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Abstract9

It has been recently shown via simulations [7] that random projection followed by a cap operation10

(setting to one the k largest elements of a vector and everything else to zero), a map believed11

to be an important part of the insect olfactory system, has strong locality sensitivity properties.12

We calculate the asymptotic law whereby the overlap in the input vectors is conserved, verify-13

ing mathematically this empirical finding. We then focus on the far more complex homologous14

operation in the mammalian brain, the creation through successive projections and caps of an15

assembly (roughly, a set of excitatory neurons representing a memory or concept) in the presence16

of recurrent synapses and plasticity. After providing a careful definition of assemblies, we prove17

that the operation of assembly projection converges with high probability, over the randomness18

of synaptic connectivity, even if plasticity is relatively small (previous proofs relied on high plas-19

ticity). We also show that assembly projection has itself some locality preservation properties.20

Finally, we propose a large repertoire of assembly operations, including associate, merge, recip-21

rocal project, and append, each of them both biologically plausible and consistent with what we22

know from experiments, and show that this computational system is capable of simulating, again23

with high probability, arbitrary computation in a quite natural way. We hope that this novel way24

of looking at brain computation, open-ended and based on reasonably mainstream ideas in neu-25

roscience, may prove an attractive entry point for computer scientists to work on understanding26

the brain.27
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1 Introduction37

The striking computational nature of the animal brain manifests itself even in the humblest38

circumstances. Flies sense odorants in their environment through specialized olfactory39

receptor neurons, of which there are roughly fifty different kinds. So, each smell is initially40

coded as a vector in 50 dimensions, where each coordinate is the level of activity of neurons41
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55:2 Computation with Assemblies

of each kind. Then a remarkable thing happens: This vector undergoes a random projection42

— a familiar ingredient of many algorithms, especially in connection to learning [6, 2, 22, 1, 3]43

— to a higher dimensional space. There is a 50× 2000 sparse, and by all evidence [?] random,44

bipartite graph of synapses projecting the 50 kinds of olfactory receptors to a population of45

2000 neurons called Kenyon cells. Next, the resulting 2000-dimensional vector of synaptic46

inputs undergoes an operation that is routine in neural systems: The activity of the Kenyon47

cells excites an inhibitory neuron, and the resulting activity of this neuron, at equilibrium,48

has the effect of increasing everybody’s membrane potential, “turning off” all but roughly49

the 100 most active cells. We call this operation cap; it is also known as k winners take all,50

in this case with k = 100.51

In a recent paper [7] it was shown empirically that this mapping, random projection52

followed by cap, has strong locality sensitivity properties (and therefore preserves similarity53

of smells, presumably to the animal’s advantage), in fact outperforming in simulations54

certain variants of locality-sensitive hashing1. One of our results in this paper puts some55

mathematical teeth to this interesting empirical observation: We prove that if two binary56

vectors of the same sparsity overlap in a fraction α of their entries, and both undergo random57

projection to n dimensions followed by k-cap, then the two results will overlap in a fraction58

of about ( kn )
1−α
1+α (Theorem 1). For the small numbers of the insect brain (nk ≈

2000
100 ), this is59

substantial overlap that helps explain the empirical findings in [7] (see Figure 1).60

In the mammalian brain numbers get roughly three orders of magnitude higher, and61

yet something similar seems to happen. Importantly, there is strong recurrent synaptic62

connectivity between excitatory neurons; that is, the random graph is now not just a directed63

bipartite graph, but the union of a bipartite directed graph and a non-bipartite directed64

graph interconnecting the receiving side (in contrast, synapses between the fly’s Kenyon cells,65

if any, play no role there). In mammals, the random projection and cap operation does take66

place, but it is only the first step of a complex and sophisticated process, culminating in the67

creation of an assembly of neurons.68

Assemblies. Already in 1949, neuroscience pioneer Donald Hebb predicted that memories69

and concepts are represented by tightly connected sets of neurons he called assemblies, whose70

near-simultaneous firing is tantamount to these concepts being thought about. During the71

last decade, it has been established experimentally [12, 13, 18], see also the survey [5], that72

such near-simultaneous firing of stable sets of neurons is an important part of the way the73

brain works. Assemblies have been hypothesized to underlie many of the higher cognitive74

operations in mammals, such as memory, reasoning, language, planning, etc., and yet, the75

way and manner in which this happens has not begun to be articulated; the computational76

framework of this paper is a first attempt at understanding how assemblies of neurons can77

carry out computation.78

In our framework, the brain is divided into a bounded number of brain areas. Each brain79

area contains a number of excitatory neurons denoted by n; there are of course other neurons80

as well, for instance see the discussion on inhibition below. These excitatory neurons are81

interconnected in a sparse directed Gn,p graph. Pairs of brain areas may also be connected,82

in one or both directions, through bipartite directed Gn,p graphs2.83

Finally, the other two important aspects of our model are cap and plasticity. We assume84

1 As Alex Andoni notes (private communication, 2018), this is not true of the more advanced versions of
LSH.

2 See [16] for a technical discussion of synaptic biases, departures from the Gn,p model noted in experiments,
and the reasons why they may provide further support for the assembly hypothesis. We do not pursue
this direction in the present paper.
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that neurons fire — or do not — in discrete time steps (a very convenient and unrealistic85

assumption, which however does not interfere much with the rest of our framework). At86

each time and each brain area, the k out of n neurons that have largest synaptic input fire.87

That is, at time t for each neuron we add together the weights of the incoming synapses that88

originate in neurons (in the same or different area) which fired the previous time t− 1, and89

select the k neurons out of the n in the brain area that have the largest sums. These are90

the neurons in the area that will fire at time t. The k-cap process is a simplification and91

approximation of the reality of inhibition, whereby an independent population of inhibitory92

neurons cause the excitatory neurons to have high enough membrane potential that an93

equilibrium at k firing neurons is quickly reached. Finally, plasticity: we assume that if there94

is a synapse from neuron i to neuron j, and neuron i fires at time t while neuron j at t+ 1,95

the weight of the synapse is increased by a factor of 1 + β with β > 0; synaptic weights start96

at one, say3. Thus, the key parameters of our model are n, k, p, β, whose indicative intended97

values for the mammalian brain are, respectively, 107, 104, 10−3 − 10−2, 10−1.98

Defining Assemblies. An assembly is of course a set of neurons, in our framework all99

belonging to the same brain area. In past theoretical work [16] this is exactly how they were100

defined, a set of k neurons firing simultaneously. It is a highly interconnected set to ensure101

stability, that is, if enough neurons in it fire then soon all of them will4 — and one of the102

main points of [16] was that there is a biologically plausible algorithm for selecting such a103

highly connected set of neurons in a sparse Gn,p graph. These neurons might be poised to104

fire in a particular pattern, not necessarily all simultaneously as was assumed in [16] — and105

indeed, in our simulations, as well as in the literature on assembly simulations, one does see106

nontrivial patterns of firing. We believe the right way to define assemblies is as distributions107

over the set of neurons in a Brain area whose support has size at most a fixed multiple of the108

cap size k.109

Projection. The most basic operation of assemblies is what we call projection — this is110

how assemblies are created and, once created, copied to other brain areas for further use.111

Assembly projection has been conjectured for a long time and has been established in several112

simulation papers [19, 17] and recently analytically proved [16] for a range of parameters. An113

assembly x in area A can project to a different area B, to which A has ample connectivity,114

creating a new assembly y; this operation is denoted project(x,B, y). If in the future x115

is activated, y will follow suit; we say that x = parent(y). We show that the operation116

project(x,B, y) is carried out by assembly A simply firing for a small number of steps5.117

Once an assembly x has been created, its area is implicit, denoted by area(x). To create118

an altogether new assembly y by project(x,B, y), x must be a “proto-assembly,” a set of119

neurons coding a world experience and residing at some higher area of the sensory cortex120

(such as the area IT of the visual cortex where whole objects are represented), projected121

to a non-sensory area admitting new assemblies (typically the hippocampus). One of our122

main results in this paper (Theorem 3) is that projection indeed works as described — with123

high probability, of course, with randomness supplied by the graph, and in fact for quite low124

3 There should also be a process of homeostasis which, at a slower time scale, keeps the sum of all weights
from growing; but this aspect of the model, taken up in Section 5, does not affect the relative ordering
of synaptic weights or sums thereof.

4 This is one of the many important differences between this work and Valiant’s pioneering theory of
items from the 1990s [20, 21]

5 project(x,B, y) may seem superficially equivalent to an assignment x = y in a programming language —
except that, after such an assignment, variables x and y go on to live largely independent lives, whereas
in assemblies x retains power over y, while y can only exist through x.

ITCS 2019
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plasticity.125

The projection process is quite intricate. It starts with the random projection plus k-cap126

described early in this introduction, creating a set of neurons that we call A1, namely, the127

cells that happen to have the largest synaptic input from the projecting assembly x. We128

assume that the synaptic input of a neuron from assembly x is a Bernoulli random variable129

with parameters k, p and n samples. Notice also that, after the first round, the synapses130

between x and A1 have been boosted by plasticity. As the projecting assembly keeps firing,131

cap will select the set of neurons A2 that have highest combined synaptic input from x and132

A1, and these will include two kinds of cells: the core neurons in A1 ∩A2, and new winners133

from outside A1. What fraction of A1 will become core? This is an important parameter of134

the situation, and we call it λ. To compute it, we set up an algebraic equation of Bernoulli135

expectations; as the expectation of a Bernoulli quantile depends explicitly on the fraction of136

winners, and concentration is strong, we can set up the equation and solve it in the “high137

probability” sense. For the parameter range of interest, λ is about half. Notice that, after138

this step, all synapses from x and A1 to A2 are boosted by plasticity.139

Then the process is repeated, A3, A4, . . . , At, . . ., and we wish to show that |B∗| = |
⋃
tAt|140

converges to some finite multiple of k (recall that this is our definition of an assembly). That141

is, eventually there will be a time after which there are no first-time winners. Unfortunately142

our already complicated Bernoulli analysis is no longer an option, for a variety of reasons.143

First, at time t the number of types of neurons grows exponentially with t: the type of each144

neuron is the set of τ ’s for which the neuron was in Aτ . In addition, the distribution of145

the synaptic input of neurons with complex type is not Bernoulli, because of conditioning.146

Instead, we resort to classifying each neuron by its rough type at time t, which is the number147

of consecutive times τ leading to t− 1 during which the neuron was in Aτ . A crucial lemma148

states that the probability that the run will end at time t and the neuron will find itself149

outside At decreases exponentially with the length of the run (that is to say, the neuron’s150

rough type), and in fact uniformly in t. Convergence to a union size that is a multiple of k151

(with a multiplier that is, naturally, a steeply increasing function of 1
β ) follows (Theorem 3).152

The proof is quite a bit easier in the high plasticity regime defined by β >
√

(1−p) lnn
pk , in153

which case convergence is stronger in that the sequence At itself converges in finitely many154

steps (as indicated in [16]).155

Operations on Assemblies. What is the right scale for understanding computation in156

the brain? We suspect that assemblies may underlie an important and powerful mode of157

brain computation, complementary to the computation involved in the processing of sensory158

input — heretofore the main focus of neuroscience. Such computation would encompass159

memory recall and association, deduction and reasoning, generating and parsing natural160

language, generating and manipulating stories and plans, even math. It happens at a level of161

abstraction intermediate between individual neurons and synapses at the lowest level, and162

whole brain computation at the highest; it is far more expressive than the latter, and much163

less cumbersome to describe than the former. In our quest to understand the full power of164

this mode of computation, in Section 5 we identify a repertoire of additional operations on165

assemblies, beyond projection. We only seek operations that are “realistic” in the following166

two orthogonal senses: (a) operations for which there is experimental evidence, in the sense167

that their existence would help explain extant experimental data, and which could possibly be168

themselves tested experimentally; and (b) operations which are in addition plausible, shown169

(analytically if at all possible, otherwise through simulations) to be realizable at the level of170

neurons and synapses in our framework. That is to say, each assembly operation must be171

“compiled down” to the level of neurons and synapses. Our list of operations includes, besides172
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projection: association, in which two assemblies in the same area increase their intersection173

to reflect conceptual or statistical affinity — there is extensive experimental evidence for174

this operation, see [16] for an extensive discussion; merge, in which two assemblies from two175

different areas project to the same new assembly in a third area, an operation that seems176

important for processing syntax in natural language; reciprocal project (like project, except177

that the projected assembly is able to activate the original one, in addition to vice-versa); and178

append, an operation useful for creating and maintaining sequences. There are also several179

control operations allowing one to read the information of assembly activity in specific areas,180

or disable synaptic connectivity between areas — ultimately, to write simple programs. We181

show that this repertoire of assembly operations constitutes a programming system6 which182

can simulate arbitrary computation in a way that is quite natural (Theorem 4). The point183

of this exercise is to demonstrate the power of this basis of primitives, not to hypothesize184

that the brain must function exactly this way.185

Related work186

Our work on assemblies is superficially related to (and was undoubtedly inspired by) Valiant’s187

theory of items. There are stark contrasts between the two approaches: Assemblies are188

hypothesized to be densely connected, a requirement that makes their creation challenging,189

while items are ransom sets of neurons. And we believe that our model is far closer to190

the realities of the brain, as they are known now, than Valiant’s; for one key difference,191

Valiant assumes plasticity (change in synaptic weights) to be arbitrarily programmable at the192

post-synaptic site, while we assume a very simple implementation of Hebb’s rule. With this193

model we are able to address the problem of how the brain creates similar representations194

for similar stimuli.195

Our earlier work on assemblies established experimentally the plausibility of projection196

and association [19], and theoretically so by relying on very high plasticity [16]. In this paper,197

we attack analytically the more realistic and considerably more challenging regime of small198

plasticity.199

2 Model200

We assume a finite number of brain areas, denoted by A,B, . . .. Each brain area is a weighted201

directed graph whose vertices are n (think of n as 106 or 107) excitatory neurons, and whose202

edges are synapses between neurons; the positive weights vary dynamically through plasticity,203

see below. We assume that the edges are drawn from a Gn,p distribution. That is, we204

assume that the probability of any edge is p and edges are chosen independently. In addition,205

between certain ordered pairs of areas (A,B) there is a Gn,p directed bipartite graph from206

nodes of A to nodes of B. In other words, there is a finite directed graph with the areas as207

nodes, determining whether the two areas have synaptic connections. We assume that there208

is a mechanism to disable the synaptic connections between two areas A and B at any time.209

We assume that events happen in discrete time steps (think of each step as about 20 ms).210

At each step t, every neuron i in every area A may or may not fire. Whether i fires depends211

on its synaptic input at time t. This is defined the sum over all neurons j that have synapses212

(j, i) (note that j can be either in area A or in an area B that does have synapses into A that213

are not disabled at time t). Denote this quantity as SI(j). We assume that neuron i in area214

6 Which, to our credit, we refrained from dubbing “Assembly Language”...

ITCS 2019
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A fires at time t if and only if |{j ∈ A : SI(j) ≥ SI(i)}| < k, where k is a key parameter of215

the model (think of it as roughly
√
n). We call the set of neurons firing at a time t the cap of216

the area. The cap is a mathematically tractable way of capturing the important process of217

inhibition, whereby inhibitory neurons in an area (typically outnumbering excitatory ones)218

are excited by the firing of excitatory neurons in the area, and in response fire, preventing219

some excitatory neurons from further firing, and eventually reaching an equilibrium (called220

the E-I balance in the literature). Here we model this equilibrium by a constant k and ignore221

the transient.222

The other important ingredient of our model is plasticity: We assume that if there is a223

synapse with weight w from neuron i to neuron j (either in the same area, or in another area224

with enabled synapses), and it so happens that i fires in time t− 1 and j fires in time t, then225

the weight of synapse ij is in time t+ 1 equal to w(1 + β), where β (think of it as between 0226

and 1, realistically at the lower end of this) is the plasticity coefficient. Plasticity is a very227

complex phenomenon with many important aspects and cases, but we feel that this simple228

rule (corresponding to Hebb’s “fire together wire together” maxim) captures the essence of229

the matter reasonably well.230

We shall elaborate certain further aspects of our model in the section on assembly231

operations.232

3 The Overlap of Projections233

In this and the next section we analyze how assemblies can be formed in our model. We234

assume that there is a stimulus A of k neurons firing in an area, with enabled synaptic235

projections to another area, where the assembly will be formed. We start with the simple236

case (modeling the insect brain) where A fires only once, forming the cap in the downstream237

area denoted cap(A), and analyze how the overlap of two stimuli A and B is maintained in238

the process; note that here recurrent connections and plasticity do not get involved, and the239

weights can be thought to be one. The following observation will be useful: conditioning on240

a neuron not making it to a cap cannot increase its cap probability for future steps.241

I Lemma 1. Let A,B be two stimuli. Then for any node i ∈ V ,242

Pr(i ∈ cap(B) | i 6∈ cap(A)) ≤ Pr(i ∈ cap(B)) = k

n
243

where the probability is over the randomness of the graph.244

Also, we will need the following well-known bound on the Gaussian tail.245

I Lemma 2 (Gaussian tail). For x ∼ N(0, 1) and t > 0,246

1√
2π

(
1
t
− 1
t3

)
exp(−t2/2) ≤ Pr(x ≥ t) ≤ 1√

2πt
exp(−t2/2).247

Now we state and prove our quantitative assessment of the locality sensitivity properties248

of the insect olfactory map pointed out empirically in [7].249

I Theorem 3. The expected overlap of the caps two stimuli that overlap in an α fraction of250

their nodes is251

|cap(A) ∩ cap(B)|
k

&
1

(ln(n/k))
α

1+α

(
k

n

) 1−α
1+α

.252
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Proof. We bound the probability that any neuron i is in the cap of both A and B. For253

this, let xi, yi, zi be the total input to node i ∈ V from A \ B,A ∩ B and B \ A. Then254

xi, zi ∼ N((1 − α)kp, (1 − α)kp(1 − p)) and yi ∼ N(αkp, αkp(1 − p)). Then, using the255

independence of xi + yi and zi + yi given yi,256

Pr i ∈ cap(A) ∩ cap(B)257

=
∫ ∫ ∫

χ(xi + yi ∈ top k of {xj + yj} and zi + yi ∈ top k of {zj + yj}) dγ(x)dγ(z)dγ(y)258

=
∫ ∫ ∫

χ(xi + yi ∈ top k of {xj + yj} | y)χ(zi + yi ∈ top k of {zj + yj} | y) dγ(x)dγ(z)dγ(y)259

≥
∫ (∫

χ(xi + yi ∈ top k of {xj + yj} | y) dγ(x)
)2

dγ(y)260

≥
∫
yi

[Pr(xi ≥ −yi + kp+ t | yi)]2 dγ(yi).261
262

The last step above is the simple observation that a random draw xi+yi from N(kp, kp(1−p))263

is, with constant probability, in the top k of n iid draws from the same distribution if264

xi + yi ≥ E(xi + y + i) + t where Pr(xi + yi ≥ t) ≥ k/n. The tail bound below shows that265

t ∼
√

(2 ln(n/k)− ln(2 ln(n/k))kp.266

For convenience, we shift the distributions of xi, yi to x̄ = (x − (1 − α)kp)/kp and ȳ =267

(y − αkp)/kp so that x̄ ∼ N(0, (1− α)) and ȳ ∼ N(0, α). For x ∼ N(0, 1), we will use the268

tail bound in Lemma 2:269

1√
2π

(
1
t
− 1
t3

)
exp(−t2/2) ≤ Pr(x ≥ t) ≤ 1√

2πt
exp(−t2/2).270

Thus, for any α < 1,271

Pr(i ∈ cap(A) ∩ cap(B))272

≥
∫
ȳ

Pr̄
x

(x̄ ≥ −ȳ + t)2
dγ(ȳ)273

≥
∫
ȳ

1
2π(1− α) min

{
1− α

(t− ȳ)2 , 1− α
}

exp
(
−2 (t− ȳ)2

2(1− α)

)
1√
2πα

exp
(
− ȳ

2

2α

)
dȳ274

≥
(

1
2πt2/(1+α) exp

(
− t2

1 + α

))∫
ȳ

t2/(1+α)
√

2πα
min

{
1

(t− ȳ)2 , 1
}

exp
(
−

(ȳ − 2α
(1+α) t)

2

2α(1− α)/(1 + α)

)
dȳ275

≥
√

1− α
1 + α

(
k

n

) 2
1+α 1

t2α/(1+α)

∫
y

min
{

1
( 1−α

1+α−
y
t )2 , 1

}
√

2πα(1− α)/(1 + α)
exp

(
− y2

2α(1− α)/(1 + α)

)
dy276

≥
√

1− α
1 + α

(
k

n

) 2
1+α 1

t2α/(1+α)

∫
y

1√
2π

min


1(

1−α
1+α −

y
t

√
α(1−α)

1+α

)2 , 1

 exp
(
−y

2

2

)
dy277

≥

√
1−α
1+α

(2 ln(n/k))α/(1+α)

(
k

n

) 2
1+α

.278

279280
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Thus the expected fraction of overlap is this probability times n divided by k, i.e.,281

Ω
(

1
(ln(n/k))

α
1+α

(
k

n

) 2
1+α n

k

)
= Ω

(
1

(ln(n/k))
α

1+α

(
k

n

) 1−α
1+α
)
.282

J283

It seems that the steps in this proof, including the suppression of constants in the end,284

are quite parsimonious, in that the stated lower bound is not very far from the truth. In285

Figure 1 we compare our bound with simulations of the map for various values of α and with286

n/k = 2000/100 = 20 (the values that pertain to insect olfaction) and n = 104, k = 100, and287

also to our bound without the logarithmic factor.288

Figure 1 The first figure is with n = 2000, k = 100 and the second with n = 10000, k = 100; each
empirical plot is the average of 5 independent trials. For the assembly creation we used plasticity of
β = 0.1. The theoretical bound plotted is (k/n)(1−α)/(1+α)/ ln(n/k)α/(1+α), while the conjectured
bound is the same without the log factor.

4 Bounding the Support of an Assembly289

In this section we turn to assemblies in the mammalian brain, in which recurrent synapses290

and plasticity become important. We assume that a stimulus consisting of k ≥
√
n neurons291

in an upstream area fires repeatedly. The cap at t = 1, denoted A1, which was analyzed in292

the previous section, is only the preamble of a complex process. At t = 2 the stimulus fires293

again, and now the area receives combined input from the stimulus and from A1. A cap294

denoted A2 will be formed, probably containing a considerable part of A1 but also first-timers295

(by which we mean, neurons not heretofore participating in any cap). Meanwhile, plasticity296

has changed the weights. The process is repeated a number of times, with new winners297

displacing some past winners from the new cap, while plasticity acts in a stabilizing way.298

Convergence — that is, At = A for all t > t0 — cannot be guaranteed with high probability299

(experiments show some periodic-like movement of neurons, without any new first-timers).300

The interesting question is, will the process converge, in that after some point and after there301

will be no new winners? (Recall that this is what we mean by an assembly, a set of neurons302

of size a small multiple of k firing in a pattern.). If so, we are interested in the size of the303

assembly’s support, the union of all the Ats. The bound on the support depends crucially on304

the plasticity parameter β, with high plasticity leading to small support (close to the cap305

size k) but even very small positive plasticity leading to bounded support size (a fact that is306

harder to prove). We denote by A∗ the union of A0, A1, A2, . . ..307
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I Theorem 4 (High Plasticity). Assume that the plasticity parameter β ≥ β0 = (
√

2−1)
√

lnn+
√

2√
pk+
√

lnn
.308

Then WHP the total support of the assembly can be bounded as309

|A∗| ≤ k 1
1− exp(−( ββ0

)2)
≤ k +O

(
lnn
pβ2

)
.310

Proof. Let µ1 = 1, µ2, . . . , µt, . . . be the fraction of first-timers in the cap at step t. The311

process stabilizes when µt < 1/k. Using the tail bound of the Gaussian, since the new312

winners must be in the top µtk of remaining n− k ∼ n neurons, the activation threshold at313

step t is therefore very close to314

C1 = pk +
√

2pk ln n
k
, Ct = 2pk + 2

√
pk ln n

µtk
for t ≥ 2.315

Note that the mean term is pk for the first step and 2pk for all subsequent steps since the316

number of neurons firing is the k stimulus ones plus k from the brain area.317

First consider a neuron that make it to the first cap. To bound the probability that318

that it will remain in the next cap, we note that at this point, the total activation from the319

input synapses is at least (1 + β)C1 and from the recurrent synapses it is at least X where320

X ∼ N(pk, p(1− p)k) is the signal from the recurrent synapses coming from nodes in the321

first cap. In order for a node to remain in the next cap, we need that322

(1 + β)C1 + pk +X ≥ C2323

where now X ∼ N(0, p(1− p)k). Substituting for C1, C2, and using L = 2 ln(n/k), and µ as324

the fraction of first-timers in the second cap, we have325

Pr(j ∈ C2 | j ∈ C1) = 1− µ ≥ Pr(X ≥ −βpk − (1 + β)
√
pkL+

√
2pk(L+ 2 ln(1/µ)))326

≥ Pr(X ≥ −β
√
pk +

√
2(L+ ln(1/µ))− (1 + β)

√
L)327

rescaling so that X ∼ N(0, 1).328

& 1− exp
{
−(β

√
pk + (1 + β)

√
L−

√
2(L+ ln(1/µ)))2/2

}
.329

In other words,330 √
2 ln(1/µ) ≤ β

√
pk + (1 + β)

√
L−

√
2(L+ ln(1/µ)).331

Now setting332

β ≥ β0 = (
√

2− 1)
√
L+
√

2
√
pk +

√
L

333

gives µ < 1/e, i.e., the overap with the next cap is at least a 1 − (1/e) fraction. The334

probability of remaining in the cap rapidly increases with the number of consecutive times a335

neuron stays in the cap. To see this, suppose neuron j enters the cap for the first tiema at336

time t, by exceeding the threshold Ct and stays for i consecutive caps (including Ct. The, to337

stay in the next cap, it suffices that338

(1 + β)iC1 + pk +X ≥ Ci+1339

where X ∼ (0, p(1− p)k). Then, rescaling so X ∼ N(0, 1),340

Pr(j ∈ Ci+1 | j ∈ C1) = 1− µ341

≥ Pr(X ≥ (1− (1 + β)i
√
pk − (1 + β)i

√
L+

√
2(L+ 2 ln(1/µ)))342

& 1− exp
{
−(iβ

√
pk + (1 + iβ)

√
L−

√
2(L+ ln(1/µ)))2/2

}
.343
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Rewriting,344 √
2 ln(1/µ) +

√
2(L+ ln(1/µ))−

√
L ≤ iβ(

√
pk +

√
L)345

or346

β ≥ 1
i
·
√

2 ln(1/µ) +
√

2(L+ ln(1/µ))−
√
L

(
√
pk +

√
L)

347

which is less than β0 for µ = e−i
2 .348

Next we consider a new first time winner in round t. In order for this neuron to make it349

to the cap at time t+ 1, we need that350

(1 + β) (2− µ)
2 Ct + µpk +X ≥ Ct+1351

where µ = µt+1 is the fraction of newcomers in the next cap and X ∼ N(0, µp(1 − p)k).352

Rescaling so that X ∼ N(0, µ), we have Pr(j ∈ Ct+1 | j ∈ Ct) is353

1− µ ≥ Pr(X ≥ −β(1− µ

2 )2
√
pk− (1 + β)(1− µ

2 )
√

2(L+ ln(1/µt)) +
√

2(L+ ln(1/µ)))354

Using the tail bound and rewriting as before, we have355

β ≥
2 ln(1/µ) + µ

2
√

2(L+ ln(1/µt)) + ln(µt/µ)
L

(1− µ
2 )(2
√
pk +

√
2(L+ ln(1/µt)))

356

which is less than β0 for µ = µt/e. In other words, the β threshold to do this and ensure357

that µ drops by a constant factor is lower than the threshold β0 for the first step. Finally, as358

before, the probability of staying in the cap increases rapidly with the length of the neurons’359

winning streak.360

If β ≥ β0, then µt drops off exponentially. i.e., the probability of leaving the cap once in361

the cap for i consecutive times 1− pti drops off exponentially. Using these facts, we get362

I Claim 1.∏
i≥1

pi ≥
∏
i≥1

(1− exp(−i2( β
β0

)2)) ≥ 1
2 .363

The claim gives a lower bound on the probability that a neuron that makes it to a cap364

for the first time remains in the cap for all future times. As a result, each neuron that makes365

it a cap for the first time has a probability of at least q = 1− exp(−( ββ0
)2) of remaining in366

all future caps. Thus, the total support of all caps together is at most k/q in expectation.367

This completes the proof of the theorem. J368

We now turn to the regime of low plasticity, including zero plasticity. The bounds here369

will be higher asymptotically, as reflected also in our experiments (see Figure 2). We note370

however that for parameter ranges of interest for the brain, e.g., n = 106, k = 103,371 (n
k

)1/4
< ln(n/k).372

The guarantees below are meaningful and nontrivial only when k is sufficiently large as a373

function of n.374
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Figure 2 The total support size at different values of plasticity β ranging from 0 to just over 0.5
for a random network with n = 104 neurons, edge probability p = 0.01 and assembly size k = 100.
The x axis is the number of iterations.

I Theorem 5 (Low Plasticity). Let a network with n nodes have edge density p, plasticity375

parameter β, and cap size k ≥
√
n. For a sequence of caps A0, A1, A2, ... . . . At, . . ., let A∗ be376

their union. Denote µ =
√
k/n. Then,377

1. for β = 0,378

E (|A∗|) ≤ k
(

1
µ

) 1
µ

.379

2. for β > 0,380

E (|A∗|) ≤ k
(

1
µ

) 1
2β

.381

Proof. For the first part, let µ0, µ1, . . . , µt, . . . be defined as µ0 = 0 and382

µt = |At ∩At−1|
k

,383

the fraction of the cap that persists to the next step.384

We will show that the expected values of µt form an increasing sequence and give a385

recursive lower bound. To get a lower bound on µ1, for a neuron j, let x be the total signal386

from the stimulus and y from A0, normalized, i.e., x, y ∼ N(0, 1). Then,387

Pr(j ∈ A1 | j ∈ A0)388

≥ Pr(x+ y ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x ≥
√

2 ln(n/k)− ln(2 ln(n/k)))389

≥ Pr(y ≥ (2−
√

2)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))390

≥ µ0 =
(
k

n

)−(
√

2−1)2

.391

392
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For general t > 1, let x be the signal from the stimulus y from the overlap At ∩At−1 and z393

from the rest of At. Then, with z ∼ N(0, (1− µt)),394

µt+1 = Pr(j ∈ At+1 | j ∈ At)395

≥ Pr(x+ y + z ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x ≥
√

2 ln(n/k)− ln(2 ln(n/k)),396

and y ≥ µt(2−
√

2)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))397

≥ Pr(x ≥ (2−
√

2)(1− µt)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))398

≥
(
k

n

)−(
√

2−1)2(1−µt)
399

= µ1−µt
0 .400

401

The probability that a neuron j, which enters the cap at the first step, stays in the cap is402

thus at least403 ∏
t

µt ≥ µ0 · µ1−µ0
0 · µ1−µ1−µ0

0
0 · . . .404

= µ
1+(1−µ0)+(1−µ1−µ0

0 )+...
0405

≥ µ1+(1−µ0)+(1−µ0)2+(1−µ0)3+...
0406

= µ
1
µ0
0407

408

where we used the fact that 1− µ(1−µ0)i
0 = 1− (1− (1− µ0))(1−µ0)i ≥ (1− µ0)i+1.409

So far, the computation was only for neurons that were in the very first caps. For neurons410

that make their first entrance later, the calculation is a bit different. Suppose a neuron enters411

the cap for the first time at iteration t. For general t > 1, let x be the signal from the stimulus412

y from the overlap At ∩ At−1 and z from the rest of At. Then, with z ∼ N(0, (1 − µt)),413

noting that x, y make up (1 + µt)/2 of the threshold Ct,414

µt+1415

= Pr(j ∈ At+1 | j ∈ At)416

≥ Pr(x+ y + z ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x+ y ≥ (1 + µt)
√

ln(n/k)− ln(2 ln(n/k))417

≥ Pr(x ≥ (1− µt)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))418

≥
(
k

n

)−(1−µt)/2
419

= µ1−µt .420421

Note that µ here is smaller than µ0 for neurons that enter in the first cap. The computation422

for later steps, for such a neuron is similar, and we get that the probability that such a423

neuron stays in the cap forever is424 ∏
t

µt ≥ µ · µ1−µ · µ1−µ1−µ
· . . . ≥ µ

1
µ425

as before. This completes the first part for β = 0.426

For the second part, with β > 0, the calculation follows the same outline, except that427

the signal from the input is boosted by a factor of (1 + β) in each iteration, and the signal428
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from previous caps is boosted by (1 + β) for a diminishing fraction
∏
t µt. Ignoring the latter429

boost (for a lower bound),430

µt+1 ≥ Pr(x+ y + z ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x ≥
√

2 ln(n/k)− ln(2 ln(n/k)),431

and y ≥ µt(2−
√

2)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))432

≥ Pr(x ≥ (2−
√

2(1 + β)t)(1− µt)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))433

≥
(
k

n

)−(
√

2−(1+β)t)2(1−µt)
434

= µ(1−tβ)(1−µt).435
436

We can now lower bound the probability of a neuron staying in the cap once it enters, and437

thereby the expected size of the total support. J438

Locality Sensitivity of Assemblies. Returning to the motivating story on fly olfaction,439

is the assembly projection operation as locality sensitive as the simpler variant in insects?440

It appears that overlap of assemblies is an important indication of affinity of various sorts441

(co-occurrence, correlation, connection, similarity, etc.), and thus it matters whether or not442

it is preserved in projection. What we are able to show is that, if two sets of k cells overlap443

in a fraction of α, and these two sets are projected sequentially to the same brain area, the444

cores of two resulting assemblies will share at least λ2 fraction of the overlap of their initial445

projections (given by Theorem 3); recall that λ is the size of the core over k, and for the446

parameters of interest is about half. Such a modest overlap at the core — the best connected447

part of the assembly — is a good omen for a large overlap of the two assemblies that will448

eventually emerge, an intuition that is supported by simulations, see Figure 1.7449

5 Computing with Assemblies450

The assembly hypothesis proposes that assemblies are the standard representations used in451

higher brain functions — memory, language, reasoning, decision-making, planning, math,452

music, story-telling and discourse — suggesting a grand and mysterious computational system453

with assemblies at its center, its basic data type. How does this computational system work?454

Foremost, what are its elementary operations?455

Assemblies do appear to project (see the discussion in [11] for an inspiring description of456

the process in the mouse piriform cortex): this is about the only way that assemblies can457

be created, and projection appears to be a most useful operation — in fact, in its absence,458

it is hard to imagine what assemblies may be good for. We denote the operation of an459

assembly x projecting to area A to create a new assembly y as project(x,A, y) (the area460

of assembly x, denoted area(x) 6= A, is implicit). Henceforth, parent(y) = x8. Through461

project, arbitrary relations can be maintained, with brain areas being the columns and462

time steps the rows; for example, a recent experiment [10] seems to suggest that the463

“subject-verb-object” relation in natural language may be achieved this way.464

7 We can prove something weaker, namely that substantial overlap persists to the assemblies, albeit only
for sufficiently high plasticity, and under the additional assumption that the synaptic weights from the
first projection have “faded” enough by homeostasis.

8 As we shall see, some operations such as reciprocal-project make the parent function ambiguous,
but we shall be ignoring this issue here.
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We also know from experiments [14, 8] that assemblies associate by exchanging cells465

(apparently a few percentage points of their support) when they become related through466

co-occurrence in the world and perhaps through other acquired relations. We denote this467

by associate(x, y) — x and y should of course be in the same area. It can be provably468

carried out by activating parent(x) and parent(y), assumed to be in different areas,469

for a few steps [16]. It is natural to hypothesize that cell sharing between x and y has470

the effect that y may be henceforth activated, with some non-zero probability, when471

x is activated, and vice-versa. This opens up intriguing possibilities of sophisticated472

probabilistic reasoning and programming, and we suspect that much of the power of the473

assembly model may lie in this direction — which however we do not explore or exploit474

here.475

On another front, recent fascinating experiments [9, 23, 24, 15] suggest that language476

processing in humans involves the building and maintenance of syntactic structures such as477

syntax trees, and it is natural to assume that assemblies representing words are implicated478

there as well. We postulate the operation merge(x, y,A, z) which takes two assemblies479

x, y in different areas, and projects them both to assembly z in a third area A. Merge,480

the ability to consider two things as one, has been hypothesized in linguistics to be the481

quintessence of syntax, see for example [4]. It follows from the results in this paper that482

it can be implemented in our framework.483

A more complex and very useful operation is reciprocal-project(x,A, y,B, z) which484

creates in two areas A and B two assemblies y and z that can activate one another485

(while y can activated by x, as in ordinary project). It is assumed that there is synaptic486

connectivity from area(x) to A and both ways between A and B. The original assembly487

x, residing in a third area, can activate directly y. We conjecture that this operation can488

be carried out in our framework with high probability; it works reliably in simulations.489

reciprocal-merge is a straightforward generalization, which seems useful for language490

generation. Finally, another related operation is append(x,A, y), useful for creating491

sequences, which we do not detail here.492

5.1 The Power of Computation with Assemblies493

According to the assembly hypothesis, assemblies and their operations are crucial for higher494

mental activities such as planning, language, and reason. The question may then arise: Is495

this purported computational system powerful enough? In particular, is it Turing complete?496

Many computer scientists are by instinct dubious about the value of such a pursuit; we497

agree, and in addition we are convinced that, if the assembly hypothesis is correct, the498

computational power of assemblies is wielded through means that are orthogonal to computer499

programming. On the other hand, an assessment of the computational power of this system500

can usefully inform our modeling, and in particular our search for essential primitives.501

To continue on this path, we must create a programming system, formal enough to502

address the Turing completeness question, for writing simple programs with lines such as503

if area(y) = A, project(parent(y), B, z).
To this end, we need to assume an environment in which names of assemblies, once declared504

— typically in a command such as project(x,A, y) — can be used in subsequent steps of the505

same program (area names are finite and fixed). Also, we introduce certain new primitives:506

activate(x) simply activates assembly x for a few steps; that is, we assume that project507

creates as a side-effect a fuse that can activate the new assembly. Also, we assume that the508

downstream synapses from area A to area B are by default inactive, and must be activated509

explicitly by the operation enable(A,B). To illustrate, project(x,A, y) is almost equivalent510
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to511

enable(area(x), A); repeat T times: activate(x); disable(area(x), A),
missing only a mechanism that names the new assembly y. Here T is the number of spikes512

required for assembly projection (about a dozen in simulations). Of course, it is debatable513

how realistically one expect such a programming framework to be operating in the brain.514

We also introduce a read operation9 returning information about the assemblies that515

are presently active, and their areas. Notice that all this assumes a simple computational516

mechanism acting as an interpreter, and lying outside our framework10.517

Finally, we must address the issue of reliability in assembly computation. We shall make518

some assumptions:519

Any newly created assembly is a random set of k = γ
√
n neurons in its area.520

Two assemblies can interfere destructively in their operations, for example by spurious521

associations between them, but only if they overlap in more than ε
√
n cells; the literature522

seems to suggest that ε is at least 1%.523

At last we need to introduce homeostasis:. We assume that synaptic weights fade with time,524

regressing to the value 1. That is, at every time step weight w becomes max{ w
(1+β′) , 1},525

where 0 < β′ << β, the plasticity parameter.11526

Fading is both realistic and necessary for the simulation, since in its absence the compu-527

tational system cannot erase information, and is therefore severely limited.528

Fading means that eventually all assemblies will lose their synaptic density and connection529

with their parent. To prevent this, we introduce permanent versions of operations530

such as project. For example, permanent_project(x,A, y) involves, besides executing531

n ordinary project operation, repeating activate(x) every τ steps (with synaptic532

connections between the two areas in focus enables), where τ is a small constant, much533

smaller than β
β′ , either indefinitely or until an explicit fade(y) command. There is534

evidence that such processes do happen in the brain, for example by fading, or reviving535

through rehearsal raw memory traces in the hippocampus.536

The following is needed in the proof of the main result:537

I Lemma 6. The probability that a new assembly will interact destructively with a particular538

already existing assembly in the same area is at most exp(− ε
√
n

γ2 ).539

I Theorem 7. The computational system described above can correctly simulate arbitrary540

O(
√
n)-space computations with probability 1− exp(O(

√
n)).541

Sketch: A Turing machine with a one-way circular tape of length m = O(
√
n), tape alphabet542

Σ and state set K can be simulated by a program of assembly operations. Let us assume the543

input-output convention that a new assembly appears in one of two designated input areas544

I0, I1 at designated and well separated times, encoding a binary input tape; and that, upon545

accepting termination, an assembly will appear in another area T . The Turing machine will546

be simulated by |Σ|+ |K|+ 6 brain areas: the three input-output areas I1, I0, O, two areas547

for representing the tape denoted T1 and T2, one area for representing the current state,548

9 Following a suggestion by Buszáki [5] that assemblies must be accompanied by a reader mechanism —
as Buszáki puts it: “if a tree falls in the forest and there is nobody around to hear it fall, has it really
fallen?”

10We do realize this is a strong assumption, unlikely to be literally true; we expect that the computational
power of assemblies is realized through more organic means

11An equivalent, and perhaps more realistic, model of homeostasis would be to normalize the incoming
weights of each neuron separately.
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denoted S, plus one area for each tape symbol a and state q, denoted, respectively, La and549

Sq. See Figure 3.550

Figure 3 Our representation of configuration (state, circular tape contents) [p, 011a]

In the input phase, while the input is read from either I0 or I1 (depending on whether551

the input symbol is 0 or 1, assumed both to be in Σ (recall the input-output conventions), a552

chain of assemblies is created projecting back and forth between the two Ti areas (see Figure)553

through permanent project operations.554

Each assembly in these two areas represents a tape square. The current symbol a in this555

square is represented through a projection to an assembly in area La, a projection that is556

permanent until it is explicitly faded when the same tape square is scanned again.557

Similarly, another standard assembly s in area S points, through a projection (non-558

permanent, since the state changes at every step), to an area Sq representing the current559

state q (initially the starting state). The synapses from S to Sq are enabled, while the560

synapses from S to all other Sp’s are not12.561

When the square corresponding to an assembly x, in one of the areas T1, T2, is scanned562

by the tape head, then x and s fire and a read is issued. Depending on the areas where563

assembly activity is read, say Sq and La, the correct current symbol a and state q are564

identified. Suppose that Turing machine’s transition is δ(q, a) = (p, b). The synapses from S565

to Sq are disabled and those to Sp enabled, the assembly representing the previous symbol566

q is faded, and permanent_project(x, Lb, y) is executed to record the current symbol of567

the tape square represented by x; similarly for state. Then x fires again and a read is568

issued, to identify the tape assembly corresponding to the tape square that is next, and the569

computation continues. The straightforward details are omitted.570

12Notice that this effectively stores the state in the current instruction of the program; it can be done in
more natural ways.
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6 Discussion and open questions571

We have identified a basic computational operation — random synaptic projection to a572

brain area followed by the selection, through inhibition, of the k neurons with the highest573

synaptic input — that appears to be ubiquitous in the animal brain and also useful for574

implementing more complex operations, but also happens to be mathematically concrete,575

productive, and interesting. Assembly projection can be the basis of a computational system576

at an intermediate level of abstraction — and unlike anything else that we have seen in577

theoretical neuroscience. Such a system, we hypothesize, may underlie the higher mental578

functions of the human brain — not an intensely researched subject in neuroscience. This579

hypothesis must be pursued both analytically, and — importantly — experimentally. We also580

believe that this line of work, and the rather simple and concrete model of brain operation581

it entails involving distinct brain areas, random graph connections, inhibition through cap,582

and probabilistic analysis, may constitute a promising entry point for theoretical computer583

scientists who want to work on brain-related problems. One of the contributions of this584

paper is pointing out the locality sensitive nature of assembly projection; this, together with585

the computational nature of association (which we did not consider here) promise to be586

important future directions for this work.587

Assemblies may be implicated in implementing natural language in the human brain.588

Many recent experimental papers, see [23, 24, 10, 15, 9] among many others, appear to589

suggest that assembly-like operations like projection and merge may be implicated in590

language generation and processing.591

We conclude with some more precise questions, that are motivated directly by our findings,592

and will help solidify the mathematical theory of assemblies, some of which we have already593

discussed in context in this paper.594

1. Assembly support size. Is there a phase transition in the support size of an assembly595

(from ω(k) to k + o(k)) as the plasticity parameter β increases?596

2. Assembly convergence. For high plasticity and with high probability, the limit of the597

random project plus cap process is a single fixed subset of size k. What are other possible598

limiting behaviors? E.g., is it possible to get two subsets of size k (possibly overlapping)599

that fire alternately? (We know cases where this happens at a small scale, that is, the600

two subsets of size k differ in 1-3 cells.) Will the limit have a common core (of what size601

as a function of plasticity) that always fires? Is the limit an activity pattern of finite602

length/description?603

3. Model. Can our results be extended to less stylized models in which neurons fire604

asynchronously, or there is explicit inhibition (instead of cap)?605

4. Base graph. We have assumed the base graph to have independently chosen edges. What606

is a deterministic condition on the base graph that suffices? E.g., is it enough to have607

expansion and roughly uniform degrees? Is global expansion necessary or do sufficiently608

strong local properties suffice (e.g., degree and co-degree)?609

5. Extending GNP. Are richer models, e.g., those with higher reciprocity or triangle density,610

useful? For example, do they enable more powerful or efficient computations?611

6. Computational power. Show that randomized s(n) space bounded computation can be612

simulated with n neurons and O(1) brain areas for some function s(n) larger than
√
n.613

7. Capacity. Suppose that, in a brain area, we want to maintain with high probability614

pairwise intersections: two assemblies that intersect in a large (α or more, say) fraction of615

their support should continue to so intersect, and similarly for pairs that intersect in less616
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than α fraction. For how many assemblies can we guarantee this invariant, as a function617

of n?618

8. Learning. Can assemblies perform learning (supervised or unsupervised)? Simulations619

suggest that assemblies can learn well-separated half-spaces quite naturally. Can this be620

proved formally? And what more ambitious forms of learning through assemblies are621

possible?622

9. Assemblies vs 1-step Projections. Are assemblies (created as the limit of iterated random-623

project-and-cap) better for learning than 1-step (insect-like) projections? Is the recurrence624

of the mammalian brain a bonus or a handicap for learning?625

10. Articulate a brain architecture for syntax (the building of syntactic trees) based on the626

assemblies operations project and merge and involving the medial temporal lobe, the627

superior temporal gyrus, and Broca’s area of the left human brain.628
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