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We apply the method known as simulated annealing to the following problem in convex optimization: minimize
a linear function over an arbitrary convex set, where the convex set is specified only by a membership oracle.
Using distributions from the Boltzmann-Gibbs family leads to an algorithm that needs only O∗(

√
n) phases for

instances in Rn. This gives an optimization algorithm that makes O∗(n4.5) calls to the membership oracle, in the
worst case, compared to the previous best guarantee of O∗(n5).

The benefits of using annealing here are surprising due to the fact that such problems have no local minima that
are not also global minima. Hence, we conclude that one of the advantages of simulated annealing, in addition
to avoiding poor local minima, is that in these problems it converges faster to the minima that it finds. We also
give a proof that under certain general conditions, the Boltzmann-Gibbs distributions are optimal for annealing
on these convex problems.
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1. Introduction Simulated annealing, proposed by Kirkpatrick et al. [12], is a randomized search
method for optimization. It tries to improve a solution by walking randomly in the space of possible
solutions and gradually adjusting a parameter called “temperature.” At high temperature, the random
walk is almost unbiased and it converges to essentially the uniform distribution over the whole space
of solutions; as the temperature drops, each step of the random walk is more likely to move towards
solutions with a better objective value, and the distribution is more and more biased towards the optimal
solutions. The sequence of temperatures and lengths of time for which they are maintained is called the
annealing schedule in analogy with statistical mechanics.

Although notoriously difficult to analyze, the usual justification for its empirical success [17] is that “it
avoids getting stuck in local optima.” In this paper, we analyze it on problems where all the local optima
are also global optima. Our results suggest that annealing has further advantages besides avoiding local
optima. In particular, it also speeds up convergence to the optimum.

An important problem in this class is minimizing a linear function over a convex set. In the most
general version, the convex set is presented only by a membership oracle [7]. In Section 4, we show
that simulated annealing, which can be viewed as an interior-point algorithm, takes only O∗(

√
n) phases

and O∗(n4.5) oracle queries to solve this problem. It is faster than the current best algorithm by a
factor of

√
n. (The O∗(·) notation hides poly-logarithmic factors in the parameters of the problem, i.e.,

logk(nR2/(rεδ)), where k is a constant, n is the dimensionality of the problem, ε is the distance from
optimality, R/r is the ratio of containing and contained balls for the convex set, and the algorithm
succeeds with probability 1 − δ.) This illustrates (and provides a rigorous guarantee for) the advantage
of simulated annealing even for problems with no bad local minima.

Simulated annealing is a special case of a stochastic search method that starts with one distribution
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Figure 1: Optimization over a high-dimensional cone: (a) A pair of consecutive Boltzmann distributions
e−c·x/T . The standard deviation σ in the direction of optimization is large. (b) The same picture for a
pair of uniform distributions (used by [2]) over truncated cones c · x ≤ T . The standard deviations are
much smaller, allowing less movement and requiring more phases.

(e.g., uniform over a given convex body) and gradually changes it to another target distribution (e.g.,
one that is concentrated near the optimum). The intermediate distributions satisfy the following two
properties:

(i) Any two consecutive distributions must not be too different; one way to formalize this is to
require that their total variation distance (see Section 3) is bounded away from 1.

(ii) All the distributions along the way must be efficiently sampleable. The most general class of
distributions for which we currently have efficient sampling algorithms are the class of logconcave
distributions.

In simulated annealing, the intermediate distributions are all from the exponential family (density at x

is proportional to e−cT x for some vector c) restricted to some domain. The random walk algorithm of
Bertsimas and Vempala [2], for example, maintains a uniform distribution over a convex body. In each
phase, it restricts the current convex body by a half-space. This choice requires O∗(n) phases in the
worst case.

From this perspective, it is natural to ask what choice of intermediate distributions would be optimal for
convex problems. In Section 5, we show that, in the worst-case, the exponential family used in simulated
annealing, is in fact the best possible. We give an example where any method satisfying the above two
properties needs Ω(

√
n) phases1. Thus, in this sense, simulated annealing is an optimal stochastic search

method. Moreover, we have shown yet another optimality property of the Boltzmann distributions (a
different, well-known property is that of maximum entropy).

Finally, in Section 6, we suggest how the algorithm might extended to the problem of minimizing
a convex function over a convex set, where again the set is specified by a membership oracle. While
our results show that the number of phases will be O∗(

√
n) for any convex function, further analysis

of rapidly-mixing walks for logconcave functions is required to achieve the O∗(n4.5) membership queries
guarantee. Our approach here shows that one can move between any two logconcave densities in O∗(

√
n)

steps where each step moves between logconcave densities whose total variation distance is bounded away
from 1.

1.1 Related work Our approach is an improvement on the algorithm of Bertsimas and Vempala
[2], which introduced the analysis of an efficient stochastic search method for convex optimization but
required O∗(n) phases. Their method, involving a sequence of uniform distributions over sets with smaller
objective function values c · x, is illustrated in Figure 1. Lovász and Vempala used a reverse annealing
technique for estimating volume [14] where they slowly increased the temperature. Our analysis is similar
to theirs, and we will use some of the tools developed there.

Stochastic search methods have been analyzed for special cases of global optimization (see [24, 25]). It
is known that an exponentially long annealing schedule can guarantee convergence to the global optimum
(even for non-convex problems) [8]. Simulated annealing has also been shown to be efficient for finding

1The Ω(T (n)) notation means that a function grows at a rate at least as fast as kT (n) for every constant k > 0, for

sufficiently large n.
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planted bisections in a random graph [10] and for minimizing one-dimensional fractal functions [21].
Although originally proposed for discrete optimization problems, simulated annealing has been widely
used for continuous optimization. The book by Spall [22] provides an introduction to both the theoretical
and practical aspects of annealing.

2. Algorithm and guarantees We apply annealing to the following linear minimization problem:
for a unit vector c ∈ Rn and a convex set K ⊂ Rn:

min
x∈K

c · x

We assume only that we are given a membership oracle, that identifies whether or not a point is in the
set K, as well as a starting point in it. As is standard [7], we need an upper bound R on the radius of
a ball that contains K, and a lower bound r on the radius of a ball around the starting point contained
in K. Approaches such as simplex and interior point methods do not seem to generalize to this problem.
The ellipsoid algorithm solves the problem using O∗(n10) membership queries. This has been improved
to O∗(n5) using randomized search [2].

Our approach runs over phases i = 0, 1, . . . , m:

(i) Let the temperature Ti = R(1− 1/
√

n)i.

(ii) Move the current point to a sample from a distribution µi whose density is proportional to

fi(x) = e−c·x/Ti .

Do this by executing k steps of a biased random walk, to be described later.

(iii) Using O∗(n) samples observed during the above walk, estimate the covariance matrix V of the
above distribution, i.e., Vij = E[XiXj ]− E[Xi]E[Xj ].

Steps 1 and 2 are standard for simulated annealing. In particular, the exponential temperature schedule
(fixed decay rate) and the Boltzmann distributions (of the form e−E(x)/T ) as is typical and was proposed
with the introduction of simulated annealing [12].

For many “round” shapes, such as a ball, cube, cone or cylinder, Step 3 is unnecessary or may be
implemented using a many fewer samples. However, for arbitrary convex sets K, the update can be done
using O∗(n) samples (in the worst case, it must be done every phase). Step 3 estimates the shape of the
distribution, i.e., which dimensions are long and which are short, via its covariance matrix. (Recall that
a covariance matrix is what is used to define an n-dimensional normal distribution or ellipsoid.) In order
to get the best possible rates of convergence for the random walk in Step 2, we need to incorporate this
shape estimate into the walk, so that we have a better idea of which way to step.

Theorem 2.1 For any convex set K ∈ Rn, with probability 1−δ, the algorithm below given a membership
oracle OK, starting point Xinit, R, r, I = O(

√
n log(Rn/εδ)), k = O∗(n3), and N = O∗(n),2 outputs a

point XI ∈ K such that

c ·XI ≤ min
x∈K

c · x + ε.

The total number of calls to the membership oracle is O∗(n4.5).

The algorithm goes through a series of temperatures, starting high and decreasing. At each tem-
perature, it runs the hit-and-run random walk. The stationary density of this random walk will be
proportional to e−c·x/T for any point x ∈ K, where T is the current temperature.

2Again, the O∗ notation hides logarithmic factors. In this case, for example, the theorem states that there exists a

polynomial p such that for N = np
(
log(nR2/(rεδ)

)
, the theorem holds.
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The Algorithm.
Inputs: n ∈ N (dimensionality)

OK : Rn → {0, 1} (mebership oracle for convex set K)
c ∈ Rn (direction of minimization, |c| = 1)

Xinit ∈ K (starting point)
R ∈ R+ (radius of ball containing K centered at Xinit)
r ∈ R+ (radius of ball contained in K centered at Xmboxinit

I ∈ N (number of phases)
k ∈ N (number of steps per walk)

N ∈ N (number of samples for rounding)

• (X0, V0):=UniformSample(Xinit,OK , R, r)

• For i = 1, 2, . . . , I :

– Ti := R
(
1− 1√

n

)i

– Xi:=hit-and-run(e−c·x/Ti ,OK , Vi−1, Xi−1, k)
– Update Covariance:

∗ For j = 1 to N : Xj
i :=hit-and-run(e−c·x/Ti ,OK , Vi−1, Xi−1, k)

∗ Vi := 1
N

∑
j Xj

i (Xj
i )T − 1

N

∑
j Xj

i

(
1
N

∑
Xj

i

)T

• Return XI .

The UniformSample routine picks a uniformly random point from K. Additionally, it estimates the
covariance matrix V0 of the uniform distribution over the set K. This subroutine is the “Rounding
the body” algorithm of Lovasz and Vempala [14], which uses Xinit,OK , R, and r, and returns a nearly
random point while making O∗(n4) membership queries.

We next describe the random walk precisely. The hit-and-run random walk takes as input a function
f , a membership oracle, a covariance matrix V , a starting point x ∈ K, and a number of steps k. It then
performs the following procedure k times:

• Pick a random vector v according to the n-dimensional normal distribution with mean 0 and
covariance matrix V . Let ` be the line through the current point in the direction v.

• Move to a random point on the intersection of ` and K (this is a one-dimensional chord in K),
where point is chosen with density proportional to the function f (restricted to the chord).

It is well-known that the stationary distribution of this random walk has density proportional to f .
The rate of convergence of the walk to its stationary distribution depends on the starting point and how
good an approximation V is to the true covariance matrix of the stationary distribution.

Our algorithm, like other continuous applications of annealing [22], maintains the form of annealing by
performing a random walk whose stationary distributions are the Boltzmann-Gibbs distributions. Indeed,
our algorithm could be further also be stated in terms of defining a neighborhood set and performing a
uniform step with possible rejection, as is more familiar in annealing. However, the above random walk
is slightly more efficient and easier to state.

Lastly, as mentioned before, for many common shapes the third step is unnecessary as the (normalized)
covariance matrix remains more or less unchanged. In practice, the algorithm could be run with spherical
steps on many shapes, though the reshaping is necessary in the worst case.

3. Preliminaries

Definition 3.1 A function f : Rn → R+ is logconcave for any two points a, b ∈ Rn and any λ ∈ (0, 1),

f(λa + (1− λ)b) ≥ f(a)λf(b)1−λ.

In other words, a nonnegative function f is logconcave if its support is convex and log f is concave.
For example, a function that is constant over a bounded convex set and zero outside the set is logconcave.
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Another example is a Gaussian density function. It can be easily verified from the definition above that
the product of two logconcave functions is also logconcave (but not necessarily their sum). The following
fundamental property of logconcave functions was proved by Dinghas [4], Leindler [13] and Prékopa
[18, 19].

Theorem 3.1 All marginals of a logconcave function are logconcave. The convolution of two logconcave
functions is logconcave.

A logconcave distribution in Rn is one whose density is a logconcave function. The next lemma is from
[14].

Lemma 3.1 Let f : Rn → R be a logconcave function with support K. For a > 0, define

Z(a) =
∫

K

f(ax) dx.

Then anZ(a) is a logconcave function of a.

The following variant will also be useful.

Lemma 3.2 Let f : Rn → R be an integrable logconcave function. For a > 0, define

Y (a) =
∫

Rn

f(x)a dx.

Then anY (a) is a logconcave function of a.

Proof. Let F : Rn × R+ → R be defined as

F (x, t) = f
(x

t

)t

.

Then we can verify that F (x, t) is logconcave: for any λ ∈ [0, 1], using the logconcavity of f ,

F (λ(x, t) + (1− λ)(x′, t′)) = f

(
λx + (1− λ)x′

λt + (1− λ)t′

)λt+(1−λ)t′

= f

(
λt

λt + (1− λ)t′
x

t
+

(1− λ)t′

λt + (1− λ)t′
x′

t′

)λt+(1−λ)t′

≥ f
(x

t

)λt

f

(
x′

t′

)(1−λ)t′

= F (x, t)λF (x′, t′)1−λ.

Hence, the marginal of F along t is also logconcave, i.e.,
∫

Rn

F (x, t) dx =
∫

Rn

f
(x

t

)t

dx = tn
∫

Rn

f(x)t dx = Y (t)

is a logconcave function of t. ¤
To compare two distributions, we consider two measures. The total variation distance between ν and

π is:
‖ν − π‖tv =

1
2

∫

Rn

|dν(x)− dπ(x)|dx

The L2 norm of a distribution ν w.r.t. a distribution π is defined as,

‖ν/π‖ = Eν

(
dν(x)
dπ(x)

)
=

∫

K

dν(x)
dπ(x)

dν =
∫

K

(
dν(x)
dπ(x)

)2

dπ.

These two distance measures can be related as follows, as proven in the appendix.

Lemma 3.3

‖ν − π‖tv ≤ max
{

1
2
, 1− 1

‖ν/π‖
}

.
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4. Analysis of the algorithm In Section 4.1, we show that, as the temperature decreases at an
exponential rate, we rapidly approach the minimum. In particular, we show that E[c · x], for x drawn
according to the stationary distribution of the random walk, approaches the minimum of the function
at a rate proportional to the temperature. However, it remains to show that we take sufficiently many
steps in the random walk to be quite close to the stationary distribution. In Section 4.2, we state the
main theorem for proving the rapid mixing of the hit-and-run walk, i.e., that it quickly approaches the
stationary distribution. To apply the theorem we show two things: first, that the covariance estimates
do not change too much from one phase to the next, and second, that consecutive distributions do not
change too much (Section 4.2.1). We put all of these together to prove our main theorem in Section 4.3.

In Section 5, we show that no sequence of distributions can, in general, solve the problem in less than
Ω(
√

n) phases.

4.1 Convergence to optimal The following lemma shows that as the temperature decreases, the
expected value of the function on the stationary distribution rapidly approaches the minimum.

Lemma 4.1 For any unit vector c ∈ Rn, temperature T , and X chosen according to distribution with
density proportional to e−c·x/T ,

E(c ·X) ≤ nT + min
K

c · x.

Proof. First, without loss of generality, we may assume that c = (1, 0, 0, . . .), so c · x = x1. Let’s
say the value of this expectation is E(c ·X) = v. Also, let H(y) be the hyperplane x1 = y, namely,

H(y) = {x ∈ Rn|x1 = y}.

Next, consider how changing the set K affects v. Clearly, adding mass to K in points with x1 > v will
increase v, as will removing mass from K where x1 < v.

Let us change the set in such ways. Take some optimal point x∗, i.e., c · x∗ = minK c · x. WLOG we
assume that c · x∗ = 0. Consider the convex set

K ′ = {x ∈ Rn|x = x∗ + α(y − x∗) for some α ≥ 0, y ∈ K ∩H(v)}.
In other words, K ′ is the infinite extension of the cone with vertex x∗ and convex base K ∩ H(v), as
shown in the figure. It is not difficult to see, by definition of convexity:

K ′ ∩ {x|x1 ≤ v} ⊆ K ∩ {x|x1 ≤ v}
K ′ ∩ {x|x1 ≥ v} ⊇ K ∩ {x|x1 ≥ v}

K

K’

H(v)

x*

Thus, using K ′ instead of K, we will have only increased E(c ·X). So, it suffices to prove the lemma for
K = K ′.

E(c ·X) =

∫∞
−∞ ye−y/T voln−1(K ′ ∩H(y))dy∫∞
−∞ e−y/T voln−1(K ′ ∩H(y))dy

=

∫∞
0

voln−1(K ′ ∩H(v))y
(

y
v

)n−1
e−y/T dy

∫∞
0

voln−1(K ′ ∩H(v))
(

y
v

)n−1
e−y/T dy

=

∫∞
0

yne−y/T dy∫∞
0

yn−1e−y/T dy

=
n!Tn+1

(n− 1)!Tn
= nT.
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The last step uses the fact that ∫ ∞

0

yne−y/a dy = n!an+1.

¤

4.2 Sampling at a fixed temperature The following theorem about hit-and-run applied to an
exponential density was proved in [16].

Theorem 4.1 Let f be a density proportional to e−aT x over a convex set K such that (i) the level set of
probability 1/64 contains a ball of radius s, (ii) Ef (|x− zf |2) ≤ S2 and (iii) the L2 norm of the starting
distribution σ w.r.t. the stationary distribution πf is at most M . Let σm be the distribution of the current
point after m steps of uniform hit-and-run applied to f . Then, for any τ > 0, after

m = O

(
n2S2

s2
ln5 nM

τ

)
,

steps, the total variation distance of σm and πf is less than τ .

In the above theorem, zf denotes the mean the density f , i.e., zf = Ef [x]. A level set refers to a set
{x ∈ K|e−aT x ≥ θ}, where θ ∈ R. And the level set of probability 1/64 corresponds to the choice of θ so
that the level set has measure 1/64.

Also in the above, uniform hit-and-run refers to hit-and-run where the direction is chosen uniformly
at random. However, in our description of hit-and-run, we chose our direction according to a normal
distribution with some covariance matrix V . (Thus uniform hit-and-run chooses its direction from a
spherical normal distribution with identity covariance matrix.) These two approaches are basically the
same. For the covariance matrix V of the sample, one can apply the affine transformation y = V − 1

2 x
to the space. Now, if we choose a vector X at random from the n-dimensional normal distribution with
covariance V and transform it to Y = V − 1

2 X, it will be distributed according to a normal distribution,
and the new covariance matrix will be:

E[Y Y T ] = E[V − 1
2 XXT (V − 1

2 )T ] = V − 1
2 V V − 1

2 = I

Thus, choosing a random direction according to V in the original space is equivalent to choosing a
uniformly random direction in the transformed space. For the rest of analysis, we find it easier to use
the latter perspective. In other words, we imagine a rounding step that transforms the body by V − 1

2 ,
making the sampler choose steps from a spherically symmetric distribution.

We define the distribution µi to be stationary distribution of the ith phase, i.e., proportional to e−c·x/Ti

over the convex set K, transformed in the above manner. In particular, if our estimate of the covariance
matrix was perfectly accurate, µi would be perfectly isotropic.

The remainder of this section is dedicated to showing that conditions (i) and (ii) hold in the above
theorem with S/s = O(

√
n). In Section 4.2.1, we show that M < 5 in each phase for (iii).

The next definition is a measure of the “roundness” of a density function.

Definition 4.1 A density function f with centroid zf is said to be C-isotropic if for every unit vector
v,

1
C
≤

∫

Rn

(
v · (x− zf )

)2
f(x)dx ≤ C.

As the algorithm proceeds it is possible that the transformed density becomes less and less isotropic
(i.e., C gets larger and larger). In terms of covariance, it is possible that our matrix V stops being an
accurate estimate of the true covariance of the distribution. It is for this reason, that we re-estimate V
periodically, and for the purposes of analysis, we can imagine periodically transforming the space as well.

We next show that the distribution to be sampled remains C-isotropic for some constant C throughout
the course of the algorithm. Our starting point is the following lemma from [15] which shows that for a
near-isotropic density, S/s = O(

√
n).
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Lemma 4.2 Let dµ be a C-isotropic density function. Then Ef (|x− zf |2) ≤ Cn and any level set L of f

contains a ball of radius µ(L)/e
√

C.

From the lemma it follows that if f is C-isotropic, then (S/s)2 = O(C2n) = O(n), if C is a constant.

We continue by showing that isotropy is changed by at most a fixed constant factor from one phase
to the next.

Lemma 4.3 Let f and g be logconcave densities over K with centroids zf and zg, respectively. Then for
any c ∈ Rn,

Ef ((c · (x− zf ))2) ≤ 16Ef

(
f

g

)
Eg((c · (x− zg))2)

Proof. By the Cauchy-Schwartz inequality,
∫

K

f(x)
g(x)

f(x)dx

∫

K

(c · (x− zg))2g(x)dx ≥
(∫

K

|c · (x− zg)|f(x)dx

)2

Ef

(
f(x)
g(x)

)
Eg((c · (x− zg))2) ≥ Ef (|c · (x− zg)|)2 (1)

Now, for an arbitrary logconcave density h, Theorem 5.22 of [15] states:

Eh(|y|)2 ≥ Eh(|y|2)/(2k)2.

Let x ∈ Rn be a random variable chosen according to f , and y = c ·(x−zg). Then y also has a logconcave
distribution. This is because any marginal of a logconcave function is also logconcave (Lemma 3.1). So
in our case the marginal c · x has a logconcave distribution; further, translation preserves logconcavity.
So y = c · x− c · zg has a logconcave distribution. Thus we get,

Ef (|c · (x− zg)|)2 ≥ Ef ((c · (x− zg))2)/16 (2)

Finally, the following inequality just says that the centroid is the point which minimizes the average
squared distance to a point.

Ef ((c · (x− zg))2) ≥ Ef ((c · (x− zf ))2)

Combining (1) and (2) with the above inequality, we obtain the lemma. ¤
Thus, if the transformed distribution in one phase (with density µi−1) is C-isotropic, then the

distribution µi in the next phase with the same transformation will be C ′-isotropic for C ′ =
16C max(‖µi−1/µi‖, ‖µi/µi−1‖). The main theorem of this section is the following.

Theorem 4.2 Using N = O∗(t3n) samples per phase in each of I phases, with probability 1−I/2t, every
distribution µi encountered by the sampling algorithm is 160-isotropic.

Proof. (sketch) For the main part of the proof, we assume that the sampler gives us independent
points from exactly the desired distribution. By Corollary A.1, the current distribution, say µi−1, is
2-isotropic after the rounding step with probability 1 − 1/2t+1. To bound the isotropy of the next
distribution to be sampled, µi, we apply Lemma 4.3 to the distributions µi−1, µi. First, note that by
Lemma 4.4 of the following section, for n ≥ 8,

Eµi

(
dµi(x)

dµi−1(x)

)
< 5.

Thus,
Eµi((v

T (x− zµi))
2) ≤ 80Eµi−1(v

T (x− zµi−1))
2) ≤ 160.

The lower bound is obtained by switching the roles of µi−1 and µi.

We have assumed that the samples used in each phase are independent and exactly from the target
distribution. In fact, the random walk only gives us samples from (a) a distribution that is close to
the right one and (b) they are only nearly independent. The first difficulty (a) can be handled by a
trick sometimes known as “divine intervention” (see e.g., [14]). Theorem 4.1 guarantees samples from a
distribution within variation distance τ from the target distribution, and the dependence of the number
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of steps on τ is polylogarithmic. Set τ = 2−t/(2N). For a sample X which is drawn from a distribution
ν that is within τ of the stationary distribution π, we can think of it as being drawn as follows: first we
pick X according to the stationary distribution π. Then, with probability ‖ν − π‖tv ≤ τ we change the
point X so that it is distributed exactly according ν. The important point is that the distribution ν is
obtained by modifying X only with probability τ . We then bound the probability that the distribution
of X is modified. In this lemma, since we are drawing N samples with τ = 2−t/(2N), we have that
the probability that the modification occurs in any phase is at most 2−t−1. The earlier analysis which
assumed we are sampling exactly from π can now be applied with a failure probability of at most 2−t−1.

The other difficulty (b) can be handled in two different ways. The first is via a small modification in
the algorithm. Suppose the covariance estimate needs m samples in any one phase. Then we start with m
truly independent samples which lead to m independent threads of samples, i.e., in each phase a random
walk is started from the current point in each thread to give a new point after a prescribed number of
steps of the walk. The threads thus remain independent and when the covariance estimate is computed
we have m truly independent samples (note that the samples within a thread are not independent). The
other way to handle (b) without any change to the algorithm is by quantifying the dependence of the
random variables as in [11] and [14]. Specifically, we use the notion of µ-independence. Two random
variables X, Y are said to be µ-independent where

µ(X, Y ) = sup
A,B

∣∣P(X ∈ A, Y ∈ B)− P(X ∈ A)P(Y ∈ B)
∣∣

and A and B range over measurable subsets of the ranges of X and Y respectively. As shown in Lemma
4.3(a) of [14], consecutive samples produced by the random walk are τ -independent (and the dependence
on τ is polylogarithmic). With τ set to be an inverse polynomial, we can apply the sampling bound of
Theorem A.1 and Corollary A.1 with a small increase in the number of samples (for a similar analysis,
see Theorem 5.11 in [11]).

¤

4.2.1 Warm start We bound the L2 distance between two consecutive distributions.

Lemma 4.4 For n ≥ 8, ‖µi/µi+1‖ ≤ 5 and ‖µi+1/µi‖ ≤ 4.

Proof. As in the proof of Lemma 4.4 in [14] let Z(a) =
∫

K
e−ax dx. Then,

Eµi

(
dµi(x)

dµi+1(x)

)
=

∫
K

e−c·x/Ti+c·x/Ti+1e−c·x/Tidx∫
K

e−c·x/Tidx

∫
K

e−c·x/Ti+1dx∫
K

e−c·x/Tidx

=
Z(2/Ti − 1/Ti+1)Z(1/Ti+1)

Z(1/Ti)Z(1/Ti)
.

Now anZ(a) is a logconcave function of a by Lemma 3.1. Thus,
(

a + b

2

)2n

Z

(
a + b

2

)2

≥ anZ(a)bnZ(b) i.e.,
Z(a)Z(b)
Z(a+b

2 )2
≤

((
a+b
2

)2

ab

)n

.

Applying this with a = 2/Ti − 1/Ti+1 and b = 1/Ti+1, we get

Eµi

(
dµi(x)

dµi+1(x)

)
≤

(
1/T 2

i

(2/Ti − 1/Ti+1)(1/Ti+1)

)n

=
(

(Ti+1/Ti)2

2Ti+1/Ti − 1

)n

=
(

(1− 1/
√

n)2

2(1− 1/
√

n)− 1

)n

=
(

1 +
1

n− 2
√

n

)n

≤ en/(n−2
√

n) < 5 for n > 8.

The analysis for ‖µi+1/µi‖ is similar. ¤
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4.3 Proof of Theorem 2.1 We start with temperature T0 = R. This is chosen so that the uniform
distribution π is a warm start for µ0, i.e., ‖π/µ0‖ ≤ e. After

√
n ln 3Rn

εδ phases, by Lemma 4.1,

EµI
(c · x) ≤ min

x∈K
c · x + εδ/3.

By Markov’s inequality, this guarantee in expectation can be translated into a high-probability guarantee
that, with probability at most δ/3, a random x drawn from µI would have c ·x larger than the minimum
plus ε. In each phase, we obtain up to N +1 = O∗(n) samples. Hence there are at most (N +1)I samples
used.

Unfortunately, XI is not drawn exactly from the stationary distribution µI . However, by a choice of
k = O∗(n3), we can get within τ = δ/(3(N + 1)I) to the stationary distribution (so close, that with
probability 1− δ/3, no divine intervention occurs and we can assume the examples were drawn from the
stationary distribution – see the discussion of “divine intervention” in the proof of Lemma 4.2). This
choice of k suffices, because by Theorem 4.2 and Lemma 4.4, we can apply Theorem 4.1 with M ≤ 5 and
S/s = O(

√
n) and τ = δ/(3(N + 1)I).

Thus, each sample takes only k = O∗(n3) steps of the random walk. Hence, the number of membership
queries per phase is (N + 1)O∗(n3) = O∗(n4), which gives an overall query complexity of O∗(n4.5).

5. The optimality of annealing for convex problems Our analysis of annealing raises some
interesting issues with regard to why simulated annealing seems to work so well in practice. A common
justification of simulated annealing (and other stochastic search methods) is that it helps avoid bad local
minima. This argument does not apply to convex problems where there are no such bad minima.

We propose an alternate justification for annealing: it is a type of interior point algorithm. It is
well-known that trying to move directly in the direction of optimization quickly runs into problems when
we hit the boundary. Decreasing the temperature too quickly may have the same effect, because it forces
such steps.

This section is devoted to explaining annealing by showing that the Boltzmann distributions with a
geometric temperature schedule are worst-case optimal, to within a constant factor, over a general class
of stochastic search algorithms. While the Boltzmann distributions are well-known to have several nice
properties [3], such as maximum entropy, it is not clear why these properties will be advantageous to
annealing. (Instead, we are using the ratio of the standard deviation to the mean of the distributions.)

In general, the type of optimization we are considering is the following stochastic search procedure.
We are trying to minimize the function c · X over convex set K described by a membership oracle
OK : Rn → {0, 1} that identifies whether a point is in the set K or not.

Stochastic-min(OK , c, Xinit)

• Let f0, f1, . . . , fm : R→ R be a series of non-negative functions.

• X:=Xinit

• For i = 0, 1, . . . , m:

X := Sample(fi(c · x),OK , X)

• Return X

Here the Sample function samples a random point according to the density proportional to fi(c · x)
over the convex set K,

dνi(x) =
fi(c · x)∫

K
fi(c · x)dx

, for x ∈ K, and 0 otherwise.

The sampling is typically implemented as a biased random walk and thus requires a starting point X.

We would like two things to happen. First, the means of the densities should hopefully approach the
minimum quickly, i.e., Eνi [c · x] −→ minK c · x. Second, we would like the Sample routine to be efficient.
For this we make the following assumptions:
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(i) Logconcavity: The density dνi to be sampled must be logconcave.

(ii) Overlap: The starting densities cannot change too quickly, which we formalize by saying that
the total variation distance between two consecutive distributions must be less than 1− 1/poly:

∀i‖νi−1 − νi‖tv ≤ 1− 1
M

, M ∈ poly(n)

The justification for the first assumption is that the most general known analyses of rapidly-mixing
walks [1, 5, 15, 23] require the function to be logconcave (true in the statistics literature as well [6]).

As for the second, note that the variation distance of disjoint densities is 1. This assumption is
much weaker than the current assumptions required by known analyses, the weakest of which [15] is a
polynomial “expected warm start,” ‖νi−1/νi‖ < M . Lemma 3.3 demonstrates that the variation distance
condition above is weaker – it simply says that consecutive distributions must overlap on at least a
1/poly(n) fraction of their mass.

Based on these two assumptions, it is possible to show that functions of the form e
− c·x

Ti are optimal in
the following sense.

Theorem 5.1 Suppose we have a sequence of functions f1, f2, . . . , fm : R → R and their corresponding
densities dνi(x) = fi(x)/

∫
K

fi(x)dx, and suppose for all i: (a) fi is logconcave, and (b) the variation
distance ‖νi−1 − νi‖tv < 1 − τ , where 1/τ ∈ poly(n). Then, for the cone optimization problem with
c = (1, 0, . . . , 0),K = {x ∈ Rn : |x| ≤ 2x1 ≤ 2}, for m =

√
n

2 ln(2e/τ) = Ω(
√

n) distributions,

Eνm [c ·X] ≥ Eν1 [c ·X]/e.

The theorem says that after
√

n phases, the mean along the axis can only drop by a factor of e towards
the optimum (the origin) and thus any such stochastic search requires Ω(

√
n) phases. Lemma 4.1 asserts

that the Boltzmann distributions with a geometric temperature schedule achieve this lower bound using
O∗(

√
n) phases.

Our proof proceeds by bounding the “spread” of distributions satisfying the assumptions. Let

ν̄i = Eνi [c ·X]

σi =
√

Eνi [(c ·X)2]− (Eνi [c ·X])2 =
√

Eνi [(c ·X − ν̄i)2]

The next lemma shows that the rate of decrease of the means can be bounded in terms of the standard
deviations and variation distances.

Lemma 5.1 Suppose ‖νi−1 − νi‖tv ≤ 1− 1
M , for logconcave densities νi and νi−1. Then,

ν̄i−1 − ν̄i ≤ (σi + σi−1) ln(2eM).

Proof. By Lemma 5.17 of [15], for a random variable X drawn from logconcave νi and any t > 1,

Pνi(c ·X > ν̄i + tσi) < e−t+1.

Let ‖νi−1 − νi‖tv = 1− 1
M and suppose for a contradiction that ν̄i < ν̄i−1 − (σi + σi−1) ln 2eM . Then,

Pνi(c ·X > ν̄i + σi ln 2eM) <
1

2M

and for Y drawn from νi−1,

Pνi−1(c · Y ≥ ν̄i−1 − σi−1 ln 2eM) ≥ 1− 1
2M

.

These two imply that the variation distance is less than 1− 1
M , which is a contradiction. ¤

The next lemma is about the special case of optimizing over a cone along its axis. This simple case
provides much intuition and is actually the worst case for annealing with logconcave functions.
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Lemma 5.2 Consider optimization over a cone, where c = (1, 0, 0, . . . 0) and,

K = {x ∈ Rn : |x| ≤ 2x1 ≤ 2}
Then for any logconcave function fi : R → R and its corresponding normalized density νi(x) =
fi(x1)/

∫
K

fi(x1)dx over K,
σi

ν̄i
≤ 1√

n

Proof. The statement of the lemma can be rewritten as,

Eνi
[x2

1]− ν̄2
i

ν̄2
i

≤ 1
n

Eνi
[x2

1]
(Eνi

[x1])2
≤ 1 +

1
n

=
n + 1

n
∫

K

x2
1νi(x)dx

∫

K

νi(x)dx ≤
(

n + 1
n

)(∫

K

x1νi(x)dx

)2

∫ 1

0

xn+1fi(x)dx

∫ 1

0

xn−1fi(x)dx ≤
(

n + 1
n

)(∫ 1

0

xnfi(x)dx

)2

The last step comes from the fact that the volume of a cross section of K at x is proportional to xn−1.
Setting f(x) = fi(x) for x ∈ [0, 1] and 0 elsewhere, we can rewrite this as

(
1

(n + 1)!

∫ ∞

0

xn+1f(x)dx

)(
1

(n− 1)!

∫ ∞

0

xn−1f(x)dx

)
≤

(
1
n!

∫ ∞

0

xnf(x)dx

)2

.

This follows from Lemma 5.3c of [15] states that the sequence

sn =
1
n!

∫ ∞

0

xnf(x)dx

is logconcave, i.e., sn+1sn−1 ≤ s2
n. ¤

The previous two lemmas lead to Theorem 5.1.

Proof. [of Theorem 5.1] Combining the previous two lemmas,

ν̄i−1 − ν̄i ≤ ν̄i−1 + ν̄i√
n

ln(2eM)

ν̄i

(
1 +

ln(2eM)√
n

)
≥ ν̄i−1

(
1− ln(2eM)√

n

)

ν̄i

ν̄i−1
≥ 1− 2

ln(2eM)√
n

Thus, after m = 2 ln(2eM)/
√

n phases, the mean can have dropped by at most

ν̄m ≥ ν̄1

(
1− 2 ln(2eM)√

n

) √
n

2 ln(2eM)

≥ ν̄1/e

¤

6. Extending to arbitrary convex functions It would be nice to extend the approach to mini-
mizing an arbitrary convex function, in the natural way. Namely, given a convex function f , the functions
e−f(x)/Ti are logconcave, and would be a natural sequence of distributions to use for annealing. While
results exist for mixing times of logconcave functions, sufficiently good results do not exist. However, in
keeping with the previous analysis, the difficult point seems to be the “warm start” condition on the L2

norms of successive distributions. This can still be bounded.

Lemma 6.1 Let f be a convex function over convex set K with range M = maxK f(x)−minK f(x). Let
Ti = M

(
1− 1√

n

)i, and πi be the distribution with density proportional to e−f(x)/Ti . Then for all i ≥ 0,

‖πi/πi+1‖ ≤ 5.
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Proof. Let πi be the stationary distribution of the ith distribution. As in Lemma 3.2,

Y (a) =
∫

Rn

e−f(x)a dx.

‖πi/πi+1‖ =
∫

e−f(x)/Ti

e−f(x)/Ti+1

e−f(x)/Ti

Y (1/Ti)
dx

e−f(x)/Ti+1

Y (1/Ti)

=
Y (2/Ti − 1/Ti+1)Y (1/Ti+1)

Y (1/Ti)2

≤ 5.

The last step uses the logconcavity of anY (a) by Lemma 3.2 and the computation is the same as in the
proof of Lemma 4.4. ¤

Note (although it’s not in the statement of the lemma), that the first distribution π0 is close to the
uniform distribution π over K, in that ‖π0/π‖ ≤ e, because the range of f(x)/T0 is at most 1. Finally, a
statement analogous to Lemma 4.1 holds also for general convex functions.

Lemma 6.1 can be interpreted as follows: any logconcave density can be morphed into a uniform
density over a convex body in O∗(

√
n) steps, where the intermediate distributions are logconcave and

have large overlap from one step to the next. In fact, we can further morph the uniform density over a
convex body into an exponential density (proportional to e−C|x| for some C)in O∗(

√
n) iterations. This

implies that one can go between any two logconcave densities in O∗(
√

n) steps.

7. Conclusions and future work A theorem analogous to theorem 5.1, with a nearly identical
proof applies to reverse annealing, where the temperature is increased. This shows that these distributions
are also optimal for the volume algorithm in [14].

One criticism of our argument is that due to Step 3, the covariance estimation, our algorithm is really
doing something more than annealing. However, on the n dimensional cone, where our upper and lower
bounds match, Step 3 is not necessary (and so the algorithm actually has an O(n3.5) guarantee). Thus,
even without covariance updates, annealing is speeding things up.

While it seems that on other shapes, such as a cylinder, a much shorter temperature schedule (with
Boltzmann distributions) may succeed, we do not have any examples where a non-Boltzmann type of
distribution is strictly superior.

Finally, the original method of Bertsimas and Vempala can be used for minimizing arbitrary quasi-
convex functions. It would be nice to extend annealing to this setting. We have presented some positive
results in this direction.
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Appendix A. Remaining proofs Proof. [of Lemma 3.3] For any set S and probability distri-
bution µ, let µ|S be the distribution µ restricted to the set S, i.e. with density function dµ|S(x) =
dµ(x)/µ(S). Next, since the L2 norm of any distribution is at least 1,

‖ν|S/π|S‖ ≥ 1

Eν|S

(
dν|S(x)
dπ|S(x)

)
≥ 1

Eν|S

(
dν(x)
dπ(x)

π(S)
ν(S)

)
≥ 1

Eν|S

(
dν(x)
dπ(x)

)
≥ ν(S)

π(S)

Now consider the set A = {x|dν(x) ≥ dπ(x)}. Then the variation distance is ‖ν − π‖tv = ν(A) − π(A).

http://math.mit.edu/~vempala/papers/logcon.pdf�
http://www-math.mit.edu/~vempala/survey.ps�
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Using the above,

‖ν/π‖ = Eν

(
dν(x)
dπ(x)

)

= ν(A)Eν|A

(
dν(x)
dπ(x)

)
+ (1− ν(A))Eν|Ac

(
dν(x)
dπ(x)

)

≥ ν(A)
ν(A)
π(A)

+ (1− ν(A))
1− ν(A)
1− π(A)

= 1 +
(ν(A)− π(A))2

π(A)(1− π(A))
.

Next, π(A) = ν(A)− ‖ν − π‖tv ≤ 1− ‖ν − π‖tv. So in the case where ‖ν − π‖tv > 1/2 (the lemma holds
trivially in the other case), we have the better bound that π(A)(1 − π(A)) ≤ (1 − ‖ν − π‖tv)‖ν − π‖tv.
Combining this with the previous displayed equation, gives,

‖ν/π‖ ≥ 1 +
‖ν − π‖2tv

(1− ‖ν − π‖tv)‖ν − π‖tv

=
1

1− ‖ν − π‖tv

Rearranging terms gives the lemma, which is tight for variation distances greater than 1/2. (A tight
bound for the ≤ 1/2 case can be found by using π(A)(1− π(A)) ≤ 1/4.) ¤

The next theorem, which follows from a theorem of Rudelson [20] and Theorem 5.22 from [15], is the
basis of the covariance estimate. It was also used in [14, 2].

Theorem A.1 Let f be any logconcave density in isotropic position. Let x1, . . . , xm be drawn indepen-
dently from f and define Y = 1

m

∑m
i=1 xxT . Then, there is a constant C1 such that for

m > C1
n

η2
(p log

n

η2
)2 max{p, log n},

E (||Y − I||p) ≤ ηp.

As a consequence, we get the following guarantee about isotropy after each rounding update.

Corollary A.1 Using m > C2t
3n log2 n samples, for t > log n, the rounding step applied in phase i

will put the current distribution µi in 2-isotropic position with probability at least 1− 1
2t .

Proof. Without loss of generality, we can assume that µi is in isotropic position, and then show
that for any unit vector v, the quantity vT Y v is between 1/2 and 2 with high probability.

By Theorem A.1, for m large enough,

Pr(||Y − I|| > 2η) = Pr(||Y − I||p > (2η)p)

≤ E(||Y − I||p)
(2η)p

≤ 1
2p

.

Thus, if we set η = 1/4 and p = t, for the corresponding value of m from the theorem, we have

vT Y v = vT (I + Y − I)v ≤ 1 + ||Y − I|| ≤ 3
2

with probability at least 1− 1
nt as required. The lower bound is similar. ¤


