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Abstract

We prove that the hit-and-run random walk is rapidly
mixing for an arbitrary logconcave distribution starting
from any point in the support. This extends the work of
[26], where this was shown for an important special case,
and settles the main conjecture formulated there. From
this result, we derive asymptotically faster algorithms in
the general oracle model for sampling, rounding, integra-
tion and maximization of logconcave functions, improving
or generalizing the main results of [24, 25, 1] and [16]
respectively. The algorithms for integration and optimiza-
tion both use sampling and are surprisingly similar.

1 Introduction

Given a real-valued function f in R
n, computing the

integral of f and finding a point that maximizes f are
two fundamental algorithmic problems. They include as
special cases, the famous problems of computing the vol-
ume of a convex body (here f is the indicator function of
the convex body) and minimizing a linear function over a
convex set (here f is equal to the linear function over the
convex set and infinity outside). In this general setting,
the complexity of an algorithm can be measured by the
number of function evaluations (“membership queries”).
Both problems are computationally intractable in general
[7, 2, 5, 17] and the question of understanding the set of
functions for which they are solvable in polynomial time
has received much attention over the past few decades.

In a breakthrough paper, Dyer, Frieze and Kannan [6]
gave a polynomial-time algorithm (O∗(n23)) for the spe-
cial case of computing the volume of a convex body. Many
improvements followed [1, 19, 21, 23, 5, 14, 25], the most
recent reducing the complexity to O∗(n4). Applegate and
Kannan [1] gave an algorithm for the integration of log-
concave functions (with mild smoothness assumptions), a
common generalization of convex bodies and Gaussians.
The driving idea behind all these results is random sam-
pling by geometric random walks. Unlike volume compu-
tation, there has not been much improvement in the com-
plexity of integration and the current best for general log-
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concave functions is still O∗(n10) from [1] (the O∗ no-
tation suppresses the dependence on error parameters and
logarithmic terms).

For minimizing a convex function over a convex set
(equivalent to maximizing a logconcave function), the
original solution was the deterministic ellipsoid method
[10]. The current best algorithm is based on sampling by
a random walk and its complexity is O∗(n5) [3] (with a
separation oracle, the complexity is O∗(n) [30, 3]). This
has recently been improved to O∗(n4.5) for minimizing a
linear function over a convex set [16].

The class of functions for which either integration or
optimization can be achieved in (randomized) polynomial
time is currently determined by efficient sampling from
the distribution whose density is proportional to the given
function. In [24], it is shown that arbitrary logconcave
functions can be sampled using the ball walk or the hit-
and-run walk. However, the walks are proved to be rapidly
mixing only from a warm start, i.e., a distribution that is
already close to the target. This requirement leads to a
considerable overhead in the algorithm (and, of course,
in the analysis). For the ball walk, such a requirement is
unavoidable in general—the mixing rate depends polyno-
mially on the “distance” between the start and target dis-
tributions (see Section 1.2).

On the other hand, the hit-and-run algorithm, which
seems to be the fastest sampling algorithm in practice, is
conjectured to be rapid-mixing from any starting distribu-
tion (including one that is concentrated on a single point);
more precisely, the dependence on the distance to the sta-
tionary distribution could be logarithmic. An important
step towards proving this conjecture was taken in [26]
where it was proved for the special case when the target
distribution is an exponential function over a convex body
(which includes the uniform density). This result plays a
key role in the latest volume algorithm [25] and also in
a faster algorithm for minimizing a linear function over
a convex set [16]. The major hurdle in extending these
algorithms to integration and optimization of logconcave
functions is the lack of a provably rapid-mixing random
walk with a similar mild (logarithmic) dependence on the
start.



1.1 Computational model

First, let us have a brief discussion of the case of con-
vex bodies. One usual definition of mixing time is to take
the worst starting point, but we cannot use this here. Sup-
pose that we want to sample from the unit n-cube and we
start at a vertex or infinitesimally close to it. Then, for
each of the algorithms considered so far, it takes about 2n

time before the orthant in which a nontrivial step can be
made is recognized, since our only access to the body is a
membership oracle.

One consequence of this is that if we want polynomial
bounds in the dimension n, we have to either provide in-
formation about the starting point, say by taking into ac-
count the distance of the point to the boundary. Else, we
can start from a random point from a distribution which is
sufficiently spread out. A strong version of this second ap-
proach is warm start, when we assume the density of the
starting distribution relative to the stationary distribution
is at most 2.

A theorem of Aldous and Diaconis guarantees that if
the distance of the distribution after m0 steps from the
stationary distribution from any starting point is less than
1/4, then after m steps it is less than 2−m/m0 ; but this
gives very poor bounds here because of “bad” starting
points. So polynomiality in | log ε| (where ε is the dis-
tance we want) is an issue here.

To be more precise, a convex body sampling problem is
given by

(CS1) a convex body K ⊆ R
n, which is given by a

membership oracle, together with two “guarantees” r and
R that it contains a ball with radius r and it is contained in
a ball with radius R;

(CS2) a starting point a0 ∈ K, together with a “guar-
antee” d > 0 such that B(a0, d) ⊆ K;

(CS3) an error bound ε > 0, describing how close the
sample point’s distribution must be to the uniform distri-
bution on K (in total variation distance).

Instead of (CS2), we could have
(CS2’) a random starting point a0 ∈ K, together with

a “guarantee” M ≥ 1 such that the density of the distri-
bution σ of a0 is bounded by M (relative to the uniform
density on K)

or
(CS2”) a random starting point a0 ∈ K, together with a

parameter M ≥ 1 such that the density of the distribution
σ of a0 is bounded by M except in a subset S with σ(S) ≤
ε/2.

It turns out the (CS2”) is the most useful version for
applications.

More generally, we consider the problem of sampling
from a logconcave distribution. To state the problem for-
mally, we consider a logconcave function f : R

n → R+;
it will be convenient to assume that f has a bounded sup-
port, so that there s a convex body K such that f = 0
outside K. We consider the distribution πf defined by
πf (X) =

(∫

X f
)/(∫

Rn f
)

. So f is proportional to the
density function of the distribution, but not necessarily
equal, i.e., we don’t assume that

∫

f = 1. We’ll need

the level sets L(a) = {x ∈ R
n : f(x) ≥ a}. The centroid

of πf is zf =
∫

x dπf (x) = E(x), and the variance of πf

is Var(πf ) =
∫

‖x − zf‖2 dπf = E(‖x − zf‖2).
This sampling problem is given by:
(LS1) an oracle that evaluates f at any given point, to-

gether with “guarantees” that the distribution is neither
too spread out nor to concentrated; this will be given by
r, R > 0 such that if πf (L(c)) ≥ 1/8 then L(c) contains
a ball of radius r, and the variance of πf is at most R2.

(LS2) a starting point a0 ∈ R
n, together with a “guar-

antee” d > 0 such that a0 is at distance d from the bound-
ary of the level set L(f(a0)/2) and another guarantee
β > 0 such that f(a0) ≥ βn max f .

(LS3) an error bound ε > 0, describing how close the
sample point’s distribution must be to the target distribu-
tion πf (in total variation distance).

Again, we could replace (LS2) by the assumption that
we have

(LS2’) a random starting point a0 from a distribution
σ, and a “guarantee” M ≥ 1 such that dσ/dπf ≤ M

or even more generally,
(LS2”) a random starting point a0 from a distribution

σ, and a “guarantee” M ≥ 1 such that dσ/dπf ≤ M
except for a set S with σ(S) ≤ ε.

The sampling algorithm we analyze is the hit-and-run
walk in R

n, which we start at a1 and stop after m steps
(see section 3 for the definition). Let σm denote the dis-
tribution of the last point. We say that the walk is rapidly
mixing if for some m polynomial in n, log R, log r, log ε,
log d and log β (or log M ), dtv(πf , σm) ≤ ε.

1.2 Results

In this paper, we first show that hit-and-run applied to
any logconcave function mixes rapidly. The mixing time
is O∗(n3) after appropriate normalization (to be discussed
shortly). It is worth noting that this is the first random
walk proven to be rapidly mixing (in the sense above) even
for the special case of convex bodies. (Strictly speaking,
the other well-known walks, namely the ball walk and the
lattice walk ([8, 9]), are not rapid-mixing.)

Theorem 1.1 Let f be a logconcave function in R
n, given

in the sense of (LS1), (LS2”) and (LS3). Then for

m > 1030 n2R2

r2
ln2 MnR

rε
ln3 M

ε
,

the total variation distance of σm and πf is less than 2ε.

Remarks: 1. If instead of a bound on the moment E(|x−
zf |2) we have the stronger condition that the support of f
is contained in a ball of radius R, then the bound on the
mixing time is smaller by a factor of ln2(M/ε).

2. The condition (LS2”) captures the setting when L2

distance (see Section 2) between the start and target den-
sities is bounded.

3. This result improves on the main theorem of [24]
by reducing the dependence on M and ε from (M/ε)4

to polylogarithmic. For the ball walk, some polynomial
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dependence on M is unavoidable. (consider e.g., a starting
distribution that is uniform in the set of points within δ/2
of the apex of a rotational cone, where δ is the radius of
the ball walk).

To analyze hit-and-run starting at a single point, we
take one step and then apply the theorem above to the dis-
tribution obtained.

Corollary 1.2 Let f be a logconcave function in R
n,

given in the sense of (LS1), (LS2) and (LS3). Then for

m > 1031 n3R2

r2
ln5 nR2

εrdβ
,

the total variation distance of σm and πf is less than ε.

The bound above does not imply rapid-mixing, because
the number of steps is polynomial in R/r, rather than in its
logarithm. We call a logconcave function well-rounded,
if R/r = O(

√
n). In the rest of this introduction, we

assume that our logconcave functions are well-rounded.
In this case, our algorithms are polynomial, and the (per-
haps most interesting) dependence on the dimension is
O∗(n3). Every logconcave function can be brought to a
well-rounded position by an affine transformation of the
space in polynomial time (we’ll return to this shortly).

With this efficient sampling algorithm at hand, we turn
to the problems of integration of logconcave functions,
perhaps the most important problem considered here, at
least from a practical viewpoint. The idea for integra-
tion, first suggested in [22], can be viewed as a general-
ized version of the method called simulated annealing in
a continuous setting. We consider a sequence of functions
of the form f(x)1/T where T , the “temperature”, starts
very high (which means the corresponding distribution is
nearly uniform over the support of f ) and is reduced to 1.
We will see shortly that the same idea is also suitable for
maximization of logconcave functions.

Theorem 1.3 Let f be a well-rounded logconcave func-
tion given by a sampling oracle. Given ε, δ > 0, we can
compute a number A such that with probability at least
1 − δ,

(1 − ε)

∫

f ≤ A ≤ (1 + ε)

∫

f

and the number of oracle calls is

O

(

n4

ε2
log7 n

εδ

)

= O∗(n4).

In [25], it was shown that a convex body can be put in
near-isotropic position (which implies well-roundedness,
see Section 2) in O∗(n4) steps. In Section 6, we give an
algorithm to put an arbitrary logconcave function in near-
isotropic position in O∗(n4) steps. However, this algo-
rithm (as previous algorithms) requires the knowledge of
a point where f is (approximately) maximized (a stronger
version of (LS2)). In many cases, such a point is much
easier to find. If one has a separation oracle for f , which,
given a point x, returns a hyperplane that separates x from

points that attain the maximum (e.g. a tangent plane to the
level set L(f(x))), then the maximization problem can be
solved using O∗(n) oracle calls [3, 30]. This gives an inte-
gration algorithm of complexity O∗(n4) for arbitrary log-
concave functions, improving on the O∗(n10) algorithm
of Applegate and Kannan.

It is, however, possible that the only access to f is via
an oracle that evaluates f at a given point. In this set-
ting, the maximization problem seems more difficult. Our
last result is an algorithm for this problem. The idea for
maximization, described in [16] and earlier for a more re-
stricted setting in [15], is again simulated annealing: we
consider a sequence of functions f(x)1/T where T starts
very high (so the distribution is close to uniform) and
is reduced till the distribution is concentrated sufficiently
close to points that maximize f (so, unlike integration,
we do not stop when T = 1 but proceed further till T
is sufficiently close to zero). The resulting algorithm can
be viewed as an interior-point method that requires only
O∗(

√
n) phases. By using f(x) = e−g(x), we get an algo-

rithm for minimizing any convex function g over a convex
body.

Theorem 1.4 For any well-rounded logconcave function
f , given ε, δ > 0 and a point x0 with f(x0) ≥ βn max f ,
we can find a point x in O∗(n4.5) oracle calls such that
with probability at least 1− δ,

f(x) ≥ (1 − ε) max f

and the dependence on ε, δ and β is bounded by a poly-
nomial in ln(1/εδβ).

This improves on the previous best algorithm [3] by a
factor of

√
n.

2 Preliminaries

We measure the distance between two distributions σ
and π in two ways, by the total variation distance

dtv(σ, π) =
1

2

∫

Rn

|σ(x) − π(x)| dx,

and the L2 distance

d2(σ, π) =

∫

Rn

σ(x)

π(x)
dσ(x).

A function f : R
n → R+ is said to be logconcave if

f(αx + (1 − α)y) ≥ f(x)αf(y)1−α for every x, y ∈ R
n

and 0 ≤ α ≤ 1. Gaussians, exponentials and indica-
tor functions over convex bodies are all logconcave. The
product, minimum and convolution of two logconcave
functions is also logconcave [4, 27, 18]. The last prop-
erty implies that any marginal of a logconcave function is
also logconcave. We will use several known properties of
logconcave functions. The following property proved in
[16] (a variant of a lemma from [25]) will be used multi-
ple times.
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Lemma 2.1 ([16]) Let f be a logconcave function in R
n.

For a > 0, let

Z(a) =

∫

Rn

f(x)a dx.

Then anZ(a) is a logconcave function of a.

The level sets of a function f are denoted by Lf (t) =
{x | f(x) ≥ t} or just L(t) when the context is clear. For
a logconcave f , the level sets are all convex.

A density function f is said to be in isotropic position
if Ef (x) = 0 and Ef (xxT ) = I . The second condition is
equivalent to saying that

∫

Rn

(vT x)2f(x) dx = 1

for any unit vector v ∈ R
n. Similarly, f is C-isotropic if

1

C
≤

∫

Rn

(vT (x − zf ))2f(x) d(x) ≤ C

for any unit vector v ∈ R
n. For any function, there is

an affine transformation that puts it in isotropic position.
An approximation to this can be computed from a random
sample as implied by combining a lemma from [28] with a
moment bound from [24] (see e.g., Corollary A.2 in [16]).
We quote it below as a theorem.

Lemma 2.2 Let f be a logconcave function in R
n that is

not concentrated on a subspace and let X1, . . .Xk be in-
dependent random points from the distribution πf . There
is a constant C0 such that if k > C0t

3 ln n then the trans-
formation g(x) = T−1/2x where

X̄ =
1

k

k
∑

i=1

X i, T =
1

k

k
∑

i=1

(X i − X̄)(X i − X̄)T

puts f in 2-isotropic position with probability at least 1−
1/2t.

A weaker normalization will also be useful. We say
that a function f is C-round if R/r ≤ C

√
n where

R2 = Ef (|X − zf |2) and the level set of f of measure
1/8 contains a ball of radius r. When C is a constant, we
say that f is well-rounded. For an isotropic function f , we
have Ef (|X |2) = n. In [24], it is shown that if f is also
logconcave, then any level set L contains a ball of radius
πf (L)/e. Thus, if a logconcave function is isotropic than
it is also (8e)-round.

3 Analysis of the hit-and-run walk

The hit-and-run walk for an integrable, nonnegative
function f in R

n is defined as follows:

• Pick a uniformly distributed random line ` through
the current point.

• Move to a random point y along the line ` chosen
with density proportional to f (restricted to the line).

It is well-known that the stationary distribution of this
walk is πf . Our goal is to bound the rate of convergence.
We will use the conductance technique of Jerrum and Sin-
clair [11] as extended to the continuous setting by Lovász
and Simonovits [23]. The state space of hit-and-run is the
support K of f . For any measurable subset S ⊆ K and
x ∈ K, we denote by Px(S) the probability that a step
from x goes to S. For 0 < πf (S) < 1, the conductance
φ(S) is defined as

φ(S) =

∫

x∈S Px(K \ S) dπf

min{πf (S), πf (K \ S)} .

In words, this is the probability of going from S to its com-
plement in one step, given that we start randomly on the
side of smaller measure. Then, if φ is the minimum con-
ductance over all measurable subsets, O(1/φ2) is a bound
on the mixing time (roughly speaking, the number of steps
required to halve the distance to the stationary distribu-
tion).

At a high level, the analysis has two parts: (i) “large”
subsets (under the measure defined by f ) have large
boundaries and (ii) points that are “near” the boundary are
likely to cross from a subset to its complement in one step.
The first part will be given by an isoperimetric inequality.
In fact, we will use the weighted inequality developed in
[26], quoted below. This geometric inequality is indepen-
dent of any particular random walk. It is the second part
that is quite different for different random walks. It con-
sists of connecting appropriate notions of geometric dis-
tance and probabilistic distance by a careful analysis of
single steps of the random walk.

The isoperimetric inequality below uses the cross-ratio
distance defined as follows. For two points u, v in a con-
vex body K, let p, q be the endpoints of the line through
u, v so that they appear in the order p, u, v, q. Then the
cross-ratio distance is

dK(u, v) =
|u − v||p − q|
|p − u||v − q| .

Theorem 3.1 ([26]) Let K be a convex body in R
n. Let

f : K → R+ be a logconcave function, πf be the cor-
responding distribution and h : K → R+, an arbitrary
function. Let S1, S2, S3 be any partition of K into mea-
surable sets. Suppose that for any pair of points u ∈ S1

and v ∈ S2 and any point x on the chord of K through u
and v,

h(x) ≤ 1

3
min(1, dK(u, v)).

Then

πf (S3) ≥ Ef (h(x)) min{πf (S1), πf (S2)}.

For a function f in R
n, let µ`,f be the measure induced

by f on the line `. For two points u, v ∈ R
n, let ` be

the line through them, `− be the semi-line starting at u
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not containing v and `+ be the semiline starting at v not
containing u. Then the f -distance is

df (u, v) =
µ`,f ([u, v])µ`,f (`)

µ`,f (`−)µ`,f (`+)

3.1 The smoothness of single steps

As in [20, 26], at a point x, we define the step-size F (x)
by

P (|x − y| ≤ F (x)) =
1

8
,

where y is a random step from x. Next, we define

λ(x, t) =
vol((x + tB) ∩ L((3/4)f(x)))

vol(tB)

and

s(x) = sup{t ∈ R+ : λ(x, t) ≥ 63/64}.

Finally, we define α(x) to be the smallest t ≥ 3 for which
a hit-and-run step y from x satisfies P(f(y) ≥ tf(x)) ≤
1/16. The following lemma was proved in [24].

Lemma 3.2 ([24])

πf (u : α(u) ≥ t) ≤ 16

t
.

The next two lemmas are from [26].

Lemma 3.3 ([26])

F (x) ≥ s(x)

64
.

Lemma 3.4 ([26]) Let f be any logconcave function such
that the level set of f of measure 1/8 contains a ball of
radius r. Then

Ef (s(x)) ≥ r

210
√

n
.

Next we prove a new lemma that will be crucial in ex-
tending the analysis of hit-and-run.

Lemma 3.5 Let u, v ∈ K, the support of a logconcave
function f and let x ∈ [u, v]. If s(x) ≥ 4c|u − v|√n for
some c ≥ 1, then

df (u, v) ≤ 1

c
and |u − v| ≤ max{s(u), s(v)}

c
√

n
.

Proof. First suppose df (u, v) ≥ 1/c. Let y, y′ be
the points on the line `(u, v) at distance 4c|u − v| from
x. From the definition of df and the logconcavity of f ,
min{f(y), f(y′)} ≤ f(x)/2. Assume f(y) ≤ f(x)/2.
Let H be a supporting plane at y of the level set L(f(y)).
In the ball of radius 4c|u − v|√n around x, the halfspace
bounded by H not containing x cuts off at least 1/16th

of the volume of the ball; further, each point in the sep-
arated subset has function value at most f(y) ≤ f(x)/2.
Therefore, s(x) < 4c|u − v|√n.

Suppose that |u − v| ≥ max{s(u), s(v)}/c
√

n. We
may suppose that f(u) ≤ f(x) (one of u, v has func-
tion value at most f(x)). The level set L(3f(u)/4) misses
1/64 of the ball of radius s(u) around u. Using Lemma
4.4 in [24], it misses at least 3/4 of the ball of radius
4c|u − v|√n > 4s(u) around u. Now consider balls of
radius 4c|u − v|√n around u and x. These balls overlap
in at least 1/2 of their volume. Therefore, the level set
L(3f(u)/4) misses at least 1/4 of the ball around x; since
f(u) ≤ f(x), the level set L(3f(x)/4) ⊆ L(3f(u)/4)
and so L(3f(x)/4) also misses at least 1/4 of the ball
around x. This contradicts the assumption that s(x) ≥
4c|u− v|√n. �

3.2 Conductance and mixing time

For a point u ∈ K, let Pu be the distribution obtained
by taking one hit-and-run step from u. Let µf (u, x) be the
integral of f along the line through u and x. Then,

Pu(A) =
2

nπn

∫

A

f(x) dx

µf (u, x)|x − u|n−1
. (1)

The next lemma from [26] connects geometric distance
with probabilistic distance.

Lemma 3.6 ([26]) Let u, v ∈ K. Suppose that

df (u, v) <
1

128 ln(3 + α(u))

and
|u − v| <

1

4
√

n
max{F (u), F (v)}.

Then dtv(Pu, Pv) < 1 − 1/500.

We are now ready to prove the main theorem bounding
the conductance.

Theorem 3.7 Let f be a logconcave function in R
n such

that the level set of measure 1/8 contains a unit ball and
the support K has diameter D. Then for any subset S,
with πf (S) = p ≤ 1/2, the conductance of hit-and-run
satisfies

φ(S) ≥ 1

1013nD ln(nD
p )

.

Proof. Let K = S1 ∪ S2 be a partition into measurable
sets, where S1 = S and p = πf (S1) ≤ πf (S2). We will
prove that

∫

S1

Px(S2) dx ≥ 1

1013nD ln nD
p

πf (S1) (2)

Consider the points that are deep inside these sets:

S′
1 =

{

x ∈ S1 : Px(S2) <
1

1000

}
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and
S′

2 =

{

x ∈ S2 : Px(S1) <
1

1000

}

.

Let S′
3 be the rest i.e., S ′

3 = K \ S′
1 \ S′

2.
Suppose πf (S′

1) < πf (S1)/2. Then
∫

S1

Px(S2) dx ≥ 1

1000
πf (S1 \ S′

1) ≥
1

2000
πf (S1)

which proves (2). So we can assume that πf (S′
1) ≥

πf (S1)/2 and similarly πf (S′
2) ≥ πf (S2)/2.

Next, define the exceptional subset W as set of points
u for which α(u) is very large.

W =

{

u ∈ S : α(u) ≥ 227nD

p

}

.

By Lemma 3.2, πf (W ) ≤ p/223nD. Now, for any u ∈
S′

1 \ W and v ∈ S′
2 \ W ,

dtv(Pu, Pv) ≥ 1− Pu(S2) − Pv(S1) > 1 − 1

500
.

Thus, by Lemma 3.6,

df (u, v) ≥ 1

128 ln(3 + α(u))
≥ 1

212 ln nD
p

or
|u − v| ≥ 1

4
√

n
max{F (u), F (v)}.

By Lemma 3.3, the latter implies that

|u − v| ≥ 1

28
√

n
max{s(u), s(v)}.

Now applying Lemma 3.5, in either case, for any point
x ∈ [u, v], we have

s(x) ≤ 214 ln

(

nD

p

)

|u − v|
√

n

≤ 214 ln

(

nD

p

)

dK(u, v)D
√

n.

To apply Theorem 3.1, we define

h(x) =
s(x)

216D
√

n ln nD
p

and consider the partition S ′
1 \ W , S′

2 \ W and the rest.
Clearly, for any u ∈ S ′

1 \ W, v ∈ S′
2 \ W and x ∈ [u, v],

we have h(x) ≤ dK(u, v)/3. Thus,

πf (S′
3) ≥ Ef (h)πf (S′

1 \ W )πf (S′
2 \ W ) − πf (W )

≥ 1

229nD ln nD
p

πf (S1).

Here we have used Lemma 3.4 and the bound on πf (W ).
Therefore,

∫

S1

Px(S2) dx ≥ 1

2
· 1

1000
πf (S′

3)

≥ 1

1013nD ln nD
p

πf (S1)

which again proves (2) �

3.3 Mixing time

When the support of f is bounded by a ball of radius
R, the bound on the mixing time in Theorem 1.1 follows
by applying Corollary 1.6 in [23] with p = ε/2M and
D = 2R/r in the expression for conductance.

Now let Ef (‖x− zf‖2) ≤ R2. We consider the restric-
tion of f to the ball of radius R ln(4e/p) around the cen-
troid zf . By Lemma 5.17 in [24], the measure of f outside
this ball is at most p/4. In the proof of the conductance
bound, we can consider the restriction of f to this set. In
the bound on the conductance for a set of measure p, the
diameter D is effectively replaced by R ln(4e/p), i.e., for
any subset of measure p, the conductance is at least

φ(p) ≥ cr

nR ln(nR/rp) ln(4e/p)

where c is a fixed constant. The bound on mixing follows
by applying Corollary 1.6 in [23] with p = ε/2M .

4 Integration

The algorithm can be viewed as a generalized version
of simulated annealing. To integrate f , we start with the
constant function over K, the support of f , and slowly
transform it into f via a sequence of m = O∗(

√
n) log-

concave functions. In each step, we compute the ratio
of consecutive integrals by sampling. Multiplying all of
these and the volume of K, we get our answer.

In the description below, we assume that f is well-
rounded. We restrict f to a ball of radius O(

√
n ln(1/ε))

and to the larger of the level sets L(f(x0)/2) and
L(max f/e−2n−2 ln(1/ε)). By Lemma 6.13 of [24], this
restriction removes a negligible part of the integral of f .
The algorithm uses an upper bound B on the quantity
ln(max f/ min f). We can set B = 2n + 2 ln(1/ε) +
n ln(1/β) where the initial point x0 satisfies f(x0) ≥
βn max f .
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Integration algorithm:

I0. Set m = d√n ln Be, k = 512
ε2

√
n ln B. Let K be

the support of f and f0 be the indicator function of
K. For i = 1, . . . , m − 1, let

ai =
1

B

(

1 +
1√
n

)i

and fi(x) = f(x)ai

and fm(x) = f(x).

I1. Let W0 = vol(K) or an estimate of vol(K) using
the algorithm of [25]. Also, let X1

0 , . . . , Xk
0 be in-

dependent uniform random points from K.

I2. For i = 1, . . . , m, do the following.
— Run the sampler k times with target den-
sity proportional to fi−1 and starting points
X1

i−1, . . .X
k
i−1 to get independent random points

X1
i , . . . , Xk

i .
— Using these points, compute

Wi =
1

k

k
∑

j=1

f(Xj
i )ai−ai−1 .

I3. Return W = W0W1 . . .Wm.

To prove Theorem 1.3 we will show that (i) the estimate
is accurate (Lemma 4.2) and (ii) use Theorem 1.1 to en-
sure that each sample is obtained using O(n3 ln5(n/ε))
steps; this is implied by (a) samples from each distribu-
tion provide a good start to sampling the next distribution
(Lemma 4.3) and (b) the density being sampled remains
O(ln(1/ε))-round (Lemma 4.4). The next lemma is anal-
ogous to Lemma 4.1 in [25] with similar proof. In this
section, we let Z(a) denote

∫

Rn f(x)a dx.

Lemma 4.1 Let X be a random point with density pro-
portional to fi−1 and define Y = fi(X)/fi−1(X). Then
E(Y ) = Z(ai)/Z(ai−1) and E(Y 2) ≤ eE(Y )2.

Proof. The first part is straightforward. For the second
we have

E(Y 2) =

∫

f(X)2ai−2ai−1

(

f(X)ai−1

∫

f(x)ai−1 dx

)

dX

=
Z(2ai − ai−1)

Z(ai−1)
.

Now by Lemma 2.1, anZ(a) is logconcave and so

(2ai − ai−1)
nZ(2ai − ai−1)a

n
i Z(ai−1) ≤ a2n

i Z(a).

Using this, and the fact that ai = ai−1(1 + 1/
√

n), we

have

E(Y 2)

E(Y )2
=

Z(2ai − ai−1)Z(ai−1)

Z(ai)2

≤
(

a2
i

(2ai − ai−1)ai−1

)n

=







(

1 + 1√
n

)2

(

1 + 2√
n

)







n

≤
(

1 +
1

n

)n

≤ e.

�

Lemma 4.2 With probability at least 3/4, the estimate W
satisfies

(1 − ε)

∫

f ≤ W ≤ (1 + ε)

∫

f.

Proof. For i = 1, . . . , m, let Ri = Z(ai)/Z(ai−1) and
for j = 1, . . . , k, let Y j

i = f(Xj
i )ai−ai−1 . Then E(Y j

i ) =

Ri and by Lemma 4.1, E((Y j
i )2) ≤ eR2

i . Also, E(Wi) =
Ri and assuming the Y i

j ’s are all independent,

E(W 2
i ) ≤

(

1 +
e − 1

k

)

R2
i .

Finally, E(W ) = vol(K)Πm
i=1E(Wi) =

∫

Rn f(x) dx and

E(W 2) ≤
(

1 +
e − 1

k

)m

E(W )2.

This implies Var(W ) ≤ (ε2/32)E(W )2 and from this the
lemma follows.

There are two technical issues to deal with. The first
is that the distribution of each X j

i is not exactly the target
but close to it. The second is that the X j

i ’s (and therefore
the Y j

i ’s) are independent for a fixed i but not for different
i. Both issues can be handled in a manner identical to the
proof of Lemma 4.2 in [25], the first using a coupling trick
and the second by bounding the dependence. �

Lemma 4.3 For i = 0, . . . , m, let πi be the distribution
with density proportional to f(x)ai . Then d2(πi−1, πi) ≤
e and d2(πi, πi−1) ≤ 4.

Proof.

d2(πi−1, πi)

=

∫

f(x)ai−1/
∫

f(x)ai−1 dx

f(x)ai/
∫

f(x)ai dx

f(x)ai−1

∫

f
(x)ai−1 dx

dx

=

∫

f(x)2ai−1−ai dx
∫

f(x)ai dx
(∫

f(x)ai−1 dx
)2

=
Z(2ai−1 − ai)Z(ai)

Z(ai−1)2
≤

(

a2
i−1

(2ai−1 − ai)ai

)n

≤ 4.
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On the other hand, as in the proof of Lemma 4.2,

d2(πi, πi−1) =
Z(2ai − ai−1)Z(ai−1)

Z(ai)2
≤ e

�

Lemma 4.4 For i = 0, . . . , m, the distribution πi corre-
sponding to fi is O(ln(1/ε))-round.

Proof. By assumption, fm(x) = f(x) is well-rounded
and contained in a ball of radius O(

√
n ln(1/ε)). Thus,

each fi is contained in this ball and so it follows that
E(|x|2) = O(n ln2(1/ε)) for the distribution correspond-
ing to each fi.

Now consider the level set L = Lf (t) of measure 1/8.
By assumption, this contains a ball of radius equal to some
constant c. As we move through the sequence of func-
tions, fm, fm−1, . . . , f1, the measure of L is decreasing
and so for each of them, L is contained in the level set of
measure 1/8 which means this level set contains a ball of
radius c. �

5 Optimization

In this section, we give an algorithm for finding the
maximum of a logconcave function f , given access to f
by means of an oracle that evaluates f at any desired point
x and a starting point x0 with f(x0) ≥ βn max f . The
algorithm can be viewed as simulated annealing in a con-
tinuous setting and is suggested in [16] and analyzed for
the special case when f(x) = e−aT x for some vector a.
Here we consider the problem of maximizing an arbitrary
logconcave function. This is equivalent to finding the min-
imum of a convex function g(x) by considering the log-
concave function e−g(x).

We restrict the support of the function f to K =
{y|f(y) ≥ f(x0)/2}. In the description below, B is
an upper bound on ln(max f/ min f). It will suffice to
use B = n ln(2/β) from our assumption that f(x0) ≥
βn max f .

Optimization algorithm:

O1. Set m = d√n ln 2B(n+ln(1/δ))
ε e, k = dC0n ln5 ne

and for i = 1, . . . , m, let

ai =
1

B
(1 +

1√
n

)i and fi(x) = f(x)ai .

Also X1
0 , . . . , Xk

0 are independent uniform random
points from K and T0 is their covariance matrix.

O2. For i = 1, . . . , m, do the following:
— Get k independent random samples X1

i , . . . , Xk
i

from πfi
using hit-and-run with covariance matrix

Ti and starting points X1
i−1, . . . , X

k
i−1 respectively.

— Set Ti+1 to be the covariance matrix of
X1

i , . . . , Xk
i .

O3. Output maxj f(Xj
m) and a point Xj

m that achieves
the maximum.

We generate uniform random points from K, required
in the first step (O1), as in [25], by putting K in near-
isotropic position.

It is clear that the number of phases of the algorithm
is O∗(

√
n). To prove Theorem 1.4, we need to show that

(i) the last distribution is concentrated near the maximum,
(ii) samples from the i’th phase provide a good start for the
next phase, i.e., d2(πi, πi) is bounded and (iii) the trans-
formation Ti keeps fi near-isotropic and thus the time per
sample remains O∗(n3).

Of these, (ii) is already given by Lemma 4.3. The next
lemma establishes (i).
Lemma 5.1 For any ε > 0, with

m ≥
√

n ln
2B(n + ln(1/δ)

ε
,

for a random point X drawn with density proportional to
fm, we have

P(f(X) < (1 − ε) max f) ≤ δ

(

2

e

)n−1

.

Proof. Let X be a random point from πfm
. We can bound

the desired probability as follows:
P(f(X) < (1 − ε) max f)

= P(f(X)am < (1 − ε)am(max f)am)

= P(fm(X) < (1 − ε)am max fm)

≤ P(fm(X) < e−2(n+ln(1/δ) max fm).

Now we use Lemma 5.16 from [24] which says that for
β ≥ 2 (since fm is logconcave),

P(fm(X) < e−β(n−1) max fm) ≤ (e1−ββ)n−1

to get the bound. �

Finally, the near-isotropy is derived using the following
lemma from [16].
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Lemma 5.2 ([16]) Let µ and ν be logconcave densities
with centroids zµ and zν , respectively. Then for any c ∈
R

n,

Eµ((c · (x − zµ))2) ≤ 16d2(µ, ν)Eν((c · (x − zν))2)

We apply this to µ = µi+1 and ν = µi after the trans-
formation Ti. By Lemma 2.2, the transformation Ti puts
µi in 2-isotropic position with high probability. Using this
and the second inequality of Lemma 4.3, we get that for
any c ∈ R

n,

Eµi+1
((c · (x − zµi+1

))2) ≤ 128.

Reversing the roles of µ and ν in Lemma 2.2 gives a lower
bound and proves that µi+1 is 128-isotropic. Thus, the
complexity of sampling is O(n3 ln5 n) (it suffices to set
the desired variation distance to the target distribution to
be 1/poly(n)).

6 Rounding

The optimization algorithm of the previous section can
be used to achieve near-isotropic position, by starting at
the uniform density and stopping with fm = f . The trans-
formation Tm+1 will put f in 2-isotropic position with
high probability. The algorithm uses only a function or-
acle but requires O∗(n4.5) steps. Here we give an algo-
rithm that requires only O∗(n4) steps, but assuming we
are given a point x∗ where f is maximized (we will hence-
forth assume that x∗ = 0).
Theorem 6.1 Any logconcave function f can be put in
near-isotropic position using O∗(n4) oracle calls, given a
point that maximizes f .
The algorithm is similar to that for a convex body given
in [25]. The main difference is that instead of a pencil we
use a log-pencil which is the function G : R

n+1 → R+

defined as

G(x0, x) =







f(x) if 0 ≤ x0 ≤ 2B and
ln f(x) ≥ ln max f − x0,

0 otherwise.

Here B is an upper bound on ln(max f/ min f). In
words, the cross-section of G at x0 is the level set
Lf (max f/ex0). It is easy to see G is also logconcave.

For i = 1, . . . , m, define Gi as the restriction of G to
the halfspace {(x, x0) : x0 ≤ 2i/B} and Gm = G. The
algorithm makes the Gi’s isotropic successively. In most
phases it only needs O∗(1) new samples and once every
n phases it uses O∗(n) new samples. Once G is near-
isotropic, one more round of samples can be used to make
f near-isotropic in R

n.
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