
The complexity of human computation via a concrete
model with an application to passwords
Manuel Bluma,1 and Santosh Vempalab

aSchool of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213; and bSchool of Computer Science, Georgia Tech, Atlanta, GA 30306

Contributed by Manuel Blum, February 24, 2020 (sent for review September 10, 2018; reviewed by Gilles Brassard, Whitfield Diffie, and Dawn Song)

What can humans compute in their heads? We are thinking of a
variety of cryptographic protocols, games like sudoku, crossword
puzzles, speed chess, and so on. For example, can a person com-
pute a function in his or her head so that an eavesdropper with a
powerful computer—who sees the responses to random inputs—
still cannot infer responses to new inputs? To address such ques-
tions, we propose a rigorous model of human computation and
associated measures of complexity. We apply the model and mea-
sures first and foremost to the problem of 1) humanly computable
password generation and then, consider related problems of 2) hu-
manly computable “one-way functions” and 3) humanly computable
“pseudorandom generators.” The theory of human computability
developed here plays by different rules than standard computabil-
ity; the polynomial vs. exponential time divide of modern comput-
ability theory is irrelevant to human computation. In human
computability, the step counts for both humans and computers
must be more concrete. As an application and running example,
password generation schemas are humanly computable algorithms
based on private keys. Humanly computable and/or humanly usable
mean, roughly speaking, that any human needing—and capable of
using—passwords can if sufficiently motivated generate and mem-
orize a secret key in less than 1 h (including all rehearsals) and can
subsequently use schema plus key to transform website names
(challenges) into passwords (responses) in less than 1 min. More-
over, the schemas have precisely defined measures of security
against all adversaries, human and/or machine.

humanly computability | passwords | mental algorithms | pseudorandom
generators

The processing power of humans is much more limited than
that of computers for simple grade school arithmetic. Al-

though humans can do some amazing highly skilled mental jobs
that computers are only now beginning to do, like write gripping
stories, state hard mathematically interesting problems, discover
laws of nature, etc., they (humans) are limited in their ability to
do arithmetic computations in their heads.* In particular, humans
have only a tiny short-term memory for performing arithmetic
operations. They also do arithmetic operations much more slowly
than computers. Modern complexity theory and cryptography are
designed for computers (Turing machines) and/or for humans with
access to computers but not for humans working alone in their head.
This paper is concerned with investigating problems that might
possibly be solved by humans working alone—using humanly usable
algorithms (single agent) or humanly usable protocols (multiple
agents). The broader problem considered here is the following.

The Problem
What functions can a human compute in his or her head that a
powerful human–computer adversary cannot break† from observing
a specifically limited amount of input–output behavior? Can a
human transform (truly) random seeds into “pseudorandom
sequences” in his or her head such that the “pseudorandom
sequences” are indistinguishable from truly random sequences to
a personal computer (PC) that is run for at most 1024 steps?‡ In
this work, the adversary is presumed to know the publicly available
schema, which is the humanly computable algorithm minus the

private key, and to observe—possibly participate in—the public
communications called for by the protocol (also, we restrict
ourselves to classical rather than quantum computers; the latter
might eventually require fewer steps).

The Model (Complexity in the Small vs. Asymptotic
Complexity)

• Since humans are slow at arithmetic computations, at least in
comparison with computers, complexity bounds described by
functions such as polynomials or exponentials are not suitable
for analyzing human computation and consequently, as we shall
see, not appropriate for analyzing Turing machine adversaries
either. We must give up thinking that an exponential function like
10x/10 is worse than a linear function like 10(x + 10). Indeed, the
entire range of x for human computation may be 0≤ x≤ 25, and in
that range, the exponential 10x/10 is smaller than the linear
10(x + 10). This is not a contrived example either: it is easier for a
human (or computer) to decide if 91 is prime using an exponential
time factoring algorithm than a polynomial time primality test.

Significance

This work presents a concrete, mathematically precise model of
what humans can compute in their heads. It thereby provides a
method to probe the limits of human computation (can hu-
mans generate numbers that look random to a powerful
computer?) as well as to design efficient humanly computable
mental algorithms for everyday tasks, such as generating
passwords and making real-time decisions.

Author contributions: M.B. and S.V. designed research, performed research, and wrote
the paper.

Reviewers: G.B., Université de Montréal; W.D., Stanford University; and D.S., University of
California, Berkeley.

Competing interest statement: W.D. holds a patent on techniques for remembering
cryptographic keys.

Published under the PNAS license.
1To whom correspondence may be addressed. Email: mblum@cs.cmu.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1801839117/-/DCSupplemental.

First published April 14, 2020.

*Human-oriented schemas can ask humans to use their (currently) distinctly human comput-
ing powers to generate passwords. For example, a human might be shown a photograph of
a street scene and asked to count the number of humans, dogs, or bicycles in the scene. In
this work, we look only at schemas that transform website names (i.e., character strings, not
photographs) into passwords. Ref. 1 has schemas that accept pictorial challenges.

†Break = infer, invert . . . depends on context.
‡Why this particular number? The intent here is to have as example a specific memorable
number (in this case, Avogadro’s number) that is roughly the minimum size sufficient to
keep adversaries at bay—adversaries that have a week’s time on the fastest supercom-
puter, which in December 2018, can do 2 × 1017 flops per second and ∼12 × 1022 flops per
week. In general, the specific number will depend on current technology. While we use
specific values and give justifications for them everywhere, most, like Avogadro’s num-
ber, are actually placeholders for more general constants. In general, a cryptographic
schema’s analysis will have bounds on usability and security. Usability bounds are upper
bounds on the maximum amount of work that a human should be expected to do.
Security bounds are lower bounds on the minimum amount of work that an adversary
must do to “break” the schema.

9208–9215 | PNAS | April 28, 2020 | vol. 117 | no. 17 www.pnas.org/cgi/doi/10.1073/pnas.1801839117

D
ow

nl
oa

de
d

at
 G

eo
rg

ia
 T

ec
h

Li
br

ar
y

on
 J

un
e

12
, 2

02
0

http://orcid.org/0000-0002-3779-433X
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1801839117&domain=pdf
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:mblum@cs.cmu.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801839117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801839117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1801839117

Therefore, instead of demanding that a schema run in polynomial
or linear time, we require an exact value for the number of steps that
the schema takes plus or minus a small additive constant.§

• Our insistence on dealing with explicit numbers instead of
with formulas that are correct in the limit runs completely
counter to what is done in complexity theory, but for human
computation, this insistence on concrete specific constants rather
than asymptotically correct formulas is the right approach. In
part, this is because—while computers acquire more memory
and run faster with each passing year—human brains remain
the same old model (the brain still advances but through im-
provements in culture).

• In modern complexity theory, there is a sharp divide between
polynomial time and exponential time computability. Crypto-
graphic protocols typically assume that both users and adver-
saries are randomizing poly-time algorithms. Users can encrypt
things in poly time that cannot be decrypted by adversaries that
run in poly time. In human computation as defined here, the
user is a human working without a computer for a specific
bounded amount of time measured in hours, minutes, and sec-
onds. The adversary is a human, similarly bounded, having
access to a PC that can run for at most 1024 steps.

Our first task is to come up with a precise definition for hu-
manly usable algorithm (henceforth called a schema) that can be
used, for example, to transform challenges (website names) into
responses (passwords), all within the acceptable time limits
mentioned above, while remaining secure to a well-defined extent
from a computationally all-powerful adversary (a Turing machine
with unbounded computation time).{ Two other tasks are pro-
posals for humanly computable “one-way functions” (HU-“OWFs”)
and humanly computable “pseudorandom generators” (HU-“PRGs”).
The former are functions that humans can compute in their heads
but that an adversary having a PC of clearly specified power
(limited to at most 1024 steps) almost certainly cannot invert.
To state and verify humanly usable schemas and protocols, we

first need a definition of humanly usable. For this, we define a
formal model of human computation and propose two complexity
measures: 1) the human cost of preprocessing (PREP), which is
about memorizing the schema and generating and memorizing a
private key if any, and 2) the human cost of processing (PROC),
which is about using the schema and key to do the required task,
our first such task being to transform challenges into responses.
We discuss three tasks in more detail. In the next section, we

present the model of human computation and the associated costs
with a few examples.

Password Generation. Passwords are responses to challenges
(typically website names). In this paper, passwords are produced
by password schemas, which are humanly computable algorithms
for mapping (challenge, key) pairs to passwords. The insecurity
of commonly used passwords (2–4) and the difficulty of memo-
rizing multiple long passwords (1, 5, 6) have been discussed ex-
tensively in the literature. Passwords should be easy to produce
when needed and hard for an adversary to forge even if the
adversary knows the user’s schema and has seen the passwords to
a small number of websites. More generally, we seek schemas
that are analyzable, publishable, humanly usable, secure, and
self-rehearsing. Analyzable means that the schema is so precisely
defined that a Turing machine can execute it. Publishable means
that the schema itself (but not the user’s private key) is or can be

made public. Humanly usable means three things: 1) the schema
itself (but not the key) must be learnable in a few minutes, 2)
generation and memorization of a key should take at most an
hour, preferably no more than 30 min, of the user’s lifetime, and
3) generating or regenerating a password should take no more
than 1 min, preferably 20 s. Regeneration is especially important
because passwords in our view should never be memorized but
should be regenerated when needed.
A number Q specifies security: a password schema is said to

have security Q if an adversary who has seen responses to less
than Q challenges—each challenge drawn at random with replace-
ment from a well-defined sample space (a dictionary of words with
associated probabilities)—has probability less than 1/10 to guess the
correct response to the next challenge randomly drawn with
replacement.# “Self-rehearsing” means that, in the process of
responding to occasional random challenges, the user rehearses
every aspect of the schema and key. In a recent paper (7), we
established the existence of such schemas. Here, we improve on
them in terms of both theoretical analysis and practical usability.k

One-Way Functions. A one-way function (OWF) is a function that
is efficiently computable yet not invertible by a poly-time Turing
machine (8). By comparison, an HU-“OWF” is a humanly
computable function that cannot be inverted in less than
1024 steps. We present a candidate HU-“OWF.”

Pseudorandom vs. (Note the Quotes) “Pseudorandom” Generators. A
standard (cryptographically secure) pseudorandom generator
(PRG) is an algorithm that takes as input a random string (of
digits or characters) of length n and outputs a string of length
2n** that are “virtually”†† indistinguishable from a (truly)
random string of length 2n by a poly-time Turing machine (8–
10). By comparison, a “pseudorandom generator” (“PRG”) is
a schema that transforms n-digit input strings into 2n-digit‡‡

output strings that, for n ≥ 20, are “virtually” indistinguishable
from random 2n-digit strings by a computer that takes no more
than 1012 steps.§§ An HU-“PRG,” while reminiscent of a PRG,
need not be a PRG. We present a candidate for an HU-“PRG.”

Human Computation
For many cryptographic problems and games{{ (e.g., speed
chess, sudoku), human computation consists of a preprocessing

§Even to expect that the composition f(g(☐)) of two humanly computable functions f(☐)
and g(☐) will be humanly computable is wrong. It may be that f and g are humanly
computable but that their composition is not as occurs, for example, when the human is
not able to store the intermediate output of g in its limited short-term memory.

{It would suffice to consider a computer that may run for no more than 1024 steps.

#Challenges randomly drawn with replacement from a dictionary with just one word (proba-
bility 1) have Q = 1 (i.e., the adversary needs to see only one challenge response pair to
determine the correct response to the next challenge with probability >1/10). Note that, if a
challenge repeats, we say the adversary wins, making the requirements more stringent.

kAn example of Q is as follows. Many people have a smallish number of passwords for all
logins, typically k < 10 passwords. For the user who has a method—any method—to
assign k passwords to all challenges, the adversary can try these randomly and succeed in
about (asymptotically, up to a universal constant)

ffiffiffi
k

p
attempts; for k = 10, the expected

number of attempts is 1 + 0.9 + 0.9 × 0.8 + 0.9 × 0.8 × 0.7 + . . . < 4.

**This 2n can be replaced by n + 1, which can be extended to 2n.
††
“Virtually” needs to be made precise.

‡‡The 2n cannot be replaced by n + 1 since humanly oriented algorithms are not in
general composable.

§§Why this particular number? There are 102n random strings of length 2n but only
10n challenges of length n for generating 10n pseudorandom strings of this length
2n. Since the adversary knows the schema but not the challenge, she needs to try no
more than 10n challenges to prove that a given random string is not pseudorandom. To
make this hard for her to do, we require that 10n > 1012; 1015 would be better than 1012,
but the proof in this footnote does not allow us to claim 1015.

{{In this paper, context determines whether “game” denotes an entire game in the usual
sense or a single move in such a game. Examples of such single-move games include 1)
speed chess in which the challenge or input is a chessboard position together with a
color, black or white, and the response or output is that color’s move; 2) sudoku in
which the challenge is a typical sudoku board with digits in certain locations and the
response is placement of one more digit in some location; and 3) crossword puzzles in
which the input is a crossword puzzle, including its clues, partially completed and the
output is a word inserted to the puzzle.

Blum and Vempala PNAS | April 28, 2020 | vol. 117 | no. 17 | 9209

CO
M
PU

TE
R
SC

IE
N
CE

S

D
ow

nl
oa

de
d

at
 G

eo
rg

ia
 T

ec
h

Li
br

ar
y

on
 J

un
e

12
, 2

02
0

phase PREP (memorization of a public [i.e., published or at least
publishable] schema plus generation and memorization of a
private information or key) and a processing phase PROC (a run
of the schema with its associated key on some input). We view
PROC as the speedy computation (and output) of a function
on a given input. This captures our motivating scenario of
responding to each challenge with its associated password.
We wish to model humans for games and cryptographic prob-

lems but begin here with the more specialized model of humans
for executing password schemas. For this purpose (of executing
password schemas), we model a human as follows.

1) The human is a kind of PC, one in which the usual memory is
replaced by two random access memories, one long term and
the other short term.

2) Long-term memory is potentially infinite—upper bounded
only by the usable lifetime of the human and the time that
it takes to store information in that memory. Storing infor-
mation (such as schema and key) in long-term memory is
slow; reading information from long-term memory given a
pointer to its location in memory is relatively fast. Storage
in long-term memory is permanent provided that it is re-
hearsed on the doubling schedule described by Wozńiak and
Gorzelańczyk (11).## Spaced repetition has a long history in
behavioral and experimental psychology (the comprehensive
survey in ref. 12) and more recently, in neuroscience (13).
Long-term memory is both written to and read from in the
preprocessing phase. In the processing phase, long-term mem-
ory is used only for reading.

4) Short-term read–write memory is fast but tiny, typically stor-
ing two or three chunks (14), each chunk being a pointer to
some item such as a digit or number, a character or word, or
an image or music clip. In our model, unlike anything that we
find in the psychological literature, a chunk is a well-defined
object, a pointer into long-term memory.

5) In the context of passwords, the input (called the challenge)
is presented as a singly linked list with a pointer in short-term
memory to its leftmost start location. Whatever its location in
the challenge, the pointer can be shifted one link right (but
not left), read (past tense), or reset to the start location in
one step. As an example, the challenge might be a word or
phrase in long-term memory that the user has easy access to
from left to right but not backward.

Schemas in general, not just password schemas, are algorithms
intended for humans. They are used in association with infor-
mation stored in permanent memory, which for passwords, in-
cludes a parameter called the key. Humans may use dice, paper,
pencil, and other such tools to generate and memorize private
keys and to memorize a public schema (PREP). They must
thereafter execute the schema (PROC) in their heads (i.e., with-
out using any tools outside of their head). This model will be
sufficiently powerful for our password schemas. Toward the end of
the paper, we briefly discuss extensions of the model.
A schema–key combination is considered to be (COMM

TIME, MEM TIME, PROC TIME)-humanly usable if and only
if it satisfies the following requirements.

1) COMM TIME is an upper bound on the time to learn the
schema. This time includes the time to transform a few sam-
ple challenges into passwords (from a description of the hu-
manly usable instructions) and all rehearsal time (for the life

of the human). COMM TIME (including rehearsals) must be
at most 10 min.

2) MEM TIME is an upper bound on the time to generate and
memorize the schema’s associated private key and all re-
hearsal time needed to maintain that memory. For pass-
words, this MEM TIME is required to be at most 2 h.

3) PROC TIME is an upper bound on the time to run the
schema on a single input. For passwords, the PROC TIME
is required to be at most 1 min.

4) A schema uses at most three (preferably at most two)
pointers (chunks) into long- and short-term memory (model
of a human part 3 above).***

5) For passwords, the schema and its associated key (both of
which are stored in long-term memory) are completely self-
rehearsing in that each and every instruction is run (this
includes following each and every flowchart arrow) and that
all elements of the key are rehearsed in a “significant frac-
tion” of challenge–response computations.†††

From now on in this paper, COMM and MEM are considered
to be a part of PREP. In general, not just in this paper, PREP
TIME and PROC TIME must be specified to nail down human
usability. In this paper, unless we say otherwise, we require that,
for passwords, PREP TIME ≤ 2 h and PROC TIME ≤ 1 min.
From here on, password schemas will be shortened to schemas.

Intermission. We now define the two complexity measures: 1)
PREP = {(Human Complexity of creating and memorizing a key
(MEM)) plus (cost of communicating and memorizing a Schema
(COMM))} and 2) PROC = Human Complexity of Processing.
We include COMM within PREP as it is clearly part of the
preparation necessary to use a schema; we separate the two as-
pects of PREP, namely 1) memorizing and understanding the
schema and 2) memorizing the key, as the two seem to be in-
comparable. Taking PREP and PROC in reverse order,

PROCðProcessing  ComplexityÞ= total  number   of   reads  from 

long-term  ðpermanentÞ memory

plus  total  number   of   reads  and  writes  to  short-term memory 

while  processing  a  single  input.

To illustrate the measure, we examine the human complexity
measure PROC of some natural operations.

1) Set a pointer to an item that is already in long-term memory
(e.g., a sentence or telephone number) referred to in the
schema or key: Cost = 1.

2) Move a pointer into the singly linked list for a challenge, sentence,
telephone number, etc. to the right by 1 or set a pointer to the
start or start + 1 or to the end or end − 1: Cost = 1.

3) Operations of + and × (mod 2, 3, 4, 5, 9, 10, 11) or =? on two
single-digit operands: Cost = number of digits including the
logical 0, 1 symbols created during the operation. Examples:
4 =? 3 and 4 + 3 (mod 10) have cost 1. 4 + 9 (mod 10)
assuming that the addition consists of doing first 4 + 9 =
13 and then, 13 mod 10 = 3 has cost 2.

4) Apply a map, typically a map from letters to digits, that has
been memorized as a hash function: Cost = 1.

##Woźniak and Gorzelańczyk (11) have shown empirically that, for an item to remain in
long-term memory, the item must be rehearsed on a certain doubling schedule. Let t
denote the time (after the initial memorization) between two successive successful
rehearsals. Then, the item will remain in long-termmemory provided that it is rehearsed
at times 2t, 4t, 8t . . . as measured from the time of completion of the second rehearsal.

***While human short-term memory is said to be able to store 7 ± 2 chunks, 2 or 3 is all
that we have found to be humanly usable for PROC. Perhaps some of the other chunks
are needed for other functions? We in any case assume that at most two or three
chunks will be available for PROC.

†††
“Significant fraction” is defined so that, after the total permissible PREP time has been
exhausted, no additional purposeful rehearsal is needed as the natural computation of
responses to random challenges will suffice to ensure that schema and key remain in
permanent memory. Its definition assumes that the user will respond to random chal-
lenges at a well-defined rate.

9210 | www.pnas.org/cgi/doi/10.1073/pnas.1801839117 Blum and Vempala

D
ow

nl
oa

de
d

at
 G

eo
rg

ia
 T

ec
h

Li
br

ar
y

on
 J

un
e

12
, 2

02
0

https://www.pnas.org/cgi/doi/10.1073/pnas.1801839117

We note that PROC is a measure of effort similar in certain
ways to asymptotic complexity. Just as the actual running time of
an algorithm can differ from computer to computer and even on
the same computer depending on its load, the time taken for
human computation can differ from one human to another and
even for the same human. Unlike asymptotic complexity of algo-
rithms running on computers, the PROC must not be estimated
only for large enough inputs (“big-O”): an effective analysis must
compute PROC to within a small additive constant. In later sec-
tions, we will perform such analyses for select schemas.
Next, we turn to the human complexity measure, MEM, of

generating and memorizing a key, the first component of the
preprocessing complexity PREP. For MEM, unlike PROC, the
human may use a random number generator, paper, and pencil
to create a random key and then, store it in permanent (human)
long-term memory. After keys are generated and stored in perma-
nent memory—and provided that the Wozńiak and Gorzelańczyk
(11) doubling rehearsal schedule (15) is followed to keep the key
in permanent memory—the random number generator, paper,
and pencil should no longer be needed even for rehearsal; in the
case of passwords, just the normal typing of passwords would
serve as sufficient rehearsal:

MEMðMemorization  ComplexityÞ=
ðnumber   of   tosses  of   a  k-sided  dieÞ× ðlog2kÞ+
ðnumber   of   chunks  written  to  permanent memory

ðpresumably  the  key  and  the  schemaÞÞ.

One measure of MEM complexity is by comparison with commonly
memorized quantities. Some examples with rough estimates of their
costs are given below. These costs are for long-term permanent
memorizations as opposed to the short-term temporary memo-
rizations counted in PROC.

1) Linked list memorization of a 10-digit string of chunks is
equivalent to memorizing a random 10-digit phone number.
Cost = number of chunks in the string (=10 for the 10-digit
phone number). As an aside, after a string is memorized, it
itself becomes a chunk. As a related example, consider linked
list memorization of a random-looking list of chunks, such as
the digits of π. Most school children learn a few digits of π,
and a very few learn maybe 20 digits.‡‡‡ Cost = number of
chunks (which except in rare cases, are digits).

2) Linked list memorization of a long string of chunks (let-
ters), roughly equivalent to memorizing the alphabet, is
something that we can do by age 4 or 5 and until late in
life. Cost = number of chunks in the string (=26 for the
alphabet).

In both of the above cases, people memorize a linked list
with a pointer to the start of the list and in the case of a longer
list like the alphabet, several additional pointers into the list.
Access to this linked list does not enable us to recite the list
quickly from memory backward (Z Y X . . . A)—although of
course, we can learn to do that if we want. The cost of a linked

list memorization of a string of chunks, as in 1 and 2 above, is
a “fraction” of the cost of a random access memorization of a
map from chunks to chunks as in 3 below. Because these two
kinds of memorization are (so) different, we specify for each
memorization whether it is a linked list or a random access
hash. As an aside, to memorize a small amount of data such as
a telephone number as a hash, we suggest memorizing that
data initially as a singly linked list (e.g., as a telephone
number t1t2 . . .) and then, using that memory to enable
memorizing the same data as a hash function (e.g., 1 ➔ t1, 2 ➔
t2 . . .).
When it comes to preprocessing, humans more easily store

information in a linked list than in a (random access) map. When
it comes to processing, however, maps are typically more useful
than linked lists.§§§

1) Assume that Alfa, Bravo, Charlie . . . are chunks. Linked list
memorization of the list Alfa ➔ Bravo ➔ Charlie . . . ➔ Zulu:
Cost = 26.
Random access memorization of the map A ➔ Alfa, B ➔
Bravo, C ➔ Charlie . . . Z ➔ Zulu, which is something that
ham radio operators, Boy Scouts, and the military do.
Cost = number of chunks in the map (2 × 26 = 52 for the
ham radio map). This is twice the cost of the linked list
memorization.

Random access memorization of the Morse code map: A ➔
•−, B➔ −•••, C➔ −•−• . . ., which typically takes days if not
weeks. Cost = number of chunks in the map. In Morse code,
assuming that the chunks are •, −, A, B . . . Z, map C ➔ −•−•
costs 5, while E ➔ • costs 2. Cost of random access memori-
zation of the 26-letter Morse code is, therefore, =108.

4) Linked list memorization of a poem, the lyrics to a song,
or the (meaningful) 272-word Gettysburg Address is the
kind of thing that middle school students regularly do.
Note that the rhyme in poetry, the melody in song, and the
meaningfulness of prose help greatly with memorization (none of
which is accounted for in our cost measure). Cost = number of
chunks, which in the case of the Gettysburg Address, is the
number of words =272.

The second component of PREP is COMM, the cost of
communicating an algorithm to a human. In standard algorithm
theory, COMM might simply be the length of the program being
communicated. In the study of humanly usable algorithms, we
propose

COMM (Communication Complexity) = length of (a precise description
of) the humanly readable/humanly understandable algorithm + length of
the traces of execution on enough example(s) to cover all cases (execute
every instruction and take every control flow arrow) in the algorithm.

For example, suppose that the preprocessing algorithm requires
the user to memorize two randomly generated functions f1, f2 from
the 26 letters to the 10 digits. To describe this operation, the
algorithm must tell the human user exactly how to generate,
memorize, and compute these functions. Since memorizing two
such functions can take twice as long as memorizing one and
since the two functions can be confused, a better algorithm might
suggest to memorize a single function f from the 26 letters to the
two-digit numbers, 00 to 99, and then, to set f1(x), f2(x) = most
significant, least significant digits of f(x). These slightly longer,
more detailed instructions are crucial for keeping the pre-
processing time under the stipulated 2 h.

‡‡‡One champion memorizer, Akira Haraguchi, learned 100,000 digits of π in 10 to 15 y; 15
y will suffice if the memorizer learns roughly 25 new digits per day 5 d/wk. Assuming
that 25 new digits can be memorized in 15 (concentrated) min, meaning 15 min from
start to the first complete recital, and that each rehearsal of the 25 digits can be done
in 1 min, the memorization time for the first day in which 25 new digits are memorized
would be 15 min for the new digits + 1 min per rehearsal of these 25 digits at 15, 30, 60
min = 1, 2, 4, 8, 16 h = 15 + 7 = 22 min. To rehearse previously memorized digits on that
same day would take 1 min each for the digits memorized 1 d, 2 d, 4 d, 8 d, 16 d, 1 mo,
2 mo, 4 mo, 8 mo, 1 y, 2 y, 4 y, 8 y, 16 y, 32 y, and 64 y ago, which comes to 16 min. The
total is 22 + 16 = 38 min/d to achieve this awesome feat. Essentially, anyone who cares
enough for π to spend 15 y at it can do this. Haraguchi cares: he views π as “the religion
of his universe.”

§§§We humans rarely notice how our brains store information. For example, most of us
store our ABCs automatically in a singly linked list, not in a doubly linked list and not in
a random access data structure.

Blum and Vempala PNAS | April 28, 2020 | vol. 117 | no. 17 | 9211

CO
M
PU

TE
R
SC

IE
N
CE

S

D
ow

nl
oa

de
d

at
 G

eo
rg

ia
 T

ec
h

Li
br

ar
y

on
 J

un
e

12
, 2

02
0

Because humans have different computation rates, we count
steps, which are independent of the human, rather than running
time. To relate step counts to running time, we give bounds on
the time that it typically takes a human to perform each step.
More precisely, we propose to use the pair <PREP, PROC>

as the right measure of human effort to use a schema. This pair is
typically a mix of numbers (for PREP) and formulas (a function
of the challenge length, n, for PROC). We are not against using
formulas for these counts; we are just against the typical em-
phasis on polynomial vs. exponential step counts as these dis-
tinctions are not useful for human computation.

Examples of Password Creation (and Re-Creation) Schemas
We present three schemas that illustrate the human computation
model and associated complexity measures, two here and one in
SI Appendix. For all three schemas, preprocessing requires gen-
erating and memorizing a single letter to digit map.

Letter Substitution Schema.
Preprocessing.Memorize a single random (i.e., uniformly random)
letter to digit map f. The memorization of a map from letters to
digits can be done with 30 min of concentrated effort (1, 16) up
front and about the same amount of total additional time spent
on spaced rehearsals (1-min rehearsals at the 21 successive later
times: 1 h, 2 h, 4 h, 8 h, 16 h, 1 d, 2 d, 4 d, 1 wk, 2 wk, 1 mo, 2 mo,
4 mo, 8 mo, 1 y, 2 y, 4 y, 8 y, 16 y, 32 y, and 64 y).
Processing. Given a challenge (string of letters) C, run the fol-
lowing algorithm.

1) Set a pointer to the first letter of C
2) Repeat until the entire challenge has been processed

2.1) Apply map f to current letter
2.2) Output mapped value
2.3) Shift pointer to next letter of challenge

Processing uses only two chunks of short-term memory: one pointer
into the challenge and one for the mapped value of the current letter.
Example: Suppose that the map from letters to digits is given

by the position of the letter in the standard alphabetic ordering
mod 10 (this is only for illustration; the reader is urged not to use
this map). Specifically, A ➔ 1, B ➔ 2 . . . I ➔ 9, J ➔ 0, K ➔ 1 . . .
Z ➔ 6. Then, this letter substitution schema maps GMAIL ➔
73192 and APPLE ➔ 16625.
COMM = (description of preprocessing is less than 10 words;

of processing is less than 40 words, and the description of the example
is less than 60 words. Length of actual trace is 2 (initialization) + 3n
steps on a challenge of length n) = 2 + 3n. Since n = 5 for the two
traces, total cost is less than 10 + 40 + 60 + 2(2 + 3 × 5) < 150.
MEM = 26 tosses of a 10-sided die to generate the random key

plus 26 pairs to store it has a cost of 78. The lion’s share of the
cost is the hour that it takes to memorize the key.
PROC = on a challenge of length n, this comes to (n reads

from long-term memory to compute the f function n times) + (2n
reads and writes to short-term memory) = 3n.
Modifications of this letter substitution schema might use special

rules to avoid consecutive repeated letters. These include skipping a
consecutive repetition or shifting up in the alphabet by one or two
to avoid consecutive repetitions. An example is AAA ➔ 123.

Skip to My Lou Schema. The skip to my Lou (STML) schema
(named after a popular children’s song in the United States)
computes Fx(C) as follows.
Preprocessing.Memorize a random map x as a hash function from
letters to digits.
Processing.Given a challenge C consisting of a string of letters and
the map x, do the following.

1) Set SUM_V = mapped value of last letter of challenge
2) Set POINTER (current letter) to first letter of challenge

3) Repeat until POINTER shifts past last letter of challenge

3.1) POINTER_V = mapped value of pointer
3.2) Set SUM_V = (SUM_V + POINTER_V) mod 10
3.3) If SUM_V is less than 5, output SUM_V (in any case,

do not modify SUM_V)
3.4) Shift POINTER from current letter in challenge by one

letter to the right

Output: the string of SUM_V outputs produced by the above
algorithm is Fx(C).
Example: Let the memorized map x be (A➔ 1, B➔ 2 . . . I➔ 9,

J ➔ 0 . . . Y ➔ 5, Z ➔ 6). This maps the individual letters of
GMAIL to 7, 3, 1, 9, 2. The sequence of SUM_V values is 9, 2, 3,
2, 4, resulting in Fx(GMAIL) = 2,324:

PROC= ½apply map+ set  SUM+ shift  pointer
+ nðapply map+ add mod  10+ compare  with  5
+ outputðmaybeÞ+ shift  pointerÞ�= 3
+ nð1+ 1.5+ 1+ 0.5+ 1Þ= 5n+ 3.

The output has expected length that is half the length of the
challenge. To get a longer output, the user can append a fixed
string to the challenge and run STML on the extended challenge.
(Note that appending a fixed string to a challenge yields far
better security than appending a fixed string to a password: if
appended to the password, an adversary can determine the string
from observation of two passwords, something she cannot do in
any obvious way if the string is appended to the challenge.)

Information-Theoretic Security. We remark here that these sche-
mas have a simple lower bound on the security parameter Q.
Namely, in order to guess the response to a challenge with
probability greater than 1/10, the adversary has to have seen all
of the characters in the challenge in previous challenges. The
expected number of challenges at which this happens is a func-
tion of the distribution of challenges. For illustration, the table
below shows the Q value, its SD, and the value needed for 90%
of the challenges for three different distributions: for words
chosen uniformly at random from the English dictionary, the top
500 most commonly visited internet domains and random seven-
letter strings (Table 1).

HU-OWFs
In complexity and cryptography theory, an OWF function F{{{ is
defined to be any function (from strings to strings over some finite
alphabet) such that 1) F(x) can be computed by a Turing machine
on any input string x in time poly(jxj)### and that 2) any Turing
machine that runs on input y in poly(jyj) steps (for some fixed poly)
has a negligibly small probability to invert F [i.e., to find a preimage
x′ such that F(x′) = y = F(x)]. OWFs are conjectured to exist and
play an important role in complexity theory and cryptography.
An HU-“OWF”**** F is a function that 1) can be computed

by a humanly usable schema†††† and 2) cannot be inverted on any
but a “small” fraction of outputs by a computer that has

{{{Note that a humanly computable password generator is not in general either a “OWF”
or a “PRG.”

###jxj = length(x).

****The HU-“OWF” is defined to be humanly usable by the fact that a humanly usable
schema can compute its output. It is actually humanly usable in the sense that hu-
mans can compute it if the input is short enough (typically of length at most 25 but
possibly more) and humans can perform the mandated operations in the mandated
times (typically 1/3 to 1 s).

††††This puts a strict upper bound on the length of input and/or time to compute the HU-
“OWF.” Furthermore, to be an interesting concept, the input length, n, must have a
minimum size, say n > 24, which would ensure that the adversary cannot simply try all
1025 possible x values.

9212 | www.pnas.org/cgi/doi/10.1073/pnas.1801839117 Blum and Vempala

D
ow

nl
oa

de
d

at
 G

eo
rg

ia
 T

ec
h

Li
br

ar
y

on
 J

un
e

12
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801839117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1801839117

knowledge of the HU-“OWF” algorithm but not the key and that
executes a total of at most 1024 instructions.
Do HU-OWFs exist? We propose a candidate here based on

the STML schema. Let N be the size of a sufficiently large al-
phabet over which the map is defined (e.g., n = 26 for the
standard English alphabet and n = 100 for two-digit numbers;
n = 10 will not do as it would permit an adversary to invert F by
running through all possible x values). A random map x from N
characters (letters and/or digits) to the 10 digits can be written as
a string of N digits—the map values in a fixed ordering of the al-
phabet. Now generate and fix a random challenge C of sufficient
length (roughly N ln N, the precise length to be determined) so that
every character (typically letter or digit) is likely to be in the range.
For a fixed such C, define the function FC by FC(x) = Fx(C), the
function that takes as input the N-digit string x and outputs a string y
by running STML with the map defined by x on a fixed challenge
string C. Note that STML is being used here to compute Fx(C) = y
with x variable and C held constant, not x held constant and
C variable.
The computational problem for the adversary—who knows C

and y (and therefore, also FC)—is to find a string (map) x with
image under FC that is the observed y. We are not aware of any
algorithm to solve this problem efficiently (i.e., to solve this in-
verse problem in less than 1024 steps).
Since the input x is now the key, not the challenge, a password

schema that computes an HU-“OWF” has the important property
that, from knowledge of y, an adversary cannot determine the key,
x. If both x and C are unknown to the adversary, then it is hard for
the adversary not only to determine x but also, to determine C.
This is no big deal if the adversary knows the challenge, which is
what this theory assumes. However, in practice, the user of a
schema could modify challenges using some personal rule, such as
the starting location (SI Appendix). In that case, the adversary will
not know the actual modified challenge either.

HU-“PRGs”
A standard (cryptographically secure) PRG is an algorithm
based on a parameter/key k and a polynomial poly, poly(n) > n,
that maps a (random) input string, the challenge/seed, of
length n to a random-looking output string of length poly(n), the
pseudorandom string. That output “looks” random in the sense that
any poly-time computer with access to random bits that has
knowledge of the general algorithm for computing the PRG but not
the key, k, cannot distinguish a string output by the PRG from a
truly random string R of the same length with negligible probability
of error.
In this paper, a “PRG” is an algorithm having a parameter/key

k that maps a (random) input string, the challenge/seed, of length
n to a random-looking output string of length at least 2n, the
“pseudorandom” sequence.‡‡‡‡ That output “looks” random in
the sense that a computer that has knowledge of the PRG algo-
rithm (but not the key, k) and that executes a total of at most
10e instructions for some specified e (which may be as large as e =
24 or as small as e = 12) cannot distinguish§§§§ a string output
by the “PRG” from a truly random string R of the same length
with probability of error < 1/4. While 1012 does not seem to be
a high bar for modern cryptography, we think that it is already
an interesting threshold for the security of humanly usable
protocols.

The “PRG” is an HU-“PRG” if its output can be computed by a
humanly usable algorithm and therefore, assuming that the seed
is short enough, by humans that can perform the mandated op-
erations in the mandated times (typically 1 min).
We propose a humanly computable quasi–HU-“PRG” based

on STML. It is not a true HU-“PRG” for several reasons, the
most important of which is that we have no proof (not even one
based on reasonable assumptions) that the output is “pseudo-
random.” We have only a hope, which we have not been able to
translate into a proof.
Our HU-“PRG” takes as input an n-long string of digits in the

set {0,1,2,3,4} and as outputs a random-looking string of ∼2n
digits in the same set, {0,1,2,3,4}.
The intermediate work of the algorithm involves all 10 digits

{0,1 . . . 9}. That work is private (except for whatever it outputs
whenever it outputs it) and can be performed in the user’s tiny
short-term memory with the few allowable pointers plus digits
from the set {0,1,2 . . . 9}.
The HU-“PRG” uses STML. When used as a password

schema, STML uses a letter to digit map; for a “PRG,” it uses a
digit to digit map.
The basic idea is as follows.
Initialize.

1) Set SUM = last digit of the input
2) Set pointer to first digit of input
3) Until pointer drops off the challenge

3.1) Set SUM = mapped SUM (comment: the map is from
digits to digits(

3.2) Set SUM = SUM + current digit (mod 10)
3.3) If SUM is less than five, output SUM
3.4) Shift pointer to next digit of input

A detailed example is given in SI Appendix.
A password schema that is also a PRG has some useful

properties compared, say, with the schema that replaces each
letter of the challenge by its hash value under the key. For one, it
can make it more difficult for the adversary to get a handle on
the user’s key.
The HU-“PRG” that we propose is based on a key, k, which is

a string randomly chosen from the 1010 strings of digits of length
10. The string k = k1 k2 . . . k10 represents the hash function 1 ->
k1, 2 -> k2 . . . 0 -> k10. The schema takes as input a random seed/
string of digits C of a length n (to be determined) with digits that
have been randomly chosen from the set {0,1,2,3,4}. The initial
output Fk(C) of the PRG is the output of STML applied with key
k to challenge C. This string Fk(C) is rarely long enough to be the
complete output of the HU-PRG as its expected length is just
half the length of C. To produce a longer string, at the cost of
one more (expensive) pointer, STML is run on many substrings
of C, and the results are concatenated. The substrings of C have
to be chosen in a humanly usable way. For a seed C of length n,
let Ci be the substring of characters obtained by skipping the first
i characters of C, then including the next i characters, skipping
the next i, including the next i, and so on (e.g., C1 is the substring
of characters in even positions, and C2 is the substring of char-
acters obtained by alternately skipping two and including two).
To be humanly usable (if only barely), keep track of the skip
length on one’s fingers.

Table 1. Information-theoretic security bounds

Dictionary Security SD 90% value

English 50,000 6.23 1.80 4
Top 500 domains 6.60 2.03 4
Random 7 letter 7.54 1.58 6

‡‡‡‡The output of a PRG on a seed of length k is typically only required to be of length k +
1, which can be extended to longer lengths by reapplication of the PRG. Such reap-
plications make the PRG humanly unusable for many reasons, including that the
human has no place to store the intermediate k + 1 digits, which are needed as seed
to generate the next k + 2 digits.

§§§§
“Indistinguishable” is usually up to a negligibly small 1/poly(n) factor. In human us-
ability, this must be replaced by a concrete epsilon.

Blum and Vempala PNAS | April 28, 2020 | vol. 117 | no. 17 | 9213

CO
M
PU

TE
R
SC

IE
N
CE

S

D
ow

nl
oa

de
d

at
 G

eo
rg

ia
 T

ec
h

Li
br

ar
y

on
 J

un
e

12
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801839117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801839117/-/DCSupplemental

STML HU-“PRG” 1. For a seed C of length n, the output of
the HU-“PRG” 1 is the concatenation FkðCÞ ·FkðC1Þ ·
FkðC2Þ · . . . ·FkðCØðn−1Þ=2eÞ. In the first application of STML, the
carry digit is the default last digit of the challenge. From the
second application onward, the carry digit is the running sum
mod 10 from the previous iteration (regardless of whether the
digit was output).
The expected length of the output is approximately

n+ n
2+ ...+ n

2
2 =

nð1+ 1
2 ·

n− 1
2 Þ

2 = nðn+ 3Þ
8 .

Example: Suppose that the seed is 31415926{{{{ and that the
key is k(i) = 3i mod 10. Then, starting with the last digit, 6, as
carry and using the entire challenge as the seed, this maps in
the first round to 14692577, which maps to 142. Then, for the
substring of the challenge consisting of digits in even positions
(1196), with carry 7 from the previous round, we get 2706, and
the output is 20. Next, by skipping two and using two, we have
the substring 4126. With carry 6, this maps to 2735, and the
output is 23. Then, skipping 3 digits and using 3 digits, we have
the substring 159. With carry 5, this maps to 638, and therefore,
the output is 3. Next is the substring 5926, which with carry
8, maps to 9606, and the output is 0. Thus, the output is
142202330.
The following theorem proves that the STML HU-“PRG” 1

can be broken for challenges of length n = 10. The argument fails
for n = 20.
Theorem. STML HU-“PRG” 1 can, with high probability, be

broken for challenges of length n = 10 and output 2n = 20 using at
most 1016 operations.#### (At 1011 operations per second, this
takes at most 28 h on a laptop.)
Proof: The 2n digits of output must come from half of ∼4n

locations. Guess the 2n of 4n locations from which the output

comes. There are
�
4n
2n

�
≤ 24n possible choices (240 ∼ 1012). For

each choice, we get a set of 2n linear equations mod 10 in 10
variables. Of these, there will likely be n = 10 linearly independent
ones. They can be solved by Gaussian elimination in 10 · 103 = 104
operations, where the factor of 10 is an upper bound on the
number of steps for a single pivot. This gives a total of 1016 op-
erations to find the key for all digits of the given challenge.
We now define a second, simpler candidate. It uses a single

digit to digit map as before and produces an output of length
twice the length of the challenge in expectation.***** The
function, Fxð · Þ, and substrings C1,  C2of the challenge are defined
as above in STML HU-“PRG” 1.

STML HU-PRG2. On a challenge C of length n,

Output=C ·FxðCÞ ·FxðC1Þ ·FxðC2Þ.

This HU-PRG2 proceeds exactly like STML HU-“PRG” 1 but
only for four passes. In four passes, a string of length n is expected
to result in an output of length n + (n/2 + n/4 + n/4) = 2n.

As an example, suppose that the challenge (seed) is 31410421
(which is the first eight digits of πmod 5) and that the key is k(i) =
3i mod 10. Then, in the first pass, with the last digit 1 as carry, the
challenge maps to 691420443, and the output is 1420443. The
second pass maps the subchallenge 1141 with carry 3 to 0172, and
the output is 012. The third pass, with carry 2, maps the sub-
challenge 4121 to 0156 with output 01. Thus, the entire output is
314104211 1220443 012 01.

Open Question. Can STML HU-“PRG” 2 on challenges of length
n ≥ 20 be broken using less than 220 operations? If not, show that
any humanly computable algorithm that breaks it must take at
least 220 steps.
It is a tantalizing possibility to generate a longer string by

allowing the human to use previously generated output in order to
generate more output. We note that the seed could be a letter
string and that the key could be a letter to digit map in place of a
digit string and a digit to digit map as above. When the letter
string has additional meaning (e.g., it is a word or phrase), then
the human might not even need to have the seed in writing while
running HU-“PRG” 1 and will only need to hear or see it once.

Discussion
The model and findings of this paper raise several interesting
questions. We mention a few.
We have considered the complexity of human computa-

tion in the most restricted setting where all computation is in
the head and the human has no access to paper, pencil, or
other aids. A next step could be to consider the complexity
of playing games, such as speed chess or sudoku, where one
also considers the current board position but does not nec-
essarily make or refer to notes. How do we model such
computation?
More generally, how should visual input be modeled? We have

so far considered inputs as challenges that are read left to right
as strings. However, this does not take into account our facility
for visual parsing. A good model could be useful in rigorously
evaluating human–computer interfaces.
Pseudorandomness is a fascinating concept both philosophically

and for practical reasons. As computation becomes more distrib-
uted, many important protocols are randomized, and it is important
for interacting agents to be able to generate provably effective
random bits/digits. More abstractly, can a limited computational
model (such as our model for human computation) generate digits
that seem random to a computer? It would be most interesting
to show that our STML-based HU-“PRG” is secure against
limited adversaries (e.g., finite-state machines), analogous to
Nisan’s celebrated PRG that fools finite-state machines.
Finding humanly usable password schemas is, in our opinion, a

rich and rewarding research direction. While we have proposed
(and analyzed) several schemas, we expect that there are many
more to be discovered. In SI Appendix, we discuss some simple
methods, including ways to change passwords.

Data. All data used to support the paper are included here.

ACKNOWLEDGMENTS. We thank Mr. Vempala Venkata Rao (1938 to
2020), who adopted a password schema at age 76 and provided valuable
feedback.

1. J. Blocki, “Usable human authentication: A quantitative treatment,” PhD thesis,

Carnegie Mellon University, Pittsburgh, PA (2014).
2. B. Ives, K. R. Walsh, H. Schneider, The domino effect of password reuse. Commun.

ACM 47, 75–78 (2004).
3. J. Bonneau,“The science of guessing: Analyzing an anonymized corpus of 70 million

passwords” in IEEE Symposium on Security and Privacy (IEEE Computer Society, 2012),

pp. 538–552.

4. Z. Li, W. He, D. Akhawe, D. Song, “The emperor’s new password manager: Security

analysis of web-based password managers” in 23rd USENIX Security Symposium

(USENIX Association, 2014), pp. 465–479.
5. H. Kruger, T. Steyn, B. Medlin, L. Drevin, An empirical assessment of factors impeding

effective password management. J. Inf. Priv. Secur. 4, 45–59 (2008).
6. R. Shay et al, “Can long passwords be secure and usable?” in CHI Conference on

Human Factors in Computing Systems (ACM, 2014), pp. 2927–2936.

{{{{For symmetry, we might (but do not) require that the seed digits be randomly chosen
from {0, 1 . . . 4}.

####This is an upper bound. Is there a more efficient way? One might conjecture that no
method can break the “PRG” in less than 10n = 1010 steps.

*****Because the output has expected as opposed to guaranteed length twice that of
the challenge, STML HU-“PRG” 2 is not a true “PRG.”

9214 | www.pnas.org/cgi/doi/10.1073/pnas.1801839117 Blum and Vempala

D
ow

nl
oa

de
d

at
 G

eo
rg

ia
 T

ec
h

Li
br

ar
y

on
 J

un
e

12
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801839117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1801839117

7. M. Blum, S. Vempala, “Publishable humanly-usable secure password creation schemas”
in Proceedings of the Third AAAI Conference on Human Computation and Crowd-
sourcing, E. Gerber, P. Ipeirotis, Eds. (AAAI Press, 2015), pp. 32–41.

8. O. Goldreich, Foundations of cryptography—a primer. Found. Trends Theor. Comput.
Sci. 1, 1–116 (2005).

9. M. Blum, S. Micali, How to generate cryptographically strong sequences of pseudo-
random bits. SIAM J. Comput. 13, 850–864 (1984).

10. A. Yao, “Theory and application of trapdoor functions” in 23rd Annual IEEE Sym-
posium on Foundations of Computer Science (IEEE Computer Society, 1982), pp. 80–
91.

11. P. A. Wo�zniak, E. J. Gorzela�nczyk, Optimization of repetition spacing in the practice
of learning. Acta Neurobiol. Exp. (Warsz.) 54, 59–62 (1994).

12. N. J. Cepeda, H. Pashler, E. Vul, J. T. Wixted, D. Rohrer, Distributed practice in

verbal recall tasks: A review and quantitative synthesis. Psychol. Bull. 132, 354–380

(2006).
13. E. A. Kramár et al., Synaptic evidence for the efficacy of spaced learning. Proc. Natl.

Acad. Sci. U.S.A. 109, 5121–5126 (2012).
14. G. A. Miller, The magical number seven, plus or minus two: Some limits on our ca-

pacity for processing information. Psychol. Rev. 63, 81–97 (1956).
15. P. Pimsleur, A memory schedule. Mod. Lang. J. 51, 73–75 (1967).
16. S. Samadi, S. Vempala, A. Kalai, “Usability of humanly computable passwords” in

Proceedings of the Sixth AAAI Conference on Human Computation and Crowd-

sourcing, Y. Chen, G. Kazai, Eds. (AAAI Press, 2018), pp. 174–183.

Blum and Vempala PNAS | April 28, 2020 | vol. 117 | no. 17 | 9215

CO
M
PU

TE
R
SC

IE
N
CE

S

D
ow

nl
oa

de
d

at
 G

eo
rg

ia
 T

ec
h

Li
br

ar
y

on
 J

un
e

12
, 2

02
0

