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The Sampling Problem

Input: integrable function f: R™ - R,, point x s.t.
f(x) = B, error parameter &.

Output: Point y from a distribution within “distance” ¢
of distribution with density proportional to f.

Examples: f(x) = 14(x), f(x) = e~ al*ll1,(x)




The Sampling Problem

Problem: sample a point from the uniform distribution on a
given convex set K or according to a logconcave density f.

Oracle setting: membership for K or value of function f.
Polytope setting: K = {Ax = b}.

Why:
Compute volume, center of gravity, covariance matrix, ...

Robust/online/private optimization, model exploration,
learning

Provides a lens to understand convexity!
and optimization, and the model of computation



How to sample?

Ball walk:
At x, pick randomy from x + 6B,
ifyisin K,gotoy

The process is symmetric
So the stationary distribution is uniform

Discrete time version of Brownian motion with
reflection.



Hit-and-Run

[Boneh],[Smith]
At x, pick a random chord L through x

go to a uniform random pointy on L

L

Random walk is symmetric,
stationary distribution is uniform

No need to have a step-size parameter §



Dikin Walk

At X,

pick randomy from E,, = {y: ||A,(y — x)|| < 1}
vol(E,)

if x € E,, go to y with prob. min 1,

vol(Ey)




Hamiltonian Monte Carlo

Hamiltonian: function of position and velocity.
Each step is according to an ODE defined by the Hamiltonian:

dx 0H(x,v) dv  0H(x,v) \
dt ~ ov dt ~ ox | VAN

Ham walk: To sample according to e /(¥ set
H(x,v) = f(x) +log((2m)"g(x)) + v g(x)™"v

At current point x,

Pick a random velocity v according to a local distribution N(0, g(x)™1)
defined by x (in the Euclidean setting, this is a standard Gaussian).

Move along the curve defined by Hamiltonian dynamics at (x, v) for time §
or —§, each with probability 0.5.



State of the art, in theory

Year/Authors

| 989/Dyer-Frieze-Kannan

| 990/Lovasz-Simonovits

| 990/Lovasz

199 1/Applegate-Kannan
1990/Dyer-Frieze

| 993/Lovasz-Simonovits

| 997/Kannan-Lovasz-Simonovits
2003/Lovasz-V.

2015/Cousins-V. (well-rounded)
2017/Lee-V. (polytopes)
2021/Jia-Lee-Laddha-V.

“In Theory today, Ball Walk is Best,” i.e., fastest known polynomial-time algorithm.

New ingredients
Everything

Better isoperimetry
Ball walk

Logconcave sampling
Better error analysis
Localization lemma
Speedy walk, isotropy
Annealing, hit-and-run
Gaussian Cooling
Hamiltonian Walk

Better Rounding



» Technique [LS93]: “conductance” of Markov chain is large.

» (one-step overlap): Nearby points have overlapping one-step
distributions

» (isoperimetry) Large subsets have large boundaries:

n(S3) = C -d(S1,S,) minn(S,), m(S,)



Convergence of ball walk

Theorem [KLS97].The ball walk applied to a near-isotropic
logconcave density p, from a warm start, converges in

0*(n*y7) steps.

1 . p(0S)

Y, s min(p(S),p(59))

“Cheeger constant of this Markov chain is determined by
Cheeger constant of its stationary distribution”



Gaussian Cooling

Thm [Cousins-V’15]. The complexity of sampling/volume

computation of any well-rounded convex body is 0*(n?)
membership queries.

Well-rounded: K contains a unit ball and

E(llx —x11?) = 0(n)
Most of K lies in a ball of radius 0(y/n)
No warm start assumption

[LVO3]: can put K in near-isotropic position in n*.
Isotropic position (E(x) = 0; E(xx") = I) = well-rounded

LV rounding + CV algorithm = n* sampling for any K.



Rounding and KLS?

Can we round faster than n*?

Thm [Jia-Laddha-Lee-V’21]. Any convex body can be brought
into near-isotropic position using 0(n31)2) membership queries.

Cor. Sampling/Volume of any convex body in 0*(n3y2).

nyZ for subsequent samples, since we will have a warm start
in an isotropic body.



Sampling

Ball Walk, with membership oracle
At x, pick random y from x + 6B,

if yisin K,go toy g

Thm [KLS97].
n° queries for first sample, n3 queries for later samples.

KLS conjecture = n? for later samples (“warm start” and “isotropic density”)

Thm [Jia-Laddha-LV21]
n3 for first sample.

Thm. [Klartag-Lehec22] KLS true up to polylog.
= n? for later samples.

Q. Best possible!?



Rounding and Integration (Volume)

Thm. [DFK89]

Volume of a convex body in n
Thm.[LV06]

Integration of a logconcave function in n* oracle calls.

23 oracle calls.

Thm. [Cousins-V. 5]
Volume of well-rounded convex body in n>.

Rounding problem:
Find affine transformation s.t.y = Ax has E(y) = 0,E(yy ") =~ I.

Thm. [JLLV2I]
Rounding in n3.

Q. Is quadratic the best possible!?



Why “so” slow?

Bottleneck: Step size, i.e., can only take small steps to
maintain polytime, roughly 1//n.

If larger, most steps are wasted, i.e., go outside the body,
even in a hypercube.

How about bigger steps deeper inside, smaller steps near
boundary!?

Can we use the “local” geometry!?



Polytope — Hessian manifold

Hessian manifold: a subset of R™ with inner product

(u,v), = uT(V2¢(x))v for convex ¢.

For a polytope {alTx > b; Vi},

we use the log barrier function:

#(x) = Ty log ()

si(x)

s;(x) = a] x — b; is the distance from x to constraint i

¢ blows up when x is close to the boundary

Distances “stretch” near the boundary



Local geometry from Convex Barriers

» Smooth, self-concordant, convex barrier function ¢: P = R,
» Blows up near the boundary
» Classical example for x; = 0: p(x) = —);log x;

» V2¢p(x) = Diag (%)
» The ellipsoid E(x) defined by V2¢ satisfies:

E(x) S KN (2x —K) S+\VE(x)




Interior-Point Method

[Nesterov-Nemirovski94, following Dikin, Karmarkar,...]

Instead of minimizing ¢ x, consider ¢"x + t - ¢(x) where
» Easier to minimize smooth convex functions (Newton iteration)

» Gradually reduce t:
1
t—t|{l——
%)

» where v is the symmetry parameter
» Hiterations: /v
Sequence of optimal points, the central path, is strictly interior

@ needs to be self-concordant, i.e., Hessian H(x) = V?¢ (x)
changes slowly:

|H(x)"Y2DH(x)[h]H (x)"Y?|| < 2hTH(x)h

(when H(x) = I,then this is || DH(x)[R]|| < 2||Al|?)



Interior-Point Method 2.0

Has led to improvements in the past decade for
Combinatorial Optimization and Linear Programming!

» Universal barrier:v =n + 1, time: poly(n)
» Entropic barrier: v = n, time: poly(n)
» Log barrier: v = m, fast

Thm. [LS14] Weighted log barrier: v = O (n), fast!

» Implies y/n iterations to solve a linear program with one linear
system per iteration



Sampling with an adaptive step size

Use the ellipsoid defined by the Hessian of a convex function!
Hessian H = V?¢ defines a local metric: ||v||2 = vTH(x)v.

Dikin walk: At x,

» pick randomy from E, = {y: ||A,(y — x)|| < 1}
vol(Ey)
"vol(Ey)

» if x € Ey, go to y with prob. min {1

For log barrier, A, = Diag (S_(lx)) A

» Each row is scaled by distance to boundary

H(x) = AIAx

Thm. [K-Narayanan 2]
Dikin walk with log barrier mixes in mn steps, mn®~1 per step.



Weighted Dikin walk

» Dikin walk: At X,

» pick random y from E, = {y: ||H(x)1/2(y — x)” < 1}
vol(E,)

vol(Ey)

» if x € E,, go to y with prob. min 1,

Thm. [K-Narayanan|2]
Mixes in mn steps, mn®~! per step.

Thm. [Laddha-LV20]

Mixes in nv steps for any strongly self-concordant barrier.
» Log barrier: mn steps, nnz(A) + n? per step.
» Weighted log barrier: n* steps, mn®~?! per step.
» Strongly self-concordant:

|H(x)~Y2DH (x)[R]H (x)~1/2 ||F = 0(hTH(x)h)



[soperimetry

Isoperimetry is in a non-Euclidean metric: For any partition of a
convex body K into subsets 51,55, 53,

p(S3) = dg (51, S2)p(S1)p(S2)

Cross-ratio distance:

lu—v||[|x=yl|
de(u,v) =
x (1, v) lx—ull|lv—y||

Hilbert distance:
dy(u,v) =log(1+ dg(u,v))
IS a metric.

Q. Does weighted Dikin mix in n steps?! (mn is tight for log barrier)

Aside: KLS conjecture = strong self-concordance for Universal and
Entropic barriers ©



The rejection probability bounds step size

How to take a larger step!
Can we avoid the Metropolis filter?

Let’s use a deterministic “drift” instead.



Hamiltonian Montian Carlian

Hamiltonian: function of position and velocity.
Each step is according to an ODE defined by the Hamiltonian:

dx 0H(x,v) dv  0H(x,v) \
dt ~ ov dt ~ ox | VAN

Ham walk: To sample according to e /(¥ set

1 1
H(x,v) = f(x) + Elog((Zn)" detg(x)) + Eng(x)‘lv

At current point x,

Pick a random velocity v according to a local distribution N (0, g(x)~1)
defined by x (in the Euclidean setting, this is a standard Gaussian).

Move along the curve defined by Hamiltonian dynamics at (x, v) for time §
or —0, each with probability 0.5.



Convergence of RHMC

Thm [Lee-V.17]:With log barrier, RHMC mixes in 0(mn?/3) steps.
Subquadratic!

Thm [Lee-V.17]: For log barrier on [0,1]™, RHMC mixes in 0(1) steps.

Previous algorithms such as ball walk, hit-and-run and Dikin walk take (1(n)
steps for [0,1]".

Each step is the solution of a linear system, so mn®~1
Q: Can we use dynamic data structures to reduce the per-step cost!?

Q: What is the best metric to use that is still computable?

Q: What is the right KLS conjecture in the Hessian manifold setting?



Constrained RHMC

Typical problems often have equality constraints Ax = b.
Pick the metric g in the subspace:

1 1
H(x,v) = f(x) +E||v||;(x) + > log pdetg (x).

1 1
H(x,v) = f(a:)+§fuTX(I—XAT(AXQAT)_lAX)XU—Zlog zity log det(AX2AT)

RHMC Algo:

» Sample v~eH®Y) (conditional on x)
» (x,v) « T(x,v) (T preserves the density e‘H(x"’))

The map T(x, v) is given by an ODE (solved at t = 1)

dx_dH dv_ dH 0) = (0) =
dt _ dv’  dt  dx’ TV TAONRIEW



State of the art, in theory

General Gaussian
Logconcave in Convex Body
[Lovasz-V’06] [Cousins-V’15]
n* - n? n3 - n?

n? - n? n? .- n?

Ball walk /H-and-R  Ball walk

RHMC:
Weighted Dikin:

Uniform Uniform
in Convex Body in Polytope
[ia-Laddha-Lee-V'21]  [JLLV’21]
n3 . n2 mn3-2
n? - n? mn?3 (warm start)
Ball walk Ball walk
mn2/3 . mnl-38
n? . mnl38

“In Theory today, Ball Walk is Best,” i.e., fastest known polynomial-time algorithm.



State of the art, in practice: CRHMC*

Ronan Fleming gave us the latest, largest metabolic model.
670,114 reactions and 585,662 Metabolites
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Existing first-order packages K | {
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CRHMC takes <1 hr : LH T T i
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Can also sample polytopes = “\ “

in netlib (notoriously degenerate) N
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You can try it!

» https://github.com/ConstrainedSampler/PolytopeSampler
Matlab

» With Yunbum Kook, Yin Tat Lee, Ruoqgi Shen (2022)

» Now in COBRA, the leading system biology analysis tool
(Ronan Fleming, Ines Thiele et al.)

__ Sampling Time
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~ 103} 316 | .
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Dimension


https://github.com/ConstrainedSampler/PolytopeSamplerMatlab

Earlier packages for Volume/Sampling

» Cousins-V’ (circa 201 3)

MATLAB (“A Practical Volume Algorithm”, Math. Prog. C 201 6)
incorporated in COBRA (with R. Fleming, H. Haroldsdottir)
Computes volume using a membership oracle

Goes up to 1000 full-dimensional polytopes on laptop in < |hr.

v v vV VvV v

https://www.mathworks.com/matlabcentral/fileexchange/43596
-volume-and-sampling
» VolEsti (Fisikopoulos et al.)

» C++ (Emris-Fisikopoulos,ACM Trans. on Math. Software 2018)

» Reported better run times for some benchmarks

» https://github.com/GeomScale/volume_approximation



https://www.mathworks.com/matlabcentral/fileexchange/43596-volume-and-sampling
https://github.com/GeomScale/volume_approximation

Continuous Algorithms

Sampling: dX, = —Vf(X,)dt +V2dB, (LD)

» Langevin Diffusion converges to distribution with density
proportional to e /)

Thm. [Jordan-Kinderlehrer-Otto98; Wibisono | 8]

Sampling by LD is optimization in the space of measures
with Wasserstein metric and objective relative entropy to

target e /.



Can we sample faster?

Brownian motion SDE:
dxt — ,U.(xt, t)dt + \/ZA(xt, t)th

Each point x € K has its own local scaling (metric) given by A(x;, t).

Thm. [Fokker-Planck] Diffusion equation of above SDE is

% 0 ==Y e e 0] 45 Y Y
i |

When u = 0, A = I, this is the heat equation:%p(x, t) = %Ap(x, t).

ZAU (x, )p(x, )]

For any metric, SDE gives diffusion equation.
Using u(x) = —Df(x) gives stationary p(x) = e~/ (%),



Sampling by Diffusion: Isoperimetry suffices

Rate of convergence!
dX, = —Vf(X,)dt +V2dB,

Thm. [Bakry-Gentil-Ledoux14] H, (p;) < e ***H,(py)

Here a is the Log-Sobolev constant of e ¥ wrt the metric.

py 1 P||? 1
H,(p) = E, (log;)S%Ep log=l | =57 1v(p)

Proof notes that % = —V,H,(p) and LSl is “gradient
domination.



Diffusion—>Algorithm: Isoperimetry suffices

Unadjusted Langevin Algorithm:
Xi+1 =X, —hVf(Xy) +V2hZ where Z ~ N(O,I)

Thm.[V.-Wibisono 9] Assuming f is L-smooth (||Vf|| < L),
8L%n

H,(px) < e "k H,(py) +

So, with h = aé/nlL?,

nL? (ZHV(PO)

after k = —l og(——>) steps, we have H,,(p;) < 9.

Note: no convexity assumption; dependence on dimension is linear.

An active field, with many results based on smoothness parameters
for interesting classes of functions.



What about using local geometry?

Riemannian Langevin Diffusion
In Euclidean coordinates:

dX; = (D g(Xp) ™ = g(Xt)_lDf(Xt))dt + \/Zg(x)‘ldBt

In manifold local coordinates:
X, = (V- g(X) ™ = VF(X)dt +/2g(x)~dB,
where V is the manifold derivative, F(x) = f(x) + %log det g(x)

Convergence in KL-divergence under log-Sobolev inequality wrt manifold
measure holds

In progress: Riemannian Langevin Algorithm
discretization of RLD [Erdogdu-Li2l, Ahn-Chewi2l, Gatmiry-V.22]



The Story of Isoperimetry

KLS conjecture: Cheeger constant (expansion) of isotropic logconcave density
is (1), or
Vn(S)

Yo s O
KLS95] NG
'Guedon-Milman] nl/3
LVI17] nt/4
'Chen20] 24/lognloglogn
Klartag-Lehec22] log®n

Thm.[KLS97]. Sampling in n??2.
Thm.[JLLV21].Rounding in n3y?2.
Thm.[CV15].Volume of well-rounded body in n3.



[soperimetry: the next decade

» How true is the KLS conjecture? Does it matter?

» Dimension-independent bound would be so nice

» Implies dimension-independent bounds for many other well-known, existing conjectures in
convex geometry: Slicing, Thin-Shell, Central Limit, Concentration, Entropy Jump etc.

» But here’s a concrete TCS reason:
KLS = Certifiable sub-Gaussianity [Kothari-Steinhardt|7]

» If KLS is true, then there is an SoS proof of moment inequalities for any logconcave density.

» This implies results on robustly clustering Gaussians can be generalized to robustly
clustering logconcave densities!

» Getting a constant is critical for polytime, with the SoS approach.

Q. Are they equivalent?!
Almost: certifiable sub-Gaussianity = thin-shell = KLS is O(logn).



[soperimetry: the next decade

Q.What is the right KLS conjecture on Hessian
manifolds?

An attempt: there is a subset defined by a hyperplane that is
within O(1) of the minimum isoperimetry subset.

A decomposition conjecture for convex bodies (= KLS).
Conj: For any isotropic convex body,
any decomposition of it into cylinders,
a constant fraction of the cylinders
must be of length O(1).




Open Problems: Probability

Q2.When to stop! How to check convergence to
stationarity on the fly!? Does it suffice to check that the
measures of all halfspaces have converged!?

Note: poly(n) sample can estimate all halfspace measures

Ben Cousin’s uniformity test:
Check if time spent in scaling (1 — @)K is (1 — a)™.




Randomness

Can we estimate the volume of an explicit polytope in
deterministic polynomial time!?

Ax <b




Thank you!

and:

Ravi Kannan
Laci Lovasz
Adam Kalai
Ronan Fleming
Ben Cousins
Yin Tat Lee

He Jia

Aditi Laddha
Ruogi Shen
Yunbum Kook
Khashayar Gatmiry



