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Abstract

Humans learn categories of complex objects quickly and from a few examples. Ran-

dom projection has been suggested as a means to learn and categorize efficiently. We

investigate how random projection affects categorization by humans and by very simple

neural networks on the same stimuli and categorization tasks, and how this relates to the

robustness of categories. We find that (i) drastic reduction in stimulus complexity via

random projection does not degrade performance in categorization tasks by either hu-

mans or simple neural networks, (ii) human accuracy and neural network accuracy are

remarkably correlated, even at the level of individual stimuli and (iii) the performance



of both is strongly indicated by a natural notion of category robustness.

1 Introduction

Humans learn to categorize stimuli into two or more sets and are able to do so accu-

rately after being presented with a few training instances (Booth, 2006; Makino and

Jitsumori, 2007; Marcus et al., 1999; Mandler, 2003; Smith and Minda, 2000). This

finding suggests that humans can identify perceptual information in the stimuli that is

relevant to representing a category and discriminating it from others. The vast amount

of perceptual information that is continuously sensed by humans suggests that several

filtering mechanisms operate on sensory information before it is used in higher-level

cognitive processes such as planning, reasoning or categorization. Arriaga and Vem-

pala (1999, 2006) suggested random projection as a means by which the human brain

could reduce the amount of information that is processed when presented with stim-

uli. The present paper is motivated by the following question: Does random projection

maintain essential properties of visual stimuli to allow for accurate categorization by

humans? In other words, does summarizing sensory data in this manner hinder human

performance? So far this question has only been considered theoretically.

Human ability to categorize high-dimensional stimuli has been an inspiration for the

categorization problem in machine learning. However, computational learning theory

has frequently found learning in high dimension to be an intractable problem (Valiant,

1984; Vapnik and Chervonenkis, 1971; Vapnik, 1995). To make the categorization prob-

lem more tractable, dimensionality reduction is used to focus on relevant information

2



in high-dimensional data. Attribute selection methods try to assess the relevance of

dimensions in the high-dimensional space, so that only the most relevant subset of fea-

tures are used for categorization. Projection methods, on the other hand, try to find

lower-dimensional spaces to represent data so that the categorization problem is easier

in the projection space.

Random projection (RP) is the method of mapping sample points in a high-dimensional

space into a low-dimensional space whose coordinates are random linear combinations

of coordinates in the high-dimensional space. An important property of RP, usually

called the Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss, 1984), is that

distances between pairs of points are approximately preserved by random projection,

provided the target dimension is not too small (roughly the logarithm of the number

of points being projected); see Vempala (2004) for recent proofs. Arriaga and Vem-

pala (1999, 2006) used this property to present a theoretical model of efficient cogni-

tive categorization. In their model, projected samples from well-separated categories

remain distinguishable after projection, and categorization can be achieved efficiently

using the lower-dimensional projections of stimuli. In particular, they give a simple and

efficient algorithm with near-optimal sample complexity for learning a large-margin

linear threshold function in a high-dimensional space: project data to a random low-

dimensional space, then use a margin-based algorithm such as perceptron; to label a

new example, use the same projection and label with the learned threshold function.

Their key insight is that (a) margins to well-defined class boundaries are preserved with

high probability by random projection (for any single data point), (b) only a small num-

ber of points are needed for training in the low-dimensional space, (c) therefore with
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large probability a sufficiently large sample maintains a large margin in the projected

space. They show that the margin of separation of several mathematically well-defined

concept classes is preserved by random projection, so that learning the concept is pos-

sible and efficient in the projected subspace. Moreover, random projection is easily

realized by a simple two-layer neural network with edge weights set independently and

randomly. In fact, setting each weight randomly to −1 or 1 suffices, as shown by Ar-

riaga and Vempala (1999, 2006), who called it neuron-friendly random projection. Re-

cent work (Allen-Zhu et al., 2014) shows that the weights out of each node can all have

the same sign, and still enjoy distance (and margin) preservation. The output of a sin-

gle neuron is believed to have the same sign on all synapses (excitatory or inhibitory),

thereby making random projection even more plausible.

Random projection has been widely applied in conjunction with other methods

in machine learning, such as manifold learning (Hegde et al., 2007a,b; Freund et al.,

2007), face recognition (Goel et al., 2005), mixture learning (Dasgupta, 1999, 2000)

and concept learning (Arriaga and Vempala, 2006; Garg and Roth, 2003). Bingham

and Mannila (2001) and Goel et al. (2005) show that random projection has compara-

ble performance with conventional dimensionality reduction methods such as principal

component analysis while significantly reducing the computational cost and being data-

independent. RP has been proposed as an alternative to kernel methods (Balcan et al.,

2006). It has also been found to be useful in training deep neural networks (Saxe et al.,

2011) either as a separate layer or as a good initialization.

In this paper, we study random projection in the context of human cognition. We

build upon the idea that visual perception may involve a random projection stage. Ran-
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dom projection complements existing mathematical frameworks for cognition (Marcus

et al., 1999; Tenenbaum et al., 2011; Xu and Kushnir, 2013), and can be viewed as a

general-purpose preprocessing step for human learning. We make predictions based

on this hypothesis and test these predictions using behavioral experiments with human

subjects as well as simple neural networks designed to capture predicted human behav-

ior. The main idea is that human accuracy at categorization tasks should not degrade

if stimuli are randomly projected in advance. Our first hypothesis is the following (in

Section 4, we place it in the context of visual psychophysics):

H1. Humans should be able to learn to categorize randomly projected stimuli as easily

and accurately as they categorize unprojected stimuli.

Our second hypothesis is based on the idea that predicted human behavior on per-

ceptual categorization tasks will be mimicked by very simple neural networks under

the same stimulus conditions. The use of neural networks in machine learning is a

sophisticated and high successful technique today, but our goal is not to find a neural

network with best possible performance on the categorization tasks at hand. Rather,

we use the simplest neural networks in order to draw robust and meaningful conclu-

sions. Moreover, all of our categorization tasks are based on one-shot training, i.e.,

with only a single presentation of one example from each of two categories. While

there has been work on Bayesian learning with one-shot training (Li et al., 2006; Lake

et al., 2013), multi-layer neural networks typically need a large number of examples to

generalize well and achieve low classification error (LeCun and Bengio, 1998; Hinton

et al., 2012). In light of this, we hypothesize that:

H2. Very simple neural networks modeling categorization with random projection
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should achieve similar performance as humans.

Our experimental design to test these predictions is presented in the next section.

One challenge in the design is to create stimuli and categories that are both natural

and novel (so as to avoid the bias of prior knowledge of categories, while not ignoring

natural features). We developed three different types of stimuli and used two different

types of random projection.

In Section 3, we present the results of our human categorization experiments on

original and projected visual stimuli. They provide strong support for the above hy-

potheses, in each of the stimuli types and each of the projection types. We also found

similar accuracy in experiments with humans and simple neural networks and observed

improved efficiency during categorization when done with random projection. These

results are discussed in detail in Section 3. We then turn to a more detailed analysis,

comparing the performance of humans and neural networks on individual stimuli. We

found that these are highly correlated, with high agreement in the subsets of stimuli

which humans and neural networks categorized incorrectly. To understand this, we in-

troduce a natural notion of robustness of stimuli. Roughly speaking, it measures how

clearly a stimulus belongs to one category vs the other, with the robustness value being

closer to zero as a stimulus becomes more ambiguous. Placing the images in the or-

der of robustness, we find both that the performance of humans and NN improves with

stimulus robustness and that the few stimuli where humans and neural nets disagree are

almost all in the region of low robustness. These results are presented in Section 3.1.

Although we cannot definitively claim that human brain actually engages in ran-

dom projections, our results support the notion that random projection is a plausible
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explanation for dimensionality reduction within human perception via random summa-

rization. To the best of our knowledge, this is the first study of random projection based

on human subjects.

2 Methods

To address the question of how random projections affects categorization ability in hu-

mans, we conducted experiments in which human subjects were tested on two-class

visual categorization tasks with both unprojected and projected visual stimuli. We de-

signed three types of visual images and two types of random projection methods. We

also designed two versions of a simple neural network to categorize the same visual

stimuli. In this section, we provide details about the visual stimuli, the projection meth-

ods, the experimental design and the neural network design.

2.1 Visual stimulus design

Our choices in creating these stimuli stem from two criteria, naturalness and novelty.

With naturalness we tried to ensure that the stimuli reflect properties of the real world.

In particular, they should have a clear structure, with different connected regions dis-

tinguishable by differences in color, an attribute that the visual system pays distinct at-

tention to (Read, 2014); they should not be collections of arbitrarily colored pixels. On

the other hand, we did not want the images to appear similar to categories that subjects

might already have knowledge of or have real world experience with. Using images of

dogs and cats would have inevitably caused the subjects to call on prior knowledge of
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these categories.

We created three types of images to use as visual stimuli: (i) Geon arrays which

are arrays of simple geometric shapes, (ii) Dartboards which are colored Voronoi di-

agrams, and (iii) Substrates which are simple colored layers rotated by some amount.

Samples of the two categories from each type of visual stimuli are given in Figure 1.

The images for each category were generated by the same algorithm using a different

set of parameters for the two classes. In geon arrays, we used four different shapes

(geons): balls, cones, cubes and cylinders. Images were generated by placing 9 random

geons in a 3 × 3 array, with different distributions on geons for the two categories (A:

0.15, 0.2, 0.05, 0.6; B: 0.2, 0.6, 0.1, 0.1). Dartboard images were generated by pick-

ing 4 points at random in a unit square, computing their Voronoi diagram and coloring

each region; again different distributions on the locations of the points were used for

the two categories (for category A, a point was chosen in the upper half of the main

diagonal of the containing square, giving a partition into 4 rectangles via the horizontal

and vertical lines through the chosen point; then four points were picked randomly, one

from each rectangle; for B, the point used for subdivision was chosen from the lower

half of the diagonal). Substrates were generated using 1-dimensional Brownian random

walks from left to right to partition into layers, then the layers were colored and rotated

randomly; the angle of rotation was from a different distribution for the two categories

(a uniformly chosen anti-clockwise rotation for A, and clockwise for B).

These categories can be assigned semantic labels, at least before projection e.g.,

“more cylinders” vs “more cones”, “more green” vs “more white” and “sloping up”

vs “sloping down”. However, these are not familiar categories, rather familiar features
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(a) Geon (b) Dartboard (c) Substrate

Figure 1: Samples from the two categories A and B for the three types of stimuli.

(number, color, angle) in an unfamiliar context. In our experiments, subjects were

presented with a single pair of images from each stimuli type, one from each category,

for a few seconds. Immediately following this, they had to classify other images, one

at a time; the labels of images used for testing were not revealed to the subject. Thus,

while subjects must have used some cognitive rule to categorize, it is unlikely that they

had the time to consciously define the right semantic categories and then use them for

classification; even more so in the case of projected stimuli, which we describe next.

2.2 Random Projection of Images

Random projection maps points in n-dimensional space to k-dimensional space, where

k is smaller than n. The process of projection can be achieved by multiplying a given

point (taken as an n-vector) by a random n × k matrix to produce a k-vector. Typ-

ical choices for the random matrix with provable guarantees are picking each entry

independently from a standard Normal distribution (Johnson and Lindenstrauss, 1984;

Indyk and Motwani, 1998; Arriaga and Vempala, 1999; Dasgupta and Gupta, 2003),

or uniformly from two discrete values {−1, 1} (Arriaga and Vempala, 1999, 2006). In

designing our projections, we tried to ensure that the projected stimuli have a visually
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salient representation so that comparison with the original stimuli is meaningful. This

suggests that some spatial properties of the image should be preserved by projection

and that projections have meaningful color values. We used two projection methods

(Figure 2), as well as unprojected images. Nevertheless the projected images were only

of size 6× 6, and the projection methods were generic and applied to all three stimulus

types without any modification.

In the sliding-window random projection, a single color is generated from a random

0-1 combination of the colors in a window that slides over the image, and that color

is used to fill a corresponding location in the projected image. The window size and

the increment with which the window is moved determines the reduced image dimen-

sion. This is a random convolution of a particularly simple type, with random weights

chosen from {0, 1} and a very small number of units. Neural networks based on con-

volution have been extremely successful in large-scale machine learning (LeCun and

Bengio, 1998; Sermanet et al., 2014). They are usually initialized with random weights

and then trained with a large number of examples. Biological support for such mecha-

nisms indicates that subsets of sensory inputs are aggregated at lower levels (e.g., line

detectors for various parts of the visual field). Our choice of simplified convolution

is considerably more restricted than general random projection, and thus any support

for our hypothesis (of no degradation in performance) would arguably be stronger. In

our experiments, we used a window to reduce the resolution of original images from

150 × 150 to 6 × 6 (for the geon arrays) and 500 × 500 to 6 × 6 (for larboards and

substrates). In the former case, the window size was 25 × 25 and in the latter it was

100× 100.
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Another aspect of the human visual system is the existence of specialized feature

detectors, for colors, lines, corners etc. We designed a random projection that takes

this into account by first identifying corners in an image. In corner random projection,

corners in the original image are detected using the FAST corner detector (Rosten and

Drummond, 2006) and windows of pixels are extracted from a small region, 31 × 31

around each corner. The projections are computed as the weighted average of these

windows using a set of randomly chosen weights (Figure 2). In this case, the resolution

reduces from 150× 150 and 500× 500 to 20× 20.

Samples of projected images obtained with both methods are given in Figure 3.

These families of random projections do not have distance (or margin) preservation

guarantees for arbitrary inputs. Our prediction is that human performance on categoriz-

ing these visual stimuli will not be affected in any significant way by these projections.

(a) (b)

Figure 2: Description of the random projection methods for visual stimuli: (a) sliding-

window random projection and (b) corner random projection.
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(a) Geon (b) Dartboard (c) Substrate

Figure 3: Samples of images projected using sliding window and corner projection

methods.

2.3 Procedure

There were 9 experimental conditions resulting from all combinations of the three stim-

uli types (geon arrays, dartboards, substrates) and the three projections (unprojected,

sliding-window projected, corner projection). Each of the 9 conditions was tested on

16 subjects. Subjects were randomly assigned to 3 conditions each, chosen to range

across the three stimuli types and the three projections and balanced across them. For

example, a subject might be tested on unprojected geons, sliding-window projected

dartboards and corner projected substrates. The total number of human subjects was

thus 48 (= 9 x 16 / 3). All the subjects were college students ages 18-24 with an equal

number of males and females. They signed an IRB-approved consent form before par-

ticiipating in the study

In each categorization task, subjects were first shown two sample images, one from

each category, side by side for up to 10 seconds (the training phase). Then each subject

was shown a sequence of 16 single images of the same type of stimulus and asked

to label each one as A or B within 5 seconds. Images from the two categories were

presented in random order. The number of correct responses and the reaction time were
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measured.

2.4 Neural network categorization task

For the categorization of visual stimuli into two classes we used two simple feed-

forward neural network structures. The first one assumes that all images (original or

projected) are scaled to a 150 × 150 resolution. The input to the neural network is the

visual stimuli with RGB values normalized and the sign of the output is the category

label. The neural networks contain 150× 150× 3 = 77500 input units and one output

unit. The input units are directly connected to the output unit and all transfer functions

used are linear. Essentially, the category is decided by the sign of the inner product of

the input vector and the weights, i.e., a linear threshold function with zero as the thresh-

old. The weights are initialized randomly in the range [−1, 1] and the vector of weights

is normalized. The weights are updated with the delta rule and the neural network is

trained until the total weight update within an epoch falls below a certain threshold.

The second neural network differs from the first in that projected images are used

as inputs without being rescaled. Therefore, the neural networks are much smaller

for projected stimuli. The complete neural network is the combination of a projection

layer, in which no learning occurs (the weights are chosen randomly and fixed), and a

categorization layer. The input to these networks is therefore always the unprojected

stimuli. The two neural networks are illustrated in Figure 4.

To mirror the task performed by humans, we trained the neural networks on only

one image pair (one from each category) and tested them on the remaining 16 images

for that task, identical to the human experiment. First, we trained using the exact same
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exemplars that the humans were presented. Later, to obtain an average performance of

the neural network, we did a nine-fold cross-validation, whereby the neural network is

trained with a single stimulus pair and tested on the remaining images. Every stimulus

in the set is used once as a training example, for a total of nine iterations.

(a) Standard neural network (b) Neural network with a projection layer

Figure 4: The simple neural network used for visual stimuli categorization.

3 Results

In this section we present comparative results of categorization performance for unpro-

jected and projected images for each type of stimulus. We compare human subjects

and the simple neural networks used and we analyze both average performance and

performance on individual images.

In Figure 5(a), average successful categorization rate among human subjects is com-

pared for unprojected and projected images. Humans were able to categorize success-

fully in all three types of images (t-test with p < 0.001). Our results indicate that in

spite of the reduction in the feature complexity, there was no statistically significant loss

in subjects’ ability to correctly categorize stimuli. Thus, the random projections used
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in our experiments preserved the essential similarities and differences between stimuli

from different categories as perceived by humans. Also, after projection, the accuracy

of classification was similar across all three stimuli types and both projection methods.

Moreover, post-test responses to the question, “what did you use to categorize?” were

highly varied, except for unprojected substrates, suggesting that human subjects were

not consciously creating the same semantic labels for categories.

Similar results were obtained in the neural network categorization task. Here, for

the projected images, we used two types of networks as described in the previous sec-

tion (Figure 4; the first one uses images rescaled to 150× 150, regardless of projection,

while the second uses a fixed projection layer and does not rescale). As expected, there

was little difference in the performance of the two types of neural networks. The net-

works with and without the rescaling had identical performance in 6 of the 9 conditions,

and the difference in the classification rate was just under 7% in the remaining 3 con-

ditions (unprojected and sliding-window projected Geon arrays and corner-projected

substrates). We remark that projections improved the efficiency in categorization by

reducing the size of the neural networkIn. Figure 5 includes NN results without the

projection layer. Figure 5(a) and (b) compare performance on original and projected

stimuli for humans and neural networks. The neural network results are the average

performance in the 9-fold tests. Figure 5 (c) and (d) compare performance across the

different types of stimuli. Our findings were similar across all stimulus types, indicat-

ing that the general-purpose random projection methods used did not affect human or

neural network performance.

We extended our analysis by investigating variations in successful categorization on
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Figure 5: Experimental Results. The fraction of correctly categorized stimuli across all

stimulus types without projection (blue), after sliding-window random projection (red),

and after corner projection (yellow) by (a) humans and (b) neural networks through the

9-fold cross validation are shown. The graphs (c) and (d) give the performance for each

stimulus type. The standard deviations in are given by the error bars.

individual images.

3.1 Comparison based on robustness

Here we investigate how categorization of images relates to their robustness, which we

will define presently. Although category robustness has been discussed in the cogni-
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tive science literature in relation to categorization, a concise mathematical definition of

robustness is not available. Arriaga and Vempala (1999) define the robustness of a cat-

egory as the minimum, over all examples, of the distance of an example to the category

boundary. This assumes that the categories are defined by concepts with well-defined

boundaries, while in our case no assumption about the category representation is made.

The linear discriminant analysis method, also known as Fisher’s method (Fisher, 1938),

estimates the hyperplane which best separates two categories by maximizing the ratio

of the distance between categories to the scatter within categories, after approximating

categories by Normal distributions. We adopt the ratio between the distance of the sam-

ple to the mean of its category to the distance of the sample to the mean of the other

category. In order to unify the robustness calculation for the two categories, we take the

difference between the ratio and its reciprocal. The precise definition of our robustness

measure is as follows. Here x is the sample stimuli, µA and µB are the means of the

two categories:

RAB(x) =
‖x− µA‖
‖x− µB‖

− ‖x− µB‖
‖x− µA‖

Note that this provides a measure of robustness for individual samples rather than for a

whole category. For an example whose category is ambiguous, i.e., its distances to the

two sample means are nearly equal, the robustness measure will be close to zero; if the

distance to one of the categories is smaller by a factor of r, the robustness measure will

go up as r − 1/r in magnitude (positive for examples from one category and negative

for examples from the other category).

We investigated the role of robustness in categorization by looking at the categoriza-

tion performance of humans and NNs on individual images, taking into account their
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robustness. We first observed that samples on which human subjects made the most

mistakes are the ones that are frequently misclassified by the neural network. In Fig-

ure 6 performance on individual images of human subjects and neural networks (in the

9-fold cross-validation) are compared. Although there exists outliers, performance in

general is very similar, even on individual stimuli!

We argue that the performance on individual images is strongly related with the ro-

bustness of the image as defined above. In Figure 6, stimuli are sorted according to their

robustness, i.e., the two extremes being the most robust samples of the two categories

and the middle ones being the least robust ones. It is again clear from this figure that

images with low robustness are the ones on which both humans and neural networks

perform poorly. Another interesting observation is that most samples on which human

and NN performance are not correlated (outliers) are ones with low robustness.

The distribution of image samples on a robustness scale in Figure 6 shows that the

trend of degrading performance towards the origin can be observed in all categories.

The figure also provides an idea of how projections affect robustness. While sliding

window projection does not seem to change the robustness of samples, corner projection

stretches the robustness distribution, making low-robustness images worse, and highly

robust images better.

4 Discussion

The main findings of this study can be summarized as follows. (i) The categorization

ability of human subjects does not degrade with random projection applied as a task-
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Figure 6: (Left) Performance comparison on individual image samples (Geons) sorted

according to robustness. (Right) Distribution of image samples according to their ro-

bustness and change of human (top) and neural network (bottom) performance with

robustness.
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independent initial processing step, (ii) Simple neural networks have remarkably similar

performance to humans on categorization tasks for both original and projected stimuli.

Despite their simplicity, these networks are able to capture human categorization capa-

bilities at the level of individual samples. (iii) Human and NN performance are highly

correlated to the robustness of categories. A measure of robustness that is in agreement

with human performance can be obtained by considering both the distance of samples

to the other category and the distance to the prototype of their own categories. There

exists a three-way correlation between robustness of image samples and the categoriza-

tion performance by humans and neural networks on those images. As far as we know

this is the first study using random projections with human subjects, and comparing

their performance on one-shot learning and categorization with neural networks.

Turning to support from psychophysics (the analysis of perceptual process using

quantitative measures), we note that it is possible to compare monkey neuronal data to

human psychophysics performance because the two are generally understood to have

very similar visual systems. Results indicate that humans and non-human primates can

process visual stimuli rapidly, at speeds between 14-50 ms (Proctor and Brosnan, 2013).

This happens under a variety of presentation paradigms from single stimuli presentation

of clip art to a continuous sequence of naturalistic images (Keysers et al., 2001). The

pyschophysics literature also shows that there is consistency of encoding among nat-

uralistic and geometric stimuli in monkey primary visual cortex (Wiener et al., 2001).

Our results raise a number of questions about how the visual system might be able to

make random projections of stimuli. The literature indicates that if RP is a mechanism

in the visual system then it 1) it happens quickly, 2) in both human and non-human
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primates and 3) across varied stimuli that are static and in motion.

To conclude, random projection is computationally efficient and could account for

the efficiency of categorization by humans. In neural networks, random projection in-

creases the efficiency of learning by reducing the size of the network. Taken together

with our empirical findings that pre-projecting visual stimuli does not significantly af-

fect human ability to categorize, random projection appears to be a highly plausible

mechanism for information processing in general, and categorization in particular. Con-

firming this, by understanding the projections used more precisely, is a compelling re-

search direction for cognition and learning. As one reviewer suggested, it would be

interesting to compare human and neural network performance on more complex im-

ages, with more training examples and using deeper neural networks. Future studies

could (a) develop stimuli by varying the ease with which they can be labeled semanti-

cally (easy to hard) and (b) vary the random projection method from what we used and

other neurally plausible methods to fully random positive and negative weights. In this

regard, we are inspired by the fact that the trichromatic nature of human vision was de-

duced via behavioral experiments hundreds of years before objective knowledge from

physiology confirmed its existence (Read, 2014).
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