
A Divide-and-Merge Methodology for Clustering

DAVID CHENG

Massachusetts Institute of Technology

RAVI KANNAN

Yale University

SANTOSH VEMPALA

Massachusetts Institute of Technology

and

GRANT WANG

Massachusetts Institute of Technology

We present a divide-and-merge methodology for clustering a set of objects that combines a top-
down “divide” phase with a bottom-up “merge” phase. In contrast, previous algorithms use
either top-down or bottom-up methods to construct a hierarchical clustering or produce a flat
clustering using local search (e.g., k-means). For the divide phase, which produces a tree whose
leaves are the elements of the set, we suggest an efficient spectral algorithm. When the data is
in the form of a sparse document-term matrix, we show how to modify the algorithm so that it
maintains sparsity and runs in linear space. The merge phase quickly finds the optimal partition
that respects the tree for many natural objective functions, e.g., k-means, min-diameter, min-sum,
correlation clustering, etc.. We present a thorough experimental evaluation of the methodology.
We describe the implementation of a meta-search engine that uses this methodology to cluster
results from web searches. We also give comparative empirical results on several real datasets.

Categories and Subject Descriptors: H. Information Systems [H.3 Information Retrieval]:
H.3.3 Information Search and Retreival

Additional Key Words and Phrases: Clustering, data mining, information retrieval

1. INTRODUCTION

The rapidly increasing volume of readily accessible data presents a challenge for
computer scientists: find methods that can locate relevant information and organize
it in an intelligible way. This is different from the classical database problem in
at least two ways: first, there may neither be the time nor (in the long term) the
computer memory to store and structure all the data in a central location. Second,
one would like to find interesting patterns in the data without knowing what to
look for in advance.

Clustering refers to the process of classifying a set of data objects into groups
so that each group consists of similar objects and objects from different groups
are dissimilar. The classification could either be flat (a partition of the data) or
hierarchical [JD88]. Clustering has been proposed as a method to aid information
retrieval in many contexts (e.g. [CKPT92; VR79; SKK00; LA99; Dhi01]). Docu-
ment clustering can help generate a hierarchical taxonomy efficiently (e.g. [Bol98;
ZK02]) as well as organize the results of a web search (e.g. [ZEMK97; WF00]).
It has also been used to learn (or fit) mixture models to datasets [Hof99] and for
image segmentation [TG97].

ACM Journal Name, Vol. V, No. N, July 2006, Pages 1–0??.

2 ·

merge

C2C1

C3

divide

Fig. 1. The Divide-and-Merge methodology

Most hierarchical clustering algorithms can be described as either divisive meth-
ods (i.e. top-down) or agglomerative methods (i.e. bottom-up) [And73; JD88;
JMF99]. Both methods create trees, but do not provide a flat clustering. A di-
visive algorithm begins with the entire set and recursively partitions it into two
pieces, forming a tree. An agglomerative algorithm starts with each object in its
own cluster and iteratively merges clusters. We combine top-down and bottom-up
techniques to create both a hierarchy and a flat clustering. In the divide phase,
we can apply any divisive algorithm to form a tree T whose leaves are the objects.
This is followed by the merge phase in which we start with each leaf of T in its own
cluster and merge clusters going up the tree. The final clusters form a partition of
the dataset and are tree-respecting clusters, i.e., they are subtrees rooted at some
node of T . For many natural objective functions, the merge phase can be executed
optimally, producing the best tree-respecting clustering. Figure 1 shows a depiction
of the methodology.

For the divide phase we suggest using the theoretical spectral algorithm stud-
ied in [KVV04]. The algorithm is well-suited for clustering objects with pairwise
similarities – in [KVV04], the authors prove that the hierarchical tree formed by
the divide phase contains a “good clustering”. Unfortunately, the input to that
algorithm is a matrix of pairwise similarities; for a dataset with n objects, the run-
ning time could be O(n4). We describe an efficient implementation of the spectral
algorithm when the data is presented as a document-term matrix and the similarity
function is the inner product. Note that the document-term matrix is often sparse,
and thus is significantly smaller than the matrix of pairwise similarities; our im-
plementation maintains the sparsity of the input. For a document-term matrix for
n objects with M nonzeros, our implementation runs in O(Mn log n) in the worst
case and seems to perform much better in practice (see Figure 3(a)). The algorithm
uses space linear in the number of nonzeros M . The data need not be text; all that
is needed is for the similarity of two objects to be the inner product between the
two vectors representing the objects.

The class of functions for which the merge phase can find an optimal tree-
respecting clustering include standard objectives such as k-means [HW79], min-
diameter [CFM97], and min-sum [SG76], as well as correlation clustering, a for-
mulation of clustering that has seen recent interest [BBC02; CGW03; DI03; EF03;
ACM Journal Name, Vol. V, No. N, July 2006.

· 3

Swa04]. By optimal tree-respecting clustering, we mean that the clustering found
by the merge phase is optimal over the set of clusterings that respect the tree, i.e.
clusterings whose clusters are nodes in the tree. Note that optimizing each of the
standard objective functions is NP-hard. Although approximation algorithms exist
for these problems, many of them have impractical running times. Our methodol-
ogy can be seen as an efficient alternative.

We conducted a thorough experimental evaluation for the methodology. The
first evaluation is in the form of a meta-search engine, EigenCluster [CKVW], that
clusters the results of a query to a standard web search engine. EigenCluster
consistently finds the natural clustering for queries that exhibit polysemy, e.g., for
the query monte carlo, EigenCluster finds clusters pertaining to the car model,
the city in Monaco, and the simulation technique. We describe EigenCluster and
show results of example queries in Section 3.

We apply the methodology to clustering real-world datasets: text, gene expres-
sion, and categorical data. In Section 4.2, we describe the results of a suite of
experiments that test the effectiveness of the spectral algorithm as a procedure for
the divide phase. For these datasets, the “true” clustering is known in advance. We
compare the “best” clustering in the tree built by the spectral algorithm to the true
clustering, where the “best” clustering in the tree is the one that most agrees with
the true clustering according to a variety of standard measures – f-measure, en-
tropy, and accuracy. The results show that the spectral algorithm performs better
than or competitively with several leading hierarchical clustering algorithms.

The results from Section 4.2 show that a good flat clustering exists in the tree
created by the divide phase. In Section 4.3, we give experimental results on the
ability of the merge phase to actually find this clustering that exists in the tree. We
explore how some natural objective functions (k-means, min-sum, min-diameter)
perform in practice on real-world data, and compare two flat clusterings: the clus-
tering found by the objective function in the merge phase and the best clustering
that exists in the tree. Our results show that the clustering found by the merge
phase is only slightly worse than the best possible flat clustering in the tree.

2. DIVIDE-AND-MERGE METHODOLOGY

As mentioned in the introduction, there are two phases in our approach. The di-
vide phase produces a hierarchy and can be implemented using any algorithm that
partitions a set into two disjoint subsets. The input to this phase is a set of ob-
jects whose pairwise similarities or distances are given, or can be easily computed
from the objects themselves. The algorithm recursively partitions a cluster into
two smaller sets until it arrives at singletons. The output of this phase is a tree
whose leaves are the objects themselves; each internal node represents a subset of
the objects, namely the leaves in the subtree below it. Divisive algorithms that
can be applied in the divide phase are known for a variety of data representations
such as graphs [Dhi01] and high-dimensional vectors [Bol98]. In Section 2.1, we
suggest a spectral algorithm analyzed in [KVV04] for the divide phase. We de-
scribe an implementation that maintains sparsity of the data when the objects are
represented as feature vectors and the similarity between the objects is the inner
product between the corresponding vectors.

ACM Journal Name, Vol. V, No. N, July 2006.

4 ·

The merge phase is applied to the tree T produced by the divide phase. The
output of the merge phase is a partition C1, . . . , Ck of the set of objects and each
Ci is a node of T . The merge phase uses a dynamic program to find the optimal
tree-respecting clustering for a given objective function g. The optimal solutions
are computed bottom-up on T ; to compute the optimal solution for any interior
node C, we merge the optimal solutions for Cl and Cr, the children of C. The
optimal solution for any node need not be just a clustering; an optimal solution
can be parameterized in a number of ways. Indeed, we can view computing the
optimal solution for an interior node as computing a Pareto curve. A value on the
curve at a particular point is the optimal solution with the parameters described
by the point. A specific objective function g can be efficiently optimized on T if
the Pareto curve for a cluster can be efficiently computed from the Pareto curves of
its children. The Pareto curve of the root node gives the tradeoff between the pa-
rameters and the value of the objective function1. The choice of objective function
is up to the user and can be tailored to the specific application area. In Section
2.2, we describe dynamic programs to compute optimal tree-respecting clusterings
for several well-known objective functions: k-means, min-diameter, min-sum, and
correlation clustering.

2.1 A spectral algorithm for the divide phase

In this section, we give an implementation of the spectral algorithm described
and analyzed in [KVV04]. The algorithm from [KVV04] takes as input a similarity
matrix encoding the similarity between objects and outputs a hierarchical clustering
tree. Our implementation deals with the common case where the objects are given
as feature vectors, and the similarity between the objects is defined to be the inner
product of their feature vectors. Together, the objects form a sparse document-
term matrix A ∈ Rn×m; the rows are the objects and the columns are the features.
When A is sparse and n large, it is impractical to apply the spectral algorithm in
[KVV04] as a black box. This is because explicitly computing the similarity matrix
by computing the inner products takes n2 space, which can be much larger2 than
the number of non-zeros M in the document-term matrix and thus infeasible to
store. The implementation we describe in this section takes as input the document-
term matrix A and produces a hierarchical clustering tree with the same guarantees
as the algorithm from [KVV04]. The key benefit of our implementation is that it
uses space linear in M and has a near-linear running time in M .

The algorithm constructs a hierarchical clustering of the objects by recursively
dividing a cluster C into two pieces through a cut (S, C \ S). To find the cut, we
compute v, an approximation of the second eigenvector of the similarity matrix AAT

normalized so that all row sums are 1. The ordering of the coordinates of v gives
a set of n− 1 cuts, and we take the “best” cut (we describe what the “best” cut is
in the next paragraph). The algorithm then recurses on the subparts. To compute
the approximation of the second eigenvector, we use the power method, a technique

1For instance, the tradeoff might be between the number of clusters used and the amount of error
incurred – an example will be given for k-means in Section 2.2.
2For instance, documents are often described in the bag-of-words model by their top-k distin-
guishing features, with k < 500.

ACM Journal Name, Vol. V, No. N, July 2006.

· 5

Input: An n×m matrix A.
Output: A tree with the rows of A as leaves.

(1) Let ρ ∈ Rn be a vector of the row sums of AAT , and π = 1
(
P

i ρi)
ρ.

(2) Let R, D be diagonal matrices with Rii = ρi, Dii =
√

πi.

(3) Compute the second largest eigenvector v′ of Q = DR−1AAT D−1.

(4) Let v = D−1v′, and sort v so that vi ≤ vi+1.

(5) Find t such that the cut

(S, T) = ({1, . . . , t}, {t + 1, . . . , n})

minimizes the conductance:

φ(S, T) =
c(S, T)

min(c(S), c(T))

where c(S, T) =
P

i∈S,j∈T A(i) ·A(j), and c(S) = C(S, {1 . . . , n}).
(6) Let ÂS , ÂT be the submatrices of A. Recurse (Steps 1-5) on ÂS and ÂT .

Table I. Divide phase

for which it is not necessary to explicitly compute the normalized similarity matrix
AAT . We describe this in more detail in Section 2.1.1. The algorithm is given in
Table I. There, we denote the ith object, a row vector in A, by A(i). The similarity
of two objects is defined as the inner product of their term vectors: A(i) ·A(j).

In Step 5 of the algorithm, we consider n− 1 different cuts and use the cut with
the smallest conductance. Why should we think that the best cut is a cut of small
conductance? Why not just use the minimum cut (i.e. the cut with the minimum
weight across it)? Consider Figure 2.1; the nodes are the objects and the edges
mean that two objects are very similar. Although both cut C1 and C2 have the
same number of edges crossing the cut, it is clear that C1 is a better cut – this
is because C1 partitions the set into two subsets of equal size, both of which have
high weight. The measure of conductance formalizes this by normalizing a cut by
the smaller weight of the partition it induces. More intuition for why conductance
is a good measure for clustering can be found in [KVV04].

The cut (S, T) we find using the second eigenvector in Step 5 is not the cut of
minimum conductance; finding such a cut is NP-hard. However, the conductance of
(S, T) is not much worse than the minimum conductance cut. Sinclair and Jerrum
showed that φ(S, T) ≤

√
2 · φOPT [SJ89; KVV04].

For a document-term matrix with n objects and M nonzeros, Steps 1-5 take
O(M log n) time. Theoretically, the worst-case time for the spectral algorithm to
compute a complete hierarchical clustering of the rows of A is O(Mn log n); this
occurs if each cut the spectral algorithm makes only separates one object from the
rest of the objects. Experiments, however, show that the algorithm performs much
better (see Section 2.1.2). Indeed, if the spectral algorithm always makes balanced
cuts, then the running time for creating a hierarchical clustering is O(M log2 n).
We discuss this in more detail in Section 2.1.2.

Any vector or matrix that the algorithm uses is stored using standard data struc-
tures for sparse representation. The main difficulty is to ensure that the similarity
matrix AAT is not explicitly computed; if it is, we lose sparsity and our running
time could grow to n2. In the next section, we briefly describe how to avoid com-

ACM Journal Name, Vol. V, No. N, July 2006.

6 ·

C1C2

Fig. 2. Minimum conductance cut vs. minimum cut

puting AAT in Steps 1 and 3. We also describe how to efficiently compute the n−1
conductances in Step 5. By avoiding the computation of AAT , the algorithm runs
in space O(M).

2.1.1 Details of the spectral algorithm.

2.1.1.1 Step 1: Computing row sums.. Observe that

ρi =
n∑

j=1

A(i) ·A(j) =
n∑

j=1

m∑
k=1

AikAjk =
m∑

k=1

Aik

 n∑
j=1

Ajk

 .

Because
∑n

j=1 Ajk does not depend on i, we can compute u =
∑n

i=1 A(i) so we
have that ρi = A(i) · u. The total running time is O(M) and the additional space
required is O(n + m).

2.1.1.2 Step 3: Computing the eigenvector.. The algorithm described in [KVV04]
uses the second largest eigenvector of B = R−1AAT , the normalized similarity ma-
trix, to compute a good cut. To compute this vector efficiently, we compute the
second largest eigenvector v of the matrix Q = DBD−1. The eigenvectors and
eigenvalues of Q and B are related – if v is such that Bv = λv, then Q(Dv) = λDv.

The key property of Q is that it is a symmetric matrix. It is easy to see this from
the fact that D2B = BT D2 and D is a diagonal matrix (so DT = D):

D2B = BT D2 → D−1D2B = D−1BT D2 → D−1D2BD−1 = D−1BT D2D−1 → Q = QT .

Since Q is symmetric, we can compute the second largest eigenvector of Q using the
power method, an iterative algorithm whose main computation is a matrix-vector
multiplication.

Power Method

(1) Let v ∈ Rn be a random vector orthogonal to πT D−1.
ACM Journal Name, Vol. V, No. N, July 2006.

· 7

(2) Repeat
(a) Normalize v, i.e. set v = v/||v||.
(b) Set v = Qv.

Step 1 ensures that the vector we compute is the second largest eigenvector.
Note that πT D−1Q = πT D−1, so πD−1 is a left eigenvector with eigenvalue 1.
To evaluate Qv in Step 2, we only need to do four sparse matrix-vector multi-
plications (v := D−1v, followed by v := AT v, v := Av, and v := DR−1v) since
Q = (DR−1AAT D−1), and each of these matrices is sparse. Therefore, the space
used is O(M), linear in the number of nonzeros in the document-term matrix A.

The following lemma shows that the power method takes O(log n) iterations
to converge to the top eigenvector. Although stated for the top eigenvector, the
lemma and theorem still hold when the starting vector is chosen uniformly over
vectors orthogonal to the top eigenvector πT D−1; in this case, the power method
will converge to the second largest eigenvector (since the second eigenvector is
orthogonal to the first). The analysis of the power method is standard and classical
(see e.g. [GL96]). Our analysis differs in two respects. First, the classical analysis
assumes that |λ1| > |λ2| – we do not need the assumption because if λ1 = λ2, the cut
we find partitions the graph into two pieces with no edges crossing the cut. Second,
the classical analysis states convergence in terms of the size of the projection of the
starting vector on the first eigenvector; in our analysis, we quantify how large this
is for a random vector.

Lemma 1. Let A ∈ Rn×n be a symmetric matrix, and let v ∈ Rn be chosen
uniformly at random from the unit n-dimensional sphere. Then for any positive
integer k, the following holds with probability at least 1− δ:

||Ak+1v||
||Akv||

≥
(

n ln
1
δ

)− 1
2k

||A||2.

Proof. Since A is symmetric, we can write

A =
n∑

i=1

λiuiu
T
i ,

where the λi ’s are the eigenvalues of A arranged in the order |λ1| ≥ |λ2| . . . |λn|
and the ui are the corresponding eigenvectors. Note that, by definition, λ1 = ||A||2.
Express v in this basis as v =

∑
i αiui, where

∑
i α2

i = 1. Since, v is uniformly
random over the unit-dimensional sphere, we have that with probability at least
1 − δ, α2

1 ≥ 1/(n ln(1/δ)). It is easy to see that, in expectation, α2
1 = 1/n – this

follows from the symmetry of the sphere. The tail bound follows from the fact
that the distribution of the projection of a point from the sphere to a random line
behaves roughly like a Gaussian random variable. Then, using Hölder’s inequality
(which says that for any p, q > 0 satisfying (1/p)+ (1/q) = 1 and any a, b ∈ Rn, we
have

∑
i aibi ≤ (

∑
i |ai|p)1/p (

∑
i |bi|q)1/q), we have

||Akv||2 =
∑

i

α2
i λ

2k
i ≤

(∑
α2

i λ
2k+2
i

)k/(k+1)

ACM Journal Name, Vol. V, No. N, July 2006.

8 ·

where the last inequality holds using Hölder with p = 1 + (1/k) q = k + 1 ai =
α

2k/(k+1)
i λ2k

i bi = α
2/(k+1)
i . Note that ||Ak+1v|| =

∑
i α2

i λ
2k+2
i . Combining this

with the previous inequality we have:

||Ak+1v||
||Akv||

≥
∑

i α2
i λ

2k+2
i(∑

α2
i λ

2k+2
i

)k/(k+1)
≥
(∑

α2
i λ

2k+2
i

)1/(k+1)

≥
(
α2

1λ
2k+2
1

)1/(k+1)
.

As concluded above, with probability 1 − δ, α2
1 ≥ 1/(n ln(1/δ)). This gives us

the desired result.

The following corollary quantifies the number of steps to run the power method
to find a good approximation.

Corollary 1. If k ≥ 1
2ε ln(n ln(1

δ)), then we have:

||Ak+1v||
||Akv||

≥ (1− ε)λ1.

2.1.1.3 Step 5: Computing conductance of n − 1 cuts.. We choose the cut C
of the n − 1 cuts ({1, . . . , t}, {t + 1, . . . , n}) which has the smallest conductance.
Recall that

φ({1, . . . , i}, {i + 1, . . . , n}) =

∑i
k=1

∑n
j=i+1 A(k) ·A(j)

min(
∑i

k=1 ρk,
∑n

k=i+1 ρk)
.

Let the numerator of this expression be ui, and the denominator be li.
We can compute ui from ui−1 as follows. Let xi = A(1) + . . . + A(i) and yi =

A(i+1) + . . . + A(n). Then u1 = x1 · y1, and

ui = (xi−1 + A(i)) · (yi−1 −A(i)) = ui−1 − xi−1 ·A(i) + yi−1 ·A(i) + A(i) ·A(i).

The denominator, li can be computed in a similar fashion. Since we only require
one pass through A to compute the values of these n− 1 cuts, the time and space
used is O(M).

2.1.2 Time and space requirements. In practice, the spectral algorithm does not
run in the worst-case O(Mn log n) time. If each cut made by the algorithm is bal-
anced, then the spectral algorithm runs in O(M log2 n) time. By a balanced cut,
we mean that both the number of nonzeros and number of rows on the larger side
of the cut are at most a constant fraction (say, 2/3) of the total number of nonze-
ros and rows, respectively. If each cut is balanced, the depth of the hierarchical
clustering tree is at most O(log n). Since the running time at each level of the
tree is M log n, the total running time when each cut is balanced is bounded above
by O(M log2 n). On real world data, the algorithm seems to run in time roughly
O(M log5 n). Figures 3(a) and 3(b) show the results of a performance experiment.
In this experiment, we computed a complete hierarchical clustering for N news-
group articles in the 20 newsgroups dataset [Lan] and measured the running time
and memory used. The value of N ranged from 200 to 18,000. When we clustered
18, 000 documents (for a total of 1.2 million nonzeros in the document-term ma-
trix), we were able to compute a complete hierarchical clustering in 4.5 minutes on
ACM Journal Name, Vol. V, No. N, July 2006.

· 9

(a) Time vs. input size

(b) Space vs. input size

Fig. 3. Performance of spectral algorithm in experiments

commodity hardware (a 3.2 Ghz Pentium IV with 1 gigabyte of RAM). Note that
the space used is linear in the size of the input.

In some applications, knowledge about the dataset can be used to halt the spectral
algorithm before a complete tree is constructed. For instance, if the number of
clusters k desired is small, the recursive step does not need to be applied after
depth k, since all k-clusterings in the tree use nodes above depth k. Here is why
– if a node t at depth k + 1 is a cluster, then no node along the path from t to
the root is also a cluster. Since each node along this path has two children, and
each leaf node must be covered by an interior node, there are at least k + 1 other
nodes that need to be covered by distinct clusters, contradicting the use of only k
clusters.

ACM Journal Name, Vol. V, No. N, July 2006.

10 ·

2.2 Merge phase

The merge phase finds an optimal clustering in the tree produced by the divide
phase. Recall that the tree produced by the divide phase has two properties: (1)
each node in the tree is a subset of the objects, (2) the left and right children of a
node form a partition of the parent subset. A clustering in the tree is thus a subset
S of nodes in the tree such that each leaf node is “covered”, i.e. the path from a
leaf to root encounters exactly one node in S.

In this section, we give dynamic programs to compute the optimal clustering in
the tree for many standard objective functions. If we are trying to maximize the
objective function g, the dynamic program will find a clustering COPT-TREE in
the tree such that g(COPT-TREE) ≥ g(C), for any clustering C in the tree. Note
that the best clustering in the tree may not be the best possible clustering. Indeed,
the best possible clustering may not respect the tree. In practice, we have found
that good clusterings do exist in the tree created by the spectral algorithm and
that the merge phase, with appropriate objective functions, finds these clusterings
(see Section 4.3).

In general, the running time of the merge phase depends on both the number
of times we must compute the objective function and the evaluation time of the
objective function itself. Suppose at each interior node we compute a Pareto curve
of k points from the Pareto curves of the node’s children. Let c be the cost of
evaluating the objective function. Then the total running time is O(nk2 + nkc):
linear in n and c, with a small polynomial dependence on k.

k-means: The k-means objective function seeks to find a k-clustering such that
the sum of the squared distances of the points in each cluster to the centroid pi of
the cluster is minimized:

g({C1, . . . , Ck}) =
∑

i

∑
u∈Ci

d(u, pi)2.

The centroid of a cluster is just the average of the points in the cluster. This problem
is NP-hard; several heuristics (such as the k-means algorithm) and approximation
algorithms exist (e.g. [HW79; KSS04]). Let OPT-TREE(C, i) be the optimal tree-
respecting clustering for C using i clusters. Let Cl and Cr be the left and right
children of C in T . Then we have the following recurrence:

OPT-TREE(C, 1) = {C}

since we are constrained to only use 1 cluster. When i > 1, we have:

OPT-TREE(C, i) = OPT-TREE(Cl, j) ∪ OPT-TREE(Cr, i− j)

where

j = argmin1≤j<i g(OPT-TREE(Cl, j) ∪ OPT-TREE(Cr, i− j)).

By computing the optimal clustering for the leaf nodes first, we can determine
the optimal clustering efficiently for any interior node. Then OPT-TREE(root, k)
gives the optimal clustering. Note that in the process of finding the optimal clus-
tering the dynamic program finds the Pareto curve OPT-TREE(root, ·); the curve
ACM Journal Name, Vol. V, No. N, July 2006.

· 11

describes the tradeoff between the number of clusters used and the “error” incurred.

Min-diameter: We wish to find a k-clustering for which the cluster with maximum
diameter is minimized:

g({C1, . . . , Ck}) = max
i

diam(Ci).

The diameter of any cluster is the maximum distance between any pair of objects
in the cluster. A similar dynamic program to that above can find the optimal tree-
respecting clustering. This objective function has been investigated in [CFM97].

Min-sum: Another objective considered in the literature is minimizing the sum of
pairwise distances within each cluster:

g({C1, . . . , Ck}) =
k∑

i=1

∑
u,v∈Ci

d(u, v).

We can compute an optimal tree-respecting clustering in the tree T by a similar
dynamic program to the one above. Although approximation algorithms are known
for this problem (as well as the one above), their running times seem too large to
be useful in practice [dlVKKR03].

Correlation clustering: Suppose we are given a graph where each pair of vertices
is either deemed similar (red) or not (blue). Let R and B be the set of red and blue
edges, respectively. Correlation clustering seeks to find a partition that maximizes
the number of agreements between a clustering and the edges – i.e. maximizing the
number of red edges within clusters plus the number of blue edges between clusters:

g({C1 . . . Ck}) =
∑

i

|{(u, v) ∈ R ∩ Ci}|+
1
2
|{(u, v) ∈ B : u ∈ Ci, v ∈ U \ Ci}|.

Let C be a cluster in the tree T , and let Cl and Cr be its two children. The dynamic
programming recurrence for OPT-TREE(C) is:

OPT-TREE(C) = argmax {g(C), g(OPT-TREE(Cl) ∪ OPT-TREE(Cr)).

If, instead, we are given pairwise similarities in [0, 1], where 0 means dissimilar and 1
means similar, we can define two thresholds t1 and t2. Edges with similarity greater
than t1 are colored red and edges with similarity less than t2 are colored blue. The
same objective function can be applied to these new sets of edges R(t1) and B(t2).
Approximation algorithms have been given for this problem as well, although the
techniques used (linear and semidefinite programming) incur large computational
overhead [BBC02; CGW03; DI03; EF03; Swa04].

2.3 Choice of algorithms for divide, merge steps

We have suggested a spectral algorithm for the divide phase and several different
objective functions for the merge phase. A natural question is: how do these two
phases interact, i.e. how does the choice of the algorithm for the divide phase affect
the performance of the merge phase?

ACM Journal Name, Vol. V, No. N, July 2006.

12 ·

A natural approach is to use the same objective function for the divide phase
as the merge phase – that is, recursively find the optimal 2-clustering according
to the objective function. This process results in a hierarchical clustering tree. In
the merge phase, use the same objective function to find the best clustering. In
practice, there can be difficulty with this approach because finding the optimal 2-
clustering can be NP-hard as well (for instance, for the k-means, k-median objective
functions). Even if we could find the optimal 2-clustering, the hierarchical clustering
tree is not necessarily good for all k. This is the case for the min-diameter objective
function, where we seek a clustering that minimizes the maximum diameter between
two points in the same cluster. Consider the following four points on the real
number line: 0, 1/2 − ε, 1/2 + ε, 1. The best 2-clustering is {0, 1/2 − ε}, {1/2 +
ε, 1} with a maximum radius of 1/2 − ε. However, the optimal 3-clustering is
{0}, {1/2 − ε, 1/2 + ε}, {1} with a maximum radius of 2ε, which does not respect
the initial partition. The best 3-clustering in the tree has maximum radius 1/2− ε,
so the ratio of the best 3-clustering in the tree to the optimal 3-clustering cannot
be bounded by a constant. The situation is better for other objective functions.
In the min k-cut objective function, we seek a k-clustering where the sum of the
pairwise similarities across clusters is minimized. Saran and Vazirani show that
the k-clustering obtained by greedily cutting the subset with the smallest min-cut
k times is a factor 2 − 2/k approximation. The tree formed by recursively finding
the min-cut includes this greedy k-clustering, which gives the same factor 2− 2/k
approximation guarantee for the divide-and-merge methodology.

3. APPLICATION TO STRUCTURING WEB SEARCHES: EIGENCLUSTER

In a standard web search engine, the results for a given query are ranked in a
linear order. Although suitable for some queries, the linear order fails to show
the inherent clustered structure of results for queries with multiple meanings. For
instance, consider the query mickey. The query can refer to multiple people (Mickey
Rooney, Mickey Mantle) or the fictional character Mickey Mouse.

We have implemented the divide-and-merge methodology in a meta-search engine
that discovers the clustered structure for queries and identifies each cluster by its
three most significant terms. The website is located at http://eigencluster.
csail.mit.edu. The user inputs a query which is then used to find 400 results from
Google, a standard search engine. Each result contains the title of the webpage,
its location, and a small snippet from the text of the webpage. We construct a
document-term matrix representation of the results; each result is a document and
the words in its title and snippet make up its terms. Standard text pre-processing
such as TF/IDF, removal of stopwords, and removal of too frequent or infrequent
terms is applied [VR79]. The similarity between two results is the inner product
between their two term vectors.

The divide phase was implemented using our spectral algorithm. For the merge
phase, we used the following objective function, which we refer to as relaxed corre-
lation clustering:

∑
i

α

 ∑
u,v∈Ci

1−A(u) ·A(v)

+ β

 ∑
u∈Ci,v /∈Ci

A(u) ·A(v)

 .

ACM Journal Name, Vol. V, No. N, July 2006.

· 13

We assume here that each row A(u) is normalized to have Euclidean length 1; this
is a standard preprocessing step that ensures that the maximum similarity between
any pair of rows is 1. In EigenCluster, we use α = .2, and β = .8. The first term,
α
∑

u,v∈Ci
(1 − A(u) · A(v)) measures the dissimilarity within a cluster, i.e. how

“far” a cluster is from a set in which every pair is as similar as possible (for all u, v,
A(u) ·A(v) = 1). Note that the first term is a relaxed notion of the blue edges within
a cluster from correlation clustering. The second term, β

∑
u∈Ci,v /∈Ci

A(u) · A(v)

measures the amount of similarity the clustering fails to capture, since it occurs
across clusters. Similarly, the second term is a relaxed notion of the red edges
outside clusters. The benefit of using the relaxed correlation clustering objective
function is that it does not depend on a predefined number of clusters k. This
is appropriate for our application, since the number of meanings or contexts of a
query could not possibly be known beforehand. We have seen in practice that the
objective function does a good job of picking out the large, interesting subsets of
the data while putting unrelated results each in their own cluster.

Sample queries can be seen in Figures 4(a) and 4(c); in each example, EigenClus-
ter identifies the multiple meanings of the query as well as keywords corresponding
to those meanings. Furthermore, many results are correctly labeled as singletons.
Figures 4(a) and 4(c) show screenshots of EigenCluster and Figures 4(b) and 4(d)
are before and after depictions of the similarity matrix. The (i, j)th entry of the
matrix represents the similarity between results i and j – the darker the pixel, the
more similar i and j are. In the before picture, the results are arranged in the
order received from Google. In the after picture, the results are arranged accord-
ing to the cuts made by the spectral algorithm. The cluster structure is apparent.
EigenCluster takes roughly 0.7 seconds to fetch and cluster results on a Pentium
III 700 megahertz with 512 megabytes of RAM. Section 6 shows more example
EigenCluster searches.

4. COMPARATIVE EXPERIMENTS ON STANDARD DATASETS

In this section, we conduct a thorough experimental evaluation of the divide-and-
merge methodology. We work with real-world datasets (text, gene expression, and
categorical data) for which a labeling of data objects is known. In Section 4.2, we
apply the spectral algorithm as a divide phase to the data. The results show that
the tree the spectral algorithm constructs is good – there exists a clustering within
the tree that “agrees” with the true clustering, i.e. the partition of data objects
into sets whose members share the same label. This type of evaluation in which
a clustering algorithm is applied to data for which the true classification is known
is common. It is an appropriate evaluation because the true classification reflects
the true structure of the data. Comparing the clustering found by the algorithm
to the true classification measures the ability of a clustering algorithm to find true
structure in data, which is a primary use of clustering in practice. The results of
our experiments compare favorably to results obtained from leading hierarchical
clustering algorithms.

In Section 4.3, we proceed to experimentally evaluate the merge phase. We
evaluate how each of the objective functions k-means, min-sum, and min-diameter
behave on the tree constructed by the spectral algorithm. We find that the merge

ACM Journal Name, Vol. V, No. N, July 2006.

14 ·

(a) Query: pods (b) Before/after: pods

(c) Query: mickey (d) Before/after: mickey

Fig. 4. Example EigenCluster searches

phase can indeed find a good clustering; it typically finds a clustering only slightly
worse than the “best” clustering that exists in the tree. The best clustering in the
tree is the one that most closely matches the true clustering.

The next section describes how we compare a clustering (either hierarchical or
flat) to the true clustering.
ACM Journal Name, Vol. V, No. N, July 2006.

· 15

4.1 Comparative measures

Let the true classification of a dataset be C1, . . . , Ck. We refer to each Ci as a
class. Let Ĉ1, . . . , Ĉl be subsets of the universe U =

⋃
i Ci. Note that Ĉ1, . . . , Ĉl

may have a non-empty intersection (for instance, when each Ĉl is the set of leaves
underneath a node of a hierarchical clustering tree). We will note when Ĉ1, . . . , Ĉl

is partition of U , rather than just a collection of subsets.

F -measure: For each class Ci, the F -measure of that class is:

F (i) =
l

max
j=1

2PjRj

Pj + Rj

where:

Pj =
|Ci ∩ Ĉj |
|Ĉi|

, Rj =
|Ci ∩ Ĉj |
|Ci|

Pj is referred to as precision and Rj is referred to as recall. The F -measure of the
clustering is defined as:

k∑
i=1

F (i) · |Ci|
|C|

.

The F -measure score is in the range [0, 1] and a higher F -measure score implies a
better clustering. Note that the F -measure does not assume that Ĉ1, . . . , Ĉl is a
partition of U ; indeed, it is often used to compare a hierarchical clustering to a true
classification. For a more in-depth introduction and justification to the F -measure,
see e.g. [VR79; LA99; BEX02; NJM01].

Entropy: We consider Ĉ1, . . . , Ĉk to be a partition of U . For each Ĉj , we define
the entropy of Ĉj as:

E(Ĉj) =
k∑

i=1

−

(
|Ci ∩ Ĉj |
|Ĉj |

)
log

(
|Ci ∩ Ĉj |
|Ĉj |

)
The entropy of a subset is a measure of the disorder within the cluster. As such,
a lower entropy score implies that a clustering is better; the best possible entropy
score is 0. Entropy was first introduced in [Sha48] and has been used as a measure
of clustering quality in [Bol98; Dhi01; BLC02].

The entropy of a partition Ĉ1 . . . Ĉk is the weighted sum of the entropies of the
clusters.

Accuracy: The accuracy of a partition Ĉ1, . . . , Ĉk is defined as:

max
π∈Sk

∑k
i=1 |Ci ∩ Ĉπ(i)|

|U |
where Sk is the set of all permutations on k items. Note that the range of an accu-
racy score is between 0 and 1; the higher the accuracy score, the better. Accuracy,
which has been used as a measure of performance in supervised learning, has also

ACM Journal Name, Vol. V, No. N, July 2006.

16 ·

dataset Spectral p-QR p-Kmeans K-means
alt.atheism 93.6 ± 2.6 89.3 ± 7.5 89.6 ± 6.9 76.3 ± 13.1

comp.graphics
comp.graphics 81.9 ± 6.3 62.4 ± 8.4 63.8 ± 8.7 61.6 ± 8.0

comp.os.ms-windows.misc
rec.autos 80.3 ± 8.4 75.9 ± 8.9 77.6 ± 9.0 65.7 ± 9.3

rec.motorcycles
rec.sport.baseball 70.1 ± 8.9 73.3 ± 9.1 74.9 ± 8.9 62.0 ± 8.6
rec.sport.hockey

alt.atheism 94.3 ± 4.6 73.7 ± 9.1 74.9 ± 8.9 62.0 ± 8.6
sci.space

talk.politics.mideast 69.3 ± 11.8 63.9 ± 6.1 64.0 ± 7.2 64.9 ± 8.5
talk.politics.misc

Table II. 20 Newsgroups dataset (Accuracy)

been used in clustering ([ST00], [ZDG+01]).

Confusion matrix: The confusion matrix for a partition Ĉ1, . . . , Ĉk shows the
distribution of the class of the objects in each Ĉi – it is a k×k matrix M where the
rows are the clusters Ĉi, and the columns are the classes Cj . The entry Mij denotes
the number of objects in Ĉi that belong to class Cj . The order of the clusters Ĉi

is chosen so as to maximize the number of elements on the diagonal.3

4.2 Spectral algorithm as the divide phase

We tested the spectral algorithm on three types of data: text, gene expression,
and categorical data. In all experiments, we compare better than or favorably with
the known results. In each of the experiments, the known results come directly
as reported in the pertinent paper. To be precise, for each experiment, we ran
the same experiment as described in the pertinent paper, but with the spectral
algorithm instead of the algorithm given in the paper. In particular, we did not
try to validate the findings of each paper by rerunning the experiment with the
algorithm given in the paper.

4.2.1 Text data.

4.2.1.1 20 Newsgroups:. The 20 newsgroups resource [Lan] is a corpus of roughly
20,000 articles that come from 20 specific Usenet newsgroups. We performed a
subset of the experiments in [ZDG+01]. Each experiment involved choosing 50
random newsgroup articles each from two newsgroups, constructing term vectors
for them, and then applying the spectral algorithm to the document-term matrix.4

The term vectors were constructed exactly as in [ZDG+01]: words were stemmed,

3Maximizing the number of elements on the diagonal can be done via solving a maximum matching
problem.
4We used the BOW toolkit for processing the newsgroup data. More information on the BOW
toolkit can be found on http://www-2.cs.cmu.edu/∼mccallum/bow.

ACM Journal Name, Vol. V, No. N, July 2006.

· 17

words that appear too few times were removed, and the TF/IDF weighting scheme
was applied.

Since each experiment involved clustering documents from only two classes, we
did not need to form a complete hierarchical tree. The first cut made by the spectral
algorithm defines a partition into two clusters. Zha et al. also form two clusters
using their clustering algorithm. The results can be seen in Table II. Note that
we perform better than p-QR, the algorithm proposed in [ZDG+01] on all but one
of the experiments. We also outperform K-means and a variation of the K-means
algorithm, p-Kmeans. In each of these experiments, the measure of performance was
accuracy. Since the experiment involved choosing 50 random newsgroup articles,
the experiment was run 100 times and the mean and standard deviation of the
results were recorded.

4.2.1.2 Reuters:. The Reuters dataset [Lew] is a corpus of 21, 578 news articles.
Of these, 8, 654 articles are uniquely classified into 65 distinct news topics. Previous
clustering experiments on this dataset have been conducted by [BEX02; LA99;
NJM01]. We performed the same experiments (in particular, forming the term
vectors exactly as the experiments specify). In each experiment, a hierarchical
clustering was formed, and the F -measure was computed. We perform better than
the previous experiments; results appear in Table III. We briefly describe each
experiment below.

—In [BEX02], random subsets of size 4, 000 of all 8, 654 uniquely classified articles
were clustered using a hierarchical clustering algorithm. The term vector for
each article was constructed by removing stopwords and stemming words. A
comparison of our results and their results for this experiment can be found in
the first column of Table III.

—Larsen and Aone [LA99] apply a hierarchical clustering algorithm to all 8, 654
articles. To form a term vector from an article, they first remove stopwords and
apply TF/IDF weighting. The term vector consists of the remaining top 500
highest weight terms in each article. The second column of Table III shows a
comparison of our results and their results for this experiment.

—In [NJM01], a hierarchical clustering algorithm was applied to 6, 575 of the 8, 654
uniquely classified news articles. Each of these 6, 575 articles is labeled with one
of the following ten labels: earn, acq, money-fx, grain, crude, trade, interest,
wheat, ship, or corn. The articles were first preprocessed by removing stopwords
and applying Porter’s stemming algorithm. The term vector for each document
was formed by the counts of the 500 most frequently occurring words. Their
results and our results for this experiment are compared in the third column of
Table III.

The results of these experiments are summarized below.

BEX ’02 LA ’99 NJM ’01

Previous 0.49 0.62 0.67

Spectral 0.62 0.75 0.68

Table III. Reuters data (F-measure)

ACM Journal Name, Vol. V, No. N, July 2006.

18 ·

4.2.1.3 Web pages:. Boley [Bol98] performs a series of experiments on clustering
185 webpages that fall into 10 distinct categories. In each of the 11 experiments (J1-
J11), the term vector for each webpage was constructed in a slightly different way
(the exact details can be found in [Bol98]5.). The algorithm from [Bol98] is also a
partitional algorithm that constructs a hierarchical clustering. In each experiment,
the quality of the clustering is measured by computing the entropy of the 16 clusters
at depth 4 in the tree. We measured the entropy of the 16 clusters at depth 4 in our
tree as well as in an optimal partition into 16 clusters, allowing clusters at different
depths. By an optimal partition into 16 clusters, we mean the 16-clustering in the
tree that minimizes entropy. The results from [Bol98] appear in Table IV in the
row “Boley ’98” and our results appear in the rows labeled “Fixed depth Spectral”
(16 clusters at depth 4) and “Optimal Spectral” (optimal 16-clustering in the tree).

The results in Table IV show that the 16 clusters at depth 4 in our tree perform
better than the 16 clusters from [Bol98] in all but two experiments. The entropy
of the best 16-clustering in the tree does markedly better than both “Fixed depth
Spectral” and [Bol98]. This shows that a good clustering exists in the tree; we will
see that the merge phase can find a clustering almost as good as this in Section 4.3.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

Boley ’98 0.69 1.12 0.85 1.10 0.74 0.83 0.90 0.96 1.07 1.17 1.05

Fixed depth 0.77 0.92 0.72 0.94 0.76 0.72 0.84 0.88 0.89 1.04 0.88
Spectral

Optimal 0.71 0.63 0.62 0.62 0.71 0.61 0.65 0.63 0.69 0.55 0.83
Spectral

Table IV. Web page results (Entropy)

4.2.1.4 SMART dataset:. The SMART dataset is a set of abstracts originat-
ing from Cornell University [Sal] that have been used extensively in information
retrieval experiments. The makeup of the abstracts is: 1,033 medical abstracts
(Medline), 1,400 aeronautical systems abstracts (Cranfield), and 1,460 information
retrieval abstracts (Cisi). The term vector for each abstract was formed by remov-
ing stopwords and words that occur in less than 0.2% or greater than 15% of the
abstracts.

We performed the same four experiments as those found in [Dhi01]. In the first
three experiments, the datasets were the mixture of abstracts from two classes. In
the fourth experiment, the dataset was the set of all abstracts. In the first three
experiments, we just apply the spectral algorithm once to obtain a 2-clustering of
the data set. In the fourth experiment, we recurse with the spectral algorithm
twice, and select the better of the two 3-clusterings in the tree.

The results from performing the same experiments are listed in the column la-
beled “Spectral” in Table V. We do much worse than [Dhi01]. The reason for this
is so many terms are removed in the construction of each term vector. As such,
the similarity (inner product between two term vectors) may be very small, and
the best first conductance cut may separate just one or two objects from the rest

5The raw data can be found from ftp://ftp.cs.umn.edu/dept/users/boley/PDDPdata

ACM Journal Name, Vol. V, No. N, July 2006.

· 19

dataset Spectral (TF/IDF) Spectral Dhillon ’01

MedCran 0.0172 0.027 0.026

MedCisi 0.0365 0.054 0.152

CisiCran 0.0426 0.490 0.046

Classic3 0.0560 0.435 0.089

Table V. SMART dataset (Entropy)

of the set. While the first cut may not separate the classes, we have found that one
of the next cuts often does separate the classes. When we applied TF/IDF weight-
ing in the construction of term vectors, we found much better performance (see
the column labeled “Spectral (TF/IDF)” in Table V). Indeed, with TF/IDF term
weighting, we perform better than [Dhi01]. The TF/IDF weighting increases the
minimum similarity between any two abstracts, so that the best first conductance
cut does not separate just one or two objects from the set.

4.2.2 Categorical data. Categorical data is similar in flavor to text data. How-
ever, a data object is not a document containing terms, but rather a vector of
characteristics, each of which takes on non-numerical labels. A particular exam-
ple is the Congressional voting dataset [UCI]. Each data object is a Congressman,
and the vector of characteristics is how he voted on every bill or law put through
Congress. The true clustering of Congressmen is their political party affiliations.
We show that our spectral algorithm can also be applied in this scenario. Again,
only one cut is necessary as it defines a 2-clustering of the data. In Table VI, we
see that we do better than both COOLCAT [BLC02] and ROCK [GRS00].

Spectral COOLCAT ’02 ROCK ’00
0.480 0.498 0.499

Table VI. Congressional Voting Data (Entropy)

We also applied our algorithm to the Mushroom data set [UCI], which consists
of 8,124 mushrooms, each described by 22 features – such as odor (which takes
on values such as almond, anise, creosote) and habitat (which takes on values
such as grasses, leaves, or meadows). We represented each mushroom as a vector
and each possible value as a coordinate. Thus, each mushroom is described by a
binary vector. Each mushroom is labeled either poisonous or edible; we consider
this the true clustering of the data. The COOLCAT and ROCK algorithms have
been applied to this dataset by [ATMS04], who also introduce LIMBO, a categorical
clustering algorithm, and apply it to this dataset. In Table VII, we show the results
of the experiment. The precision and recall were measured; we perform better than
ROCK and COOLCAT in both measures, but LIMBO outperforms us in both
measures.

4.2.3 Gene expression data. A microarray chip is a solid surface upon which
spots of DNA are attached in a matrix-like configuration. By exposing the chip
to RNA, the expression level (roughly the activity of the gene) can be determined

ACM Journal Name, Vol. V, No. N, July 2006.

20 ·
Spectral COOLCAT ’02 ROCK ’00 LIMBO ’04

Precision 0.81 0.76 0.77 0.91
Recall 0.81 0.73 0.57 0.89

Table VII. Mushroom Data

for each gene on the microarray chip. A seminal paper [GST+99] proposed an
approach to discovering new subtypes of cancer by clustering microarray data. The
approach is to cluster gene expression data from several patients with a certain
type of cancer. If a strong clustering exists, the clustering might designate different
subtypes of cancer. This relies on the the hypothesis that gene expression levels
can distinguish different subtypes of cancer.

They tested the validity of this approach by applying it to a known sub-classification
of leukemia. Two distinct subtypes of leukemia are: acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML). Golub et al. asked: could the approach
to cancer classification correctly find the two known subtypes of ALL and AML?
To this end, they prepared microarray chips for 38 bone marrow samples. Each
chip contained roughly 7,000 human genes. Each bone marrow sample came from
either one of 27 ALL patients or 11 AML patients. The gene expression data thus
can be described by a 38 by 7,000 matrix M . Golub et al. clustered the 38 row
vectors of this matrix using self-organizing maps [TSM+99]. The confusion matrix
of their clustering is shown in Table VIII.

ALL AML
C1 26 1
C2 1 10

Table VIII. Confusion matrix for Golub et al. clustering

The clustering (C1, C2) almost exactly obeys the ALL/AML distinction. Golub
et al. also provide a list of genes that are highly expressed in C1, but not in C2, and
vice versa – they posit that the expression level of these genes distinguish between
AML and ALL.

We ran the spectral algorithm on the gene expression data [Gol], which we pre-
processed as follows. First, the data was normalized: the expression level of each
gene was normalized over the 38 samples such that the mean was zero and the
standard deviation was one.6 Then, we created a 38 by 14,000 matrix N ; the
jth column in the original gene expression matrix, M(·, j) corresponds to the two
columns N(·, 2j−1) and N(·, 2j). The two columns in N separate the negative and
positive values in M : if M(i, j) < 0, then N(i, 2j−1) = |M(i, j)| and if M(i, j) > 0,
then N(i, 2j) = M(i, j). The similarity between two samples (i.e. two rows of N)
is just the inner product. Thus, if two samples have a large inner product, they
have a similar gene expression profile. The confusion matrix for the first cut found
by the spectral algorithm is shown in Table IX.

6Golub et al. do the same normalization

ACM Journal Name, Vol. V, No. N, July 2006.

· 21

ALL AML
C3 18 1
C4 9 10

Table IX. Confusion matrix for Spectral 2-clustering

While C3 is almost a pure ALL cluster, the clustering (C3, C4) does not obey
the ALL/AML class boundary. Interestingly, recursing on the cluster C4 gives a
3-clustering that does obey the ALL/AML class boundary. Table X shows the
confusion matrix for this 3-clustering.

ALL AML
C3 18 1
C5 0 10
C6 9 0

Table X. Confusion matrix for Spectral 3-clustering

A random 3-clustering does not obey the class boundary, so clearly the 3-clustering
found by the spectral algorithm obeys the natural properties of the data. But why
does the 2-clustering found by the spectral algorithm not respect this distinction?
Preliminary investigations suggest that the 2-clustering finds distinguishing genes
that are more statistically significant than the Golub clustering; it seems worthwhile
to fully investigate the biological significance of this finding.

4.3 Merge phase in practice

The experiments in Section 4.2 imply that a good clustering exists in the tree cre-
ated by the spectral algorithm. When the number of desired clusters k is small (i.e.
in the SMART dataset or the 20 newsgroups dataset), finding a good k-clustering
in the tree is not difficult. The only 2-clustering in a hierarchical clustering tree is
the first partition, and there are only two 3-clusterings to examine. However, when
the number of desired clusters is high, there are an exponential number of possible
clusterings.

The Boley webpage dataset and Reuters dataset provide a good test for the merge
phase, since the number of true clusters in these datasets is high. We show that for
these datasets, the objective functions find a good flat clustering in the tree.

4.3.0.1 Web pages:. Recall that the Boley dataset consists of 185 webpages, each
of which fall into 10 distinct classes. Section 4.2 showed that a good 16-clustering
of the dataset exists in the tree.

We ran the same experiments J1-J11 on this dataset, but after constructing the
tree via the spectral algorithm in the divide phase, we applied dynamic programs
for three different objective functions (k-means, min-sum and min-diameter7) in the

7We did not apply the correlation clustering objective function, because we cannot control the
number of clusters it finds. Any comparison to an objective function with a fixed number of

ACM Journal Name, Vol. V, No. N, July 2006.

22 ·

merge phase. We set k, the number of clusters desired, to 10. We also determined
the 10-clustering in the tree with the lowest entropy. The results appear in Table
XI. We see that k-means and min-sum generally perform better than min-diameter.
What is most interesting is that the clustering obtained by either min-sum or k-
means is only slightly worse than the best clustering in the tree. Indeed, in 7
of 11 experiments, the clustering obtained by min-sum or k-means was exactly
the best clustering in the tree. Table XII shows the confusion matrix from the
clustering obtained in experiment J4. All classes except for C9 and C10 have a
clear corresponding cluster Ĉi. The weight on the diagonal is 131, meaning that
131/185 ≈ 71% of the articles are correctly classified.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

k-means 1.00 0.93 0.88 0.81 1.00 0.93 0.84 0.83 0.95 0.71 1.07

min-sum 0.98 0.93 0.88 0.78 0.98 0.92 0.84 0.83 0.94 0.71 1.10

min-diam 1.04 1.10 0.96 1.04 1.10 1.00 1.05 1.23 1.24 0.83 1.16

best in tree 0.98 0.93 0.88 0.78 0.96 0.91 0.84 0.83 0.92 0.71 1.05

Table XI. Webpage dataset: Objective function performance in the merge phase (Entropy)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Ĉ1 18 0 3 0 1 0 1 0 0 0

Ĉ2 0 17 0 0 0 2 0 0 0 0

Ĉ3 0 1 13 2 0 0 0 0 0 1

Ĉ4 0 0 0 10 0 0 0 1 7 1

Ĉ5 0 0 0 0 18 0 1 0 0 0

Ĉ6 0 1 0 0 0 13 1 0 0 0

Ĉ7 0 0 1 3 0 1 15 0 0 0

Ĉ8 0 0 1 0 0 0 0 12 0 0

Ĉ9 1 0 0 2 1 0 1 4 3 3

Ĉ10 0 0 1 2 0 0 0 2 8 12

Table XII. Webpage dataset: Confusion matrix for min-sum clustering on experiment J4

4.3.0.2 Reuters:. The Reuters dataset also contains a large number of classes –
8, 654 of the 21, 578 articles are uniquely assigned to 65 labels. We chose all 1, 832
articles that were assigned to the following 10 labels: coffee, sugar, trade, ship,
money-supply, crude, interest, money-fx, gold, or gnp. We formed term vectors
by removing stopwords and stemming words. We also removed all words that
occur in less than 2% of the articles or more than 50% of the articles. A complete
hierarchical tree was computed in the divide phase using the spectral algorithm,
and we used dynamic programs in the merge phase to compute flat clusterings for
the k-means, min-sum, and min-diameter objective functions, for k = 10, 15 and
20. The results appear in Table XIII. We do not perform as well as in the webpage

clusters would be unfair.

ACM Journal Name, Vol. V, No. N, July 2006.

· 23

dataset. However, the entropy of the clusterings found by k-means and min-sum
are not too far from the entropy of the best clustering in the tree.

We give the confusion matrix for the k-means clustering for k = 10 in Table XIV;
only Ĉ4, Ĉ5, Ĉ7, and Ĉ10 do not clearly correspond to any class. The weight along
the diagonal is 1068, meaning that 1068/1832 ≈ 58% of the articles are correctly
classified.

k = 10 k = 15 k = 20

k-means 1.02 0.92 0.84

min-sum 1.05 0.90 0.79

min-diam 1.10 0.94 0.80

best in tree 0.99 0.84 0.76

Table XIII. Reuters dataset: Objective function performance in the merge phase (Entropy)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Ĉ1 96 4 3 19 0 0 0 0 0 1

Ĉ2 0 109 0 9 0 0 0 0 0 0

Ĉ3 4 1 203 29 0 4 1 8 0 2

Ĉ4 0 6 2 71 0 100 0 2 0 0

Ĉ5 2 2 59 3 75 13 11 11 2 15

Ĉ6 0 0 0 3 0 198 0 0 0 0

Ĉ7 1 0 55 5 7 14 160 148 0 49

Ĉ8 0 0 0 1 1 1 0 60 0 0

Ĉ9 3 4 1 5 0 5 0 1 90 0

Ĉ10 8 9 10 11 14 20 39 29 7 6

Table XIV. Reuters dataset: Confusion matrix for k-means experiment with k = 10

5. CONCLUSION

We have presented a divide-and-merge methodology for clustering, and shown an
efficient and effective spectral algorithm for the divide phase. For the merge phase,
we have described dynamic programming formulations that compute the optimal
tree-respecting clustering for standard objective functions. A thorough experimen-
tal evaluation of the methodology shows that the technique is effective on real-world
data.

This work raises several additional questions: are the tree-respecting clusterings
(for a suitable choice of objective function) provably good approximations to the
optimal clusterings? Does the tree produced by the spectral algorithm contain a
provably good clustering? Which objective functions are more effective at finding
the true clustering in the tree in practice?

ACM Journal Name, Vol. V, No. N, July 2006.

24 ·

REFERENCES

M. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

Periklis Andritsos, Panayiotis Tsaparas, Rene J. Miller, and Kenneth C. Sevcik. Limbo: Scalable
clustering of categorical data. In International Conference on Extending Database Technology,
2004.

N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Proceedings of the 43rd IEEE
Symposium on Foundations of Computer Science, pages 238–247, 2002.

F. Beil, M. Ester, and X. Xu. Frequent term-based text clustering. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 436–
442, 2002.

D. Barbara, Y. Li, and J. Couto. Coolcat: an entropy-based algorithm for categorical cluster-
ing. In Proceedings of the eleventh international conference on Information and knowledge
management, pages 582–589, 2002.

D. Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery,
2(4):325–344, 1998.

C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information retrieval.
In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 626–635,
1997.

M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. In Pro-
ceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pages
524–533, 2003.

D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scatter/gather: a cluster-based
approach to browsing large document collections. In Proceedings of the 15th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval, pages
318–329, 1992.

D. Cheng, R. Kannan, S. Vempala, and G. Wang. Eigencluster. http://eigencluster.csail.

mit.edu.

I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 269–274, 2001.

E.D. Demaine and N. Immorlica. Correlation clustering with partial information. In Proceedings of
the 6th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, pages 1–13, 2003.

W.F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation schemes for clustering
problems. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
50–58, 2003.

D. Emanuel and A. Fiat. Correlation clustering–minimizing disagreements on arbitrary weighted
graphs. In Proceedings of the 11th European Symposium on Algorithms, pages 208–220, 2003.

G. H. Golub and C. F. Loan. Matrix Computations. Johns Hopkins, third edition, 1996.

T. R. Golub. Golub leukemia data.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A robust clustering algorithm for
categorical attributes. Information Systems, 25(5):345–366, 2000.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,
M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular
classification of cancer: Class discovery and class prediction by gene expression monitoring.
Science, 286:531–537, 1999.

T. Hofmann. The cluster-abstraction model: Unsupervised learning of topic hierarchies from text
data. In International Joint Conference on Artificial Intelligence, pages 682–687, 1999.

J.A. Hartigan and M.A. Wong. A k-means clustering algorithm. In Applied Statistics, pages
100–108, 1979.

A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing Surveys, 31, 1999.

ACM Journal Name, Vol. V, No. N, July 2006.

· 25

A. Kumar, S. Sen, and Y. Sabharwal. A simple linear time (1+ε)-approximation algorithm for
k-means clustering in any dimensions. In Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 454–462, 2004.

R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad, and spectral. Journal of the
ACM, 51(3):497–515, 2004.

B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering. In
Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 16–22, 1999.

K. Lang. 20 newsgroups data set. http://www.ai.mit.edu/people/jrennie/20Newsgroups/.

D. Lewis. Reuters data set. http://www.daviddlewis.com/resources/testcollections/

reuters21578/.

A. Nickerson, N. Japkowicz, and E. Milios. Using unsupervised learning to guide re-sampling
in imbalanced data sets. In Proceedings of the Eighth International Workshop on AI and
Statitsics, pages 261–265, 2001.

G. Salton. SMART Data Set. ftp://ftp.cs.cornell.edu/pub/smart.

S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM, 23(3):555–
566, 1976.

C. E. Shannon. A mathematical theory of communication. Bell Systems Technical Journal,
27:379–423, 1948.

A. Sinclair and M. Jerrum. Approximate counting, uniform generation, and rapidly mixing markov
chains. Information and Computation, 82:93–133, 1989.

M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques. In
KDD Workshop on Text Mining, 2000.

N. Slonim and N. Tishby. Document clustering using word clusters via the information bottleneck
method. In Proceedings of the 23d Annual International ACM Conference on Research and
Development in Information Retrieval, pages 208–215, 2000.

C. Swamy. Correlation clustering: Maximizing agreements via semidefinite programming. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pages 519–520, 2004.

J. Theiler and G. Gisler. A contiguity-enhanced k-means clustering algorithm for unsupervised
multispectral image segmentation. In Proceedings of the Society of Optical Engineering, pages
108–111, 1997.

P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. Lander, and
T. Golub. Interpreting patterns of gene expression with self-organizing maps; methods and
application to hematopoietic differentiation. Proc. Nat. Acad. Sci, 96:2907–2912, 1999.

UCI. UCI Machine Learning Repository. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

C. J. Van Rijsbergen. Information Retrieval, 2nd edition. Dept. of Computer Science, University
of Glasgow, 1979.

W. Wong and A. Fu. Incremental document clustering for web page classification. In IEEE
International Conference on Information Society in the 21st Century: Emerging Technologies
and New Challenges, 2000.

H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Spectral relaxation for k-means clustering. In
Neural Information Processing Systems, pages 1057–1064, 2001.

O. Zamir, O. Etzioni, O. Madani, and R. M. Karp. Fast and intuitive clustering of web documents.
In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining,
pages 287–290, 1997.

Y. Zhao and G. Karypis. Evaluation of hierarchical clustering algorithms for document datasets.
In Proceedings of the Eleventh International Conference on Information and Knowledge Man-
agement, pages 515–524, 2002.

6. EIGENCLUSTER EXAMPLE SEARCHES

ACM Journal Name, Vol. V, No. N, July 2006.

26 ·

(a) Query: trees (b) Before/after: trees

(c) Query: bears (d) Before/after: bears

Fig. 5. Example EigenCluster searches

ACM Journal Name, Vol. V, No. N, July 2006.

