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Abstract

We show that the KLS constant for n-dimensional isotropic logconcave measures is O(n1/4), improving

on the current best bound of O(n1/3√logn). As corollaries we obtain the same improved bound on the

thin-shell estimate, Poincaré constant and Lipschitz concentration constant and an alternative proof of

this bound for the isotropic constant; it also follows that the ball walk for sampling from an isotropic

logconcave density in Rn converges in O∗(n2.5) steps from a warm start.
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1 Introduction

The isoperimetry of a subset is the ratio of the measure of the boundary of the subset to the measure of
the subset or its complement, whichever is smaller. The minimum such ratio over all subsets is the Cheeger
constant, also called expansion or isoperimetric coe�cient. This fundamental constant appears in many
settings, e.g., graphs and convex bodies and plays an essential role in many lines of study.

In the geometric setting, the KLS hyperplane conjecture [20] asserts that for any distribution with
a logconcave density, the minimum expansion is approximated by that of a halfspace, up to a universal
constant factor. Thus, if the conjecture is true, the Cheeger constant can be essentially determined simply
by examining hyperplane cuts. More precisely, here is the statement. We use c, C for absolute constants,
and ‖A‖2 for the spectral/operator norm of a matrix A.

Conjecture 1 ([20]). For any logconcave density p in Rn with covariance matrix A,

1

ψp

def
= inf

S⊆Rn

∫
∂S
p(x)dx

min
{∫

S
p(s)dx,

∫
Rn\S p(x)dx

} ≥ c√
‖A‖2

.

For an isotropic logconcave density (all eigenvalues of its covariance matrix are equal to 1), the conjectured
isoperimetric ratio is an absolute constant. Note that the isoperimetric constant or KLS constant ψp is the
reciprocal of the minimum expansion or Cheeger constant (this will be more convenient for comparisons with
other constants). The conjecture was formulated by Kannan, Lovász and Simonovits in the course of their
study of the convergence of a random process (the ball walk) in a convex body. They proved the following
weaker bound.

Theorem 2 ([20]). For any logconcave density p in Rn with covariance matrix A, the KLS constant satis�es

ψp ≤ C
√

Tr(A).

For an isotropic distribution, the theorem gives a bound of O (
√
n), while the conjecture says O (1). The

conjecture has several important consequences. For example, it implies that the ball walk mixes in O∗
(
n2
)

steps from a warm start in any isotropic convex body (or logconcave density) in Rn; this is the best possible
bound, and is tight e.g., for a hypercube. The KLS conjecture has become central to modern asymptotic
convex geometry. It is equivalent to a bound on the spectral gap of isotropic logconcave functions [25].
Although it was formulated due to an algorithmic motivation, it implies several well-known conjectures in
asymptotic convex geometry. We describe these next.

The thin-shell conjecture (also known as the variance hypothesis) [32, 5] says the following.

Conjecture 3 (Thin-shell). For a random point X from an isotropic logconcave density p in Rn,

σ2
p

def
= E((‖X‖ −

√
n)2) = O(1).

It implies that a random point X from an isotropic logconcave density lies in a constant-width annulus
(a thin shell) with constant probability. Noting that

σ2
p = E((‖X‖ −

√
n)2) ≤ 1

n
Var(‖X‖2) ≤ Cσ2

p,

the conjecture is equivalent to asserting that Var(‖X‖2) = O(n) for an isotropic logconcave density. The

following connection is well-known: σp ≤ Cψp. The current best bound is σp ≤ n
1
3 by Guedon and Milman

[19], improving on a line of work that started with Klartag [23, 24, 17]. Eldan [13] has shown that the
reverse inequality holds approximately, in a worst-case sense, namely the worst possible KLS constant over
all isotropic logconcave densities in Rn is bounded by the thin-shell estimate to within roughly a logarithmic
factor in the dimension. This yields the current best bound of ψp ≤ n

1
3

√
log n. A weaker inequality was

shown earlier by Bobkov [4] (see also [33]).
The slicing conjecture, also called the hyperplane conjecture [7, 3] is the following.
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Conjecture 4 (Slicing/Isotropic constant). Any convex body of unit volume in Rn contains a hyperplane
section of at least constant volume. Equivalently, for any convex body K of unit volume with covariance
matrix L2

KI, the isotropic constant LK = O(1).

The isotropic constant of a general isotropic logconcave density p with covariance a multiple of the identity
is de�ned as Lp = p(0)1/n. The best current bound is Lp = O(n1/4), due to Klartag [22], improving on
Bourgain's bound of Lp = O(n1/4 log n) [6]. The study of this conjecture has played an in�uential role in the
development of convex geometry over the past several decades. It was shown by Ball that the KLS conjecture
implies the slicing conjecture. More recently, Eldan and Klartag [14] showed that the thin shell conjecture
implies slicing, and therefore an alternative (and stronger) proof that KLS implies slicing: Lp ≤ Cσp ≤ C ′ψp.

Finally, we state a few applications of the KLS bound.

Theorem 5 (Poincaré constant [36, 10]). For any isotropic logconcave density p in Rn, we have

sup
g smooth

Varp (g(x))

Ep
(
‖∇g(x)‖22

) = O(ψ2
p).

Theorem 6 (Lipschitz concentration [18]). For any L-Lipschitz function g in Rn, and isotropic logconcave
density p,

Px∼p (|g(x)− Eg| > ψpLt) ≤ e−Ω(t).

Theorem 7 (Central Limit Theorem [32]). Let K be an isotropic symmetric convex set. Let gθ(s) =

vol(K ∩ {xT θ = s}) and g(s) = 1√
2π

exp(− s
2

2 ). There are universal constants c1, c2 > 0 such that for any

δ > 0, we have

vol

({
θ ∈ Sn−1 :

∣∣∣∣∫ t

−t
gθ(s)ds−

∫ t

−t
g(s)ds

∣∣∣∣ ≤ c1(δ +
ψK√
n

) for every t ∈ R
})
≥ 1− ne−c2δ

2n.

For more background on these conjectures, we refer the reader to [9, 1, 2].

1.1 Results

We prove the following bound, conjectured in this form in [35].

Theorem 8. For any logconcave density p in Rn, with covariance matrix A,

ψp ≤ C
(
Tr
(
A2
))1/4

.

For isotropic p, this gives a bound of ψp ≤ Cn
1
4 , improving on the current best bound. The following

corollary is immediate. We note that it also gives an alternative proof of the central limit theorem for
logconcave distributions, via Bobkov's theorem [4].

Corollary 9. For any logconcave density p in Rn, the isotropic (slicing) constant Lp and the thin-shell
constant σp are bounded by O

(
n1/4

)
.

We mention an algorithmic consequence. The ball walk in a convex body K ⊆ Rn starts at some point
x0 in its interior and at each step picks a uniform random point in the ball of �xed radius δ centered at the
current point, and goes to the point if it lies in K. The process converges to the uniform distribution over
K in the limit. Understanding the precise rate of convergence is a major open problem with a long line of
work and directly motivated the KLS conjecture [26, 27, 28, 20, 21, 29, 30]. Our improvement for the KLS
constant gives the following bound on the rate of convergence.

Corollary 10. The mixing time of the ball walk to sample from an isotropic logconcave density from a warm
start is O∗

(
n2.5

)
.
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1.2 Approach

The KLS conjecture is true for Gaussian distributions. More generally, for any distribution whose density
function is the product of the Gaussian density for N(0, σ2I) and any logconcave function, it is known
that the expansion is Ω(1/σ) [11]. This fact is used crucially in the Gaussian cooling algorithm of [12]
for computing the volume of a convex body by starting with a standard Gaussian restricted to a convex
body and gradually making the variance of the Gaussian large enough that it is e�ectively uniform over
the convex body of interest. Our overall strategy is similar in spirit � we start with an arbitrary isotropic
logconcave density and gradually introduce a Gaussian term in the density of smaller and smaller variance.
The isoperimetry of the resulting distribution after su�cient time will be very good since it has a large
Gaussian factor. And crucially, it can be related to the isoperimetry of the initial distribution. To achieve
the latter, we would like to maintain the measure of a �xed subset close to its initial value as the distribution
changes. For this, our proof uses the localization approach to proving high-dimensional inequalities [28, 20],
and in particular, the elegant stochastic version introduced by Eldan [13] and used in subsequent papers
[16, 15].

We �x a subset E of the original space with measure one half according to the original logconcave dis-
tribution (it su�ces to consider such subsets to bound the isoperimetric constant). In standard localization,
we then repeatedly bisect space using a hyperplane that preserves the volume fraction of E. The limit of this
process is a partition into 1-dimensional logconcave measures (�needles�), for which inequalities are much
easier to prove. This approach runs into major di�culties for proving the KLS conjecture. While the original
measure might be isotropic, the 1-dimensional measures could, in principle, have variances roughly equal to
the trace of the original covariance (i.e., long thin needles), for which only much weaker inequalities hold.
Stochastic localization can be viewed as the continuous time version of this process, where at each step, we
pick a random direction and multiply the current density with a linear function along the chosen direction.
Over time, the density can be viewed as a spherical Gaussian times a logconcave function, with the Gaussian
gradually reducing in variance. When the Gaussian becomes su�ciently small in variance, then the overall
distribution has good isoperimetric coe�cient, determined by the inverse of the Gaussian standard deviation
(such an inequality can be shown using standard localization, as in [11]). An important property of the
in�nitesimal change at each step is balance � the density at time t is a martingale and therefore the expected
measure of any subset is the same as the original measure. Over time, the measure of a set E is a random
quantity that deviates from its original value of 1

2 over time. The main question then is: what direction to
use at each step so that (a) the measure of E remains bounded and (b) the Gaussian part of the density
has small variance. We show that the simplest choice, namely a pure random direction chosen from the
uniform distribution su�ces. The analysis needs a potential function that grows slowly but still maintains
good control over the spectral norm of the current covariance matrix. The direct choice of ‖At‖2, where At
is the covariance matrix of the distribution at time t, is hard to control. We use Tr(A2

t ). This gives us the
improved bound of O(n1/4).

2 Preliminaries

In this section, we review some basic de�nitions and theorems that we use.

2.1 Stochastic calculus

In this paper, we only consider stochastic processes given by stochastic di�erential equations. Given real-
valued stochastic processes xt and yt, the quadratic variations [x]t and [x, y]t are real-valued stochastic
processes de�ned by

[x]t = lim
|P |→0

∞∑
n=1

(
xτn − xτn−1

)2
and [x, y]t = lim

|P |→0

∞∑
n=1

(
xτn − xτn−1

) (
yτn − yτn−1

)
,

where P = {0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ↑ t} is a stochastic partition of the non-negative real numbers,
|P | = maxn (τn − τn−1) is called the mesh of P and the limit is de�ned using convergence in probability.
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Note that [x]t is non-decreasing with t and [x, y]t can be de�ned via polarization as

[x, y]t =
1

4
([x+ y]t − [x− y]t) .

For example, if the processes xt and yt satisfy the SDEs dxt = µ(xt)dt + σ(xt)dWt and dyt = ν(yt)dt +

η(yt)dWt where Wt is a Wiener process, we have that [x]t =
∫ t

0
σ2(xs)ds and [x, y]t =

∫ t
0
σ(xs)η(ys)ds and

d[x, y]t = σ(xt)η(yt)dt; for a vector-valued SDE dxt = µ(xt)dt + Σ(xt)dWt and dyt = ν(yt)dt + M(yt)dWt,

we have that [xi, xj ]t =
∫ t

0
(Σ(xs)Σ

T (xs))ijds and d[xi, yj ]t = (Σ(xt)M
T (yt))ijdt.

Lemma 11 (Itô's formula). Let x be a semimartingale and f be a twice continuously di�erentiable function,
then

df(xt) =
∑
i

df(xt)

dxi
dxi +

1

2

∑
i,j

d2f(xt)

dxidxj
d[xi, xj ]t.

The next two lemmas are well-known facts about Wiener processes; �rst the re�ection principle.

Lemma 12 (Re�ection principle). Given a Wiener process W (t) and a, t ≥ 0, then we have that

P( sup
0≤s≤t

W (s) ≥ a) = 2P(W (t) ≥ a).

Second, a decomposition lemma for continuous martingales.

Theorem 13 (Dambis, Dubins-Schwarz theorem). Every continuous local martingale Mt is of the form

Mt = M0 +W[M ]t for all t ≥ 0

where Ws is a Wiener process.

2.2 Logconcave functions

Lemma 14 (Dinghas; Prékopa; Leindler). The convolution of two logconcave functions is also logconcave;
in particular, any linear transformation or any marginal of a logconcave density is logconcave.

The next lemma about logconcave densities is folklore, see e.g., [31].

Lemma 15 (Logconcave moments). Given a logconcave density p in Rn, and any positive integer k,

Ex∼p ‖x‖k ≤ (2k)k
(
Ex∼p ‖x‖2

)k/2
.

The following elementary concentration lemma is also well-known (this version is from [31]).

Lemma 16 (Logconcave concentration). For any isotropic logconcave density p in Rn, and any t > 0,

Px∼p
(
‖x‖ > t

√
n
)
≤ e−t+1.

To prove a lower bound on the expansion, it su�ces to consider subsets of measure 1/2. This follows
from the concavity of the isoperimetric pro�le. We quote a theorem from [33, Thm 1.8], which applies even
more generally to Riemannian manifolds under suitable convexity-type assumptions.

Theorem 17. The Cheeger constant of any logconcave density is achieved by a subset of measure 1/2.
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3 Eldan's stochastic localization

In this section, we consider a variant of the stochastic localization scheme introduced in [13]. In discrete
localization, the idea would be to restrict the distribution with a random halfspace and repeat this process. In
stochastic localization, this discrete step is replaced by in�nitesimal steps, each of which is a renormalization
with a linear function in a random direction. One might view this informally as an averaging over in�nitesimal
needles. The discrete time equivalent would be pt+1(x) = pt(x)(1 +

√
h(x− µt)Tw) for a su�ciently small h

and random Gaussian vector w. Using the approximation 1 + y ∼ ey− 1
2y

2

, we see that over time this process
introduces a negative quadratic factor in the exponent, which will be the Gaussian factor. As time tends
to ∞, the distribution tends to a more and more concentrated Gaussian and eventually a delta function, at
which point any subset has measure either 0 or 1. The idea of the proof is to stop at a time that is large
enough to have a strong Gaussian factor in the density, but small enough to ensure that the measure of a
set is not changed by more than a constant.

3.1 The process and its basic properties

Given a distribution with logconcave density p(x), we start at time t = 0 with this distribution and at each
time t > 0, we apply an in�nitesimal change to the density. This is done by picking a random direction from
a standard Gaussian.

In order to construct the stochastic process, we assume that the support of p is contained in a ball of
radius R > n. There is only exponentially small probability outside this ball, at most e−cR by Lemma 16.
Moreover, since by Theorem 17, we only need to consider subsets of measure 1/2, this truncation does not
a�ect the KLS constant of the distribution.

De�nition 18. Given a logconcave distribution p, we de�ne the following stochastic di�erential equation:

c0 = 0, dct = dWt + µtdt, (3.1)

where the probability distribution pt, the mean µt and the covariance At are de�ned by

pt(x) =
ec

T
t x− t

2‖x‖
2
2p(x)∫

Rn e
cTt y− t

2‖y‖
2
2p(y)dy

, µt = Ex∼ptx, At = Ex∼pt(x− µt)(x− µt)T .

Since µt is a bounded function that is Lipschitz with respect to c and t, standard theorems (e.g. [34,
Sec 5.2]) show the existence and uniqueness of the solution in time [0, T ] for any T > 0. We defer all proofs
for statements in this section, considered standard in stochastic calculus, to Section 5. Now we proceed to
analyzing the process and how its parameters evolve. Roughly speaking, the �rst lemma below says that
the stochastic process is the same as continuously multiplying pt(x) by a random in�nitesimally small linear
function.

Lemma 19. We have that dpt(x) = (x− µt)T dWtpt(x) for any x ∈ Rn,

By considering the derivative d log pt(x), we see that applying dpt(x) as in the lemma above results in
the distribution pt(x), with the Gaussian term in the density:

d log pt(x) =
dpt(x)

pt(x)
− 1

2

d[pt(x)]t
pt(x)2

= (x− µt)T dWt −
1

2
(x− µt)T (x− µt)dt

= xT dct −
1

2
‖x‖2 dt+ g(t)

where the last term is independent of x and the �rst two terms explain the form of pt(x) and the appearance
of the Gaussian.

Next we analyze the change of the covariance matrix.

Lemma 20. We have that dAt =
∫
Rn(x− µt)(x− µt)T

(
(x− µt)T dWt

)
pt(x)dx−A2

tdt.
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3.2 Bounding expansion

Our goal is to bound the expansion by the spectral norm of the covariance matrix at time t. First, we bound
the measure of a set of initial measure 1

2 .

Lemma 21. For any set E ⊂ Rn with
∫
E
p(x)dx = 1

2 and t ≥ 0, we have that

P
(

1

4
≤
∫
E

pt(x)dx ≤ 3

4

)
≥ 9

10
− P

(∫ t

0

‖As‖2 ds ≥
1

64

)
.

Proof. Let gt =
∫
E
pt(x)dx. Then, we have that

dgt =

〈∫
E

(x− µt)pt(x)dx, dWt

〉
where the integral might not be 0 because it is over the subset E and not all of Rn. Hence, we have,

d[gt]t =

∥∥∥∥∫
E

(x− µt)pt(x)dx

∥∥∥∥2

2

dt = max
‖ζ‖2≤1

(∫
E

ζT (x− µt)pt(x)dx

)2

dt

≤ max
‖ζ‖2≤1

∫
Rn

(
ζT (x− µt)

)2
pt(x)dx

∫
Rn

pt(x)dxdt

= max
‖ζ‖2≤1

(
ζTAtζ

)
dt = ‖At‖2 dt.

Hence, we have that d[gt]t
dt ≤ ‖At‖2. By the Dambis, Dubins-Schwarz theorem, there exists a Wiener process

W̃t such that gt − g0 has the same distribution as W̃[g]t . Using g0 = 1
2 , we have that

P(
1

4
≤ gt ≤

3

4
) = P(

−1

4
≤ W̃[g]t ≤

1

4
) ≥ 1− P( max

0≤s≤ 1
64

∣∣∣W̃s

∣∣∣ > 1

4
)− P([g]t >

1

64
)

1©
≥ 1− 4P(W̃ 1

64
>

1

4
)− P([g]t >

1

64
)

2©
≥ 9

10
− P([g]t >

1

64
)

where we used re�ection principle for 1-dimensional Brownian motion in 1© and the concentration of normal
distribution in 2©, namely Px∼N(0,1)(x > 2) ≤ 0.0228.

Theorem 22 (Brascamp-Lieb [8]). Let γ : Rn → R+ be the standard Gaussian density in Rn. Let f : Rn →
R+ be any logconcave function. De�ne the density function h as follows:

h(x) =
f(x)γ(x)∫

Rn f(y)γ(y) dy
.

Fix a unit vector v ∈ Rn, let µ = Eh(x). Then, for any α ≥ 1, Eh(|vT (x− µ)|α) ≤ Eγ(|vTx|α).

Using the above, the following isoperimetric inequality was proved in [11] and was also used in [13].

Theorem 23 ([11, Thm. 4.4]). Let h(x) = f(x)e−
1
2x

TBx/
∫
f(y)e−

1
2y

TBydy where f : Rn → R+ is an
integrable logconcave function and B is positive de�nite. Then h is logconcave and for any measurable subset
S of Rn, ∫

∂S

h(x)dx = Ω
(∥∥B−1

∥∥− 1
2

2

)
min

{∫
S

h(x)dx,

∫
Rn\S

h(x)dx

}
.

In other words, the expansion of h is Ω
(∥∥B−1

∥∥− 1
2

2

)
.
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Proof. The proof uses the localization lemma to reduce the statement to a 1-dimensional statement about a
Gaussian times a logconcave density, where the Gaussian is a projection of the Gaussian N

(
0, B−1

)
(but the

logconcave function might be di�erent as the limit of localization is the original function along an interval
times an exponential function). We then apply the Brascamp-Lieb inequality in one dimension (Theorem
22) to prove that for the resulting one-dimensional distribution, the variance is at most that of the Gaussian,
therefore at most

∥∥B−1
∥∥. The isoperimetric constant is bounded by the inverse of the standard deviation

times a constant. The complete proof, in more general terms, is carried out in [11, Thm. 4.4].

We can now prove a bound on the expansion.

Lemma 24. Given a logconcave distribution p. Let At be de�ned by De�nition 18 using initial distribution
p. Suppose that there is T > 0 such that

P

(∫ T

0

‖As‖2 ds ≤
1

64

)
≥ 3

4

Then, we have that ψp = Ω
(√

T
)
.

Proof. By Milman's theorem [33], it su�ces to consider subsets of measure 1
2 . Consider any measurable

subset E of Rn of initial measure 1
2 . By Lemma 19, pt is a martingale and therefore∫

∂E

p(x)dx =

∫
∂E

p0(x)dx = E
(∫

∂E

pt(x)dx

)
.

Next, by the de�nition of pT (3.1), we have that pT (x) ∝ ec
T
T x−T

2 ‖x‖
2

p(x) and Theorem 23 shows that the

expansion of E is Ω
(√

T
)
. Hence, we have∫

∂E

p(x)dx = E
∫
∂E

pT (x)dx = Ω(
√
T )E

(
min

(∫
E

pT (x)dx,

∫
Ē

pT (x)dx

))
≥ Ω(

√
T )P

(
1

4
≤
∫
E

pT (x)dx ≤ 3

4

)
Lem 21
≥ Ω(

√
T )

(
9

10
− P(

∫ t

0

‖As‖2 ds ≥
1

64
)

)
= Ω(

√
T )

where we used the assumption at the end. Using Theorem 17, this shows that ψp = Ω
(√

T
)
.

4 Controlling At via the potential Tr(A2
t )

4.1 Third moment bounds

Here are two key lemmas about the third-order tensor of a log-concave distribution.

Lemma 25. Given a logconcave distribution p with mean µ and covariance A. For any positive semi-de�nite
matrix C, we have that∥∥Ex∼p(x− µ)(x− µ)TC(x− µ)

∥∥
2

= O
(
‖A‖1/22 Tr

(
A1/2CA1/2

))
.

Proof. We �rst prove the case C = vvT . Taking y = A−1/2(x − µ) and w = A1/2v. Then, y follows an
isotropic logconcave distribution p̃ and hence∥∥∥Ey∼py (yTw)2∥∥∥

2
=
∥∥∥Ey∼p̃A1/2y

(
yTw

)2∥∥∥
2

= max
‖ζ‖2≤1

Ey∼p̃(A1/2y)T ζ
(
yTw

)2
≤ max
‖ζ‖2≤1

√
Ey∼p̃

(
(A1/2y)T ζ

)2√Ey∼p̃ (yTw)
4

= O
(
‖A‖1/22 ‖w‖22

)
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where we used the fact that for a �xed w, yTw has a one-dimensional logconcave distribution (Lemma 14)
and hence Lemma 15 shows that

Ey∼p̃
(
yTw

)4
= O(1)

(
Ey∼p̃

(
yTw

)2)2

= O(‖w‖42).

For a general PSD matrix C, we write C =
∑
λiviv

T
i where λi ≥ 0, vi are eigenvalues and eigenvectors

of C. Hence, we have that∥∥Ex∼p(x− µ)(x− µ)TC(x− µ)
∥∥

2
≤
∑
i

λi
∥∥Ex∼p(x− µ)(x− µ)T viv

T
i (x− µ)

∥∥
2
≤ O(1)

∑
i

λi ‖A‖1/22

∥∥∥A1/2vi

∥∥∥2

= O(1) ‖A‖1/22

∑
i

Tr
(
A1/2λiviv

T
i A

1/2
)

= O(1) ‖A‖1/22 Tr
(
A1/2CA1/2

)
.

Lemma 26. Given a logconcave distribution p with mean µ and covariance A. We have

Ex,y∼p |〈x− µ, y − µ〉|3 = O
(

Tr
(
A2
)3/2)

.

Proof. Without loss of generality, we assume µ = 0. For a �xed x and random y, 〈x, y〉 follows a one-
dimensional logconcave distribution (Lemma 14) and hence Lemma 15 shows that

Ey∼p |〈x, y〉|3 ≤ O(1)
(
Ey∼p〈x, y〉2

)3/2
= O

(
xTAx

)3/2
.

Next, we note that A1/2x follows a logconcave distribution (Lemma 14) and hence Lemma 15 shows that

Ex,y∼p |〈x, y〉|3 = O(1)Ex∼p
∥∥∥A1/2x

∥∥∥3

≤ O(1)

(
Ex∼p

∥∥∥A1/2x
∥∥∥2
)3/2

= O
(

Tr
(
A2
)3/2)

.

4.2 Analysis of At

Using Itô's formula and Lemma 20, we compute the derivatives of TrA2
t .

Lemma 27. Let At be de�ned by De�nition 18. We have that

dTrA2
t =2Ex∼pt(x− µt)TAt(x− µt)(x− µt)T dWt − 2Tr(A3

t )dt+ Ex,y∼pt
(
(x− µt)T (y − µt)

)3
dt.

Lemma 28. Given a logconcave distribution p with covariance matrix A s.t. TrA2 = n. Let At de�ned by
De�nition 18 using initial distribution p. There is a universal constant c1 such that

P( max
t∈[0,T ]

Tr
(
A2
t

)
≥ 8n) ≤ 0.01 with T =

c1√
n
.

Proof. Let Φt = TrA2
t . By Lemma 27, we have that

dΦt =− 2Tr(A3
t )dt+ Ex,y∼pt

(
(x− µt)T (y − µt)

)3
dt+ 2Ex∼pt(x− µt)TAt(x− µt)(x− µt)T dWt

def
=δtdt+ vTt dWt. (4.1)

For the drift term δtdt, Lemma 26 shows that

δt ≤ Ex,y∼pt
(
(x− µt)T (y − µt)

)3
= O

(
Tr
(
A2
t

)3/2) ≤ C ′Φ3/2
t (4.2)

for some universal constant C ′. Note that we dropped the term −2Tr(A3
t ) since At is positive semide�nite

and therefore the term is negative.
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For the martingale term vTt dWt, we note that

‖vt‖2 =
∥∥Ex∼pt(x− µt)TAt(x− µt)(x− µt)∥∥2

Lem 25
≤ ‖At‖1/22 Tr

∣∣A2
t

∣∣ ≤ Φ
5/4
t .

So the drift term grows roughly as Φ3/2t while the stochastic term grows as Φ
5/4
t

√
t. Thus, both bounds (on

the drift term and the stochastic term) suggest that for t up to O
(

1√
n

)
, the potential Φt remains O(n). We

now formalize this, by decoupling the two terms.
Let f(a) = − 1√

a+n
. By (4.1) and Itô's formula, we have that

df(Φt) = f ′(Φt)dΦt +
1

2
f ′′(Φt)d[Φ]t =

(
1

2

δt
(Φt + n)3/2

− 3

8

‖vt‖22
(Φt + n)5/2

)
dt+

1

2

vTt dWt

(Φt + n)3/2

≤ C ′dt+ dYt (4.3)

where dYt = 1
2

vTt dWt

(Φt+n)3/2
, Yt = 0 and C ′ is the universal constant in (4.2).

Note that
d[Y ]t
dt

=
1

4

‖vt‖22
(Φt + n)3

= O(1)
Φ5/2

(Φt + n)3
≤ C√

n
.

By Theorem 13, there exists a Wiener process W̃t such that Yt has the same distribution as W̃[Y ]t . Using
the re�ection principle for 1-dimensional Brownian motion, we have that

P( max
t∈[0,T ]

Yt ≥ γ) ≤ P( max
t∈[0, C√

n
T ]
W̃t ≥ γ) = 2P(W̃ C√

n
T ≥ γ) ≤ 2 exp(−γ

2
√
n

2CT
).

Since Φ0 = ‖Ap‖2F = n, we have that f(Φ0) = − 1√
2n

and therefore (4.3) shows that

P( max
t∈[0,T ]

f(Φt) ≥ −
1√
2n

+ C ′T + γ) ≤ 2 exp(−γ
2
√
n

2CT
).

Putting T = 1
256(C′+C)

√
n
and γ = 1

4
√
n
, we have that

P( max
t∈[0,T ]

f(Φt) ≥ −
1

3
√
n

) ≤ 2 exp(−8)).

Note that f(Φt) ≥ − 1
3
√
n
implies that Φt ≥ 8n. Hence, we have that P(maxt∈[0,T ] Φt ≥ 8n) ≤ 0.01.

4.3 Proof of Theorem 8

Proof of Theorem 8. By rescaling, we can assume TrA2 = n. By Lemma 28, we have that

P( max
s∈[0,t]

Tr
(
A2
s

)
≤ 8n) ≥ 0.99 with t =

c1√
n
.

Since Tr
(
A2
t

)
≤ 8n implies that ‖At‖2 ≤

√
8n, we have that P(

∫ T
0
‖As‖ ds ≤ 1

64 ) ≥ 0.99 where T =

min
{

1
64
√

8
, c1

}
1√
n
. Now the theorem follows from Lemma 24.

5 Localization proofs

We begin with the proof of the in�nitesimal change in the density.
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Proof of Lemma (19). Let qt(x) = ec
T
t x− t

2‖x‖
2

p(x). By Itô's formula, applied to f(a, t)
def
= ea−

t
2‖x‖

2

p(x) with
a = cTt x, we have that

dqt(x) =
df(a, t)

da
dcTt x+

df(a, t)

dt
dt+

1

2

d2f(a, t)

da2
d[cTt x]t +

1

2

d2f(a, t)

dt2
d[t]t +

1

2
· 2 · d

2f(a, t)

dadt
d[cTt x, t]t

=

(
dcTt x−

1

2
‖x‖22 dt+

1

2
d[cTt x]t

)
qt(x).

By the de�nition of ct, we have dc
T
t x = 〈dWt + µtdt, x〉. The quadratic variation of cTt x is d[cTt x]t = 〈x, x〉 dt.

The other two quadratic variation terms are zero. Therefore, this gives

dqt(x) = 〈dWt + µtdt, x〉 qt(x). (5.1)

Let Vt =
∫
Rn qt(y)dy. Then, we have

dVt =

∫
Rn

dqt(y)dy =

∫
Rn

〈dWt + µtdt, y〉 qt(y)dy = Vt 〈dWt + µtdt, µt〉 .

By Itô's formula, we have that

dV −1
t = − 1

V 2
t

dVt +
1

V 3
t

d[V ]t = −V −1
t 〈dWt + µtdt, µt〉+ V −1

t 〈µt, µt〉 dt = −V −1
t 〈dWt, µt〉 . (5.2)

Combining (5.1) and (5.2), we have that

dpt(x) = d(V −1
t qt(x)) = qt(x)dV −1

t + V −1
t dqt(x) + d[V −1

t , qt(x)]t = pt(x) 〈dWt, x− µt〉 .

The next proof is for the change in the covariance matrix.

Proof of Lemma (20). Recall that

At =

∫
Rn

(x− µt)(x− µt)T pt(x)dx.

Viewing At = f(µt, pt), i.e., as a function of the variables µt and pt, we apply Itô's formula. In the derivation
below, we use [µt, µ

T
t ]t to denote the matrix whose i, j coordinate is [µt,i, µt,j ]t. Similarly, [µt, pt(x)]t is a

column vector and [µTt , pt(x)]t is a row vector.

dAt =

∫
Rn

(x− µt)(x− µt)T dpt(x)dx−
∫
Rn

dµt(x− µt)T pt(x)dx−
∫
Rn

(x− µt)(dµt)T pt(x)dx

− 1

2
· 2
∫
Rn

(x− µt)d[µTt , pt(x)]tdx−
1

2
· 2
∫
Rn

d[µt, pt(x)]t(x− µt)T dx+
1

2
· 2d[µt, µ

T
t ]t

∫
Rn

pt(x)dx.

where the factor 2 comes from the Hessians of x2 and xy. Now the second term vanishes because∫
Rn

dµt(x− µt)T pt(x)dx = dµt(

∫
Rn

(x− µt)pt(x)dx)T = 0.

Similarly, the third term also vanishes:
∫
Rn(x− µt)(dµt)T pt(x)dx = 0.

To compute the last 3 terms, we note that

dµt = d

∫
Rn

xpt(x)dx =

∫
Rn

x(x− µt)T dWtpt(x)dx

=

∫
Rn

(x− µt)(x− µt)T dWtpt(x)dx+

∫
Rn

µt(x− µt)T dWtpt(x)dx = AtdWt.

10



Therefore, we have for the last term(
d[µt, µ

T
t ]t
)
ij

=
∑
`

(At)i` (At)j` dt = (AtA
T
t )ijdt = (A2

t )ijdt

which we can simply write as d[µt, µ
T
t ]t = A2

tdt. Similarly, we have d[µt, pt(x)]t = pt(x)At(x − µt)dt. This
gives the fourth term∫

Rn

(x− µt)d[µTt , pt(x)]tdx =

∫
Rn

(x− µt)(x− µt)TAtpt(x)dtdx = A2
tdt.

Similarly, we have the �fth term
∫
Rn d[µt, pt(x)]t(x−µt)T dx = A2

tdt. Combining all the terms, we have that

dAt =

∫
Rn

(x− µt)(x− µt)T dpt(x)dx−A2
tdt.

Next is the proof of stochastic derivative of the potential Φt = Tr(A2
t ).

Proof of Lemma 27. Let Φ(X) = Tr(X2). Then the �rst and second-order directional derivatives of Φ at X

is given by ∂Φ
∂X

∣∣
H

= 2Tr(XH) and ∂2Φ
∂X∂X

∣∣∣
H1,H2

= 2Tr(H1H2). Using these and Itô's formula, we have that

dTr(A2
t ) = 2Tr(AtdAt) +

∑
ij

d[Aij , Aji]t

where Aij is the real-valued stochastic process de�ned by the (i, j)th entry of At. Using Lemma 20 and
Lemma 19, we have that

dAt =
∑
z

Ex∼pt(x− µt)(x− µt)T (x− µt)zdWt,z −A2
tdt (5.3)

where Wt,z is the z
th coordinate of Wt. Therefore,

d[Aij , Aji]t =
∑
z

(
Ex∼pt(x− µt)i(x− µt)j(x− µt)T ez

) (
Ex∼pt(x− µt)j(x− µt)i(x− µt)T ez

)
dt

= Ex,y∼pt(x− µt)i(x− µt)j(y − µt)j(y − µt)i(x− µt)T (y − µt)dt. (5.4)

Using the formula for dAt (5.3) and d[Aij , Aji]t (5.4), we have that

dTr(A2
t ) =2Ex∼pt(x− µt)TAt(x− µt)(x− µt)T dWt − 2Tr(A3

t )dt

+
∑
ij

Ex,y∼pt(x− µt)i(x− µt)j(y − µt)j(y − µt)i(x− µt)T (y − µt)dt

=2Ex∼pt(x− µt)TAt(x− µt)(x− µt)T dWt − 2Tr(A3
t )dt+ Ex,y∼pt((x− µt)T (y − µt))3dt.
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