
A New Approach to Strongly Polynomial Linear
Programming

Mihály Bárász1 Santosh Vempala2

1Google, Zurich
2School of Computer Science, Georgia Tech, Atlanta

klao@cs.elte.hu vempala@gatech.edu

Abstract: We present an affine-invariant approach for solving linear programs. Unlike previous ap-
proaches, the potential strong polynomiality of the new approach does not require that graphs of poly-
topes have polynomial diameter (the Hirsch conjecture or weaker versions). We prove that two nat-
ural realizations of the approach work efficiently for deformed products [AZ99], a class of polytopes
that generalizes all known difficult examples for variants of the simplex method, e.g., the Klee-Minty
[KM72] and Goldfarb-Sit [GS79] cubes.

Keywords: Linear Programming, Affine-invariant Algorithms, Strongly Polynomial, Deformed Prod-
ucts

1 Introduction
Strongly polynomial linear programming has

been a holy grail for the theory of algorithms
for several decades. Notable milestones include
strongly polynomial algorithms for maximum
weight matchings in general graphs [Edm65], lin-
ear programming in fixed dimension [Meg84], and
minimum cost flow [Tar86] and its extension to
combinatorial linear programs. In addition to
these breakthroughs, for several other problems
and even special cases of these problems, there has
been a drive to find combinatorial algorithms that
reveal more structure and are possibly faster than
their generic counterparts. Strong polynomiality
is today both mathematically and algorithmically
a central concept in complexity theory.

Linear programming is perhaps the most general
setting that holds open the possibility of a strongly
polynomial algorithm. Can we solve a standard
instance,

max c · x

s.t. Ax ≤ b

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m using at

most f(m, n) arithmetic operations with f being
a bounded-degree polynomial with no dependence
on the description of A, b, c? Two reasons why this

possibility appears so tantalizing are that (a) if the
program is feasible and bounded, there is a basic
solution, i.e., it can be expressed succinctly as the
solution to n of the inequalities as equalities, and
(b) the complexity of the original LP algorithm,
Simplex, and its many variants can be bounded
as such a function; however, for all known deter-
ministic variants (pivot rules), there are examples
demonstrating that f has to be exponential in m or
n.

All variants of the Simplex method maintain a
basic feasible solution (n inequalities that define
a vertex of the polyhedron Ax ≤ b) and use a
pivot rule to iteratively modify the current basic
solution. There is an extensive body of work con-
structing difficult instances for pivot rules. These
instances show that even though many pivot rules
are guaranteed not to cycle, they end up explor-
ing an exponential number of possibilities. On the
other hand, the simplest randomized pivot rule —
of all pivots (swapping one inequality from the cur-
rent basis for another not in it) that improve the
objective value, choose one at random — has been
widely studies but not yet successfully analyzed. A
lower bound of Ω(n2) is known [GHZ94, BP07].

The major conceptual hurdle in proving a
strongly polynomial bound for any variant of sim-
plex (randomized or deterministic) is that this

1



would imply a polynomial bound on the diame-
ter of any polytope graph, the graph induced by
the vertices and edges of the polytope, sometimes
called its skeleton. A long-standing open problem
in combinatorics is the Hirsch conjecture: the di-
ameter of any polytope graph for a polytope with
m facets in R

n is at most m − n. The best known
upper bound is superpolynomial [GK92]. The cur-
rent best upper bounds on variants of the simplex
method are subexponential, roughly n · 2Õ(

√
d)

given by [Kal92] and Matousek et al [MSW96].
Is the possibility of strongly polynomial linear

programming inextricably intertwined with resolv-
ing the Hirsch conjecture (or a polynomial ver-
sion)? A very interesting lower bound [MS04]
might suggest this: an abstract cube is the poly-
tope graph of a cube with its edges oriented ac-
cording to some simple rules, in particular that
there is unique sink. Simplex naturally applies
to optimization over abstract cubes. It has been
shown, via specific orientations, that the random
edge pivot rule above and several other powerful
extensions are doomed to be exponential for ab-
stract cubes.

What hope remains? The difficult orientations
of abstract cubes are not geometrically realizable
by explicit objective functions. In other words, ob-
jective functions map to only a subset of all pos-
sible orientations of edges of the polytope graph.
Thus, it seems necessary to utilize the geometry of
linear programs in any efficient algorithm. Indeed,
all the known polynomial algorithms heavily use
the geometry. A common high-level ingredient is
some scaling of space (affine transformation) for
efficiency. However, finding this transformation
and making progress towards an optimal solution
both depend on the description lengths of the poly-
tope; although polynomial in the input, the number
of arithmetic operations depends on the number of
bits used to define the input instance.

The main contribution of this paper is an affine-
invariant approach and affine-invariant geometric
algorithm for solving linear programs. The algo-
rithm is iterative and maintains a set of n inequali-
ties, modifying this set in each iteration. However,
unlike Simplex, it does not restrict itself to vertices
and edges of the polytope; it typically follows rays
in its facets or its interior, thus taking advantage
of many geometric shortcuts. Moreover, unlike

known geometric algorithms, it is affine-invariant
and thus its complexity does not depend on the bit
sizes of the input. Before we describe the algo-
rithm precisely, we state what we prove about it so
far.

We are able to analyze the algorithm for
any polytope in the class of deformed prod-
ucts as defined by Amenta and Ziegler [AZ99].
This class includes all known difficult examples
for variants of the simplex algorithm, e.g., the
Klee-Minty cubes for Dantzig’s largest coeffi-
cient rule [KM72], Jeroslow’s construction [Jer73]
for the greatest increase rule, the Goldfarb-Sit
cubes [GS79] for the steepest increase rule, Avis-
Chvatal’s cubes [AC78] for Bland’s rule and
the construction by Murty [Mur80] and Goldfarb
[Gol83] for the shadow vertex pivot rule. Our
main theorem shows that our new algorithm takes
O(n2) iterations on any polytope in a class gener-
alizing all these difficult examples (each iteration
takes O(mn) arithmetic operations). We return to
a discussion of the significance of this result and
its implications in the concluding section.

2 Algorithm AFFINE
We propose the following algorithm for opti-

mizing a linear objective over a simple polyhedron
given by a system of linear inequalities. The al-
gorithm maintains a set of n linear inequalities,
whose normals are rows of the input constraint ma-
trix A, but the right hand sides are not constrained
to the input RHS vector b. Starting at a vertex, the
algorithm computes the set of improving rays at
the vertex, and a line given by a nonnegative com-
bination of them. It moves along this line till it
hits a facet. It then repeats the same step within
the facet, to reach a lower-dimensional face and
ultimately another vertex. Since it always moves
along a combination of improving rays, the new
vertex reached has objective value higher than the
original vertex. This whole process is repeated till
we reach a vertex with no improving rays.

In the above description, the part that is not clear
is how to compute improving rays when we are at
some point on a facet. To do this in an effective and
affine-invariant manner, in each step, the algorithm
updates the set of inequalities so that, when taken
as equalities, their solution is the current point. We
give more intuition following a precise description.

2



Algorithm: AFFINE
INPUT: Polyhedron P given by linear inequalities {aj · x ≤ bj : j = 1 . . .m}, objective
vector c and a vertex z.
OUTPUT: A vertex maximizing the objective value, or “unbounded” if the LP is un-
bounded.
• While the current vertex z is not optimal, repeat:

1. (Initialize)
(a) Let H be the set of indices of active inequalities at z.
(b) (Compute edges) For every t ∈ H compute a vector vt : ah · vt = 0 for

h ∈ H \ t and at · vt < 0.
(c) Let T = {t ∈ H : c · vt ≥ 0} and S = H \ T .

2. (Iteration) While T is nonempty, repeat:
(a) (Compute improving rays) For every t ∈ T compute a vector vt 6= 0 :

ah · vt = 0 for h ∈ H \ {t}, c · vt ≥ 0 and the length of vt is the largest
value for which z + vt remains feasible.

(b) (Pick direction) Invoke a subroutine which computes a nonnegative combi-
nation v of {vt : t ∈ T}.

(c) (Move) Let λ be maximal for which z + λv ∈ P , if there is no such maxi-
mum, return “unbounded”. Move the current point: z := z + λv.

(d) (Update inequalities) Let s be the index of an inequality which becomes
active. Let t ∈ T be any index such that {ah : h ∈ {s} ∪ S ∪ T \ {t}} is
linearly independent. Set

S := S ∪ {s}, T := T \ {t} and H := S ∪ T.

• Return the current vertex.

For the subroutine in step (2b) we propose the following two possibilities:

Subroutine CENTROID
1. Let λt = max{λ : z + λtvt ∈ P}, t ∈ I .
2. Return v =

∑

t∈I λtvt.

Subroutine RANDOM
1. Let λt = max{λ : z + λtvt ∈ P}, t ∈ I .
2. Chose {µt : t ∈ I} st.

∑

µt = 1, µt ≥ 0 : t ∈ I uniformly at random.
3. Return v =

∑

t∈I µtλtvt.

3



Lemma 1. Both proposed variants of Algorithm
AFFINE are affine-invariant.

We note that the inner loop which takes the al-
gorithm from one vertex to another takes at most
n iterations, since in each iteration, the cardinality
of the set T is reduced by 1.

The main idea of the algorithm is to take ge-
ometric shortcuts through the interior of the poly-
tope and not be restricted to its edges. At first sight,
our algorithm might appear to be a modest general-
ization of the random edge pivot rule for Simplex
— at a vertex of the feasible polyhedron, instead
of picking an improving edge at random, we go
along the average or a random combination of all
the improving edges. This could indeed be the case
at the first iteration starting at vertex, but then on-
wards our algorithm is typically not at a vertex; it
moves from a point on a facet to another along a
chord of the polyhedron. It does so by maintain-
ing a set of hyperplanes whose intersection defines
the current point. When the next direction is cho-
sen (in an affine-invariant manner), it moves the
point along with all the associated hyperplanes to
the other endpoint of the chord, then replaces one
of the hyperplanes with the facet just hit, so that
the new set of hyperplanes defines the new point
reached. This process is repeated.

It is natural to consider the following variant:
after moving along a chord (random or centroid)
from a vertex, we then jump to any vertex of objec-
tive value at least as high and repeat this process.
What is the complexity of this (simpler) variant?
If the algorithm could go to any improving ver-
tex after following a chord, then for both the ran-
dom rule and the centroid rule, we can construct
instances where the total number of iterations is
exponential. Thus, it is important to move from
the endpoint of a chord to the next vertex (or next
point reached) in a more systematic (in particular,
affine-invariant) manner.

3 Preliminaries
We observe that the maximum number of itera-

tions of the algorithm is at most n times the num-
ber of distinct vertices visited and the overall com-
plexity is a fixed polynomial (time to compute im-
proving rays) times the number of iterations. In
our analysis, we will focus on bounding the num-
ber of vertices visited.

The following measures of complexity will be
used to analyze the algorithm. Given a polytope
P , an objective direction c, and a starting vertex
z, let f(P, c, z) is the (expected) maximum num-
ber of vertices visited by Algorithm AFFINE ap-
plied to P, c, z; let f(P, c) = supz f(P, c, z) and
f(P ) = supc f(P, c). We also define h(P, c) is
the maximum length of a directed path in the graph
whose vertices and edges are vertices and edges of
P with edges oriented in the direction of higher
objective value; h(P ) = supc h(P, c).

Let P be a k-dimensional polytope defined by
the following inequalities:

P = {x ∈ R
k : Ax ≤ a}

Let V and W be l-dimensional combinatorially
equivalent polytopes with corresponding facets
parallel (normally equivalent). Let them be de-
fined as follows:

V = {x ∈ R
l : Bx ≤ b}

W = {x ∈ R
l : Bx ≤ b′}

We assume that every inequality in the above
definitions is essential.

Let ϕ be a k-dimensional linear functional, such
that ϕ(P ) ⊆ [0, 1].

The deformed product [AZ99],

Q = P oϕ (V, W ),

is defined as follows:

{x ∈ R
k+l : ∃y ∈ P, v ∈ V, w ∈ W

s.t. x = (y, ϕ(y)v + (1 − ϕ(y))w)}

When V = W , we get the usual direct product,
Q = P × V . The Klee-Minty cube is obtained
recursively, with P being a K-M cube in Rn−1

and V, W are line segments (of different lengths.
In Jeroslow’s construction for the greatest increase
rule, V, W are polygons in R

2. All known bad ex-
amples for simplex pivot rules are recursively de-
fined deformed products with dim V ≤ 2.

The next lemma collects useful properties of de-
formed products and is from [AZ99].

Lemma 2. Deformed products have the following
properties.

1. Q is combinatorially equivalent to P × V .

4



2. Let q be a vertex of Q, where q = (y, ϕ(y)v+
(1−ϕ(y))w) with y ∈ P and v ∈ V , w ∈ W .
Then y, v and w are uniquely determined and
are vertices of the corresponding polytopes.
Moreover v and w are corresponding vertices
of V , W .
We use the following notation for this decom-
position: πP (q) = y, πV (q) = v, πW (q) =
w.

3. Let

C =

(

A 0
F B

)

, c =

(

a
b

)

where F = diag(b − b′)ϕ. Then

Q = {x ∈ R
n : Cx ≤ c}

Every inequality in this formulation is essen-
tial. We refer to the facets defined by the rows
of A as P -facets, and the rest as (V, W )-
facets.

4 Analysis
4.1 Deformed products

The main theorem of this section is the follow-
ing.

Theorem 1. Let P, V, W, ϕ be as in the definition
of the deformed product. Let Q := P oϕ (V, W ).
Then

f(Q) ≤ h(V ) + f(P ).

The next corollary shows that Algorithm
AFFINE is efficient on all known bad examples
for simplex pivot rules.

Corollary 1. Let Q be a recursively defined de-
formed product polytope, where at every step of
the recursion, dim(V ) ≤ 2. Then

f(Q) ≤ dim(Q) + #{facets of Q}.

To prove the theorem, we need the following
definitions.

Definition 1. For a polyhedron Q, a defining hy-
perplane is any hyperplane whose normal vector
is the same as the normal vector of one of the in-
equalities defining Q.

Definition 2. Let Q = P oϕ (V, W ), n = dim Q.
We call an intersection of n − 1 defining hyper-
planes a P -ray if there are at most dim P − 1
hyperplanes corresponding to inequalities of P
among them. Otherwise we call a it (V, W )-ray.
That is, there are at most dim V − 1 hyperplanes
corresponding to (V, W ) inequalities defining the
intersection.

Lemma 3. The first dim P coordinates of a
(V, W )-ray are 0.

Proof. Let x = (πP (x), ϕ(πP (x))πV (x) + (1 −
ϕ(πP (x))πW (x)) be a point on a (V, W ) ray.
Then y = πP (x) satisfies dim P linearly indepen-
dent inequalities as equalities from the set Ay ≤ a
defining P . Thus y is uniquely defined for all
points x along the ray, and the difference between
two points (a vector along the ray) is zero along the
first dim P coordinates.

Lemma 4. Let x and y be two consecutive vertices
visited by the algorithm applied to Q := P oϕ

(V, W ). Then πV (x) < πV (y) in the partial order
induced on the vertices of V by cV , unless πV (x)
is already maximal in the partial order.

Proof. The partial order is the same on V and W
and all their “copies” in the deformed product. We
can write the objective vector c = (cP , cV,W ) and
assume that cV,W is not entirely zero. ¿From a ver-
tex x, the algorithm only chooses a nonnegative
combination of improving rays to move. If these
rays do not include any (V, W )-ray, then πV (x)
is already maximal. If some (V, W ) rays are in-
cluded, then with probability 1, their coefficient is
positive and so the next point reached will have
higher objective value overall and higher value
w.r.t. to cV,W as well. Since the algorithm only
uses improving directions, the next vertex reached
will be higher in the partial order.

Proof. (of Theorem 1.) By Lemma 4, the number
of vertices of Q visited before πV (z) is maximal
wrt. cV in V , is at most h(V ). After reaching a
vertex z, for which πV (z) is maximal, by Lemma
3 the V, W -rays are never improving. So, the algo-
rithm proceeds as if in P , and finishes in at most
f(P ) additional visits to vertices.

5



4.2 Direct Products
To analyze a direct product of two arbitrary sim-

ple polytopes, we define an extended complexity
measure.

For the purpose of analysis, consider the follow-
ing version of the algorithm.

Algorithm: PROJECTED AFFINE
. . .

After step (2b) insert the following
steps arbitrary many times.

i. Chose an arbitrary λ st. z + λv ∈ P .
Move the current point there.

ii. Recompute λts with the subroutine
and let v =

∑

t∈I λtvt.

In words, as the algorithm moves along a chosen
line, it can stop at any point and recompute a new
line to move along using the same subroutine. It
can do this arbitrarily many times.

Let g(P, c, z) be the (expected) maximum num-
ber of vertices visited by Algorithm PROJECTED
AFFINE on input polytope P with objective vec-
tor c and starting point z. Thus, the inserted steps
can affect which vertices are visited but are not
counted separately in the complexity of the algo-
rithm.

Theorem 2. Let P and Q be two polyhedra
in R

dim P and R
dim Q respectively with zP ∈

P, zQ ∈ Q, vertices in P, Q respectively and cP ∈
R

dimP , cQ ∈ R
dim Q vectors in the corresponding

spaces. Let z = (zP , zQ) and c = (cP , cQ). Then,

f(P × Q, c, z) ≤ g(P × Q, c, z)

≤ g(P, cP , zP ) + g(Q, cQ, zQ).

Proof. Any vertex x of P × Q can be written as
x = (xP , xQ) where xP , xQ are vertices of P
and Q respectively. Let x and y be two consec-
utive vertices visited by Algorithm AFFINE . Let
n = dim P + dim Q. When the algorithm moves
from x along a line, it hits a facet which is either
a P -facet (corresponding to an inequality defining
P ) or a Q-facet. Let the point reached be x1 and
the facet hit be a P -facet. Then x1 = (x1

P , x1
Q).

If the algorithm were applied directly on P from
xP , then we would reach the same (distribution
for) x1

P . The centroid subroutine would gener-
ate the same subcombination of rays, and the ran-
dom subroutine would have the same distribution

on lines generated. The same is true for Q, ex-
cept that the step is not completed, i.e., the algo-
rithm stops in Q before reaching a facet. Taking
the next step in P × Q from x1 can be viewed
as attempting a step of Algorithm AFFINE in P
from x1

P and Algorithm PROJECTED AFFINE in
Q from x1

Q. Within n iterations we reach a vertex
y = (yP , yQ) of P × Q. Thus, in the steps from x
to y, we also move from a vertex to a vertex in both
P and Q, however, for one step in P × Q, we are
guaranteed to take a ”complete” step in only one
of P, Q. In the other one, we perform one of the
”inserted” steps. Therefore we can view the algo-
rithm in P×Q as running Algorithm PROJECTED
AFFINE in both P and Q, coordinated in a specific
way. The complexity bound follows.

We believe that the analysis of deformed prod-
ucts in Theorem 1 can be improved using Algo-
rithm PROJECTED AFFINE as done in this sec-
tion.

4.3 Perturbed products
Here we argue that the analysis of the previous

section is not delicately aligned with the structure
of products and deformed products. We do this by
showing that we can perturb the facets defining a
product polytope, and for small enough perturba-
tions, the edges of the polytope can change their
orientations with respect to the objective function,
but our analysis still holds.

For simplicity consider a direct product poly-
tope Q = P × V . We know that every vertex q of
Q can be written as q = (p, v) where p and v are
vertices of P and V respectively. Now suppose
the facets of P and V by small but arbitrary per-
turbations of each coefficient of each facet normal.
Further assume that the perturbation is at most ε in
magnitude and ε is small enough that in the per-
turbed polytope Q′, each vertex q′ is the solution
of exactly dim P facets that are perturbations of
facets of P and dim V facets that are perturba-
tions of facets of V . Then many edges can change
their orientation with respect to the objective func-
tion. However, our analysis using Algorithm PRO-
JECTED AFFINE is still valid and we still get a
bound of g(Q) ≤ g(P ) + g(V ). Essentially the
same reasoning also applies to deformed products.

6



5 Discussion
We have presented a new approach to solving

linear programs and two algorithmic realizations
of it. The highlights of the method are (a) it takes
geometric shortcuts through the input polyhedron
and (b) it is affine-invariant. As a result, its com-
plexity is not related to the Hirsch conjecture and
is not dependent on the bit sizes of the input. As
an illustration, suppose the input is a rotated cube
stretched along one of its axes. Then the complex-
ity of known polynomial-time algorithms for linear
programming would depend on the stretch factor,
i.e., the number of bits of the long axis. To analyze
our algorithm, we first note that we can equiva-
lently analyze it on any affine transformation of the
input, in particular the one that brings it back to a
cube and thus it is independent of bit sizes.

In this paper, we have focussed our analysis on
bad instances for the simplex method. These in-
stances have been constructed over decades and
show that known deterministic pivoting rules for
the simplex method are exponential. Fortunately,
none of these instances poses a problem for our
new algorithm. It would be very interesting to ex-
tend the analysis to combinatorial cubes, i.e., poly-
topes whose face structure is identical to that of the
cube.

One can construct classes of polytopes which
have the property that the centroid rule (or ran-
dom rule) makes significant progress towards the
optimum in each step even though the lengths of
edges are small, e.g., triangulations of the sphere
where the edges are all roughly the same length.
One direction of future research to make this more
precise and more general would be investigate the
behavior of our algorithm on random polytopes.
For example, what is the complexity of Algorithm
AFFINE on polytopes of the form Ax ≤ 1 where
the rows of A are random unit vectors (and so the
polytope contains the unit ball).

We conclude the paper with a loose, heuristic ar-
gument for analyzing the algorithm in the general
case. Assume the input is a polytope P and we
are at a vertex v. Using the affine-invariance of the
algorithm, we can assume for the sake of analysis
that the set Pv = P ∩ {x : c · x ≥ c · v} is in
isotropic position, i.e., its covariance matrix is the
identity and it is centered at the origin. Then the set
Pv contains a unit ball and it appears plausible that

a random combination of the rays of v generates a
chord through v that is likely to intersect this ball.
If it does, then moving along the chord, we make
significant progress towards the optimum, roughly
reducing the distance to optimal by a (1−1/n) fac-
tor. This would yield a polynomial bound, which
again by affine-invariance should give a strongly
polynomial bound.

Acknowledgements. We thank Luis
Rademacher for many helpful discussions on
this topic. The first author was supported in
part by the Algorithms and Randomness Center
(ARC) at Georgia Tech and the second author
acknowledges NSF Award CCF-0721503.

References
[AC78] D. Avis and V. Chvtal, Notes on bland’s piv-

oting rule, Polyhedral Combinatorics. Math.
Programming Study 8 (1978), 24–34.

[AZ99] Nina Amenta and Gnter M. Ziegler, De-
formed products and maximal shadows of
polytopes, Advances in Discrete and Com-
putational Geometry, Contemporary Mathe-
matics 223 (1999), 57–90.

[BP07] József Balogh and Robin Pemantle, The
klee–minty random edge chain moves with
linear speed, Random Struct. Algorithms 30
(2007), no. 4, 464–483.

[Edm65] J. Edmonds, Paths, trees, and flowers, Cana-
dian Journal on Mathematics 17 (1965),
449–467.

[GHZ94] B. Gärtner, M. Henk, and G. M. Ziegler,
Randomized simplex algorithms on Klee-
Minty cubes, Combinatorica 18 (1998 (pre-
liminary version at FOCS’94)), no. 3, 349–
372.

[GK92] D.J. Kleitman G. Kalai, A quasi-polynomial
bound for the diameter of graphs of poly-
hedra, Bull. Amer. Math. Soc. (1992), 315–
316.

[Gol83] D. Goldfarb, Worst case complexity of the
shadow vertex simplex algorithm, Tech Rep.
Columbia Univ. (1983).

[GS79] D. Goldfarb and W. T. Sit, Worst case be-
haviour of the steepest edge simplex method,
Disc. Appl. Math 1 (1979), 277–285.

[Jer73] R. G. Jeroslow, The simplex algorithm with
the pivot rule of maximizing improvement
criterion, Disc. Math. 4 (1973), 367–377.

[Kal92] Gil Kalai, A subexponential randomized sim-
plex algorithm (extended abstract), STOC,
1992, pp. 475–482.

7



[KM72] V. Klee and G. J. Minty, How good is the
simplex algorithm?, p. 159175, Academic
Press, New York, 1972.

[Meg84] Nimrod Megiddo, Linear programming in
linear time when the dimension is fixed, J.
ACM 31 (1984), no. 1, 114–127.

[MS04] Jirı́ Matousek and Tibor Szabó, Random
edge can be exponential on abstract cubes,
FOCS, 2004, pp. 92–100.

[MSW96] Jirı́ Matousek, Micha Sharir, and Emo Welzl,
A subexponential bound for linear program-
ming, Algorithmica 16 (1996), no. 4/5, 498–
516.

[Mur80] K. G. Murty, Computational complexity of
parametric linear programming, Math. Pro-
gramming 19 (1980), 213–219.

[Tar86] Eva Tardos, A strongly polynomial algo-
rithm to solve combinatorial linear pro-
grams, Oper. Res. 34 (1986), no. 2, 250–256.

8


