 1], then set x = µ+ b · ln(y1/y2).

117

Dynamic Algebraic Algorithms (v. 2023/09/04) 118

Lemma 12.0.2. For X ∼ L(µ, b) we have w.h.p. |X − µ| < O(b log n).

Lemma 12.0.3.

exp(−|mu− µ′|
b

) ≤ f(x|µ, b)
f(x|µ′, b)

≤ exp(
|µ− µ′|

b
)

So if the noise parameter b = Ω(|µ − µ′|) then the fraction f(x|µ, b)/f(x|µ′, b) is very
close to 1, i.e. the two distribution L(µ, b) and L(µ′, b) are almost the same.

Further, the parameter b allows for a trade-off: Large b means we add a lot of noise
(i.e. the results of the data structure become less accurate) but the adversary can learn less
about the data structure’s internal randomness.

Theorem 12.0.4. Assume we can compute µ in time T and µ′ in time T ′. Assume further we
have some bound D ≥ |µ− µ′| and α, β such that D/b ≤ α ≤ 1.

Then we can sample X ∼ L(µ, b) in expected time O(T ′ + αT).

Note that the naive way to sample from L(µ, b) would be to compute µ in time T and
then add some Laplace noise to it. Theorem 12.1.2 says that (for small α) we can sample
from L(µ, b) without computing µ (most of the time).

Proof. We define the following function with name SIMULATE(µ, µ′, α), because it simulates
sampling from L(µ, b) without needing to compute µ (most of the time). The steps are as
follows:

1. With probability p = exp(−α)

• sample and return y ∼ L(µ′, b).

2. else

• Sample and return z ∈ R where the density function of the distribution is

g(x) :=
f(x|µ, b)− exp(−α) · f(x|µ′, b)

1− exp(−α)

Correctness First, let us verify that the distribution of z is well defined, i.e. that g is a valid
density function. We have g(x) ≥ 0 for all x because by Lemma 12.0.3

f(x|µ, b)/f(x|µ′, b) ≥ exp(−|µ− µ′|/b) ≥ exp(−α)

Further we have∫ ∞

−∞

f(x|µ, b)− exp(−α) · f(x|µ′, b)

1− exp(−α)
dx =

∫∞
−∞ f(x|µ, b) dx− exp(−α)

∫∞
−∞ f(x|µ′, b) dx

1− exp(−α)

=
1− exp(−α)
1− exp(−α)

= 1.

Thus g is a valid density function for a random distribution.

(version 2023/09/04) 119

Next, let us verify that the output of SIMULATE(µ, µ′, α) indeed has the distribution of
L(µ, b). The density function of the output is

exp(−α) · f(x|µ′, b)︸ ︷︷ ︸
Branch 1

+ (1− exp(−α)) · g(x)︸ ︷︷ ︸
Branch 2

= exp(−α) · f(x|µ′, b) + (1− exp(−α))f(x|µ, b)− exp(−α) · f(x|µ′, b)

1− exp(−α)
= f(x|µ, b)

So the output has indeed distribution L(µ, b).

How to sample z? We verified that the output is correct, assuming z has the right distri-
bution (i.e. density function g), but how can we actually sample something with this density
function?

We will sample z via the following procedure

• while true:

1. Sample z ∼ L(µ, b).

2. Return z with probability p = 1− exp(−α) f(x|µ
′,b)

f(x|µ,b) , otherwise discard z and go to
the next loop.

The density function will be proportional to

f(x|µ, b)︸ ︷︷ ︸
Step 1

· (1− exp(−α)f(x|µ
′, b)

f(x|µ, b)︸ ︷︷ ︸
Step 2

= f(x|µ, b)− exp(−α)f(x|µ′, b) ∝ g(x)

So it has the correct distribution.

Complexity To bound the complexity of SIMULATE, we first bound the complexity of sam-
pling z. Note that the procedure to z has an infinite loop. In each iteration we break the
loop with some probability, let’s say q, so the expected number of iterations would be 1/q
(since the number of loops will be geometric distributed). Let us compute this q. We have

q =

∫ ∞

−∞
f(x|µ, b)︸ ︷︷ ︸

Step 1

· (1− exp(−α)f(x|µ
′, b)

f(x|µ, b)︸ ︷︷ ︸
Step 2

dx

=

∫ ∞

−∞
f(x|µ, b) dx− exp(−α)

∫ ∞

−∞
f(x|µ′, b) dx

= 1− exp(−α).

So the expected number of iterations will be 1/(1 − exp(−α)). However, this assumes that
we must sample z in the first place. The probability of needing to sample z (i.e. going into

Dynamic Algebraic Algorithms (v. 2023/09/04) 120

branch 2 of SIMULATE) is 1 − exp(−α). So the expected number of iterations to sample z,
assuming we call SIMULATE is just

1− exp(−α)
1− exp(−α)

= 1.

So the time complexity of SIMULATE is just O(T ′ + (1 − exp(−α)T) because no matter if
we are in branch 1 or 2, we must always compute µ′ in time T ′. But only in branch 2 do
we need to compute µ in time T . Note that we can bound 1 − exp(−α) = O(α) because
for 0 ≤ α ≤ 1 we have exp(α) ≤ 1 + 3α. So the expected time complexity of SIMULATE is
O(T ′ + αT).

Example In a previous lecture we construct a data structure that could maintain the st-
distance up to multiplicative 1+ϵ error in O(n1.686/ϵ) time per update (see Theorem 11.1.6).

Theorem 12.0.5 (Restatement of Theorem 11.1.6). There exists a data structure with the
following operations:

• INITIALIZE(G = (V,E), ϵ > 0)

• INSERT/DELETE(u, v) Insert/delete edge (u, v) in time O(n1.686/ϵ).

• QUERY(s, t) Return a (1 + ϵ)-approximation of the st-distance in O(n1.686) time.

This data structure requires the oblivious adversary assumption. We now extend it to
an adaptive adversary via Theorem 12.1.2. We use the SIMULATE method to return after
each update a random value dist(s, t) · 2x where x ∼ L(0, δ), i.e. the exact st-distance
with some noise multiplied to it. Note that, since the adversary receives a random variable
whose distribution depends only on dist(s, t) and parameter δ, they have no idea what the
approximate value was that our data structure returned. So they have no way to perform
updates that in some way depend on the internal randomness of our data structure. So now
the data structure works against the adaptive adversary.

Let d be the exact st-distance and d̃ be the (1 + ϵ)-approximate st-distance returned by
the data structure. We define the following values:

• µ = log(d), µ′ = log(d̃)

• T = O(n2), T ′ = O(n1.686/ϵ).

• |µ− µ′| = | log(d)− log(d̃)| ≤ log(1 + ϵ) ≤ ϵ =: D.

• α = 1/nx for some value x we specify later.

• b = δ/(c log n) for some δ > 0 which will be the accuracy of our output at the end, and
some large constant c.

• ϵ = δ/(cnx log n) the accuracy with which we run our data structure.

(version 2023/09/04) 121

So now SIMULATE samples a value with distribution L(µ, b). Note that by exponentiating
this value, we get w.h.p.

2SIMULATE(µ,µ′,α) = 2d±O(b logn) = dist(s, t) · 2±O(b logn) = dist(s, t) · (1± δ)

where we used that a Laplace variable L(µ, b) is at most O(b log n) distance from µ with high
probability. In summary, we get a (1 ± δ)-approximation of the st-distance. The expected
time complexity is

O(T ′ + αT) = O(n1.686/ϵ+ αn2) = Õ(n1.686+x/δ + n2−x)

which for the right choice of x is

Õ(n(1.686+2)/2/δ) = Õ(n(1.843+2)/2/δ)

So we can now maintain the st-distance against an adaptive adversary in expected Õ(n(1.843+2)/2/δ)
time per update and query.

12.1 Exercises

12.1.1 Recursive Laplace Noise

In the lecture we discussed how we can sample from a Laplace distribution L(µ, b) such that
it often suffices to compute only some µ′ ≈ µ instead. We showed that we only need to
compute µ with some probability O(α). This probability depends on the accuracy of µ′ ≈ µ.
The more accurate µ′, the smaller we can make α. Since computing a very accurate estimate
µ′ might be inefficient, we here want to prove a generalization that requires the accurate
estimate less frequently.

The following theorem states that if we have several estimate µi of µ0 of varying accu-
racy, then we need the more accurate estimates less frequently.

Problem: Prove the following Theorem.

Theorem 12.1.1. Assume we can compute µi ∈ R in time Ti for i = 0, ..., k. Assume further
we have some bound D such that D · 2i ≥ |µi − µi+1| for all i = 0, ..., k − 1, and α, b are such
that D/b ≤ α ≤ 2/2k.

Then we can sample X ∼ L(µ0, b) in expected time O(Tk + α
∑k−1

i=0 2iTi).

Hint: Theorem 18.0.4 in the lecture notes is the special case for k = 1.
Use recursion.

12.1.2 High Dimensional Laplace Noise

In the lecture we discussed how to hide approximation errors of data structures by adding
Laplace noise. We assumed that the output of the data structure µ′ and the exactly correct
value µ are some real numbers. We here want to extend the result to the case where we
might compute a vector instead of a real number.

Dynamic Algebraic Algorithms (v. 2023/09/04) 122

Problem: Prove the following Theorem.

Theorem 12.1.2. Assume we can compute µ ∈ Rn in time T and µ′ ∈ Rn in time T ′. Assume
further we have some bound D ≥ ∥µ− µ′∥1 and α, b such that D/b ≤ α ≤ 1.

Then we can sample in expected time O(T ′ + αT) a random X ∈ Rn such that each Xi is
independently Xi ∼ L(µi, b) distributed for i = 1, ..., n.

Hint: Theorem 18.0.4 in the lecture notes is the special case for n = 1.

Bibliography

[ACK17] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-
pairs shortest paths with worst-case update-time revisited. In SODA, pages
440–452. SIAM, 2017.

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and
faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 522–539. SIAM, 2021.

[BNS19] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dy-
namic matrix inverse: Improved algorithms and matching conditional lower
bounds. In FOCS, pages 456–480. IEEE Computer Society, 2019.

[CKL18] Diptarka Chakraborty, Lior Kamma, and Kasper Green Larsen. Tight cell probe
bounds for succinct boolean matrix-vector multiplication. In STOC, pages
1297–1306. ACM, 2018.

[CLS19] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the
current matrix multiplication time. In STOC, pages 938–942. ACM, 2019.

[CW13] Kenneth L Clarkson and David P Woodruff. Low rank approximation and
regression in input sparsity time. In STOC. ACM, 2013.

[DL77] Richard A DeMillo and Richard J Lipton. A probabilistic remark on alge-
braic program testing. Technical report, GEORGIA INST OF TECH ATLANTA
SCHOOL OF INFORMATION AND COMPUTER SCIENCE, 1977.

[DWZ22] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via
asymmetric hashing. arXiv preprint arXiv:2210.10173, 2022.

[FMNZ01] Daniele Frigioni, Tobias Miller, Umberto Nanni, and Christos D. Zaroliagis. An
experimental study of dynamic algorithms for transitive closure. ACM J. Exp.
Algorithmics, 6:9, 2001.

[Gal14] François Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC,
pages 296–303. ACM, 2014.

[GU18] François Le Gall and Florent Urrutia. Improved rectangular matrix multipli-
cation using powers of the coppersmith-winograd tensor. In Proceedings of

123

Dynamic Algebraic Algorithms (v. 2023/09/04) 124

the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1029–1046. SIAM, 2018.

[HHS21] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Recent advances
in fully dynamic graph algorithms. CoRR, abs/2102.11169, 2021.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and
Thatchaphol Saranurak. Unifying and strengthening hardness for dynamic
problems via the online matrix-vector multiplication conjecture. In STOC,
pages 21–30. ACM, 2015.

[JPW22] Shunhua Jiang, Binghui Peng, and Omri Weinstein. Dynamic least-squares
regression. CoRR, abs/2201.00228, 2022.

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster
algorithm for solving general lps. In STOC, pages 823–832. ACM, 2021.

[KS02] Valerie King and Garry Sagert. A fully dynamic algorithm for maintaining the
transitive closure. Journal of Computer and System Sciences, 65(1):150–167,
2002.

[KZ08] Ioannis Krommidas and Christos D. Zaroliagis. An experimental study of algo-
rithms for fully dynamic transitive closure. ACM J. Exp. Algorithmics, 12:1.6:1–
1.6:22, 2008.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization
in the current matrix multiplication time. In COLT, volume 99 of Proceedings
of Machine Learning Research, pages 2140–2157. PMLR, 2019.

[Ore22] Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter,
1(7):15, 1922.

[Pan78] Victor Y. Pan. Strassen’s algorithm is not optimal: Trililnear technique of ag-
gregating, uniting and canceling for constructing fast algorithms for matrix
operations. In FOCS, pages 166–176. IEEE Computer Society, 1978.

[Ren88] James Renegar. A polynomial-time algorithm, based on newton’s method, for
linear programming. Math. Program., 40(1-3):59–93, 1988.

[S+69] Volker Strassen et al. Gaussian elimination is not optimal. Numerische mathe-
matik, 13(4):354–356, 1969.

[San04] Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse (ex-
tended abstract). In FOCS, pages 509–517. IEEE Computer Society, 2004.

[San05] Piotr Sankowski. Subquadratic algorithm for dynamic shortest distances. In
COCOON, volume 3595 of Lecture Notes in Computer Science, pages 461–470.
Springer, 2005.

[San07] Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In SODA,
pages 118–126. SIAM, 2007.

(version 2023/09/04) 125

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM (JACM), 27(4):701–717, 1980.

[SM50] Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix cor-
responding to a change in one element of a given matrix. The Annals of Math-
ematical Statistics, 21(1):124–127, 1950.

[Vai87] Pravin M. Vaidya. An algorithm for linear programming which requires
o(((m+n)nˆ2 + (m+n)ˆ1.5 n)l) arithmetic operations. In STOC, pages 29–
38. ACM, 1987.

[vdBLN+20] Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng,
Thatchaphol Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite
matching in nearly-linear time on moderately dense graphs. In 2020 IEEE
61st Annual Symposium on Foundations of Computer Science (FOCS), pages
919–930. IEEE, 2020.

[vdBLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall
dense linear programs in nearly linear time. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, pages 775–788, 2020.

[Woo50] Max A Woodbury. Inverting modified matrices. Statistical Research Group,
1950.

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences be-
tween path, matrix and triangle problems. In FOCS, pages 645–654. IEEE
Computer Society, 2010.

[YTM94] Yinyu Ye, Michael J. Todd, and Shinji Mizuno. An o(
√

nl)-iteration ho-
mogeneous and self-dual linear programming algorithm. Math. Oper. Res.,
19(1):53–67, 1994.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Inter-
national symposium on symbolic and algebraic manipulation, pages 216–226.
Springer, 1979.

	I Combinatorial Matrix Multiplication
	Linear Least Squares Regression
	Dynamic Least Squares
	Initialization

	Exercises
	Dynamic Determinant
	Dynamic Weighted Least Squares

	Further Resources

	Dynamic All-Pairs-Reachability
	Dynamic Path Counting for DAGs
	Initialization

	An Algebraic Perspective
	Dynamic APR for General Graphs
	Determinants and Cycle-Covers
	Inverse and Reachability

	Exercise
	Further Resources

	Dynamic All-Pairs-Distances
	Polynomial Matrices
	Dynamic Polynomial Matrix Inverse
	Hitting Sets
	Combining the Tools
	Exercises
	Polynomial Matrix Inverse
	Distances in Weighted Graphs
	Dynamic Distances in Weighted Graphs

	Further Resources

	Solving Linear Programs in nd2+n1.5d time
	Linear Programs
	Example for Duality

	Framework for solving Linear Programs
	Primal-Dual Central Path Method
	Initial Point

	Improvements via Approximate Inverse

	Solving Linear Programs in nd2 time
	Idea for a faster Algorithm
	Robust Interior Point Method
	Feasibility
	Maintaining small Phi

	Vector Maintenance
	Heavy Hitter
	Maintaining Approximate Vectors

	II Fast Matrix Multiplication
	Fast Matrix Multiplication
	Strassen Matrix Multiplication
	Rectangular Matrix Multiplication

	Dynamic Matrix Inverse
	Faster data structure for few updates
	Worst-case update time
	Rank and non-invertible matrices
	Exercises
	Matrix Data Structure, Faster Column Updates
	Matrix Data Structure, Faster element Updates

	Conditional Lower Bounds
	Lower Bounds for combinatorial algorithms and data structures
	OMv-Problem and Conjecture
	Conditional Lower Bounds

	Exercises
	Reducing OuMv to OMv
	Lower Bound for Row and Column Updates

	III Approximation and Adaptivity
	Sketching and Subspace Embeddings
	Subspace embedding
	Leverage Scores

	Dynamic Approximate Least Squares
	Preliminaries
	Main Result
	Exercises
	Finding a large entry
	Counter example for regression
	Faster linear program solver via leverage scores
	Sketching for solving linear systems

	Approximate Distances
	Approximate Distances via Linear Algebra
	Exercise

	Handling Adaptive Adversaries via Random Noise
	Exercises
	Recursive Laplace Noise
	High Dimensional Laplace Noise

