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We give an algorithm to learn an intersection of k halfspaces in Rn whose normals span an l-

dimensional subspace. For any input distribution with a logconcave density such that the bounding
hyperplanes of the k halfspaces pass through its mean, the algorithm (ε, δ)-learns with time and

sample complexity bounded by (
nkl

ε

)O(l)

log
1

εδ
.

The hypothesis found is an intersection of O(k log(1/ε)) halfspaces. This improves on Blum and
Kannan’s algorithm for the uniform distribution over a ball, in the time and sample complexity

(previously doubly exponential) and in the generality of the input distribution.

Categories and Subject Descriptors: G.3 [Probabilistic Algorithms]: Mathematics of Compu-

tation; F.2.0 [Analysis of Algorithms and Problem Complexity]: Theory of Computation

General Terms: Learning, Complexity

Additional Key Words and Phrases: Intersections of halfspaces, Random Projection, PAC Learn-

ing

1. INTRODUCTION

In this paper, we study the following fundamental problem in learning theory:
given points drawn from a distribution in n-dimensional space, with those in an
(unknown) intersection of k halfspaces labeled positive and the rest negative, the
problem is to learn a hypothesis that correctly classifies most of the distribution.
For k = 1, this corresponds to learning a single halfspace (also called a perceptron),
one of the oldest problems in machine learning [Minsky and Papert 1969; Rosenblatt
1962]. It is equivalent to linear programming and hence can be solved in polynomial
time. Other solutions, notably the perceptron algorithm, have also been studied
in the literature. The intersection of k halfspaces is a natural generalization of a
perceptron that corresponds to a two-level neural network used in many machine
learning applications. Moreover, any convex concept can be approximated by an
intersection of sufficiently many halfspaces.

The complexity of learning an intersection of halfspaces has been widely stud-
ied [Baum 1990a; Blum and Rivest 1992; Long and Warmuth 1994]. The proper
learning version, i.e., learning using an intersection of exactly k halfspaces is NP-
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hard even for k = 2 [Blum and Rivest 1992; Megiddo 1996]. This raises the question
of whether one can solve the problem of learning an intersection of k halfspaces
using more general hypothesis classes, e.g., polynomial threshold functions or in-
tersections of more than k halfspaces. For the former, Sherstov [2009; 2010] has
recently shown that the intersection of even two halfspaces in Rn cannot be PAC-
learned by a polynomial threshold function of degree n. Learning using more than
k halfspaces has the following lower bound: it is NP-hard (under randomized re-
ductions) to learn an intersection of k halfspaces using fewer than kn1−ε halfspaces
for any ε > 0 [Blum and Rivest 1992; Vempala 2004]. The complexity of the
general learning problem, i.e., using a richer concept class (e.g., an intersection of
poly(n, k) halfspaces or a decision tree of halfspaces) is a major open question.

On the other hand, efficient algorithms are known under some assumptions on
the input distribution. In 1990, Baum [1990b] gave an algorithm for learning an
intersection of two homogeneous halfspaces (a halfspace is homogeneous if the hy-
perplane defining it passes through the origin) over any distribution D that is
origin-symmetric, i.e., for any x ∈ Rn, D(x) = D(−x) (any point x and its reflec-
tion through the origin are equally likely). Baum’s algorithm was recently shown
to work for logconcave distributions [Klivans et al. 2009]. A few years after Baum’s
work, Blum and Kannan [1993; 1997] made an important breakthrough. They
found a polynomial-time algorithm that works for a constant number of halfspaces
for the uniform distribution on the unit ball. Their algorithm does not explic-
itly find a set of halfspaces; instead it gives a procedure which can be evaluated
in polynomial-time (for constant k) on a new example and is guaranteed to be
probably approximately correct on the uniform distribution. The running time,
the number of examples required and the size of the hypothesis reported by their
algorithm are all doubly exponential in k, namely n2O(k)

.
In this paper, we present a randomized algorithm (Section 2) with the following

guarantees1:

—The running time and number of examples required are (singly) exponential in
k.

—The algorithm explicitly finds an intersection of O(k log(1/ε) halfspaces.

—It works for a general class of distributions including any logconcave distribution.

The algorithm is inspired by the following observation: the true complexity of
the problem is determined not by the dimension n or the number of halfspaces k,
but by the dimension l of the subspace spanned by the normal vectors to their
defining hyperplanes.

We assume that the halfspaces are homogeneous, i.e., the hyperplanes defining
them pass through the origin. Let the halfspaces be w1 ·x ≥ 0, w2 ·x ≥ 0, . . . , wk ·x ≥
0. The intersection of these halfspaces is the positive region P :

P = {x |wi · x ≥ 0 for i = 1, . . . , k}.

1A preliminary version of this paper appeared in FOCS 1997 [Vempala 1997]. While the main
algorithm here is essentially the same, this complete version corrects errors and extends the

analysis to logconcave input distributions.
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Our goal will be to find a set of normal vectors, so that the intersection of the
halfspaces they define will be close to P . For this, we consider the set of all nor-
mal vectors that define hyperplanes through the origin which do not intersect the
positive region P . Formally, it is,

P ∗ = {v ∈ Rn | v · x ≤ 0∀x ∈ P},

and is called the dual cone or polar cone of P [Grötschel et al. 1988]. The polar
can be defined for any subset of Rn. For a closed cone C, it satisfies (C∗)∗ = C,
i.e., the polar of the polar is the original set (see e.g., [Grötschel et al. 1988]).

In our setting, it follows that P ∗ is the cone at the origin formed by the vectors
w1, . . . , wk, i.e.,

P ∗ = {v = −
k∑

j=1

αjwj | ∀j, αj ≥ 0}.

If we could identify the k-dimensional span of P ∗, then we could use an algorithm
with running time exponential in the dimension, by trying all “distinct” halfspaces
in this low-dimensional space. Identifying this subspace is the major ingredient of
the algorithm.

The first step of the algorithm is computing an approximation to P ∗ (in Rn) from
a large sample of points in P . The approximation is the polar C∗ of the conical
hull C of the sample. To bound the sample complexity of approximating the polar,
before computing it, we apply an affine transformation to the sample in order to
make it isotropic, i.e., to center it at the origin and make its covariance matrix
the identity. For a logconcave distribution in Rn, this can be achieved using Õ(n)
sample points. After the isotropic transformation, the number of points needed to
ensure that C∗ is close to P ∗ grows exponentially in l (and not exponentially in n).
This is the key observation of the algorithm, proved formally in Theorem 4. The
proof is based on some simple properties of logconcave distributions.

With C∗ in hand, we apply a procedure based on random projection to identify
an l-dimensional subspace V close to the span of P ∗. Then, we project C∗ (which
is n-dimensional) to this relevant subspace. Let the projection be πV (C∗). The
next step is to choose vectors from V to guarantee that for each wi there is at least
one vector in the sample close to it in angle. We do this by simply considering all
points of a sufficiently fine grid in V ∩Bl, where Bl is the unit ball in Rl. Finally,
we prune the set of candidate vectors using a greedy heuristic.

In the next section, we fix notation and state some useful facts. Then we describe
the algorithm (called Polar k-Planes) in detail and proceed with its analysis. We
conclude this section with a statement of the main theorem.

Theorem 1. Suppose we are given examples in Rn drawn from an unknown
logconcave distribution labeled using an intersection of k halfspaces whose normals
span an l-dimensional subspace and whose bounding hyperplanes pass through the
mean of the input distribution. Then for any ε, δ > 0, with probability at least
1 − δ, Algorithm Polar k-Planes outputs a set of O(k log(1/ε)) halfspaces whose
intersection correctly classifies at least 1− ε of the input distribution. The time and
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sample complexity of the algorithm are bounded by

nl+4

(
Ck2l

ε2

)l

log3(n/εδ)

where C > 1 is an absolute constant.

We note that if l = k, then the complexity is

nk+4

(
Ck3

ε2

)k

log3(n/εδ),

dominated by the term nk.
Klivans, O’Donnell and Servedio [Klivans et al. 2008] have given an algorithm for

learning an intersection of k halfspaces assuming a Gaussian distribution on exam-
ples. Their approach is to use a polynomial threshold function and has complexity
nO(log k/ε4) to learn a hypothesis of similar complexity. For a Gaussian distribution
(a special case of logconcave distributions), the dependence of their algorithm on
k is much better (and on ε is worse). It is not clear if their approach extends to
logconcave distributions as their analysis appears to rely crucially on properties of
Gaussian distributions.

1.1 Preliminaries

We use the standard PAC model where examples are points in Rn and are drawn
from an unknown distribution D and presented along with their labels. For param-
eters ε, δ > 0, with probability at least 1− δ the algorithm has to find a hypothesis
that has error at most ε on D, i.e., it correctly classifies a new unlabeled example
drawn from D with probability at least 1− ε.

For a labeled set of examples S, we let S+ denote the subset labeled positive and
S− be the subset labeled negative.

We assume that the label of an example is determined by the intersection of
k halfspaces in Rn, such that the normal vectors to the hyperplanes bounding
these halfspaces span a subspace of dimension l. We assume that the hyperplanes
bounding the halfspaces pass through the origin. Each point x ∈ Rn is labeled
positive or negative according to the following rule:

`(x) =

{
+ if Wx ≥ 0
− otherwise.

Here W is a real matrix of rank l with k rows and n columns. Each row wi is the
normal to a halfspace wi · x ≥ 0. Formally, the positive region P is:

P = {x ∈ Rn : Wx ≥ 0}.

We recall an important fact about sample complexity.

Fact 1. The VC-dimension of the intersection of k homogenous halfspaces in
Rn is nk.

For a linear subspace V of Rn, we denote orthogonal projection to V by πV .
The unit ball in Rn is denoted by Bn and signifies the set of all points within unit
Euclidean distance from the origin.
Journal of the ACM, Vol. , No. , 20.
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Let P ∗ denote the dual cone of the cone formed by the positive region.

P ∗ = {v ∈ Rn | v · x ≤ 0∀x ∈ P} = {v = −
l∑

i=1

αiwi, | ∀i, αi ≥ 0}.

If P,Q are two cones, then P ∗ ⊆ Q∗ iff Q ⊆ P .
For two convex cones K, K ′ in Rk we say that K is ε-enclosed by K ′ if K ⊆ K ′,

and for every point x ∈ K ′ there is some point y ∈ K such that the angle between
the vectors x and y is at most ε. Conversely, we say that K ′ ε-encloses K.

The projection width of a convex body K along a direction (unit vector) v is the
length of the 1-dimensional projection of K onto v:

width(K, v) = max
x∈K

x · v − min
x∈K

x · v.

We assume that the input distribution D has a logconcave density function cen-
tered at the origin. This class includes the uniform distribution over any convex
body and also any Gaussian. Logconcave densities have several useful properties.

Theorem 2. [Dinghas 1957; Leindler 1972; Prekopa 1973a; 1973b] The product
and convolution of two logconcave functions are logconcave. Any marginal of a
logconcave density is logconcave.

A distribution F is said to be isotropic if a random variable X drawn from F
satisfies

E(X) = 0 and E(XXT ) = I.

The second condition is equivalent to saying that for any unit vector u ∈ Rn,
E((uT x)2) = 1. We say that a distribution is near-istropic or θ-isotropic if for any
u,

1
θ
≤ E((uT x)2) ≤ θ.

Using a theorem of Rudelson [Rudelson 1999], and a moment bound in [Lovász and
Vempala 2007], it is known that the number of samples required to compute an affine
transformation that puts any logconcave distribution F ε-close to isotropic position
is bounded. The following theorem is Corollary A.2 from [Kalai and Vempala 2006].

Theorem 3. [Kalai and Vempala 2006] There exists a constant C such that for
m > Cn log2 n log3(1/δ) i.i.d. samples from a logconcave distribution F in Rn, for
δ < 1/n, an isotropic transformation of the samples when applied to F puts it in
2-isotropic position with probability at least 1− δ.

We will also use the following properties of isotropic logconcave functions from
Lemmas 5.5 and 5.14 of [Lovász and Vempala 2007].

Lemma 1. [Lovász and Vempala 2007] For any isotropic logconcave density func-
tion f : Rn → R+,

(a) If n = 1, then max f ≤ 1.
(b) f(0) ≥ 2−7n.
(c) For any v ∈ Rn with ‖v‖ ≤ 1/9, f(v) ≥ 2−9n‖v‖f(0).

Journal of the ACM, Vol. , No. , 20.
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2. THE ALGORITHM

The parameters εi, m,m1 and N in the description below will be specified later.

Polar k-Planes

Input: Access to labeled points in Rn, dimension l, error parameters ε, δ.
Output: A set of halfspaces.

(1) Scale. Let S be a set of m samples. Apply an isotropic transformation,
i.e., compute

z = E(x), A = E((x− z)(x− z)T )

over S and apply A−1/2(x− z) to each sample point in S.
(2) Approximate the dual cone. Let C be the conical hull of the positive

examples and C∗ be the polar cone of C:

C∗ = {y ∈ Rn | ∀x ∈ C, y · x ≤ 0}.

(3) Identify the irrelevant subspace. Find directions of small width as
follows: pick a sample X of N uniform random unit vectors and let

x1 = argmin
x∈X

width(C∗ ∩Bn, x).

Similarly, for i = 2, . . . , n − l, using a fresh sample in each iteration,
compute

xi = argmin
x∈X,x⊥x1,...,xi−1

width(C∗ ∩Bn, x).

(4) Project. Let V be the subspace orthogonal to {x1, . . . , xn−l}; πV (C∗)
is the projection of C∗ to V .

(5) Cover the projection. Let S1 be a new set of m1 labeled examples.
Choose a set of vectors U from ε3Zl ∩Bl as follows: for i = 1, 2, . . .,
(a) let ui be the vector such that ui ·x ≤ 0 separates the largest number

of remaining negative examples from at least 1− ε4 of S+
1 .

(b) Discard the negative examples that are separated in this way by
ui.

(c) Stop when the number of remaining negatives is less than an ε/2
fraction of S−1 .

(6) Output the set of vectors U . Given an unlabeled point x, it is labeled
positive if (ui ·M)x ≤ 0 for all ui ∈ U , and negative otherwise.

In Step 3 above, we need to compute the width of the set C∗∩Bn along a direction
x. To do this, we note that a separation oracle for C∗ ∩ Bn can be constructed
easily from its definition:

C∗ = {y ∈ Rn : ∀x ∈ C, x · y ≤ 0}.
Journal of the ACM, Vol. , No. , 20.
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We observe that since C is a convex cone generated by a sample of points, it suffices
to check the constraints for each point in the sample. Given a separation oracle
for C∗ ∩ Bn, the width computation consists of two linear optimization problems,
both of which can be solved via the Ellipsoid algorithm using a polynomial number
of calls to the separation oracle and polynomial additional complexity [Grötschel
et al. 1988]. The overall complexity of each linear optimization is O(mn3 log(n/ε))
for a sample of m points in Rn.

3. ANALYSIS

We begin the analysis with a bound on the number of samples from P required to
approximate its dual. Then we bound N , the number of random projection trials to
find each “irrelevant” direction. This is followed by the guarantees for the covering
step.

3.1 Approximating the dual

The bound on the number of examples required by the algorithm is dominated by
the first step. Let S be the set of examples. Then |S| should be large enough to
guarantee that P ∗ is ε1-enclosed by the dual to the cone formed by S.

Theorem 4. Let F be an isotropic distribution with a logconcave density func-
tion f . Let P be an intersection of k homogenous halfspaces whose normals span
an l-dimensional subspace; assume P contains a rotational cone of angle ε0. Let S
be a random sample of positive examples from F and C be the cone at the origin
formed by S. Let C∗ be the dual cone of C. For any 0 ≤ ε1 ≤ ε0 and 0 ≤ δ ≤ 1/2,
if

|S| ≥ 212(l+1)ll/2ε−l
1

(
nk log

l

ε1
+ log

1
δ

)
,

then with probability at least 1− δ, the cone P ∗ is ε1-enclosed by C∗.

Proof. Let Q ⊆ P be the minimal cone ε1-enclosed by P . The cone Q is
nonempty by our assumption of a cone of angle ε0 ≥ ε1 in P . Let Q∗ be the polar
cone of Q. It follows that P ∗ is ε1-enclosed by Q∗. To see that Q∗ is a convex cone,
we note that it can be viewed as a union of rotational cones of angle ε1 centered at
each point of P ∗.

We will show that P ∗ is ε1-enclosed by C∗ by showing that the C∗ is contained
in Q∗. For this, it is sufficient to show that, with high probability, for each point
h on the boundary of Q∗, there is a supporting plane H of C∗ which separates h
from P ∗.

Since h is on the boundary of Q∗, by the definition of the dual cone, h · x = 0
gives a supporting hyperplane of Q such that Q lies in the halfspace h · x ≥ 0.
Consider the convex region

P ′ = P ∩ {x : h · x ≤ 0}

and take y ∈ P ′. Now y · h ≤ 0. On the other hand since the dual of P ∗ is P and
y ∈ P , for any w ∈ P ∗, we have y · w ≥ 0. Thus, y · x = 0 is a hyperplane that
separates h from P ∗.

Journal of the ACM, Vol. , No. , 20.
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We bound the probability of choosing such a witness y in our sample S. This is
the measure µf (P ′). Since P ′ is an intersection of k + 1 halfspaces, we can project
to their span V to get a density function g and distribution G. Note that the
dimension of V is at most l+1. From Theorem 2, we have that g is also logconcave
and isotropic. We also have that

µg(πV (P ′)) = µf (P ′).

To bound this measure, we will use two properties: (a) a lower bound on the fraction
of the unit sphere taken up by πV (P ′) and (b) a lower bound on the measure of
any line (through the origin).

For the first, we observe that for any unit vector z in Q, all the vectors within
angle ε1 of z are contained in P . Suppose not, say there exists a vector z′ on the
boundary of P whose angle with z is smaller than ε1. Then there is a supporting
plane of P at z′ with normal h(z′), so that upon moving h(z′) by an angle less
than ε1, the plane intersects Q, i.e., h(z′) lies outside Q∗. This contradicts the
maximality of Q∗ which asserts that for for any point in P ∗, all points within angle
ε1 of it are contained in Q∗. Next, note that h · x = 0 is a supporting plane of Q,
and let q be a point in Q for which h · q = 0. Then, by the previous argument, the
cone of all points within angle ε1 of q is contained in P . Further, a half-cone of this
angle is contained in P ′. Thus, the fraction of the unit sphere Bl+1 taken up by
πV (P ′) is at least the fraction taken up by a half-cone of angular radius ε1.

From Lemma 1(b) and (c), we get that the density function of an isotropic
logconcave distribution in Rl+1 satisfies

(i) f(0) ≥ 2−7(l+1)

(ii) For any v with |v| ≤ 1/9, f(v) ≥ 2−9|v|(l+1)f(0).

Using these two properties, we have,

µf (P ′) = µg(πV (P ′)) ≥ Vol(P ′ ∩ (1/9)Bl+1)2−8(l+1)

≥ 1
2

(
2ε1
π

· 1
9

)l (
eπ

l + 1

)(l+1)/2

2−8(l+1)

≥ 2−12lεl
1l
−l/2 = µ (say) .

This bounds the probability that any single point h on the boundary of Q∗ is
cut off. To prove it with high probability for every point in the boundary of Q∗,
we will use the VC-dimension of the intersection of k +1 halfspaces. We would like
to show that with high probability, for a sufficiently large sample of points, every
intersection of k + 1 halfspaces that has probability mass at least µ will contain
at least one point from the sample. For this, consider the hypothesis class of all
intersections of k + 1 halfspaces. Then by the VC theorem (see e.g., Theorem A.6
of [Vempala 2004]), and using Fact 1, if we consider a sample of size

8
µ

(
n(k + 1) log

48
µ

+ log
2
δ

)
,

the probability that any consistent hypothesis (i.e., one that labels the sample
correctly) has error more than µ is less than δ. In other words, every set of l + 1
halfspaces whose intersection has probability mass (according to F ) at least µ will
Journal of the ACM, Vol. , No. , 20.
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see at least one example in the sample. Using µ = 2−10lεl
1l
−l/2, we get that the

bound in the theorem.

3.2 Identifying the relevant subspace

In this section, we analyze the procedure to approximately identify the irrelevant
subspace and hence the subspace spanned by P ∗ .

Our goal is to find a direction x1 such that the projection width of P ∗ along x1

is small. Along any direction orthogonal to the span of P ∗, the projection width
of C∗ is at most ε1. We generate random vectors so that one of them is nearly
orthogonal to the span of P ∗. The minimum projection width of C∗ among vectors
in such a sample would then be about ε1 or smaller.

In the next lemma, we estimate the probability that x1 is nearly orthogonal to
P ∗.

Lemma 2. Let V be an l-dimensional subspace of Rn and x ∈ Rn be a random
vector with standard Gaussian coordinates.

(1 ) For any t ≤ 1,

P(‖πV (x)‖ ≤ t) ≥ 1
2

(
t√
l

)l

.

(2 ) For 0 ≤ α ≤ 1, with probability 1 − δ, a sample of size 4
(√

l
α

)l

ln 1
δ random

unit vectors contains a vector x1 satisfying

‖πV (x1)‖ ≤
α√
n− l

.

Proof. For the first part, we observe that y = πV (x) is an l-dimensional random
vector with coordinates drawn independently from N(0, 1). The desired probability
is

P(
l∑

i=1

y2
i ≤ t2) =

∫ t

0
e−r2/2rl−1 dr∫∞

0
e−r2/2rl−1 dr

≥ 1
2

∫ t

0
e−r2/2rl−1 dr∫ 2

√
l

0
e−r2/2rl−1 dr

≥ 1
2
e(l−1)/2 Vol(tBl)

Vol(2
√

lBl)

≥ 1
2

(
t√
l

)l

.

For the second part, we consider random Gaussian vectors and separately bound
‖y‖ from above and ‖x−y‖ from below to obtain the desired conclusion for random
unit vectors. The upper bound on ‖y‖ comes from the previous part. To bound
‖x − y‖ from below, we observe that it is a the length of an (n − l)-dimensional
Gaussian. Therefore,

E(‖x− y‖2) = n− l

Journal of the ACM, Vol. , No. , 20.
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and

P(‖x− y‖2 ≤ 1
2

√
n− l) ≤ 1

2
.

Thus with probability at least

1
4

(
t√
l

)l

a random unit vector x has ‖πV (x)‖ ≤ 2t/
√

n− l, which implies the conclusion of
the lemma with t = α/2.

Lemma 3. Assume that P ∗ is ε2
4
√

n−l
-enclosed by C∗ for some 0 ≤ ε2 ≤ π/4. Let

each iteration of the procedure to identify the irrelevant subspace uses

N ≥ 4

(
4
√

l(n− l)
ε2

)l

ln
2n

δ

random unit vectors. Let W be the relevant subspace identified. Then, with proba-
bility at least 1− δ/2, any unit vector u in P ∗ has a projection πW (u) such that

u · πW (u) ≥ 1− ε22
4

.

Proof. From Lemma 2, with δ/2n in place of δ, there will be a vector x1 in a
random sample of

N = 4

(√
l

α

)l

ln
2n

δ

unit vectors such that

πV (x1) ≤
α√
n− l

where V is the span of P ∗. We will set α = ε2/4
√

ln(n− l) at the end.
Next, using the fact that P ∗ is ε2

4
√

n−l
-enclosed by C∗, for any vector unit vector

u ∈ C∗,

|u · x1| ≤ |u · πV (x1)|+ |u · πV ⊥(x1)|

≤ ‖πV (x1)‖+
ε2

4
√

n− l

≤ α√
n− l

+
ε2

4
√

n− l
.

Thus, the algorithm chooses a vector x1 along which the projection width of C∗∩Bn

is at most the above quantity.
We can view the second iteration of the algorithm as first projecting C∗ and

P ∗ to the subspace orthogonal to x1 and then sampling from unit vectors in that
subspace. The projected C∗ continues to ε2/4

√
n− l-enclose P ∗ since the angle

between two points cannot increase by projection. We now apply the previous
argument in Rn−1. Using Lemma 2 n− l times, there exist vectors x1, . . . , xn−l in
the samples examined by the algorithm, such that for any 1 ≤ j ≤ n− l,

‖πV (xj)‖ ≤
α√

n + 1− l − j
+

ε2

4
√

n− l
.
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Now consider any unit vector u ∈ C∗ and its projection πW (u), orthogonal to
the span of x1, . . . , xn−l.

u = πW (u) +
n−l∑
j=1

(u · xj)xj .

Hence,

‖u− πW (u)‖2 =
n−l∑
j=1

(u · xj)2

≤
n−l∑
j=1

2
α2

(n + 1− l − j)
+ 2

ε22
16(n− l)

≤ 2α2 ln(n− l) +
ε22
8

.

We set α = ε2/4
√

ln(n− l) to get a bound of ε22/4 above. Thus,

u · πW (u) = ‖πW (u)‖2 ≥ 1− ε22
4

.

3.3 Proof of Theorem 1

We are now ready to prove the main theorem. The first step of the algorithm
puts the sample in isotropic position and by Theorem 3, with high probability the
distribution is 2-isotropic. For the rest of this proof, we will assume the distribution
after the first step is isotropic (the reader can verify that the proof readily extends
to near-isotropy).

Next we claim that we can assume that the positive region P contains a rotational
cone of radius ε0 = ε/l. If not, the measure of P is at most ε, and therefore labeling
all of space as negative achieves error at most ε. To see the bound on the measure
of P , we note that if P does not contain a rotational cone of radius ε0, then
moving each bounding hyperplane by ε0 to get a smaller halfspace results in a set
of halfspaces with an empty intersection. Now for each halfspace, we can view
the distribution projected along the normal to the halfspace as a one-dimensional
isotropic logconcave distribution. Using Lemma 1(a), moving the hyperplane in
this manner changes the mass of the halfspace by at most ε0, and so the total mass
of P is at most ε0l.

Applying Theorem 4 and Lemma 3, with probability at least 1−δ/2, the algorithm
identifies an l-dimensional subspace V ′ such that for any vector u ∈ C∗,

u · πV ′(u) ≥ 1− ε22
4

.

In particular this holds for the unknown normal vectors w1, . . . wk. Let their pro-
jections be w′

i.
The algorithm next considers vectors from the set ε3Zl ∩Bl in the subspace V ′.

Let z1, . . . , zk be the vectors in this set closest in angle to w1, w2, . . . , wk. Then, we
have that for any i, the angle between zi and wi is at most ε2 + ε3

√
l. We use this
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to bound the measure of the symmetric difference of the halfspaces wi · x ≥ 0 and
zi · x ≥ 0. Since the distribution on examples, F , is isotropic and logconcave, its
projection to the span of wi and zi is a 2-dimensional isotropic logconcave function.
Thus the measure of any line through the origin is the value at zero of the marginal
orthogonal to the line, and it is bounded by 1 using Lemma 1(a). Thus, the measure
of the symmetric difference of the two halfspaces is at most ε2 + ε3

√
l. And so the

intersection of the k halfspaces zi · x ≥ 0 misclassifies at most (ε2 + ε3
√

l)k fraction
of F . We set

ε2 =
ε

8k
and ε3 =

ε

8k
√

l

to get the error to be at most ε/4. From Lemma 3, this also fixes

ε1 =
ε2

4
√

n− l
=

ε

32k
√

n− l
.

From these parameter values, we get

N = 4

(
32k
√

l(n− l)
ε

)l

ln(2n/δ)

from Lemma 3 and

m =

(
220 k

√
l(n− l)
ε

)l

(nk log(n/ε) + log(1/δ))

from Theorem 4 as sufficiently large values. The algorithms makes O(N) calls to a
linear optimizer over the polar. As discussed earlier, the complexity of each opti-
mization problem is O(mn3 log(n/ε)) giving an overall running time of O(Nmn3 log(n/ε))
up to the projection step. This matches the bound claimed in the theorem and is
the dominant term in the complexity of the algorithm.

It remains to show that the greedy procedure used by the algorithm to choose
from vectors in ε3Zl ∩Bl finds vectors that achieve comparable error. For any grid
vector u considered by the algorithm, it needs to accurately estimate the fraction
of positive examples in the halfspace and fraction of negative examples not in the
halfspace.

Let S1 be a fresh sample of examples used for this estimation. From standard
V C-dimension bounds, if

m1 = |S1| ≥
128
ε

(
nl log

48
ε

+ log
2
δ

)
,

then every for any halfspace u · x ≥ 0, the estimate of the measure of the halfspace
given by this sample is within ε/8 of the true measure.

Our procedure to pick halfspaces is the following: consider grid vectors u which
have almost all positive examples in the halfspace Hu : {x : u · x ≥ 0}, i.e.,
|Hu ∩ S| − |Hu ∩ S+

1 | ≤ ε4m1 = εm1/4, and among these pick the one that has the
maximum number of negatives on the other side, i.e., |H−u ∩ S−| is maximized.
Then the negative examples in H−u are discarded and the procedure is repeated.

This can be viewed as a set cover problem. The elements are all the negative
examples. The sets are vectors u that have almost all positive examples in the
Journal of the ACM, Vol. , No. , 20.
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halfspace Hu. The vectors z1, . . . , zk give a solution that covers all but an ε/4
fraction of the elements. Our algorithm is a greedy algorithm. We use the following
standard guarantee on the greedy algorithm for maximum coverage [Hochbaum
and Pathria 1998]: a greedily chosen collection of k sets covers at least a 1− (1/e)
fraction of the elements covered by the optimal collection, and an k log r size greedy
collection covers at least a 1− (1/r) fraction of the elements covered by an optimal
collection.

Lemma 4. Suppose there exist k halfspaces whose intersection correctly classifies
1 − (ε/4) of the distribution. Then, the intersection of a greedily chosen set of
2k log r halfspaces will correctly classify at least (1 − (1/r))(1 − (ε/4)) fraction of
the distribution.

Setting r to be 2
ε gives us a set of 2k log(2/ε) planes that correctly classify 1− ε

of the distribution with probability 1− δ. The probability is only over the previous
steps of the algorithm guaranteeing the existence of good vectors z1, . . . , zk; the
final greedy procedure is deterministic.

4. DISCUSSION

We have presented an algorithm to learn an intersection of k homogenous halfs-
paces whose normals span an l-dimensional subspace given labeled examples from
any logconcave distribution. The key ingredients of the algorithm are approximat-
ing the dual of the intersection and identifying the span of the normals by random
projection. This approach seems suitable for any convex low-dimensional concept.
Open problems include further improving the dependence on k and extending be-
yond logconcave distributions.
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