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Abstract

How much can randomness help computation? Motivated by this general question and by
volume computation, one of the few instances where randomness provably helps, we analyze
a notion of dispersion and connect it to asymptotic convex geometry. We obtain a nearly
quadratic lower bound on the complexity of randomized volume algorithms for convex bodies
in R

n (the current best algorithm has complexity roughly n4, conjectured to be n3). Our main
tools, dispersion of random determinants and dispersion of the length of a random point from a
convex body, are of independent interest and applicable more generally; in particular, the latter
is closely related to the variance hypothesis from convex geometry. This geometric dispersion
also leads to lower bounds for matrix problems and property testing.
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1 Introduction

Among the most intriguing questions raised by complexity theory is the following: how much can
the use of randomness affect the computational complexity of algorithmic problems? At the present
time, there are many problems for which randomized algorithms are simpler or faster than known
deterministic algorithms but only a few known instances where randomness provably helps.

One problem for which randomness makes a dramatic difference is estimating the volume of a
convex body in R

n. The convex body can be accessed as follows: for any point x ∈ R
n, we can

determine whether x is in the body or not (a membership oracle). The complexity of an algorithm
is measured by the number of such queries. The work of Elekes [11] and Bárány and Füredi [3]
showed that any deterministic polynomial-time algorithm cannot estimate the volume to within an
exponential (in n) factor. We quote their theorem below.

Theorem 1 ([3]). For every deterministic algorithm that uses at most na membership queries and
given a convex body K with Bn ⊆ K ⊆ nBn outputs two numbers A, B such that A ≤ vol(K) ≤ B,
there exists a body K ′ for which the ratio B/A is at least

(

cn

a log n

)n

where c is an absolute constant.

In striking contrast, the celebrated paper of Dyer, Frieze and Kannan [9] gave a polynomial-
time randomized algorithm to estimate the volume to arbitrary accuracy (the dependence on n was
about n23). This result has been much improved and generalized in subsequent work (n16, [17]; n10,
[16, 1]; n8, [8]; n7, [18]; n5, [15]; n4, [20]); the current fastest algorithm has complexity that grows
as roughly O(n4/ǫ2) to estimate the volume to within relative error 1 + ǫ with high probability
(for recent surveys, see [22, 23]). Each improvement in the complexity has come with fundamental
insights and lead to new isoperimetric inequalities, techniques for analyzing convergence of Markov
chains, algorithmic tools for rounding and sampling logconcave functions, etc..

These developments lead to the question: what is the best possible complexity of any randomized
volume algorithm? A lower bound of Ω(n) is straightforward. Here we prove a nearly quadratic
lower bound: there is a constant c > 0 such that any randomized algorithm that approximates
the volume to within a (1 + c) factor needs Ω(n2/ log n) queries. The formal statement appears in
Theorem 2.

For the more restricted class of randomized nonadaptive algorithms (also called “oblivious”),
an exponential lower bound is straightforward (Section 5.1). Thus, the use of full-fledged adaptive
randomization is crucial in efficient volume estimation, but cannot improve the complexity below
n2/ log n.

In fact, the quadratic lower bound holds for a restricted class of convex bodies, namely par-
allelopipeds. A parallelopiped in R

n centered at the origin can be compactly represented using
a matrix as {x : ‖Ax‖∞ ≤ 1}, where A is an n × n nonsingular matrix; the volume is simply
2n|det(A)|−1. One way to interpret the lower bound theorem is that in order to estimate |det(A)|
one needs almost as many bits of information as the number of entries of the matrix. The main
ingredient of the proof is a dispersion lemma which shows that the determinant of a random matrix
remains dispersed even after conditioning the distribution considerably. We discuss other conse-
quences of the lemma in Section 8.
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Our lower bound is nearly the best possible for this restricted class of convex bodies. Using
O(n2 log n) queries, we can find a close approximation to the entire matrix A and therefore any
reasonable function of its entries. This naturally raises the question of what other parameters
require a quadratic number of queries. We prove that estimating the product of the lengths of the
rows of an unknown matrix A to within a factor of about (1 + 1/ log n) also requires Ω(n2/ log n)
queries. The simplest version of this problem is the following: given a membership oracle for
any unknown halfspace a · x ≤ 1, estimate ‖a‖, the Euclidean length of the normal vector a
(alternatively, estimate the distance of the hyperplane from the origin). This problem can be
solved deterministically using O(n log n) oracle queries. We prove that any randomized algorithm
that estimates ‖a‖ to within an additive error of about 1/

√
log n requires Ω(n) oracle queries.

Related earlier work includes [4, 7], showing lower bounds for linear decision trees (i.e., every
node of the tree tests whether an affine function of the input is nonnegative). [4] considers the
problem of deciding whether given n real numbers, some k of them are equal, and they prove
that it has complexity Θ(n log(n/k)). [7] proves that the n-dimensional knapsack problem has
complexity at least n2/2.

For these problems (length, product of lengths), the main tool in the analysis is a geometric
dispersion lemma that is of independent interest in asymptotic convex geometry. Before stating the
lemma, we give some background and motivation. There is an elegant body of work that studies
the distribution of a random point X from a convex body K [2, 5, 6, 21]. A convex body K is said
to be in isotropic position if vol(K) = 1 and for a random point X we have

E(X) = 0, and E(XXT ) = αI for some α > 0.

We note that there is a slightly different definition of isotropy (more convenient for algorithmic
purposes) which does not restrict vol(K) and replaces the second condition above by E(XXT ) = I.
Any convex body can be put in isotropic position by an affine transformation. A famous conjecture
(isotropic constant) says that α is bounded by a universal constant for every convex body. It
follows that E(‖X‖2) = O(n). Motivated by the analysis of random walks, Lovász and Vempala
made the following conjecture (under either definition). If true, then some natural random walks
are significantly faster for isotropic convex bodies.

Conjecture 1. For a random point X from an isotropic convex body,

var(‖X‖2) = O(n).

The upper bound of O(n) is achieved, for example, by the isotropic cube. The isotropic ball,
on the other hand, has the smallest possible value, var(‖X‖2) = O(1). The variance lower bound
we prove in this paper (Theorem 6) directly implies the following: for an isotropic convex polytope
P in R

n with at most poly(n) facets,

var(‖X‖2) = Ω

(

n

log n

)

.

Thus, the conjecture is nearly tight for not just the cube, but any isotropic polytope with a small
number of facets. Intuitively, our lower bound shows that the length of a random point from such
a polytope is not concentrated as long as the volume is reasonably large. Roughly speaking, this
says that in order to determine the length, one would have to localize the entire vector in a small
region.
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Returning to the analysis of algorithms, one can view the output of a randomized algorithm
as a distribution. Proving a lower bound on the complexity is then equivalent to showing that
the output distribution after some number of steps is dispersed. To this end, we define a simple
parameter of a distribution:

Definition 1. Let µ be a probability measure on R. For any 0 < p < 1, the p-dispersion of µ is

dispµ(p) = inf{|a − b| : a, b ∈ R, µ([a, b]) ≥ 1 − p}.

Thus, for any possible output z, and a random point X, with probability at least p, |X − z| ≥
dispµ(p)/2. We prove some useful properties about this parameter in Section 3.

2 Results

2.1 Complexity lower bounds

We begin with our lower bound for randomized volume algorithms. Besides the dimension n,
the complexity also depends on the “roundness” of the input body. This is the ratio R/r where
rBn ⊆ K ⊆ RBn. To avoid another parameter in our results, we ensure that R/r is bounded by a
polynomial in n.

Theorem 2 (volume). Let K be a convex body given by a membership oracle such that Bn ⊆ K ⊆
O(n8)Bn. Then there exists a constant c > 0 such that any randomized algorithm that outputs a
number V such that (1− c) vol(K) ≤ V ≤ (1 + c) vol(K) holds with probability at least 1− 1/n has
complexity Ω(n2/ log n).

We note that the lower bound can be easily extended to any algorithm with success probability
p > 1/2 with a small overhead [14]. The theorem actually holds for parallelopipeds with the same
roundness condition, i.e., convex bodies specified by an n × n real matrix A as {x ∈ R

n : ∀ 1 ≤
i ≤ n |Ai · x| ≤ 1} where Ai denotes the i’th row of A. In this case, the volume of K is simply
2n|det(A)|−1. We restate the theorem for this case.

Theorem 3 (determinant). Let A be an matrix with entries in [−1, 1] and smallest singular value
at least 2−12n−13/2 that can be accessed by the following oracle: for any x, the oracle determines
whether ‖Ax‖∞ ≤ 1 is true or false. Then there exists a constant c > 0 such that any randomized
algorithm that outputs a number V such that

(1 − c)|det(A)| ≤ V ≤ (1 + c)|det(A)|

holds with probability at least 1 − 1/n, has complexity Ω(n2/ log n).

A slightly weaker lower bound holds for estimating the product of the lengths of the rows of A.
The proof is in Section 6.

Theorem 4 (product). Let A be an unknown matrix that can be accessed by the following oracle:
for any x, the oracle determines whether ||Ax||∞ ≤ 1 is true or false. Then there exists a constant
c > 0 such that any randomized algorithm that outputs a number L such that

(

1 − c

log n

) n
∏

i=1

‖Ai‖ ≤ L ≤
(

1 +
c

log n

) n
∏

i=1

‖Ai‖

with probability at least 1 − 1/n has complexity Ω(n2/ log n).
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When A has only a single row, we get a stronger bound. In this case, the oracle is simply a
membership oracle for a halfspace.

Theorem 5 (length). Let a be a vector in [−1, 1]n with ‖a‖ ≥ √
n − 4

√
log n and a · x ≤ 1 be the

corresponding halfspace in R
n given by a membership oracle. Then there exists a constant c > 0

such that any randomized algorithm that outputs a number l such that

‖a‖ − c√
log n

≤ l ≤ ‖a‖ +
c√

log n

with probability at least 1 − 1/n has complexity at least n − 1.

The restrictions on the input in all the above theorems (“roundness”) only make them stronger.
For example, the bound on the length of a above implies that it only varies in an interval of length
4
√

log n. To pin it down in an interval of length c/
√

log n (which is O(log log n) bits of information)
takes Ω(n) queries. This result is in the spirit of hardcore predicates [12].

It is worth noting that a very simple algorithm can approximate the length as in the theorem
with probability at least 3/4 and O(n log2 n) queries: the projection of a onto a given vector b can
be computed up to an additive error of 1/ poly(n) in O(log n) queries (binary search along the line
spanned by b). If b is random in Sn−1, then E((a · b)2) = ‖a‖2/n. A Chernoff-type bound gives that
the average of O(n log n) random projections allows the algorithm to localize ‖a‖ in an interval of
length O(1/

√
log n) with probability at least 3/4.

2.2 Variance of polytopes

The next theorem states that the length of a random point from a polytope with few facets has
large variance. This is a key tool in our lower bounds. It also has a close connection to the variance
hypothesis (which conjectures an upper bound for all isotropic convex bodies), suggesting that
polytopes might be the limiting case of that conjecture.

Theorem 6. Let P ⊆ R
n be a polytope with at most nk facets and contained in the ball of radius

nq. For a random point X in P ,

var ‖X‖2 ≥ vol(P )
4
n

+ 3c
n log n e−c(k+3q) n

log n

where c is a universal constant.

Thus, for a polytope of volume at least 1 contained in a ball of radius at most poly(n), with
at most poly(n) facets, we have var ‖X‖2 = Ω(n/ log n). In particular this holds for any isotropic
polytope with at most poly(n) facets. The proof of Theorem 6 is given in Section 7.

2.3 Dispersion of the determinant

In our proof of the volume lower bound, we begin with a distribution on matrices for which the
determinant is dispersed. The main goal of the proof is to show that even after considerable
conditioning, the determinant is still dispersed. The next definition will be useful in describing the
structure of the distribution and how it changes with conditioning.
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Definition 2. Let M be a set of n × n matrices. We say that M is a product set of matrices if
there exist sets Mi ⊆ R

n, 1 ≤ i ≤ n,

M = {M : ∀1 ≤ i ≤ n, Mi ∈ Mi}.

Lemma 7. There exists a constant c > 0 such that for any partition {Aj}j∈N of (
√

nBn)n into

|N | ≤ 2n2−2 parts where each part is a product set of matrices, there exists a subset N ′ ⊆ N such
that

a. vol(
⋃

j∈N ′ Aj) ≥ 1
2 vol

(

(
√

nBn)n
)

and

b. for any u > 0 and a random point X from Aj for any j ∈ N ′, we have

Pr
(

|detX| /∈ [u, u(1 + c)]
)

≥ 1

27n6
.

3 Preliminaries

Throughout the paper, we assume that n > 12 to avoid trivial complications.
The n-dimensional ball of radius 1 centered at the origin is denoted Bn. We define πV (u) to

be the projection of a vector u to a subspace V . Given a matrix R, let Ri denote the i’th row of
R, and let R̂ be the matrix having the rows of R normalized to be unit vectors. Let R̃i be the
projection of Ri to the subspace orthogonal to R1, . . . , Ri−1. For any row Ri of matrix R, let R−i

denote (the span of) all rows except Ri. So πR⊥
−i

(Ri) is the projection of Ri orthogonal to the

subspace spanned by all the other rows of R.

3.1 Dispersion

We begin with two simple cases in which large variance implies large dispersion.

Lemma 8. Let X be a real random variable with finite variance σ2.

a. If the support of X is contained in an interval of length M then dispX( 3σ2

4M2 ) ≥ σ.

b. If X has a logconcave density then dispX(p) ≥ (1 − p)σ.

Proof. Let a, b ∈ R be such that b − a < σ. Let α = Pr(X /∈ [a, b]). Then

varX ≤ (1 − α)

(

b − a

2

)2

+ αM2.

This implies

α >
3σ2

4M2
.

For the second part, Lemma 5.5(a) from [19] implies that a logconcave density with variance σ2 is
never greater than 1/σ. This implies that if a, b ∈ R are such that Pr(X ∈ [a, b]) ≥ p then we must
have b − a ≥ pσ.
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Lemma 9. Let X, Y be real-valued random variables and Z be a random variable that is generated
by setting it equal to X with probability α and equal to Y with probability 1 − α. Then,

dispZ(αp) ≥ dispX(p).

Lemma 10. Let f : [0, M ] → R+ be a density function with mean µ and variance σ2. Suppose the
distribution function of f is logconcave. Then f can be decomposed into a convex combination of
densities g and h, i.e., f(x) = αg(x) + (1−α)h(x), where g is uniform over an interval [a, b], with
a ≥ µ, α(a − b)2 = Ω

(

σ2/ log(M/σ)
)

and α = Ω
(

σ2/M2 log(M/σ)
)

.

This lemma is proved in Section 6.

3.2 Yao’s lemma

We will need the following version of Yao’s lemma. Informally, the probability of failure of a ran-
domized algorithm ν on the worst input is at least the probability of failure of the best deterministic
algorithm against some distribution µ.

Lemma 11. Let µ be a probability measure on inputs I (a “distribution on inputs”) and let ν be
a probability measure on deterministic algorithms A (a “randomized algorithm”). Then

inf
a∈A

Pr(algorithm a fails on measure µ) ≤ sup
i∈I

Pr(randomized algorithm ν fails on input i).

Let I be a set (a subset of the inputs of a computational problem, for example the set of all
well-rounded convex bodies in R

n for some n). Let O be another set (the set of possible outputs of
a computational problem, for example, real numbers that are an approximation to the volume of
a convex body). Let A be a set of functions from I to O (these functions represent deterministic
algorithms that take elements in I as inputs and have outputs in O). Let C : I ×A → R (for a ∈ A
and i ∈ I, C(i, a) is a measure of the badness of the algorithm a on input i, such as the indicator
of a giving a wrong answer on i).

Lemma 12. Let µ and ν be probability measures over I and A, respectively. Let C : I ×A → R be
integrable with respect to µ × ν. Then

inf
a∈A

Eµ(i) C(i, a) ≤ sup
i∈I

Eν(a) C(i, a)

Proof. By means of Fubini’s theorem and the integrability assumption we have

Eν(a) Eµ(i) C(i, a) = Eµ(i) Eν(a) C(i, a).

Also
Eν(a) Eµ(i) C(i, a) ≥ inf

a∈A
Eµ(i) C(i, a)

and
Eµ(i) Eν(a) C(i, a) ≤ sup

i∈I
Eν(a) C(i, a).

Proof (of Lemma 11). Let C : I × A → R, where for i ∈ I, a ∈ A we have

C(i, a) =

{

1 if a fails on i

0 otherwise.

Then the consequence of Lemma 12 for this C is precisely what we want to prove.
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3.3 The query model and decision trees

We have already discussed the standard query model (let us call it Q): A membership oracle for
a convex body K takes any q ∈ R

n and outputs YES if q ∈ K and NO otherwise. When K is a
parallelopiped specified by a matrix A, the oracle outputs YES if ‖Aq‖∞ ≤ 1 and NO otherwise.

It is useful to view the computation of a deterministic algorithm as a decision tree representing
the sequence of queries: the nodes (except the leaves) represent queries, the root is the first query
made by the algorithm and there is one query subtree per answer. The leaves do not represent
queries but instead the answers to the last query along every path. Any leaf l has a set Pl of inputs
that are consistent with the corresponding path of queries and answers on the tree. Thus the set
of inputs is partitioned by the leaves.

To prove our main lower bound results for parallelopipeds, it will be convenient to consider a
modified query model Q′ that can output more information: Given q ∈ R

n, the modified oracle
outputs YES as before if ‖Aq‖∞ ≤ 1; otherwise it outputs a pair (i, s) where i is the “least index
among violated constraints”, i = min{j : |Ajq| > 1}, and s ∈ {−1, 1} is the “side”, s = sign(Aiq).
An answer from Q′ gives at least as much information as the respective answer from Q, and this
implies that a lower bound for algorithms with access to Q′ is also a lower bound for algorithms
with access to Q. The modified oracle Q′ has the following useful property (see Definition 2):

Lemma 13. If the set of inputs is a product set of matrices, then the leaves of a decision tree in
the modified query model Q′ induce a partition of the input set where each part is itself a product
set of matrices.

Proof. We start with M, a product set of matrices with components Mi. Let us observe how this
set is partitioned as we go down a decision tree. A YES answer imposes two additional constraints
of the form −1 ≤ q · x ≤ 1 on every set Mi. For a NO answer with response (i, s), we get two
constraints for all Mj , 1 ≤ j < i, one constraint for the i’th set and no new constraints for the
remaining sets. Given this information, a particular setting of any row (or subset of rows) gives
no additional information about the other rows. Thus, the set of possible matrices at each child
of the current query is a product set of matrices. The lemma follows by applying this argument
recursively.

3.4 Distributions and concentration properties

We use two distributions on n × n matrices called D and D′ for the lower bounds in this paper.
A random matrix from D is obtained by selecting each row independently and uniformly from the
ball of radius

√
n. A random matrix from D′ is obtained by selecting each entry of the matrix

independently and uniformly from the interval [−1, 1]. In the analysis, we will also encounter
random matrices where each entry is selected independently from N(0, 1). We use the following
property.

Lemma 14. Let σ be the minimum singular value of an n × n matrix G with independent entries
from N(0, 1). For any t > 0,

Pr
(

σ
√

n ≤ t
)

≤ t.

Proof. To bound σ, we will consider the formula for the density of λ = σ2 given in [10]:

f(λ) =
n

2n−1/2

Γ(n)

Γ(n/2)
λ−1/2e−λn/2U

(

n − 1

2
,−1

2
,
λ

2

)
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where U is the Tricomi function, which satisfies for all λ ≥ 0:

• U(n−1
2 ,−1

2 , 0) = Γ(3/2)/Γ((n + 2)/2),

• U(n−1
2 ,−1

2 , λ) ≥ 0

• d
dλU(n−1

2 ,−1
2 , λ) ≤ 0

We will now prove that for any n the density function of t =
√

nλ is at most 1. To see this, the
density of t is given by

g(t) = f

(

t2

n

)

2t

n
= 2f(λ)

√

λ

n
=

√
n

2n−3/2

Γ(n)

Γ(n/2)
e−λn/2U

(

n − 1

2
,−1

2
,
λ

2

)

.

Now,

d

dt
g(t) =

√
n

2n−3/2

Γ(n)

Γ(n/2)

[

−n

2
e−λn/2U

(

n − 1

2
,−1

2
,
λ

2

)

+ e−λn/2 d

dλ
U

(

n − 1

2
,−1

2
,
λ

2

)]

2t

n
≤ 0.

Thus, the maximum of g is at t = 0, and

g(0) =

√
n

2n−3/2

Γ(n)

Γ(n/2)

Γ(3/2)

Γ(n+2
2 )

≤ 1.

It follows that Pr(σ
√

n ≤ α) ≤ α.

Lemma 15. Let X be a random n-dimensional vector with independent entries from N(0, 1). Then
for ǫ > 0

Pr
(

‖X‖2 ≥ (1 + ǫ)n
)

≤
(

(1 + ǫ)e−ǫ
)n/2

and for ǫ ∈ (0, 1)

Pr
(

‖X‖2 ≤ (1 − ǫ)n
)

≤
(

(1 − ǫ)eǫ
)n/2

.

For a proof, see [24, Lemma 1.3].

Lemma 16. Let X be a uniform random vector in the n-dimensional ball of radius r. Let Y be an
independent random n-dimensional unit vector. Then,

E(‖X‖2) =
nr2

n + 2
and E

(

(X · Y )2
)

=
r2

n + 2
.

Proof. For the first part, we have

E(‖X‖2) =

∫ r
0 tn+1dt
∫ r
0 tn−1dt

=
nr2

n + 2
.

For the second part, because of the independence and the symmetry we can assume that Y is any
fixed vector, say (1, 0, . . . , 0). Then E

(

(X · Y )2
)

= E(X2
1 ). But

E(X2
1 ) = E(X2

2 ) = · · · =
1

n

n
∑

i=1

E(X2
i ) =

E(‖X‖2)

n
=

r2

n + 2
.

8



Lemma 17. There exists a constant c > 0 such that if P ⊆ R
n compact and X is a random point

in P then
E ‖X‖2 ≥ c(volP )2/nn

Proof. For a given value of volP , the value E ‖X‖2 is minimized when P is a ball centered at the

origin. It is known that the volume of the ball of radius r is at least cn/2rn

nn/2 for some c > 0. This
implies that, for a given value of volP , the radius r of the ball of that volume satisfies

cn/2rn

nn/2
≥ volP. (1)

On the other hand, Lemma 16 claims that for Y a random point in the ball of radius r, we have

E ‖Y ‖2 =
nr2

n + 2
. (2)

Combining (1), (2) and the minimality of the ball, we get

(

c E ‖X‖2(n + 2)

n2

)n/2

≥ volP

and this implies the desired inequality.

We conclude this section with two elementary properties of variance.

Lemma 18. Let X, Y be independent real-valued random variables. Then

var(XY )

(E(XY ))2
=

(

1 +
varX

(E X)2

)(

1 +
varY

(E Y )2

)

− 1 ≥ varX

(E X)2
+

varY

(E Y )2
.

Lemma 19. For real-valued random variables X, Y , varX = EY var(X / Y ) + varY E(X / Y ).

4 Lower bound for length estimation

In this section, we prove Theorem 5. Let a be uniform random vector from [−1, 1]n. By Lemma 15,
‖a‖ ≥ √

n − 4
√

log n as required by the theorem with probability at least 1 − 1/n2. We will prove
that there exists a constant c > 0 such that any deterministic algorithm that outputs a number l
such that

‖a‖ − c√
log n

≤ l ≤ ‖a‖ +
c√

log n

with probability at least 1−O(1/n log n) makes at least n− 1 halfspace queries. Along with Yao’s
lemma this proves the theorem.

Our access to a is via a membership oracle for the halfspace a · x ≤ 1. Consider the decision
tree of height h for some deterministic algorithm. This will be a binary tree. The distribution at
a leaf l is uniform over the intersection of [−1, 1]n with the halfspaces given by the path (queries,
responses) to the leaf l from the root r, i.e., uniform over a polytope Pl with at most 2n+h facets.

The volume of the initial set is 2n. The volume of leaves with vol(Pl) < 1 is less than |L| = 2h

and so the total volume of leaves with vol(Pl) ≥ 1 is at least 2n − 2h. Setting h = n − 1, this is
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2n−1 and so with probability at least 1/2, vol(Pl) ≥ 1. For a random point X from any such Pl,
Theorem 6 implies that var ‖X‖2 ≥ cn/ log n for some absolute constant c > 0. Now by Lemma
8(a), and the fact that the support of ‖X‖2 is an interval of length n, we get that for any b,

Pr

(

∣

∣‖X‖2 − b
∣

∣ ≥ 1

2

√

cn

log n

)

≥ 3c

4n log n
.

It follows that ‖X‖ is dispersed after n− 1 queries. We note that the lower bound can be extended
to any algorithm that succeeds with probability 1 − 1/nǫ by a standard trick to boost the success
probability: we repeat the algorithm O(1/ǫ) times and use the median of the results.

5 Complexity of randomized volume algorithms

We will use the distribution D on parallelopipeds (or matrices, equivalently). Recall that a random
n×n matrix R is generated by choosing its rows R1, . . . , Rn uniformly and independently from the
ball of radius

√
n. The convex body corresponding to R is a parallelopiped having the rows of R

as facets’ normals:
{x ∈ R

n : (∀i)|Ri · x| ≤ 1}
Its volume is V : R

n×n → R given (a.s.) by V (R) = 2n|detR|−1.
At a very high level, the main idea of the lower bound is the following: after an algorithm makes

all its queries, the set of inputs consistent with those queries is a product set of matrices (in the
oracle model Q′), while the level sets of the function that the algorithm is trying to approximate,
|det(·)|, are far from being product sets. In the partition of the set of inputs induced by any decision
tree of height O(n2/ log n), all parts are product sets of matrices and most parts have large volume,
and therefore V is dispersed in most of them. To make this idea more precise, we first examine
the structure of a product set of matrices all with exactly the same determinant. This abstract
“hyperbola” has a rather sparse structure.

Theorem 20. Let R ⊆ R
n×n be such that R =

∏n
i=1 Ri, Ri ⊆ R

n convex and there exists c > 0
such that |detM | = c for all M ∈ R. Then, for some ordering of the Ri’s, Ri ⊆ Si, with Si an
(i − 1)-dimensional affine subspace, 0 /∈ Si and satisfying: Si is a translation of the linear hull of
Si−1.

Proof. By induction on n. It is clearly true for n = 1. For arbitrary n, consider the dimension of
the affine hull of each Ri, and let R1 have minimum dimension. Let a ∈ R1. There will be two
cases:

If R1 = {a}, then let A be the hyperplane orthogonal to a. If we denote Ti the projection of
Ri onto A, then we have that T =

∏n−1
i=1 Ti satisfies the hypotheses in A ∼= R

n−1 with constant
c/‖a‖ and the inductive hypothesis implies that, for some ordering, the T2, . . . , Tn are contained in
affine subspaces not containing 0 of dimensions 0, . . . , n− 2 in A, that is, R2, . . . , Rn are contained
in affine subspaces not containing 0 of dimensions 1, . . . , n − 1.

If there are a, b ∈ R1, b 6= a, then there is no zero-dimensional Ri. Also, because of the condition
on the determinant, b is not parallel to a. Let xλ = λa + (1 − λ)b and consider the argument of
the previous paragraph applied to xλ and its orthogonal hyperplane. That is, for every λ there is
some region Ti in A that is zero-dimensional. In other words, the corresponding Ri is contained in
a line. Because there are only n − 1 possible values of i but an infinite number of values of λ, we
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have that there exists one region Ri that is picked as the zero-dimensional for at least two different
values of λ. That is, Ri is contained in the intersection of two non-parallel lines, and it must be
zero-dimensional, which is a contradiction.

Now we need to extend this to an approximate hyperbola, i.e., a product set of matrices with
the property that for most of the matrices in the set, the determinant is restricted in a given
interval. This extension is the heart of the proof and is captured in Lemma 7. We will need a bit
of preparation for its proof.

We define two properties of a matrix R ∈ R
n×n:

• Property P1(R, t):
∏n

i=1 ‖πR⊥
−i

(Ri)‖ ≤ t (“short 1-D projections”).

• Property P2(R, t): |det R̂| ≥ t (“angles not too small”).

Lemma 21. Let R be drawn from distribution D. Then for any α > 1,

a. Pr
(

P1(R, αn)
)

≥ 1 − 1
α2 ,

b. there exists β > 1 (that depends on α) such that Pr(P2

(

R, 1/βn
)

) ≥ 1 − 1
nα .

Proof. For part (a), by the AM-GM inequality and Lemma 16 we have

E

(

(

∏

i

‖πR⊥
−i

(Ri)‖2
)1/n

)

≤ 1

n

∑

i

E ‖πR⊥
−i

(Ri)‖2 =
n

n + 2
.

Thus, by Markov’s inequality,

Pr

(

∏

i

‖πR⊥
−i

(Ri)‖ ≥ cn

)

= Pr

(

(

∏

i

‖πR⊥
−i

(Ri)‖2
)1/n

≥ c2

)

≤ 1

c2
.

For part (b), we can equivalently pick each entry of R independently as N(0, 1). In any case,

det R̂ =
det R
∏

i ‖Ri‖
=

∏

i ‖R̃i‖
∏

i ‖Ri‖
.

We will find an upper bound for the denominator and a lower bound for the numerator.
For the denominator, concentration of a Gaussian vector (Lemma 15) gives

Pr(‖Ri‖2 ≥ 4n) ≤ 2−n

which implies

Pr

(

n
∏

i=1

‖Ri‖2 ≥ 4nnn

)

≤ Pr
(

(∃i)‖Ri‖2 ≥ 4nnn
)

≤ n2−n ≤ e−Ω(n). (3)

For the numerator, let µi = E ‖R̃i‖
2

= n − i + 1, let µ = E
∏n

i=1 ‖R̃i‖
2

=
∏n

i=1 µi = n!.
Now, concentration of a Gaussian vector (Lemma 15) also gives

Pr
(

‖R̃i‖
2 ≥ µi/2

)

≥ 1 − 2(n−i+1)/8 (4)

11



Alternatively, for t ∈ (0, 1)

Pr
(

‖R̃i‖
2 ≥ tµi

)

≥ 1 −
√

tµi(n − i + 1). (5)

Let c > 0 be such that 2(n−i+1)/8 ≤ 1/(2nα+1) for i ≤ n − c log n. Using inequality 4 for
i ≤ n − c log n and 5 for the rest with

t =
1

2n2α(c log n)5/2

we get

Pr

(

n
∏

i=1

‖R̃i‖
2 ≥ µ

2n−c log ntc log n

)

≥
n−c log n
∏

i=1

Pr
(

‖R̃i‖
2 ≥ µi

2

)

n
∏

i=n−c log n

Pr
(

‖R̃i‖
2 ≥ tµi

)

≥ 1 − 1

nα

(6)

where, for some γ > 1 we have 2n−c log ntc log n ≤ γn. The result follows from equations 6 and 3.

Proof (of Lemma 7). The idea of the proof is the following: If we assume that |det(·)| of most
matrices in a part fits in an interval [u, u(1 + ǫ)], then for most choices R−n of the first n − 1 rows
in that part we have that most choices Y of the last row in that part have |det(R−n, Y )| in that

interval. Thus, in view of the formula1 |det(R−n, Y )| = ‖Ỹ ‖∏n−1
i=1 ‖R̃i‖

−1
we have that, for most

values of Y ,

‖Ỹ ‖ ∈
[

u, u(1 + ǫ)
]

n−1
∏

i=1

‖R̃i‖
−1

where Ỹ is the projection of Y to the line orthogonal to R1, . . . , Rn−1. In other words, most choices
of the last row are forced to be contained in a set of the form {x : b ≤ |a · x| ≤ c}, that we
call a double band, and the same argument works for the other rows. In a similar way, we get a
pair of double bands of “complementary” widths for every pair of rows. These constraints on the
part imply that it has small volume, giving a contradiction. This argument only works for parts
containing mostly “matrices that are not too singular” —matrices that satisfy P1 and P2—, and
we choose the parameters of these properties so that at least half of (

√
nBn)n satisfies them.

We will firstly choose N ′ as the family of large parts that satisfy properties P1 and P2 for suitable
parameters so that (a) is satisfied. We will say “probability of a subset of (

√
nBn)n” to mean its

probability with respect to the uniform probability measure on (
√

nBn)n. The total probability of
the parts having probability at most α is at most α|N |. Thus, setting α = 1/(4|L|), the parts having
probability at least 1/4|L| ≥ 1/2n2

have total probability at least 3/4. Since vol∪j∈NAj ≥ 2n2
,

each of those parts has volume at least 1. Let these parts be indexed by N ′′ ⊆ N . Lemma 21 (with
α = 8 for part (a), α = 2 for part (b)) implies that at most 1/4 of (

√
nBn)n does not satisfy P1(·, 8n)

or P2(·, 1/βn), and then at least 3/4 of the parts in probability satisfy P1(·, 8n) and P2(·, 1/βn) for
at least half of the part in probability. Let N ′′′ ⊆ N be the set of indices of these parts. Let
N ′ = N ′′ ∩ N ′′′. We have that ∪j∈N ′Aj has probability at least 1/2.

1Recall that R̃i is the projection of Ri to the subspace orthogonal to R1, . . . , Ri−1.
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We will now prove (b). Let A =
∏n

i=1 Ai be one of the parts indexed by N ′. Let X be random
in A. Let ǫ be a constant and p1(n) be a function of n both to be fixed later. Assume for a
contradiction that there exists u such that

Pr
(

|det X| /∈ [u, u(1 + ǫ)]
)

< p1(n). (7)

Let G ⊆ A be the set of M ∈ A such that |detM | ∈ [u, u(1 + ǫ)]. Let p2(n), p3(n) be functions of
n to be chosen later. Consider the subset of points R ∈ G satisfying:

I. P1(R, 8n/2) and P2(R, 1/βn),

II. for any i ∈ {1, . . . , n}, for at most a p2(n) fraction of Y ∈ Ai we have (Y, R−i) /∈ G, and

III. for any i, j ∈ {1, . . . , n}, i 6= j, for at most a p3(n) fraction of (Y, Z) ∈ Ai × Aj we have
(Y, Z, R−ij) /∈ G.

Because of the constraints, such a subset is a

1 − Pr(X /∈ G) − Pr(X not as I, II and III) ≥ 1 − p1(n) − 1

2
− n

p1(n)

p2(n)
− n2 p1(n)

p3(n)
(8)

fraction of A. The function p1(n) will be chosen at the end so that the right hand side is positive.
Fix a matrix R = (R1, . . . , Rn) in that subset.

The constraints described in the first paragraph of the proof are formalized in Lemma 22, which,
for all i, j, gives sets Bij (double bands, of the form {x : b ≤ |a · x| ≤ c}), such that most of
Ai is contained in ∩n

j=1Bij . Lemma 22 is invoked in the following way: For each pair i, j with
i < j, let E be the two-dimensional subspace orthogonal to all the rows of R except i, j. We set
X1 (respectively X2) distributed as the marginal in E of the uniform probability measure on Ai

(respectively Aj). We also set a1 = πE(Ri), a2 = πE(Rj), α = p3(n), β = p2(n) and u and ǫ as
here, while γ will be chosen later.

Let lij be the width of (each component of) the double band Bij . Then, according to Lemma
22, the following relations hold:

lii ≤ ǫ‖πR⊥
−i

(Ri)‖ for any i,

lij ≤ 4ǫ‖πR⊥
−i

(Ri)‖‖πR⊥
−j

(Rj)‖/lji for i > j.

Since each double band has two components, the intersection of all the n bands associated to
a particular region Ai, namely ∩n

j=1Bij , is the union of 2n congruent parallelopipeds. Thus, using
properties P1 and P2 of R and fixing ǫ as a sufficiently small constant, the “feasible region” defined
by the double bands, B =

∏n
i=1 ∩n

j=1Bij , satisfies:

volB ≤ 2n2

∏n
i,j=1 lij

|det R̂|n

≤ 2n2

∏n
i=1

(

ǫ‖πR⊥
−i

(Ri)‖
∏i

j=2 4ǫ‖πR⊥
−i

(Ri)‖‖πR⊥
−j

(Rj)‖
)

|det R̂|n

= 2n2
ǫ(

n
2)4(n−1

2 )∏
i ‖πR⊥

−i
(Ri)‖n

|det R̂|n
≤ 1/4n.
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Each region Ai is not much bigger than the intersection of the corresponding double bands Bi =
∩n

j=1Bij as follows: restricting to the double band Bii removes at most a p2(n) fraction of Ai,
each double band Bij for j < i removes at most a γ fraction of Ai, and each double band Bij

for j > i removes a p2(n) + (p3(n)/γ) fraction of Ai. We set γ = 1/4n2, p2(n) = 1/(4n2) and
p3(n) = 1/(16n4) so that, as a fraction of volAi, volBi is no less than

1 − np2(n) −
(

n

2

)

γ −
(

n

2

)(

p2(n) +
p3(n)

γ

)

≥ 1/2.

Thus, volA ≤ 2n volB ≤ 1/2n, which is a contradiction. The condition on p1(n) given by Equation
(8) is satisfied for p1(n) = 1/(27n6).

Lemma 22 (2-D lemma). Let X1, X2 be two independent random vectors in R
2 with bounded

support (not necessarily with the same distribution). Let X be a random matrix with rows X1, X2.
Assume that there exist u > 0, 0 < ǫ ≤ 1 such that

Pr
(

|detX| /∈ [u, u(1 + ǫ)]
)

< α.

Let G = {M ∈ R
2×2 : |detM | ∈ [u, u(1 + ǫ)]}. Let a1, a2 ∈ R

2 be such that (a1, a2) ∈ G and

Pr(X1 : (X1, a2) /∈ G) ≤ β, Pr(X2 : (X2, a1) /∈ G) ≤ β.

Let γ > α/(1 − β). Then there exist double bands Bij ⊆ R
2, bij ≥ 0, i, j ∈ {1, 2}, l ≥ 0,

B11 =
{

x : |a⊥2 · x| ∈
[

b11, b11 + ǫ‖πa⊥
2
(a1)‖

]

}

B22 =
{

x : |a⊥1 · x| ∈
[

b22, b22 + ǫ‖πa⊥
1
(a2)‖

]

}

B12 =
{

x : |a⊥1 · x| ∈
[

b12, b12 + l
]

}

B21 =
{

x : |a⊥2 · x| ∈
[

b21, b21 + 4ǫ‖πa⊥
2
(a1)‖‖πa⊥

1
(a2)‖/l

]

}

such that

Pr(X1 /∈ B11) ≤ β Pr(X1 /∈ B12) ≤ β + (α/γ)

Pr(X2 /∈ B21) ≤ γ Pr(X2 /∈ B22) ≤ β.

Proof. The proof refers to Figure 1 which depicts the bands under consideration.
A double band of the form {x : |a · x| ∈ [u, v]} has (additive or absolute) width v − u and

relative (or multiplicative) width v/u. Consider the expansion |detX| = ‖X2‖‖πX⊥
2

(X1)‖ and the
definition of a2 to get

Pr
(

‖πa⊥
2
(X1)‖ /∈ ‖a2‖−1[u, u(1 + ǫ)]

)

≤ β.

That is, with probability at most β we have X1 outside of a double band of relative width 1 + ǫ:

B11 =
{

x : ‖πa⊥
2
(x)‖ ∈ ‖a2‖−1[u, u(1 + ǫ)]

}

.

Because a1 ∈ B11, the absolute width is at most ǫ‖πa⊥
2
(a1)‖. If we exchange the roles of a1 and a2

in the previous argument, we get a double band B22.
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Figure 1: The 2-D argument.

Let A be the set of a ∈ R
2 satisfying: (a, a2) ∈ G and with probability at most γ over X2 we

have (X2, a) /∈ G. We have that

Pr(X1 ∈ A) ≥ 1 − β − α

γ
.

Consider a point C ∈ A that maximizes the distance to the span of a1. Similarly to the construction
of B11, by definition of A and with probability at most γ we have X2 outside of a double band of
relative width 1 + ǫ. We denote it B′

21. In order to have better control of the angles between the
bands, we want to consider a bigger double band parallel to B11, the minimum such a band that
contains the intersection of B22 and B′

21. Call this band B21. The width of this band is at most
2x, and the triangles Oa1C and PMN are similar. Then,

x

z
=

y

l
,

where l = ‖πa⊥
1
(C)‖ is the width of a band imposed on A by definition of C, y is the width of B22,

y ≤ ǫ‖πa⊥
1
(a2)‖, and z is the distance between C and the span of a2, that is,

z = ‖πa⊥
2
(C)‖ ≤ (1 + ǫ)‖πa⊥

2
(a1)‖ ≤ 2‖πa⊥

2
(a1)‖.

Thus, x ≤ 2ǫ‖πa⊥
2
(a1)‖‖πa⊥

1
(a2)‖/l. Let B12 be the band imposed on A by definition of C.

We are now ready to prove the complexity lower bounds.

Proof of Theorem 3. In view of Yao’s lemma, it is enough to prove a lower bound on the complexity
of deterministic algorithms against a distribution and then a lower bound on the minimum singular
value of matrices according to that distribution. The deterministic lower bound is a consequence of
the dispersion of the determinant proved in Theorem 7, the bound on the minimum singular value
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is an easy adaptation of a bound on the minimum singular value of a Gaussian matrix given by
Lemma 14. These two claims are formalized below.

Claim 1: Let R be a random input according to distribution D. Then there exists a constant
c > 0 such that any deterministic algorithm that outputs a number V such that

(1 − c)|detR| ≤ V ≤ (1 + c)|detR|

with probability at least 1 − 1/(28n6) makes more than

n2 − 2

log2(2n + 1)

queries in the oracle model Q′.
Claim 2: Let A be an n×n random matrix from distribution D. Let σ be the minimum singular

value of A. Then for any t ≥ 0

Pr(σ
√

n ≤ t) ≤ 4t +
n

2n−1

(the choice of t = 1/(212n6) proves Theorem 3).
Proof of Claim 1: For a deterministic algorithm and a value of n, consider the corresponding

decision tree. Let

h ≤ n2 − 2

log2(2n + 1)

be the height and L be the set of leaves of this tree. Let (Pl)l∈L be the partition on the support of
D induced by the tree.

Every query has at most 2n + 1 different answers, and every path has height at most h. Thus,

|L| ≤ (2n + 1)h = 2n2−2.

The sets Pl are convex and Lemma 13 guarantees that they are also product sets of matrices, and
hence by Lemma 7 we have that there exists a constant c > 0 such that with probability at least
1/(28n6) and for any a > 0 we have that |detR| is outside of [a, (1 + c)a]. Claim 1 follows.

Proof of Claim 2: We will bound ‖A−1‖2 = 1/σ. To achieve this, we will reduce the problem to
the case where the entries of the matrix are N(0, 1) and independent. We write A = GDE, where
G has its entries independently as N(0, 1), D is the diagonal matrix that normalizes the rows of
G and E is another random diagonal matrix independent of (G, D) that scales the rows of GD to
give them the length distribution of a random vector in

√
nBn. We have

‖A−1‖2 ≤ ‖D−1‖2‖E−1‖2‖G−1‖2. (9)

Now, with probability at least 1 − n/2n the diagonal entries of E are at least
√

n/2. Thus, except
for an event that happens with probability n/2n,

‖E−1‖2 ≤ 2/
√

n (10)

On the other hand, Lemma 15 (with ǫ = 3) implies that with probability at least 1 − n/2n the
diagonal entries of D−1 are at most 2

√
n. Thus, except for an event that happens with probability

n/2n,
‖D−1‖2 ≤ 2

√
n. (11)

From (9), (10) and (11), we get ‖A−1‖2 ≤ 4‖E−1‖. Using Lemma 14 which bounds the singular
values for a Gaussian matrix, Claim 2 follows.
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Finally, Theorem 2 is a simple consequence.

Proof of Theorem 2. It remains to prove that a parallelopiped given by a random matrix A contains

Bn/
√

n and is contained in
√

n
σ Bn whenever σ > 0, where σ is the minimum singular value of A.

The first inclusion is evident since the entries must be from [−1, 1]. It is sufficient to prove the
second inclusion for the vertices of the parallelopiped, i.e., solutions to Ax = b for any b ∈ {−1, 1}n.
That is, x = A−1b and therefore

‖x‖ ≤ ‖A−1‖2‖b‖ ≤
√

n/σ.

5.1 Nonadaptive volume algorithms

An algorithm is nonadaptive if its queries are independent of the input.

Theorem 23 (nonadaptive lower bound). Let K be a convex body given by a membership oracle
such that Bn ⊆ K ⊆ 2nBn. Then any nonadaptive randomized algorithm that outputs a number
V such that .9 vol(K) ≤ V ≤ 1.1 vol(K) holds with probability at least 3/4 has complexity at least
1
4(4n)n/2.

Proof. Consider the distribution on parallelopipeds induced by the following procedure: first, with
equal probability choose one of the following bodies:

• (“brick”)
{

x ∈ R
n : (∀i ∈ {2, . . . , n}) |xi| ≤ 1

}

∩ nBn

• (“double brick”)
{

x ∈ R
n : (∀i ∈ {2, . . . , n}) |xi| ≤ 1

}

∩ 2nBn

and then, independently of the first choice, apply a random rotation.
We will prove the following claim, from which the desired conclusion can be obtained by means

of Yao’s lemma.
Claim: Let K be a parallelopiped according to the previous distribution. Then any nonadaptive

deterministic algorithm that outputs a number V such that

.9 vol(K) ≤ V ≤ 1.1 vol(K) (12)

holds with probability more than 1
2 + Q( 2

eπn)n/2 has complexity at least Q.
Proof of Claim: To satisfy Equation (12), the algorithm has to actually distinguish between

the brick and the double brick. Let the bad surface be the intersection between the input and the
sphere of radius n. In order to distinguish between the two bodies, the algorithm has to make at
least one query whose ray hits the bad surface. We will prove that the probability of this event is
no more than 2Q(2/eπn)n/2. To see this, observe that the probability of a query hitting the bad
surface is at most the volume of the bad surface divided by the volume of the sphere of radius n.
The former can be bounded in the following way: Let x = (x2, . . . , xn) be the coordinates along
the normals to the n − 1 facets of the body. Parameterize one of the hemispheres determined by
the hyperplane containing those normals as F (x2, . . . , xn) =

√

n2 − x2
2 − · · · − x2

n.
We have that

d

dxi
F (x) =

xi

F (x)
.
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In the domain of integration [−1, 1]n−1 we have ‖x‖2 ≤ n and this implies that in that domain

‖∇F (x)‖2 =
‖x‖2

n2 − ‖x‖2 ≤ 1

n − 1
.

The volume of the bad surface is given by

2

∫

[−1,1]n−1

√

1 + ‖∇F (x)‖2 dx ≤ 2n

√

1 +
1

n − 1
≤ 2n+1

The volume of the sphere of radius n is

nnπn/2

Γ(1 + n
2 )

≤ nnπn/2

(n/2
e )n/2

= (2eπn)n/2.

Thus, the probability that a particular query hits the bad surface is at most

2n+1

(2eπn)n/2
= 2

(

2

eπn

)n/2

.

Therefore the algorithm gives the wrong answer with probability at least

1

2

(

1 − 2Q

(

2

eπn

)n/2
)

.

6 Lower bound for the product

Proof. (of Lemma 10.) Let the distribution function be F (t) = Pr(X ≤ t) = eg(t) for some concave
function g and the density is f(t) = g′(t)eg(t) where g′(t) is nonincreasing. First, we observe that
logconcavity implies that F (µ) ≥ 1/4. To see this, let µ− l be the point where F (µ− l) = F (µ)/2.
Then, F (µ − il) ≤ F (µ)/2i and

∫ µ

0
(µ − x)f(x) dx ≤

∑

i≥1

(

F (µ − (i − 1)l) − F (µ − il)
)

(il)

≤ F (µ)l +
∑

i>1

F (µ − il)
(

(i + 1) − i
)

l

≤ F (µ)l
∑

i≥0

1

2i
= 2lF (µ).

On the other hand (assuming F (µ) ≤ 1/4, otherwise, there is nothing to prove),

∫ ∞

µ
(x − µ)f(x) dx ≥

⌊log(1/F (µ))⌋
∑

i=1

(2i − 2i−1)F (µ)(i − 1)l ≥ log
(

1/F (µ)
)

2
.

Therefore, we must have 2F (µ) ≥ log(1/F (µ))/2 which implies F (µ) ≥ 1/4.
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Next,
∫ µ

0
(µ − x)f(x) dx ≥

∫ µ−l

0
(µ − x)f(x) dx ≥ F (µ − l)l ≥ l

8
.

Therefore, since µ is the mean,
∫ ∞

µ
(x − µ)f(x) dx ≥ l

8
.

It follows that
∫ ∞

µ
(x − µ)2f(x) dx ≥ l2

64
. (13)

Suppose l < σ/4. Then,

∫ µ

0
(x − µ)2f(x) dx ≤

∑

i≥1

(

F (µ − (i − 1)l) − F (µ − il)
)

(il)2

≤ F (µ)l2 +
∑

i>1

F (µ − il)
(

(i + 1)2 − i2
)

l2

≤ F (µ)l2
∑

i≥1

2i + 1

2i
= 5l2F (µ) ≤ σ2/2.

Since

σ2 =

∫ ∞

0
(x − µ)2f(x) dx =

∫ µ

0
(x − µ)2f(x) dx +

∫ ∞

µ
(x − µ)2f(x) dx,

we must have
∫ ∞

µ
(x − µ)2f(x) dx ≥ σ2

2
.

Using this and (13), we have (regardless of the magnitude of l),

∫ ∞

µ
(x − µ)2f(x) ≥ σ2

210
. (14)

Now we consider intervals to the right of µ. Let J0 = (µ, x0] where x0 is the smallest point to
the right of µ for which f(x0) ≤ 1 (J0 could be empty). Let Ji, for i = 1, 2, . . . , m = 2 log(M/σ)+12
be [xi−1, xi] where xi is the smallest point for which f(xi) ≤ 1/2i. For any t ≥ t′ ≥ µ, f(t′) ≥
f(t)F (t′)/F (t) ≥ f(t)F (µ) ≥ f(t)/4. Therefore, the function f is approximately constant in any
interval Ji for i ≥ 1. If x0 > µ + σ/64, then we can use the interval [µ, µ + σ/64]. Otherwise,
∫

J0
(x− µ)2f(x) dx ≤ σ2/212. Also,

∫∞
xm

(x− µ)2f(x) dx ≤ σ2/212. Finally, consider intervals whose
individual mass is less than

σ2

212M2
(

2 log(M/σ) + 12
) .

Their contribution to
∫∞
µ (x − µ)2f(x) dx is at most σ2/212. Therefore, from (14), one of the

remaining intervals Ji, i ≥ 1, must have

∫

Ji

(x − µ)2f(x) dx ≥ σ2

212 log(M/σ)
and

∫

Ji

f(x) dx ≥ σ2

212M2
(

2 log(M/σ) + 12
) .
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Proof of Theorem 4. For this lower bound, we use the distribution D’ on matrices. Let R be an
n × n random matrix having each entry uniformly and independently in [−1, 1]. On input R
from distribution D having rows (R1, . . . , Rn) and with probability at least 1/2 over the inputs,
we consider algorithms that output an approximation to f(R) =

∏

i ‖Ri‖. The next claim for
deterministic algorithms, along with Yao’s lemma, proves Theorem 4.

Claim: Suppose that a deterministic algorithm makes at most

h :=
n2

2 − 1

log2(2n + 1)

queries on any input R and outputs V . Then there exists a constant c > 0 such that the probability
of the event

(

1 − c

log n

)

f(R) ≤ V ≤
(

1 +
c

log n

)

is at most 1 − O(1/n).
To prove the claim, we consider a decision tree corresponding to a deterministic algorithm. Let

Pl be the set of matrices associated with a leaf l. By Lemma 13, we have that the set Pl is a
product set of matrices, that is Pl =

∏

i Ri, where Ri ⊆ R
n is the set of possible choices of the row

Ri consistent with l. The conditional distribution of R at a leaf l consists of independent, uniform
choices of the rows from their corresponding sets. Moreover, the sets Ri are polytopes with at most
f = 2n + 2h facets. Every query has at most 2n + 1 different answers, and every path has height

at most h. Thus, |L| ≤ (2n + 1)h = 2
n2

2
−1. The total probability of the leaves having probability

at most α is at most α|L|. Thus, setting α = 1/(2|L|), the leaves having probability at least

1

2|L| ≥
1

2n2/2

have total probability at least 1/2. Because vol∪l∈LPl = 2n2
, we have that those leaves have volume

at least 2n2/2. Further, since Pl =
∏

i Ri, we have that for such Pl at least n/2 of the Ri’s have
volume at least 1. Theorem 6 implies that for those var ‖Ri‖2 ≥ Ω(n/ log n). Along with the fact
that ‖Ri‖ ≤ √

n and Lemma 18, for a random matrix R from such a Pl, we get

var
(

f(R)2
)

(

E(f(R)2)
)2 ≥

∑

i

var(‖Ri‖2)
(

E(‖Ri‖2)
)2 = Ω

(

1

log n

)

.

Thus, the variance of f(R) is large. However, this does not directly imply that f(R) is dispersed
since the support of f(R) could be of exponential length and its distribution is not logconcave.

Let X =
∏n

i=1 Xi where Xi = ‖Ri‖2. To prove the lower bound, we need to show that dispX(p) is
large for p at least inverse polynomial in n. For i such that vol(Ri) ≥ 1, we have varXi = Ω(n/ log n)
by Theorem 6. As remarked earlier at least n/2 sets satisfy the volume condition and we will
henceforth focus our attention on them. We also get E(Xi) ≥ n/16 from this. The distribution
function of each Xi is logconcave (although not its density) and its support is contained in [0, n].
So by Lemma 10, we can decompose the density fi of each Xi as fi(x) = pigi(x) + (1 − pi)g

′
i(x).

where gi is the uniform distribution over an interval [ai, bi] of length Li and

piL
2
i = Ω

(

n

log2 n

)

and pi = Ω

(

1

n log n

)

.
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We will assume that piL
2
i = cn/ log2 n and pi = Ω(1/n2). This can be achieved by noting that

Li is originally at most n and truncating the interval suitably. Let X ′
i be a random variable

drawn uniformly from the interval [ai, bi]. Let Yi = log X ′
i, I be a subset of {1, 2, . . . , n} and

YI =
∑

i∈I log X ′
i. The density of Yi is hi(t) = et/Li for log ai ≤ t ≤ log bi and zero outside

this range. Thus Yi has a logconcave density and so does YI (the sum of random variables with
logconcave density also has a logconcave density). Also, var(YI) =

∑

i∈I var(Yi). To bound the
variance of Yi, we note that since ai ≥ E(Xi) by Lemma 10, we have bi ≤ 16ai and so hi(t) varies
by a factor of at most 16. Thus, we can decompose hi further into h′

i and h′′
i where h′

i is uniform
over [log ai, log bi] and

hi(x) =
1

16
h′

i(x) +
15

16
h′′

i (x).

Let Y ′
i have density h′

i. Then

var(Yi) ≥
1

16
var(Y ′

i ) =
(log bi − log ai)

2

192
.

Therefore

var(YI) ≥
1

192

∑

i∈I

(log bi − log ai)
2

From this we get a bound on the dispersion of YI using the logconcavity of YI and Lemma 8(b).
The bound depends on the set I of indices that are chosen. This set is itself a random variable
defined by the decompositions of the Xi’s. We have

EI

(

var(YI)
)

≥ 1

192

n
∑

i=1

pi(log bi − log ai)
2 ≥ 1

192

n
∑

i=1

pi
L2

i

(8ai)2
≥ c1

log2 n

On the other hand,

varI

(

var(YI)
)

≤ 1

144

n
∑

i=1

pi(log bi − log ai)
4

≤ 1

144

n
∑

i=1

pi
L4

i

a4
i

≤ 164

144n4

n
∑

i=1

p2
i L

4
i

pi

=
164

144n4

c2n2

log4 n

n
∑

i=1

1

pi
.

Suppose pi ≥ c2/n for all i. Then we get,

varI

(

var(YI)
)

≤ c′2
log4 n

and for c2 large enough, varI

(

var(YI)
)

≤
(

EI var(YI)
)2

/4. Hence, using Chebychev’s inequality,
with probability at least 1/4, var(YI) ≥ c1/4 log2 n. By Lemma 8(b), with probability at least 1/4,

we have dispYI
(1/2) ≥

√
c1

4 log n . This implies that for any u,

Pr

(

X ∈
[

u, u
(

1 +

√
c1

4 log n

)

])

≤ 7

8
.
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Finally, if for some i, pi < c2/n, then for that Yi, L2
i = Ω(n2/ log2 n) and using just that i,

we get dispYi
(pi/2) ≥

√

L2
i /a2

i = Ω(1/ log2 n) and once again X is dispersed as well (recall that

pi = Ω(1/n2)).

7 Variance of polytopes

Let X ∈ K be a random point in a convex body K. Consider the parameter σK of K defined as

σ2
K =

n var ‖X‖2

(

E ‖X‖2)2
.

It has been conjectured that if K is isotropic, then σ2
K ≤ c for some universal constant c independent

of K and n (the variance hypothesis). Together with the isotropic constant conjecture, it implies
Conjecture 1. Our lower bound (Theorem 6) shows that the conjecture is nearly tight for isotropic
polytopes with at most poly(n) facets and they might be the limiting case.

We now give the main ideas of the proof of Theorem 6. It is well-known that polytopes with few
facets are quite different from the ball. Our theorem is another manifestation of this phenomenon:
the width of an annulus that captures most of a polytope is much larger than one that captures
most of a ball. The idea of the proof is the following: if 0 ∈ P , then we bound the variance in
terms of the variance of the cone induced by each facet. This gives us a constant plus the variance
of the facet, which is a lower-dimensional version of the original problem. This is the recurrence
in our Lemma 24. If 0 /∈ P (which can happen either at the beginning or during the recursion),
we would like to translate the polytope so that it contains the origin without increasing var ‖X‖2

too much. This is possible if certain technical conditions hold (case 3 of Lemma 24). If not, the
remaining situation can be handled directly or reduced to the known cases by partitioning the
polytope. It is worth noting that the first case (0 ∈ P ) is not generic: translating a convex body
that does not contain the origin to a position where the body contains the origin may increase
var ‖X‖2 substantially. The next lemma states the basic recurrence used in the proof.

Lemma 24 (recurrence). Let T (n, f, V ) be the infimum of var ‖X‖2 among all polytopes in R
n

with volume at least V , with at most f facets and contained in the ball of radius R > 0. Then there
exist constants c1, c2, c3 > 0 such that

T (n, f, V ) ≥
(

1 − c1

n

)

T

(

n − 1, f + 2,
c2

nR2

( V

Rf

)1+ 2
n−1

)

+
c3

R8/(n−1)

(

V

Rf

)
4

n−1
+ 8

(n−1)2

.

Proof. Let P be a polytope as in the statement (not necessarily minimal). Let U be the nearest
point to the origin in P . We will use more than one argument, depending on the case:

Case 1: (origin) 0 ∈ P .
For every facet F of P , consider the cone CF obtained by taking the convex hull of the facet

and the origin. Consider the affine hyperplane HF determined by F . Let U be the nearest point to
the origin in HF . Let YF be a random point in CF , and decompose it into a random point XF + U
in F and a scaling factor t ∈ [0, 1] with a density proportional to tn−1. That is, YF = t(XF + U).
We will express var ‖YF ‖2 as a function of var ‖XF ‖2.
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We have that ‖YF ‖2 = t2(‖U‖2 + ‖XF ‖2). Then,

var ‖YF ‖2 = (E t4) var ‖XF ‖2 + (var t2)
(

‖U‖4 + (E ‖XF ‖2)2 + 2‖U‖2
E ‖XF ‖2

)

(15)

Now, for k ≥ 0

E tk =
n

n + k
.

and

var t2 =
4n

(n + 4)(n + 2)2
≥ c1

n2

for c1 = 1/2 and n ≥ 3. This in (15) gives

var ‖YF ‖2 ≥ n

n + 4
var ‖XF ‖2 +

c1

n2

(

‖U‖4 + (E ‖XF ‖2)2 + 2‖U‖2
E ‖XF ‖2

)

≥ n

n + 4
var ‖XF ‖2 +

c1

n2

(

E ‖XF ‖2)2.
(16)

Now, by means of Lemma 17, we have that

E ‖XF ‖2 ≥ c2Vn−1(F )2/(n−1)(n − 1)

and this in (16) implies for some constant c3 > 0 that

var ‖YF ‖2 ≥ n

n + 4
var ‖XF ‖2 + c3Vn−1(F )4/(n−1).

Using this for all cones induced by facets we get

var ‖X‖2 ≥ 1

volP

∑

F facet

volCF var ‖YF ‖2

≥ 1

volP

∑

F facet

volCF

(

n

n + 4
var ‖XF ‖2 + c3Vn−1(F )4/(n−1)

) (17)

Now we will argue that var ‖XF ‖2 is at least T (n − 1, f, V
Rf ) for most facets. Because the height

of the cones is at most R, we have that the volume of the cones associated to facets having
Vn−1(F ) ≤ volP/α is at most

f
1

n
R

vol P

α

That is, the cones associated to facets having Vn−1(F ) > volP/α are at least a

1 − Rf

αn

fraction of P . For α = Rf we have that a 1− 1/n fraction of P is composed of cones having facets
with Vn−1(F ) > volP/(Rf). Let F be the set of these facets. The number of facets of any facet F
of P is at most f , which implies that for F ∈ F we have

var ‖XF ‖2 ≥ T (n − 1, f,
V

Rf
).
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Then (17) becomes

var ‖X‖2 ≥ 1

volP

∑

F∈F
volCF

(

n

n + 4
var ‖XF ‖2 + c3Vn−1(F )4/(n−1)

)

≥ 1

volP

∑

F∈F
volCF

(

n

n + 4
T

(

n − 1, f,
V

Rf

)

+ c3

(

V

Rf

)4/(n−1)
)

≥
(

1 − 1

n

)

(

n

n + 4
T

(

n − 1, f,
V

Rf

)

+ c3

(

V

Rf

)4/(n−1)
)

≥
(

1 − c5

n

)

T

(

n − 1, f,
V

Rf

)

+ c4

(

V

Rf

)4/(n−1)

for some constants c5, c4 > 0.

Case 2: (slicing)

var E
(

‖X‖2 / X · U
)

≥ β =
c4

16

(

V

Rf

)4/(n−1)

.

In this case, using Lemma 19,

var ‖X‖2 = E var
(

‖X‖2 / X · U
)

+ var E
(

‖X‖2 / X · U
)

≥ E var
(

‖X‖2 / X · U
)

+ β
(18)

Call the set of points X ∈ P with some prescribed value of X · U a slice. Now we will argue
that the variance of a slice is at least T

(

n − 1, f, V
2nR

)

for most slices. Because the width of P is
at most 2R, we have that the volume of the slices S having Vn−1(S) ≤ V/α is at most 2RV/α.
That is, the slices having Vn−1(S) > V/α are at least a 1 − 2R/α fraction of P . For α = 2nR,
we have that a 1 − 1/n fraction of P are slices with Vn−1(S) > V/(2nR). Let S be the set of
these slices. The number of facets of a slice is at most f , which implies that for S ∈ S we have
var
(

‖X‖2 / X ∈ S
)

≥ T
(

n − 1, f, V
2nR

)

. Then (18) becomes

var ‖X‖2 ≥
(

1 − 1

n

)

T

(

n − 1, f,
V

2nR

)

+
c4

16

(

V

Rf

)4/(n−1)

.

Case 3: (translation) var(X · U) ≤ β and var E
(

‖X‖2 / X · U
)

< β.
Let X0 = X − U . We have,

var ‖X‖2 = var ‖X0‖2 + 4 varX · U + 4 cov(X · U, ‖X0‖2). (19)

Now, Cauchy-Schwartz inequality and the fact that cov(A, B) = cov(A, E(B / A)) for random
variables A, B, give

cov(X · U, ‖X0‖2) = cov(X · U, ‖X‖2 − 2X · U + ‖U‖2)

= cov(X · U, ‖X‖2) − 2 varX · U
= cov(X · U, E(‖X‖2 / X · U)) − 2 varX · U

≥ −
√

varX · U
√

var E(‖X‖2 / X · U) − 2 varX · U.
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This in (19) gives

var ‖X‖2 ≥ var ‖X0‖2 − 4 varX · U − 4
√

varX · U
√

var E
(

‖X‖2 / X · U
)

≥ var ‖X0‖2 − 8β.

Now, X0 is a random point in a translation of P containing the origin, and thus case 1 applies,
giving

var ‖X‖2 ≥
(

1 − c5

n

)

T

(

n − 1, f,
V

Rf

)

+
c4

2

(

V

Rf

)4/(n−1)

.

Case 4: (partition) otherwise:
In order to control varX · U for the third case, we will subdivide P into parts so that one of

previous cases applies to each part. Let P1 = P , let Ui be the nearest point to the origin in Pi (or,
if Pi is empty, the sequence stops),

Qi = Pi ∩
{

x : ‖Ui‖ ≤ Ûi · x ≤ ‖Ui‖ +
√

β/R
}

,

and Pi+1 = Pi\Qi. Observe that ‖Ui+1‖ ≥ ‖Ui‖+
√

β/R and ‖Ui‖ ≤ R, this implies that i ≤ R2/
√

β
and the sequence is always finite.

For any i and by definition of Qi we have var(X ·Ui /X ∈ Qi) = ‖Ui‖2 var(X · Ûi /X ∈ Qi) ≤ β.

The volume of the parts Qi having volQi ≤ V/α is at most V R2

α
√

β
. That is, the parts having

volQi > V/α are at least a 1− R2

α
√

β
fraction of P . For α = nR2/

√
β we have that a 1−1/n fraction

of P are parts with vol(Qi) > V
√

β/(nR2). Let Q be the set of these parts. The number of facets
of a part is at most f + 2. Thus, applying one of the three previous cases to each part in Q, and
using that f ≥ n,

var ‖X‖2 ≥ 1

volP

∑

Q∈Q
volQ var(‖X‖2 / X ∈ Q)

≥
(

1 − 1

n

)

(

(

1 − c5

n

)

T

(

n − 1, f + 2,
V
√

β

nR3 max{f, 2n}

)

+
c4

16

(

V
√

β

nR3f

)4/(n−1)
)

≥
(

1 − 1

n

)

(

(

1 − c5

n

)

T

(

n − 1, f + 2,
V
√

β

2fnR3

)

+
c4

16

(

V
√

β

nR3f

)4/(n−1)
)

.

In any of these cases,

var ‖X‖2 ≥
(

1 − c6

n

)

T

(

n − 1, f + 2,
V

2Rf
min

(

1,

√
β

nR2

)

)

+ c7

(

V

Rf
min

(

1,

√
β

nR2

)

)4/(n−1)

. (20)

Now, by assumption, V ≤ 2nRn, and this implies by definition that
√

β

nR2
≤ O

(

1

n

)

.

That is,

min

(

1,

√
β

nR2

)

= O

( √
β

nR2

)

and the lemma follows, after replacing the value of β in Equation (20).
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Proof (of Theorem 6). Assume that vol P = 1; the inequality claimed in the theorem can be ob-
tained by a scaling, without loss of generality. For n ≥ 13, this implies that R ≥ 1. We use the
recurrence lemma in a nested way t = n/ log n times2. The radius R stays fixed, and the number
of facets involved is at most f + 2t ≤ 3f . Each time, the volume is raised to the power of at most
1 + 2

n−t and divided by at most

c′nR2
(

R(f + 2t)
)1+ 2

n−t > 1,

for c′ = max(c−1
2 , 1). That is, after t times the volume is at least (using the fact that (1 + 2

n−t)
t =

O(1))

(

c′nR2
(

R(f + 2t)
)1+ 2

n−t

)−t(1+ 2
n−t

)t

≥ 1/(3c′nR3f)O(t)

That means that from the recurrence inequality we get (we ignore the expression in “?”, as we will
discard that term):

T (n, f, 1) ≥
(

1 − c1

n

)t
T (n−t, f+2t, ?)+c3t

(

1 − c1

n

)t−1 1

R8/(n−t−1)

(

1

3Rf

1

(3c′nR3f)O(t)

)
4

n−1
+ 8

(n−1)2

.

We discard the first term and simplify to get,

T (n, f, 1) ≥ n

log n

(

1

R3f

)O(1/ log n)

Thus, for a polytope of arbitrary volume we get by means of a scaling that there exists a universal
constant c > 0 such that

var ‖X‖2 ≥ (volP )4/n

(

(volP )3/n

R3f

)c/ log n
n

log n
.

The theorem follows.

8 Discussion

The results for determinant/volume hold with the following stronger oracle: we can specify any
k×k submatrix A′ of A and a vector x ∈ R

k and ask whether ‖A′x‖∞ ≤ 1. In particular, this allows
us to query individual entries of the matrix. More specifically, consider the oracle that takes indices
i, j and a ∈ R and returns whether Aij ≤ a. Using this oracle, our proof (Lemma 7) yields the
following result: there is a constant c > 0 such that any randomized algorithm that approximates
the determinant to within a (1+c) factor has complexity Ω(n2). In the property testing framework,
this rules out sublinear (in the input size) methods for estimating the determinant, even with
randomized (adaptive) access to arbitrary entries of the input matrix.

In our lower bounds for the product, the error bound is 1+c/ log n, where the logarithmic factor
comes from the variance lemma. It is an open problem as to whether this factor can be removed
in the variance lower bound.

2To force t to be an integer would only add irrelevant complications that we omit.
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For the volume problem itself, the best known algorithm has complexity roughly O(n4) but the
complexity of that algorithm is conjectured to be n3. It is conceivable that our lower bound for
membership oracle queries can be improved to n3, although one would have to use bodies other
than parallelopipeds. Also, it is an open problem to give a faster algorithm using a separation
oracle.

Finally, we hope that the tools introduced here are useful for other problems.

Acknowledgements. We would like to thank Noga Alon, Laci Lovász and Avi Widgerson for
helpful discussions.
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