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The Sampling Problem

Input: integrable function 𝑓: 𝑅𝑛 → 𝑅+, point 𝑥 s.t.

𝑓 𝑥 ≥ 𝛽, error parameter ε. 

Output:  Point y from a distribution within “distance” ε
of distribution with density proportional to f.

Examples:  𝑓 𝑥 = 1𝐾 𝑥 , 𝑓 𝑥 = 𝑒−𝑎 𝑥 1𝐾(𝑥)



The Sampling Problem

Problem: sample a point from the uniform distribution on a 
given convex set K or according to a logconcave density 𝑓.

 Oracle setting: membership for 𝐾 or value of function 𝑓.

 Polytope setting: 𝐾 = {𝐴𝑥 ≥ 𝑏}.

Why: 

 Compute volume, center of gravity, covariance matrix, …

 Robust/online/private optimization, model exploration, 
learning

 Provides a lens to understand convexity! 

 and optimization, and the model of computation



How to sample?   

Ball walk:

At x,   pick random y from 𝑥 + 𝛿𝐵𝑛
if y is in K, go to y

 The process is symmetric 

 So the stationary distribution is uniform

 Discrete time version of Brownian motion with 

reflection.



Hit-and-Run

[Boneh],[Smith]

At x,  pick a random chord L through x

go to a uniform random point y on L

 Random walk is symmetric,

 stationary distribution is uniform

 No need to have a step-size parameter 𝛿

 Coordinate Hit-and-Run: pick random axis direction



Dikin Walk

At x,  

pick random y from 𝐸𝑥 = {𝑦: 𝐴𝑥 𝑦 − 𝑥 ≤ 1}

if 𝑥 ∈ 𝐸𝑦, go to 𝑦 with prob. min 1,
vol 𝐸𝑥

vol 𝐸𝑦



Hamiltonian Monte Carlo
Hamiltonian: function of position and velocity. 

Each step is according to an ODE defined by the Hamiltonian:

𝑑𝑥

𝑑𝑡
=
𝜕𝐻 𝑥, 𝑣

𝜕𝑣

𝑑𝑣

𝑑𝑡
= −

𝜕𝐻 𝑥, 𝑣

𝜕𝑥

Ham walk:  To sample according to 𝑒−𝑓(𝑥), set 

𝐻 𝑥, 𝑣 = 𝑓 𝑥 + log 2𝜋 𝑛𝑔 𝑥 + 𝑣𝑇𝑔 𝑥 −1𝑣

At current point 𝑥,

 Pick a random velocity 𝑣 according to a local distribution 𝑁(0, 𝑔 𝑥 −1)
defined by 𝑥 (in the Euclidean setting, this is a standard Gaussian).

 Move along the curve defined by Hamiltonian dynamics at (𝑥, 𝑣) for time 𝛿
or −𝛿, each with probability 0.5.



State of the art, in theory

General Gaussian Uniform Uniform

Logconcave in Convex Body in Convex Body        in Polytope

[Lovász-V’06] [Cousins-V’15] [Jia-Laddha-Lee-V’21]    [JLLV’21]

𝑛4 ⋅ 𝑛2 𝑛3 ⋅ 𝑛2 𝑛3+𝑜(1) ⋅ 𝑛2 𝑚𝑛3.2

𝑛2+𝑜(1) ⋅ 𝑛2 𝑛2 ⋅ 𝑛2 𝑛2+𝑜(1) ⋅ 𝑛2 𝑚𝑛2.3 (warm start)

Ball walk /H-and-R    Ball walk Ball walk Ball walk

RHMC: 𝑚𝑛2/3 ⋅ 𝑚𝑛1.38

Weighted Dikin: 𝑛2 ⋅ 𝑚𝑛1.38

“In Theory today, Ball Walk is Best,” i.e., fastest known polynomial-time algorithm.

Year/Authors                                        New ingredients                  Steps 

1989/Dyer-Frieze-Kannan                      Everything                           𝑛23

1990/Lovász-Simonovits Better isoperimetry 𝑛16

1990/Lovász Ball walk                             𝑛10

1991/Applegate-Kannan Logconcave sampling            𝑛10

1990/Dyer-Frieze Better error analysis             𝑛8

1993/Lovász-Simonovits Localization lemma               𝑛7

1997/Kannan-Lovász-Simonovits Speedy walk, isotropy            𝑛5

2003/Lovász-V. Annealing, hit-and-run           𝑛4

2015/Cousins-V. (well-rounded)             Gaussian Cooling                  𝑛3

2017/Lee-V. (polytopes) Hamiltonian Walk          𝑚𝑛2/3

2021/Jia-Lee-Laddha-V.                           Better Rounding                   𝑛3



Convergence depends on isoperimetry

 Technique [LS93]:  “conductance” of Markov chain is large. 

 (one-step overlap): Nearby points have overlapping one-step 

distributions

 (isoperimetry) Large subsets have large boundaries:

𝜋 𝑆3 ≥ 𝐶 ⋅ 𝑑 𝑆1, 𝑆2 min𝜋 𝑆1 , 𝜋 𝑆2



Convergence of ball walk

Theorem [KLS97]. The ball walk applied to a near-isotropic

logconcave density 𝑝, from a warm start, converges in 

𝑂∗ 𝑛2𝜓𝑝
2 steps.  

“Cheeger constant of this Markov chain is determined by 

Cheeger constant of its stationary distribution”

1

𝜓𝑝
= min

𝑆

𝑝(𝜕𝑆)

min(𝑝 𝑆 , 𝑝 𝑆𝑐 )



Gaussian Cooling

Thm [Cousins-V’15]. The complexity of sampling/volume 
computation of any well-rounded convex body is 𝑂∗(𝑛3)
membership queries.

 Well-rounded: 𝐾 contains a unit ball and 

𝐸 𝑥 − ҧ𝑥 2 = ෨𝑂 𝑛

 Most of K lies in a ball of radius ෨𝑂 𝑛
 No warm start assumption

 [LV03]: can put K in near-isotropic position in 𝑛4.

 Isotropic position (𝐸 𝑥 = 0; 𝐸 𝑥𝑥⊤ = 𝐼) ⇒ well-rounded 

 LV rounding + CV algorithm → 𝑛4 sampling for any 𝐾.



Rounding and KLS?

 Can we round faster than 𝑛4 ?

Thm [Jia-Laddha-Lee-V’21].  Any convex body can be brought 

into near-isotropic position using ෨𝑂 𝑛3𝜓𝑛
2 membership queries.

Cor.  Sampling/Volume of any convex body in 𝑂∗ 𝑛3𝜓𝑛
2 .

 𝑛2𝜓𝑛
2 for subsequent samples, since we will have a warm start 

in an isotropic body.



Sampling
Ball Walk, with membership oracle 

At x,   pick random y from 𝑥 + 𝛿𝐵𝑛
if y is in K, go to y

Thm [KLS97]. 

𝑛5 queries for first sample, 𝑛3 queries for later samples.

KLS conjecture ⇒ 𝑛2 for later samples (“warm start” and “isotropic density”)

Thm [Jia-Laddha-LV21] 

𝑛3 for first sample.

Thm. [Klartag-Lehec22] KLS true up to polylog. 

⇒ 𝑛2 for later samples.

Q. Best possible?



Rounding and Integration (Volume)
Thm. [DFK89]

Volume of a convex body in 𝑛23 oracle calls.

Thm. [LV06]

Integration of a logconcave function in 𝑛4 oracle calls.

Thm. [Cousins-V.15]

Volume of well-rounded convex body in 𝑛3.

Rounding problem: 

Find affine transformation s.t.𝑦 = 𝐴𝑥 has 𝐸 𝑦 = 0, 𝐸 𝑦𝑦⊤ ≃ 𝐼.

Thm. [JLLV21]

Rounding in 𝑛3.

Q. Is quadratic the best possible?



Why “so” slow?

 Bottleneck: Step size, i.e., can only take small steps to 

maintain polytime, roughly 1/ 𝑛. 

 If larger, most steps are wasted, i.e., go outside the body, 

even in a hypercube. 

 How about bigger steps deeper inside, smaller steps near 

boundary? 

 Can we use the “local” geometry?



Hessian manifold: a subset of ℝ𝑛 with inner product 

𝑢, 𝑣 𝑥 = 𝑢𝑇 𝛻2𝜙 𝑥 𝑣 for convex 𝜙. 

For a polytope 𝑎𝑖
𝑇𝑥 ≥ 𝑏𝑖 ∀𝑖 ,

we use the log barrier function:

𝜙 𝑥 = σ𝑖=1
𝑚 log

1

𝑠𝑖 𝑥

▪ 𝑠𝑖 𝑥 = 𝑎𝑖
𝑇𝑥 − 𝑏𝑖 is the distance from 𝑥 to constraint 𝑖

▪ 𝜙 blows up when 𝑥 is close to the boundary

▪ Distances “stretch” near the boundary

Polytope → Hessian manifold



Local geometry from Convex Barriers
 Smooth, self-concordant, convex barrier function 𝜙:𝑃 → 𝑅+

 Blows up near the boundary

 Classical example for 𝑥𝑖 ≥ 0: 𝜙 𝑥 = −σ𝑖 log 𝑥𝑖

 ∇2𝜙 𝑥 = 𝐷𝑖𝑎𝑔
1

𝑥𝑖
2

 The ellipsoid 𝐸(𝑥) defined by ∇2𝜙 satisfies:

𝐸 𝑥 ⊆ 𝐾 ∩ (2𝑥 − 𝐾) ⊆ 𝜈𝐸(𝑥)



Interior-Point Method
 [Nesterov-Nemirovski94, following Dikin, Karmarkar,…]

 Instead of minimizing 𝑐⊤𝑥, consider 𝑐⊤𝑥 + 𝑡 ⋅ 𝜙(𝑥) where
 Easier to minimize smooth convex functions (Newton iteration)

 Gradually reduce 𝑡:

𝑡 ← 𝑡 1 −
1

𝜈
 where 𝜈 is the symmetry parameter

 #iterations: 𝜈

 Sequence of optimal points, the central path, is strictly interior

 𝜙 needs to be self-concordant, i.e., Hessian 𝐻 𝑥 = ∇2𝜙 𝑥
changes slowly:

𝐻(𝑥)−1/2𝐷𝐻 𝑥 [ℎ]𝐻(𝑥)−1/2 ≤ 2ℎ𝑇𝐻 𝑥 ℎ

(when 𝐻 𝑥 = 𝐼, then this is 𝐷𝐻 𝑥 ℎ ≤ 2 ℎ 2 )



Interior-Point Method 2.0

 Has led to improvements in the past decade for 

Combinatorial Optimization and Linear Programming!

 Universal barrier: 𝜈 = 𝑛 + 1, time: 𝑝𝑜𝑙𝑦(𝑛)

 Entropic barrier: 𝜈 = 𝑛, time: 𝑝𝑜𝑙𝑦(𝑛)

 Log barrier: 𝜈 = 𝑚, fast

 Thm. [LS14] Weighted log barrier: 𝜈 = ෨𝑂(𝑛), fast!

 Implies 𝑛 iterations to solve a linear program with one linear 

system per iteration



Sampling with an adaptive step size
 Use the ellipsoid defined by the Hessian of a convex function!

 Hessian 𝐻 = ∇2𝜙 defines a local metric: 𝑣 𝑥
2 = 𝑣⊤𝐻 𝑥 𝑣.

 Dikin walk:  At x,  
 pick random y from 𝐸𝑥 = 𝑦: 𝐴𝑥 𝑦 − 𝑥 ≤ 1

 if 𝑥 ∈ 𝐸𝑦, go to 𝑦 with prob. min 1,
vol 𝐸𝑥

vol 𝐸𝑦

 For log barrier, 𝐴𝑥 = 𝐷𝑖𝑎𝑔
1

𝑠𝑖 𝑥
𝐴

 Each row is scaled by distance to boundary

 𝐻 𝑥 = 𝐴𝑥
⊤𝐴𝑥

Thm. [K-Narayanan12]

Dikin walk with log barrier mixes in 𝑚𝑛 steps, 𝑚𝑛𝜔−1 per step.



Weighted Dikin walk

 Dikin walk:  At x,  

 pick random y from 𝐸𝑥 = 𝑦: 𝐻 𝑥 1/2 𝑦 − 𝑥 ≤ 1

 if 𝑥 ∈ 𝐸𝑦, go to 𝑦 with prob. min 1,
vol 𝐸𝑥

vol 𝐸𝑦

Thm. [K-Narayanan12]

Mixes in 𝑚𝑛 steps, 𝑚𝑛𝜔−1 per step.

Thm. [Laddha-LV20]

Mixes in 𝑛𝜈 steps for any strongly self-concordant barrier.

 Log barrier: 𝑚𝑛 steps, 𝑛𝑛𝑧 𝐴 + 𝑛2 per step.

 Weighted log barrier: 𝑛2 steps,  𝑚𝑛𝜔−1 per step. 

 Strongly self-concordant: 

𝐻 𝑥 −1/2𝐷𝐻 𝑥 ℎ 𝐻 𝑥 −1/2
𝐹
= 𝑂 ℎ𝑇𝐻 𝑥 ℎ



Isoperimetry
 Isoperimetry is in a non-Euclidean metric: For any partition of a 

convex body 𝐾 into subsets 𝑆1, 𝑆2, 𝑆3, 

𝑝 𝑆3 ≥ 𝑑𝐾 𝑆1, 𝑆2 𝑝 𝑆1 𝑝(𝑆2)

Cross-ratio distance:

𝑑𝐾 𝑢, 𝑣 =
𝑢−𝑣 𝑥−𝑦

𝑥−𝑢 𝑣−𝑦

Hilbert distance:  

𝑑𝐻 𝑢, 𝑣 = log(1 + 𝑑𝐾(𝑢, 𝑣))
is a metric.

Q. Does weighted Dikin mix in 𝑛 steps? (𝑚𝑛 is tight for log barrier)

 Aside: KLS conjecture ⇒ strong self-concordance for Universal and 
Entropic barriers ☺



The rejection probability bounds step size

 How to take a larger step?

 Can we avoid the Metropolis filter?

 Let’s use a deterministic “drift” instead.



Riemannian Hamiltonian Montian Carlian

Hamiltonian: function of position and velocity. 

Each step is according to an ODE defined by the Hamiltonian:

𝑑𝑥

𝑑𝑡
=
𝜕𝐻 𝑥, 𝑣

𝜕𝑣

𝑑𝑣

𝑑𝑡
= −

𝜕𝐻 𝑥, 𝑣

𝜕𝑥

Ham walk:  To sample according to 𝑒−𝑓(𝑥), set 

𝐻 𝑥, 𝑣 = 𝑓 𝑥 +
1

2
log 2𝜋 𝑛 det 𝑔 𝑥 +

1

2
𝑣𝑇𝑔 𝑥 −1𝑣

At current point 𝑥,

 Pick a random velocity 𝑣 according to a local distribution 𝑁(0, 𝑔 𝑥 −1)
defined by 𝑥 (in the Euclidean setting, this is a standard Gaussian).

 Move along the curve defined by Hamiltonian dynamics at (𝑥, 𝑣) for time 𝛿
or −𝛿, each with probability 0.5.



Convergence of RHMC
Thm [Lee-V.17]: With log barrier, RHMC mixes in ෨𝑂 𝑚𝑛2/3 steps.

 Subquadratic! 

Thm [Lee-V.17]: For log barrier on 0,1 𝑛, RHMC mixes in ෨𝑂(1) steps.

 Previous algorithms such as ball walk, hit-and-run and Dikin walk take Ω(𝑛)
steps for 0,1 𝑛.

 Each step is the solution of a linear system, so 𝑚𝑛𝜔−1

Q: Can we use dynamic data structures to reduce the per-step cost?

Q:  What is the best metric to use that is still computable?

Q:  What is the right KLS conjecture in the Hessian manifold setting?



Constrained RHMC

 Typical problems often have equality constraints 𝐴𝑥 = 𝑏.

 Pick the metric 𝑔 in the subspace: 

𝐻 𝑥, 𝑣 = 𝑓 𝑥 +
1

2
||𝑣||

𝑔 𝑥 †
2 +

1

2
log pdet𝑔(𝑥).

CRHMC Algo:

 Sample 𝑣~𝑒−𝐻(𝑥,𝑣) (conditional on 𝑥)

 𝑥, 𝑣 ← 𝑇(𝑥, 𝑣) (𝑇 preserves the density 𝑒−𝐻(𝑥,𝑣))

The map 𝑇(𝑥, 𝑣) is given by an ODE (solved at 𝑡 = 1)
𝑑𝑥

𝑑𝑡
=
𝑑𝐻

𝑑𝑣
,

𝑑𝑣

𝑑𝑡
= −

𝑑𝐻

𝑑𝑥
, 𝑥 0 = 𝑥, 𝑣 0 = 𝑣.



State of the art, in theory

General Gaussian Uniform Uniform

Logconcave in Convex Body in Convex Body        in Polytope

[Lovász-V’06] [Cousins-V’15] [Jia-Laddha-Lee-V’21]    [JLLV’21]

𝑛4 ⋅ 𝑛2 𝑛3 ⋅ 𝑛2 𝑛3 ⋅ 𝑛2 𝑚𝑛3.2

𝑛2 ⋅ 𝑛2 𝑛2 ⋅ 𝑛2 𝑛2 ⋅ 𝑛2 𝑚𝑛2.3 (warm start)

Ball walk /H-and-R    Ball walk Ball walk Ball walk

RHMC: 𝑚𝑛2/3 ⋅ 𝑚𝑛1.38

Weighted Dikin: 𝑛2 ⋅ 𝑚𝑛1.38

“In Theory today, Ball Walk is Best,” i.e., fastest known polynomial-time algorithm.



State of the art, in practice: CRHMC* 

 Ronan Fleming gave us the latest, largest metabolic model.

 670,114 reactions and 585,662 Metabolites

 Zero’th-order methods take forever

 Existing first-order packages 

simply can’t move at all.

 CRHMC takes <1 hr

per sample

 Can also sample polytopes 

in netlib (notoriously degenerate)

*: pronounced CRuHMCh



You can try it!

 https://github.com/ConstrainedSampler/PolytopeSampler

Matlab

 With Yunbum Kook, Yin Tat Lee, Ruoqi Shen (2022)

 Now in COBRA, the leading system biology analysis tool 

(Ronan Fleming, Ines Thiele et al.)

https://github.com/ConstrainedSampler/PolytopeSamplerMatlab


Earlier packages for Volume/Sampling 

 Cousins-V’ (circa 2013)

 MATLAB (“A Practical Volume Algorithm”, Math. Prog. C 2016) 

 incorporated in COBRA (with R. Fleming, H. Haroldsdottir)

 Computes volume using a membership oracle

 Goes up to 1000 full-dimensional polytopes on laptop in < 1hr.

 https://www.mathworks.com/matlabcentral/fileexchange/43596

-volume-and-sampling

 VolEsti (Fisikopoulos et al.)

 C++ (Emris-Fisikopoulos, ACM Trans. on Math. Software 2018)

 Reported better run times for some benchmarks

 https://github.com/GeomScale/volume_approximation

https://www.mathworks.com/matlabcentral/fileexchange/43596-volume-and-sampling
https://github.com/GeomScale/volume_approximation


Continuous Algorithms

OPT: 𝑑𝑋𝑡 = −∇𝑓 𝑋𝑡 𝑑𝑡 (GD)

Sampling: 𝑑𝑋𝑡 = −∇𝑓 𝑋𝑡 𝑑𝑡 + 2𝑑𝐵𝑡 (LD)

 Langevin Diffusion converges to distribution with density 

proportional to 𝑒−𝑓(𝑥)

Thm. [Jordan-Kinderlehrer-Otto98; Wibisono18] 

Sampling by LD is optimization in the space of measures 

with Wasserstein metric and objective relative entropy to 

target 𝑒−𝑓. 



Can we sample faster?

 Brownian motion SDE: 

𝑑𝑥𝑡 = 𝜇 𝑥𝑡, 𝑡 𝑑𝑡 + 2𝐴 𝑥𝑡, 𝑡 𝑑𝑊𝑡

 Each point 𝑥 ∈ 𝐾 has its own local scaling (metric) given by 𝐴(𝑥𝑡 , 𝑡).

Thm. [Fokker-Planck] Diffusion equation of above SDE is 

𝜕

𝜕𝑡
𝑝 𝑥, 𝑡 = −෍

𝑖

𝑛
𝜕

𝜕𝑥𝑖
𝜇 𝑥, 𝑡 𝑝 𝑥, 𝑡 +

1

2
෍

𝑖

𝑛

෍

𝑗

𝑛
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
[2𝐴𝑖𝑗 𝑥, 𝑡 𝑝 𝑥, 𝑡 ]

 When 𝜇 = 0, 𝐴 = 𝐼, this is the heat equation: 
𝜕

𝜕𝑡
𝑝 𝑥, 𝑡 =

1

2
Δ𝑝(𝑥, 𝑡).

 For any metric, SDE gives diffusion equation.  

 Using 𝜇 𝑥 = −𝐷𝑓(𝑥) gives stationary 𝑝 𝑥 = 𝑒−𝑓(𝑥). 



 Rate of convergence?    

 𝑑𝑋𝑡 = −∇𝑓 𝑋𝑡 𝑑𝑡 + 2𝑑𝐵𝑡

Thm. [Bakry-Gentil-Ledoux14]    𝐻𝜈 𝜌𝑡 ≤ 𝑒−2𝛼𝑡𝐻𝜈(𝜌0)

Here 𝛼 is the Log-Sobolev constant of 𝑒−𝐹 wrt the metric.

𝐻𝜈 𝜌 = 𝐸𝜌 log
𝜌

𝜈
≤

1

2𝛼
𝐸𝜌 log

𝜌

𝜈

2

=
1

2𝛼
𝐼𝜈(𝜌)

 Proof notes that 
𝑑𝜌

𝑑𝑡
= −∇𝜌𝐻𝜈(𝜌) and LSI is “gradient 

domination.

 How about an algorithm? 

Sampling by Diffusion: Isoperimetry suffices 



Diffusion→Algorithm: Isoperimetry suffices

 Unadjusted Langevin Algorithm:  

𝑋𝑘+1 = 𝑋𝑘 − ℎ∇𝑓 𝑋𝑘 + 2ℎ 𝑍 where 𝑍 ∼ 𝑁(0, 𝐼)

Thm.[V.-Wibisono19] Assuming 𝑓 is 𝐿-smooth ( ∇𝑓 ≤ 𝐿), 

𝐻𝜈 𝜌𝑘 ≤ 𝑒−ℎ𝛼𝑘𝐻𝜈 𝜌0 +
8𝐿2𝑛

𝛼
ℎ.

So, with ℎ = 𝛼𝛿/𝑛𝐿2, 

after 𝑘 =
𝑛𝐿2

𝛿
log(

2𝐻𝜈 𝜌0

𝛿
) steps, we have 𝐻𝜈 𝜌𝑘 ≤ 𝛿.

 Note: no convexity assumption; dependence on dimension is linear. 

 An active field, with many results based on smoothness parameters 
for interesting classes of functions.



 What about using local geometry?

Riemannian Langevin Diffusion

 In Euclidean coordinates:

𝑑𝑋𝑡 = 𝐷 ⋅ 𝑔 𝑋𝑡
−1 − 𝑔 𝑋𝑡

−1𝐷𝑓 𝑋𝑡 𝑑𝑡 + 2𝑔 𝑥 −1𝑑𝐵𝑡

 In manifold local coordinates:

𝑑𝑋𝑡 = ∇ ⋅ 𝑔 𝑋𝑡
−1 − ∇𝐹 𝑋𝑡 𝑑𝑡 + 2𝑔 𝑥 −1𝑑𝐵𝑡

 where ∇ is the manifold derivative, 𝐹(𝑥) = 𝑓(𝑥) +
1

2
log det 𝑔(𝑥)

 Convergence in KL-divergence under log-Sobolev inequality wrt manifold 
measure holds

In progress: Riemannian Langevin Algorithm  

 discretization of RLD [Erdogdu-Li21,  Ahn-Chewi21, Gatmiry-V.22]

Manifold Diffusion → Algorithm



The Story of Isoperimetry
KLS conjecture: Cheeger constant (expansion) of isotropic logconcave density 
is Ω 1 , or 

𝜓 = inf
𝜈 𝑆 ≤

1
2

𝜈𝑛 𝑆

𝜈𝑛−1 𝜕𝑆
= 𝑂 1 .

[KLS95] 𝑛

[Guedon-Milman] 𝑛1/3

[LV17] 𝑛1/4

[Chen20] 2 log 𝑛 log log 𝑛

[Klartag-Lehec22] log5 𝑛

…

Thm.[KLS97]. Sampling in 𝑛2𝜓2.

Thm.[JLLV21]. Rounding in 𝑛3𝜓2.

Thm.[CV15]. Volume of well-rounded body in 𝑛3.



Isoperimetry: the next decade
 How true is the KLS conjecture? Does it matter?

 Dimension-independent bound would be so nice

 Implies dimension-independent bounds for many other well-known, existing conjectures in 
convex geometry: Slicing, Thin-Shell, Central Limit, Concentration, Entropy Jump etc.

 But here’s a concrete TCS reason: 

KLS ⇒ Certifiable sub-Gaussianity [Kothari-Steinhardt17]

 If KLS is true, then there is an SoS proof of moment inequalities for any logconcave density. 

 This implies results on robustly clustering Gaussians can be generalized to robustly 
clustering logconcave densities! 

 Getting a constant is critical for polytime, with the SoS approach.

Q. Are they equivalent?! 

Almost: certifiable sub-Gaussianity ⇒ thin-shell ⇒ KLS is O log𝑛 .  



Isoperimetry: the next decade

 Q. What is the right KLS conjecture on Hessian 
manifolds?

An attempt: there is a subset defined by a hyperplane that is 
within 𝑂(1) of the minimum isoperimetry subset. 

 A decomposition conjecture for convex bodies (⇒ KLS).

Conj: For any isotropic convex body,

any decomposition of it into cylinders,

a constant fraction of the cylinders

must be of length 𝑂(1).

Cylinder: cross section is convex and has small diameter



Open Problems: Probability

Q2. When to stop? How to check convergence to 
stationarity on the fly? Does it suffice to check that the 
measures of all halfspaces have converged?

 Note: poly(n) sample can estimate all halfspace measures

 Ben Cousin’s uniformity test: 

Check if time spent in scaling (1 − 𝛼)𝐾 is (1 − 𝛼)𝑛.



Randomness

 Can we estimate the volume of an explicit polytope in 

deterministic polynomial time?

𝐴𝑥 ≤ 𝑏



Thank you!
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