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Sanjeev Arora∗ László Lovász† Ilan Newman‡ Yuval Rabani§ Yuri Rabinovich¶

Santosh Vempala‖

Abstract

Motivated by applications in combinatorial optimiza-
tion, we initiate a study of the extent to which the
global properties of a metric space (especially, embed-
dability in `1 with low distortion) are determined by the
properties of small subspaces. We note connections to
similar issues studied already in Ramsey theory, com-
plexity theory (especially PCPs), and property testing.
We prove both upper bounds and lower bounds on the
distortion of embedding locally constrained metrics into
various target spaces.
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1 Introduction

Suppose that we are given a finite metric space (X, d)
and we are told that the induced metric on every small
subset of X embeds isometrically into `1. What can
we say about the distortion of embedding the entire
metric into `1? In this paper we initiate the study of
this question and similar questions.

One reason to study such problems is that certain
embedding questions are intimately related to problems
in combinatorial optimization. In particular, finite `1
metrics correspond exactly to combinations of cuts (see
the book [10]). Approximation algorithms for NP-
hard cut problems such as sparsest cut are derived by
embedding general metric spaces into `1 [18, 5], and
more recently, negative type metrics into `1 [4, 7, 3].
Conceivably, the relaxations underlying the results for
sparsest cut could be tightened by restricting them to
metrics that have the property that every subset of
size k embeds isometrically into `1 (where k is either a
constant or a slowly growing function of the input size).
Interestingly, similar constraints arise when applying
k rounds of a lift-and-project method such as Lovasz-
Schrijver or Sherali-Adams. These relaxations can be
computed in nO(k) time, where n is the number of
vertices of the input graph. (Such observations were
made in a recent paper [2], where it was observed that
studying such questions leads to the study of local
versus global structure. That paper restricted attention
to vertex cover, however.)

We show (Theorem 3.1) that if every subset of size
n
c of an n-point metric space embeds isometrically into
`1, then the entire space embeds into `1 with distortion
O(c2). (The result also holds if the isometric embedding
of subsets is replaced by low distortion embedding.)
By the above discussion, for any c = c(n) → ∞,
we get a 2o(n)-time O(c2)-approximation algorithm for
sparsest cut. (Recent reductions [8] show that such
approximation is hard, assuming the unique games
conjecture [19].)

On the other hand, we construct (Theorem 3.5)
metric spaces where every constant sized subset embeds



isometrically into `1, yet the entire space incurs large
distortion when embedded into `1. In fact, in our
proof the distortion remains super-constant as long as
the subset size remains o(log log n). This restricts the
possibility of designing polynomial time approximation
algorithms for sparsest cut with significantly better
guarantees using some lift-and-project methods.

Thus far we were insisting that subsets have to be
isometrically embeddable into `1, and in this setting
there is a large gap between our upper bounds and
our lower bounds1. However, it is also interesting to
consider the case where subsets are embeddable with
constant distortion into `1. After all, many plausible
ideas for inferring global structure from local structure
would try to relate the distortion of the entire space to
the distortion of (the metric induced on) small subsets.
Upon thus relaxing the question, the gap between
upper and lowerbounds nearly vanishes. We construct
(Theorem 3.4) n-point metrics that require Ω(log n)
distortion to embed into `1, but whose every subset
of size n1−ε embeds into `1 (or even into restricted
subclasses of `1) with distortion O(1/ε2). We note that
such constructions are nontrivial precisely because we
need a fairly strong property to hold for every subset.
A significant contribution of our work is a new insight
into shortest-path metrics derived from random graphs
of bounded degree, which are used in most of our
lower bound results. These metrics were shown to be
extremal for many metric-theoretic properties in the
past. Surprisingly, their local structure turns out to
be rather simple, even when the size of the sub-metrics
is as large as n1−ε (see Section 3.2).

Our results are also related to work on Ramsey phe-
nomena in metric spaces, a line of work motivated both
by applications to lower bounds in on-line computation
and by deep questions about the local theory of metric
spaces (see [6] and the references therein) and our lower-
bound of Section 3.2 answers an open question of [6].
Ramsey theory in general shows that in the midst of
global “disorder” there is always a significant subset ex-
hibiting “order.” In this phrasing, our upper bounds
trivially imply an upper bound on the size of the small-
est “disordered” subset, assuming global “disorder.” For
example, if a metric space does not embed into `1 with
distortion at most α, there must be a subspace of car-
dinality O(n

√
β/α) that does not embed into `1 with

distortion less than β. In fact, we show that there are
many such subspaces, and one can construct, indepen-
dently of the metric, a poly(n) sized set of candidate
subspaces to check.

1By the terms “upper bound” or “lower bound” we mean an

upper bound or a lower bound on the distortion of embedding
metrics of a certain class into some target space.

Local versus global questions also play an important
role in areas such as the construction of probabilistically
checkable proofs, program checking, property testing,
etc. In those settings one has to infer a global property
from the knowledge that the “local” property only has
to hold for many local neighborhoods. Our study has
a very similar feel, except we are interested in inferring
global properties when the local property holds for all
local neighborhoods, not just most.

The results discussed so far carry over (with small
changes) to `2 as well. The upper bounds hold, in
fact, not only for `1 but also for many other classes
of metrics, such as polygonal metrics, hypermetrics,
and negative type metrics. We introduce the notion
of a baseline class of metrics, obtained by postulating
some properties shared by the above examples. These
properties are sufficient for proving the upper bounds.
We show (Theorem 5.2) that the class of all metrics
is “far” from any non-trivial class of baseline metrics,
in the sense that there are metrics that do not embed
into such a class with bounded distortion. Our proof
uses the notion of a forbidden sub-metric, akin in some
respects to the topological notion of a forbidden minor.
For every non-trivial class of baseline metrics there is a
fixed size metric that does not embed into any member
of the class with distortion below some constant. This
is the starting point of our asymptotic bound. (See
also [20].) On the other hand, our lower bounds on the
distortion of embedding into `1 imply that polygonal
metrics are also “far” (in the same sense) from `1. Our
results motivate future investigation into the potential
use of baseline metrics in approximation algorithms.

Finally, we also study ultrametrics, a class of met-
rics that is used in hierarchical clustering and met-
ric Ramsey theory (see [13, 12, 6] and the references
therein). These are metrics that satisfy the condition
∀x, y, z d(x, z) = max{d(x, y), d(z, y)}. In particular,
they are a (very restricted) subset of `2 metrics. By
definition, if every subset of size three is an ultramet-
ric, then so is the whole space. On the other hand, we
show (Theorem 4.2) that the situation changes dramat-
ically if we relax the requirement on the subsets. We
construct for every c and ε metric spaces on n points
such that every subset of cardinality nε embeds into an
ultrametric with distortion bounded by c, yet the entire
metric space does not embed into an ultrametric with
distortion less than c1/ε. We show that this bound is
tight by a establishing a matching upper bound on the
distortion.

It should be stressed that the most important open
problem arising from our work is to construct metrics
that require large distortion to embed into `1, but where
every subset of size at most, say, nε (or even Ω(log n))



embeds isometrically (as opposed to embedding with
low distortion) into `1. Our work on ultrametrics indi-
cates that the two conditions may vary considerably in
their behavior. Thus the possibility remains of improv-
ing the recent O(

√
log n) approximation guarantees for

sparsest cut and other problems via the lift-and-project
approach outlined above. Our results do not rule out,
say, an nlog n time algorithm.

2 Preliminaries

We use dist(d, d′) to denote the distortion between two
distance functions d and d′ on the same set of points.
For a class C of distance functions, we use dist(d ↪→ C)
to denote the minimum distortion between d and d′ ∈
C. (This assumes, of course, that C contains distance
functions on the same set of points as d.)

Let d be a distance function (on an underlying point
set P ), and let f : R → R be a monotonically non-
decreasing function with f(0) = 0. We denote by f(d)
the distance function where ∀p, q ∈ P , f(d)(p, q) =
f(d(p, q)). Notice that if d is a metric and f is concave,
then f(d) is a metric. The power scale f(x) = xc,
c ∈ [0, 1] plays an important role in this paper. It is
worth noting the following simple fact: dist(dc, (d′)c) =
(dist(d, d′))c

.
Let d be a distance function, and let Q be a subset

of the points on which d is defined. We use dQ to denote
the restriction of d to the pairs of points in Q.

A set of metrics C is called baseline if it has the fol-
lowing properties, shared e.g., by the classes neg,hyp,
and Mk to be discussed later (see Section 3.2):

1. It is symmetric, i.e., for every d ∈ C, any metric d′

derived from d by permuting the underlying set of
points is also in C.

2. It is a closed cone, i.e., for every d, d′ ∈ C on
the same set of points, for every a, a′ ≥ 0, also
a · d + a′ · d′ ∈ C.

3. It is hereditary, i.e., for every d ∈ C, for every subset
of points Q on which d is defined, also dQ ∈ C.

4. For every d ∈ C, consider a metric d′, obtained from
d by performing the following cloning operation:
Pick a point p, add a “clone” q, and set d′(q, x) =
d(p, x) for all points x (d(p, q) = 0). Then, d′ ∈ C.

Observe that every baseline set of metrics includes
all cut metrics, and therefore all metrics that embed
isometrically in `1. Further notice that if C is a baseline
set of metrics, then for every γ ≥ 1, the set of metrics
Cγ = {d : dist(d ↪→ C) ≤ γ} is also baseline .

3 Baseline sets of metrics

3.1 Upper Bounds. This section is devoted to the
proof of the following theorem and its consequences.

Theorem 3.1. Let m,n ∈ N, m ≤ n, let c ≥ 1, and
let C be a baseline set of metrics. Let d be a metric
on n points such that every m-point subspace Q has
dist(dQ ↪→ C) ≤ γ. Then,

dist(d ↪→ C) = O

(
γ ·

( n

m

)2
)

.

We require a definition. Let (X, d) be a metric
space. A tree-like extension of (X, d) is a metric
space obtained from (X, d) by repeatedly performing the
following attachment operation: Pick a point p ∈ X and
a weight w ≥ 0, and “attach” to p a new point q 6∈ X
by an edge of weight w, i.e., set d′(q, x) = d′(p, x) + w
for all points x ∈ X, and augment X by q.

Lemma 3.1. Let C be a baseline set of metrics, let
d ∈ C, and let d′ be a tree-like extension of d. Then
d′ ∈ C.

Proof. Clearly, it suffices to prove this for a single
attachment operation. Let dp be the metric obtained
from d by adding a clone q of a point p. Let δ be the
cut metric defined by δ(x, y) = 1 if exactly one of the
points x, y is q, and δ(x, y) = 0 otherwise. Both dp and
δ are in C (the former by definition, the latter because
C must contain all cut metrics). Attaching q to p at
distance w gives the metric d′ = dp + w · δ. As C is a
closed cone, d′ ∈ C. �

Next, we introduce a construction that will be used
in the proof of Theorem 3.1. Let d be a metric on
the finite set of points P = {p1, p2, . . . , pn}. It will
be assumed w.l.o.g. that for any pi ∈ X, the distances
between pi and the other points in X are all distinct. Let
σ ∈ Sn be a permutation on {1, 2, . . . , n}. The metric
dσ is defined as follows. We start with restriction of d
to {pσ(1), pσ(2), . . . , pσ(m)}. Then, for i = m + 1, . . . , n,
the new point pσ(i) is attached to pσ(i∗) at distance wσ

i ,
where i∗ ∈ {1, 2, . . . , i − 1} minimizes d(pσ(i), pσ(i∗)),
and wi = d(pσ(i), pσ(i∗)). Finally, we define d∗ on P as
the average of all dσ’s: For every p, q ∈ P ,

d∗(p, q) =
1
n!
·

∑
σ∈Sn

dσ(p, q).

Proof. (of Theorem 3.1.) Throughout the proof m is
fixed, whereas n and d vary. Let Tn,m, n ≥ m denote
the supremum over all n-point metrics d of dist(d, d∗).
Clearly, Tm,m = 1. Notice that for every p, q ∈ P ,
dσ(p, q) ≥ d(p, q), and therefore d∗ dominates d. To



bound the stretch, observe that

d∗(p, q) = Eσ[dσ(p, q)]

=
2
n
· Eσ [dσ(p, q) |σ(n) ∈ {p, q}]

+
(

1− 2
n

)
· Eσ [dσ(p, q) |σ(n) 6∈ {p, q}] .

Notice that Eσ [dσ(p, q) |σ(n) 6∈ {p, q}] ≤ Tn−1,m ·
d(p, q).

For the case σ(n) = p let p∗ ∈ P be the point
in P that is closest to p. By our assumptions, p∗ is
unique and hence it will be the point to which p will be
attached. As d(p, p∗) ≤ d(p, q) the triangle inequality
implies that d(p∗, q) ≤ 2d(p, q) and thus,

Eσ[dσ(p, q)|σ(n) = p] = d(p, p∗) + Eσ[d∗(p∗, q)|σ(n) = p]
≤ d(p, q) + Tn−1,m · 2d(p, q).

The case when σ(n) = q is analogous. Therefore,

Tn,m ≤
(

1− 2
n

)
· Tn−1,m +

2
n
· (2Tn−1,m + 1)

=
(

1 +
2
n

)
· Tn−1,m +

2
n

.

Solving the recurrence, we get that Tn,m = O
((

n
m

)2
)

.

Next, recall that Cγ also is a baseline set of metrics.
By the conditions of the theorem, for every m-point
subset Q, dQ ∈ Cγ . Therefore, by Lemma 3.1, for every
permutation σ, dσ ∈ Cγ . As Cγ is a closed cone, also
d∗ ∈ Cγ . As dist(d, d∗) = O(

(
n
m

)2), the theorem now
follows. �

Theorem 3.2. A metric d̃ ∈ C, which is an embedding
of d satisfying the statement of Theorem 3.1, can be
computed in probabilistic polynomial time.

Proof. The construction of d̃ is based on the
construction of d∗, and we use the same terminology
as in the proof of Theorem 3.1. Let K ⊆ Sn be a subset
of permutations, with |K|/|Sn| = κ ≤ 1. Extending the
definition of d∗, let d∗K = Eσ[dσ |σ ∈ K]. Observe that

(3.1) d ≤ d∗K ≤ κ−1d∗ .

The first inequality holds since each dσ dominates d, the
second since d∗ = d∗K · κ + d∗

K̄
· (1− κ) .

Let G = {σ | dσ ≤ 10n2Tn,m · d} ⊆ Sn. By
Theorem 3.1, the expected stretch of d∗ with respect to
any pair of points in the space is ≤ Tn,m. Therefore,
using Markov’s Inequality, |G| ≥ 0.9|Sn|, and d∗G ≤
1.1d∗. Next, let G̃ be a random sample from G of size
N . By Hoeffding’s large deviation bound, the expected

stretch of d∗
G̃

with respect to any pair of points x, y in
the space is

Pr
[
d∗

G̃
(x, y) ≥ (1 + δ) · d∗G(x, y)

]
≤

(
e

1 + δ

) δN
10n2Tn,m

Thus, choosing N = 10n2Tn,m log2 n, we conclude that
d∗

G̃
≤ 3.5d∗G ≤ 4d∗ with probability close to

1. Finally, to create a random sample G̃, we sample
permutations σ from Sn, construct dσ, and discard it if
any of the edges is stretched by more than 10n2Tn,m.
Since 0.9 fraction of the permutations in Sn are in G,
this gives a polynomial time probabilistic algorithm. �

Theorem 3.2 has the following interesting structural
implication.

Corollary 3.1. The assumption of Theorem 3.1 that
all size-m subspaces are γ-close to C can be replaced by a
weaker assumption that only a κ-fraction of the size-m
subspaces have this property, at the cost of an additional
multiplicative factor of κ−1 in the upper bound.

Indeed, the permutations in Sn whose m-prefix corre-
sponds to a good size-m subset constitute a κ-fraction
of all permutations, and (3.1) applies.

We now show that Theorems 3.1 and 3.2 imply
a sub-exponential time algorithm for approximating
sparsest cut to within any super-constant factor.

Theorem 3.3. Sparsest cut can be approximated to
within a factor of O(c2) in time exp

(
n log c

c

)
, where n

is the number of nodes in the input graph.

Proof. Let (G, w, T, h) be an instance of sparsest
cut. Here G = (V,E) is an undirected graph, w :
E → N is a weight function on the edges of G, T =
{(s1, t1), (s2, t2), . . . , (sk, tk)} is a set of pairs of nodes
of G (called terminals), and h : T → N is the demand
function. Let D be the set of semi-metrics d on V , such
that for every U ⊂ V with |U | ≤ 1

c |V |, the restriction
of d to U embeds isometrically in `1. By Theorem 3.1,

(3.2) z∗ = min

{ ∑
e∈E w(e)d(e)∑

(s,t)∈T h(s, t)d(s, t)
: d ∈ D

}

is achieved at a semi-metric d that embeds into `1 with
distortion O(c2). By the results of [18, 5], given the
embedding of d into `1, one can find a cut (S, V \ S) in
G such that

(3.3)

∑
e∈E: |e∩S|=1 w(e)∑

(s,t)∈T : |{s,t}∩S|=1 h(s, t)
= O(c2z∗).

It is known that if we replace d ∈ D with d ∈ `1
in equation (3.2) we get the value of the sparsest cut.



Hence, z∗ is a lower bound on the value of the sparsest
cut and thus the cut for which equation (3.3) holds
approximates the sparsest cut as claimed. Now z∗ can
be computed by a linear program with

(|V |
2

)
variables

and
( |V |

1
c |V |

)
·2O( 1

c |V |) constraints. To find the cut we need
to compute the embedding of d into `1. By Theorem 3.2,
it is sufficient to compute the (isometric) embedding of
poly(|V |) tree-like extensions of subsets U of size |V |/c
(at the cost of an extra O(1) factor in the approximation
guarantee). The embedding of a tree-like extension of
a subset U is trivial to compute, given the embedding
of U . The latter can be computed through a linear
program with 2|U |−2 variables (one for each possible cut
in U) and

(|U |
2

)
constraints. �

3.2 Lower Bounds. The main result in this section
is a nearly tight counterpart to some of the upper
bounds from Section 3.1. The next lemma will play
a key role in the proof.

Lemma 3.2. Let d be the shortest path metric of an n-
node graph G = (V,E) with girth at least p, diameter
D and such that the subgraph induced by any subset
S ⊂ V of size at most n1−ε/2 has at most |S|(1 + 1/p)
edges. Then, for every S ⊆ V with |S| ≤ n1−ε,
the corresponding dS can be embedded in `1 (in fact,
into a distribution over dominating tree-metrics) with
distortion O(1/ε) · (D + 1)/(p + 1).

Theorem 3.4. For every ε > 0 and for every integer
n ≥ 2, the following statements hold.

1. There is an n-point metric d such that for every
n1−ε-point subspace Q, dist(dQ ↪→ `1) = O(1/ε2)
yet dist(d ↪→ `1) = Ω(log n). 2

2. There is an n-point metric d such that for every
n1−ε-point subspace Q, dist(dQ ↪→ `2) = O(1/ε),
yet dist(d ↪→ `2) = Ω(

√
log n).

Proof. We start with a random 3-regular graph and
delete o(n) vertices so that the girth of the resulting
graph G is p = Θ(ε′ log n) and G is an expander (for
convenience, let n be the number of vertices after the
deletion). We will apply Lemma 3.2 to G. To do this, we
note that D = O(log n) for an expander and by Lemma
3.3 below we get p = Θ(ε log n), which gives an upper
bound on the distortion of O(1/ε2).

It is well-known that the distortion of embedding
the shortest path metric of an n-node bounded degree
expander into `1 is Ω(log n), so the metric d induced by

2In fact, the lower bound holds even for embedding into neg,
the class of negative type metrics (for definition — see below).

G satisfies the first statement. For the second statement
we use the metric

√
d, keeping in mind that the square

root of an `1 metric is an `2 metric. �

Lemma 3.3. [2] In a random 3-regular graph, with high
probability, the subgraph induced by any subset S of size
at most n1−ε has at most (1+ c

ε log n )(|S|−1) edges where
c is an absolute constant.

Proof. (of Lemma 3.2 ) Fix a subset S with at most
n1−ε vertices, and consider the corresponding induced
metric dS . Recall the definition of a spanner of (S, dS):
it is a graph Y = (S, L) on the vertex set S, such that
the weight of an edge (i, j) ∈ L is dS(i, j). By [1],
there exists a spanner Y of (S, dS) such that |L(Y )| ≤
n1−ε · nε/2 = n1−ε/2, and the shortest-path metric of Y
approximates dS up to a factor O(1/ε).

Let H = (U,F ) be the subgraph obtained by
including all the edges on the shortest paths between
pairs of vertices i, j ∈ S, such that (i, j) ∈ L(Y ). We
will show that the shortest-path metric dH induced by
H can be embedded into a distribution of dominating
tree metrics with distortion O((D + 1)/(p + 1)). Hence,
dS embeds into such a distribution with distortion
O(1/ε) · (D + 1)/(p + 1).

Let H = (U,F ) be a subgraph of G with O(n1−ε′)
vertices. The lemma follows from the following two
claims.

Claim 3.1. There is a probability distribution on span-
ning trees of H such that each edge of H occurs with
probability at least p/(p + 1).

It is well-known that metrics induced by trees are
isometrically embeddable in `1. The second claim is that
truncated tree metrics are embeddable with a constant
distortion.

Claim 3.2. Given a tree metric t and a number M ≥ 0,
let t′ij = min{tij ,M}. Then t′ can be embedded into `1
3 with constant distortion.

Applying Claim 3.1 to H, we conclude that there
is a probability distribution on spanning trees {Ti} of
H such that each edge of H occurs with probability at
least α = p/(p + 1). Let D be the diameter of H. For
each Ti in the distribution, consider the corresponding
metric ti = min{D, dTi}. Define a metric t =

∑
witi ,

where wi is the weight of Ti in the distribution. Clearly,
t dominates dH . To upper-bound dist(t, dH), consider
an edge of H. It’s t−length is at most

1 · α + D · (1− α) ≤ 1 + D

1 + p
.

3In fact, `1 can be replaced by a distribution of dominating
tree-metrics, a more restricted class of metrics.



Finally, by Claim 3.2, every ti, and hence t can be em-
bedded in a distribution of H-dominating tree metrics
with constant distortion.

It remains to prove the claims. For the first, we
define two polytopes in R|F |. The first polytope, P ,
will be the spanning tree polytope of H, i.e., the set of
all vectors that are convex combinations of incidence
vectors of spanning trees of H. The second polytope,
B, will be the following axis-parallel box with one corner
being the vector of all 1’s.

(3.4) Bα = {v ∈ R|F ||∀e : α ≤ ve ≤ 1}.

The claim is that for α ≤ p/(p + 1), the intersection of
P and Bα is nonempty.

By Farkas’ Lemma, it suffices to show that for any
w ∈ R|F |, there exists a vector v ∈ Bα such that

(3.5) max
x∈P

w · x ≥ w · v.

Note that since the extreme points of P are spanning
trees of H, the LHS is always maximized by the
incidence vector of some spanning tree. We consider
two extreme cases:

1. w ≤ 0: In this case we set vij = 1 for every edge
(i, j). The inequality follows.

2. w ≥ 0: In this case we set vij = α for every
edge. Suppose the LHS of (3.5) is maximized
by the spanning tree T . We will prove that the
total weight of all the edges in H is only slightly
larger than the weight of T . For this consider
the following bipartite graph. The left side of the
bipartition has a point corresponding to each edge
of T . The right side has a point for each edge of H
that is not in T . There is an edge (e, f) if e ∈ T
belongs to the fundamental cycle of f 6∈ T . Note
that the optimality of T implies that we ≥ wf .
Let the girth of G be g. Recall g ≥ p. Thus
the degree of each vertex in T is at least p. We
claim that this bipartite graph has a p-matching:
a subgraph with degree 1 for points on the left
and degree p for points on the right. Suppose
not. Then there is some minimal subset X on
the right side whose neighborhood N(X) has size
|N(X)| < |X|p. Now consider the subtree of T
induced by N(X) (if the edges corresponding to
N(X) do not form a connected component, then
X is not minimal). This subtree has |N(X)| + 1
vertices and the subgraph of H induced by these
vertices has at least |N(X)|+|X| > |N(X)|(1+1/p)
edges. But this contradicts Lemma 3.3.

The existence of the p-matching implies that the
edges of T can be partitioned into p subsets such

that the weight of each subset is more than the
weight of all the edges not in T . Thus,

∑
ij

wij ≤
(

1 +
1
p

) ∑
ij∈T

wij .

This implies that inequality (3.5) holds for any
α ≤ p/(p + 1).

For the general case, take an arbitrary vector w and set
cij = 1 for wij ≤ 0 and cij = α if wij > 0. Consider
the connected components induced by the nonnegative
edges. For each component the inequality is implied
separately by the second case above. Now shrink all the
components to single vertices. The inequality on the
induced graph follows from the first case. Summing up,
(3.5) is proved.

We conclude with the proof of the second claim.
Let T be the tree corresponding to t. Build a (weighted)
graph T ′ by introducing a new vertex u, and connecting
it to every vertex of T by an edge of length M/2.
Observe that the shortest-path metric of T ′ restricted to
V (T ) is precisely t, and that T ′ is 2-outerplanar. By [9],
this implies that t′, and hence t, can be embedded into
a distribution of dominating tree metrics (and thus into
`1) with constant distortion. �

We now turn our attention to the case where
subspaces embed isometrically into an interesting class
of metrics. Our lower bounds in this case are much
weaker. We need the following definitions.

A distance function d is k-gonal iff for every two se-
quences of points p1, p2, . . . , pbk/2c and q1, q2, . . . , qdk/2e
(where points are allowed to appear multiple times in
each sequence) the following inequality holds:

bk/2c∑
i=1

dk/2e∑
j=1

d(pi, qj) ≥

bk/2c∑
i=1

bk/2c∑
i′=1

d(pi, pi′) +
dk/2e∑
j=1

dk/2e∑
j′=1

d(qj , qj′).

We use Mk to denote the class of all k-gonal distance
functions. Clearly, M3 is simply all metrics. Also, for
every k ∈ N, k ≥ 2, Mk+2 ⊂ Mk and Mn

2k−1 ⊂ Mn
2k.

On the other hand, for every k ∈ N, k ≥ 1, distance
functions in Mn

2k are not necessarily metrics. The class
of all negative type distance functions is

neg =
∞⋂

k=2

M2k.



Schoenberg showed that d ∈ neg iff
√

d embeds isomet-
rically into `2. The class of all hypermetrics is

hyp =
∞⋂

k=2

M2k−1.

Thus, all hypermetrics are negative type metrics. It is
known that all `1 metrics are hypermetrics. All classes
of metrics discussed above (except for `2 metrics) are
baseline .

A theorem in [11], combined with an argument
similar to the proof of Theorem 3.4 gives the following
theorem. The proof is omitted from this extended
abstract.

Theorem 3.5. For every integer n ≥ 2 and for every
k ∈ N, k ≤ n, the following statements are true:

1. There exists an n-point k-gonal metric d such that
dist(d ↪→ neg) = Ω

(
(log n)log2(1+1/(dk/2e−1))

)
.

2. There exists an n-point metric d such that every k-
point subspace is hypermetric, yet dist(d ↪→ neg) =
Ω

(
(log n)log2(1+1/(k−1))

)
.

3. There exists an n-point metric d such that every
k-point subspace embeds isometrically in `2, yet
dist(d ↪→ neg) = Ω

(
(log n)

1
2 log2(1+1/(k−1))

)
.

Corollary 3.2. For k = o(log log n), there exist an n-
point metric d such that every k-point subspace is in `2,
yet dist(d ↪→ neg) = ω(1). (Recall that `2 ⊂ `1 ⊂ neg).

4 Ultrametrics

The set of ultrametrics is the set of metrics ult =
{d : d(p, q) ≤ max{d(p, r), d(q, r)}, ∀p, q, r} . All ultra-
metrics embed isometrically into `2. Notice that ult is
not baseline , so the results from the previous section do
not apply to this set. Consider an ultrametric d. Given
two points x, y, an xy-path P is a sequence of points
(x = p0, p1, p2, . . . , pm = y) of arbitrary length. We say
that pq ∈ P iff there exists j ∈ {1, 2, . . . ,m} such that
p = pj−1 and q = pj . For every two points x, y put

u(x, y) = min
xy-paths P

{max{d(p, q) : pq ∈ P}} .

Theorem 4.1. (Farach-Colton [13]) The distance
function u is an ultrametric which is dominated by d
(i.e., u(x, y) ≤ d(x, y), for every x, y ∈ X). Moreover,
every ultrametric u′ that is dominated by d is also dom-
inated by u.

As an immediate corollary we get the following
criterion.

Corollary 4.1. Let c ≤ 1 be the maximum value such
that for every x, y ∈ X, every xy-path P contains
pq ∈ P such that d(p, q) ≥ c · d(x, y). Then, dist(d ↪→
ult) = c−1.

Using this criterion we establish the following the-
orem.

Theorem 4.2. Let c ≥ 1, and let ε > 0. Let d be an
n-point metric such that for every nε-point subspace Q,
dist(dQ ↪→ ult) ≤ c. Then, dist(d ↪→ ult) = cd1/εe.
This bound is essentially tight.

Proof. For the upper bound, it suffices to show
that for n = mk − mk−1 + 1, k ∈ N, it holds that
dist(d ↪→ ult) ≤ ck. The proof is by induction on k.
For k = 1 the theorem is trivially true. For k > 1,
by Corollary 4.1, it suffices to show that for every
x, y ∈ X, any simple xy-path P contains pq ∈ P with
d(p, q) ≥ d(x, y)/ck. Let P = (x = v1, v2, . . . , vr =
y), r ≤ n, be such a path. Consider the xy-path
P ′ = (v1, vm, v2m−1, v3m−2, . . . , vr). As P ′ has at most
1 + n−1

m = mk−1 − mk−2 + 1 points, the induction
hypothesis implies that there exists vj−1vj ∈ P ′ with
d(vj−1, vj) ≥ d(x, y)/ck−1. Consider the segment of P
(vj−1, . . . , vj) containing at most m points. By the base
case of the induction, there exists pq ∈ (vj−1, . . . , vj)
such that d(p, q) ≥ d(vj−1, vj)/c ≥ d(x, y)/ck.

For the lower bound, consider the metrics dc
n, where

dn is the shortest path metric of the n-node cycle
and c ∈ [0, 1]. The reader can verify easily using
Corollary 4.1 that dist(dc

n ↪→ ult) = Ω(nc), whereas
for every subspace on nε points, the restriction d′ of dc

n

to this subspace has dist(d′ ↪→ ult) = O(nεc). �

Remark 4.1. The metrics dc
n are, in fact, Ω(nc) far

from the more general set of tree metrics (by the argu-
ment from [22, Corollary 5.3]). Hence, the lower bounds
hold for tree metrics as well.

5 Separating a baseline Metric Class from `∞

Let C be a baseline metric class that excludes some
metric. How well can the metrics from C approximate
general metrics? The following purely existential result
of Matousek [20] implies a separation between the class
of all metrics and C, i.e., for every γ > 1 there exists a
metric D such that dist(D ↪→ C) ≥ γ.

Theorem 5.1. For every finite metric µ and any con-
stants ε > 0, γ > 1, there exists a (larger) finite metric
D such that, for any metric M on the same set of points
as D, if dist(D,M) ≤ γ, then M contains a submetric
µ′ with dist(µ, µ′) ≤ (1 + ε) .

We conjecture that a much stronger separation
holds.



Conjecture 5.1. For any n ∈ N, there exists an n-
point metric dn such that dist(dn ↪→ C) ≥ Ω(logα n)
for some constant α > 0.

In what follows, we produce a supporting evidence
for this conjecture by proving its analogue for normed
spaces. Unlike in the rest of the paper, we assume here
that C contains not only finite metrics, but also metrics
whose underlying space is the entire Rn or Zn, and, in
particular {`n

1}∞n=1 ∈ C.

Theorem 5.2. Let C be a baseline metric class, and
assume that there exists a metric µk on k points such
that dist(µk ↪→ C) = β > 1. Then, for any C-metric d
on Rn, it holds

dist(d, `n
∞) = Ω(nα), where α ≈ 1

2
β − 1
β + 1

1
ln k

.

Observe that the gap between the two may not exceed√
n, the gap between `n

∞ and `n
2 ⊂ C.

The proof of the theorem uses the following lemma.

Lemma 5.1. For any d ∈ C on Rn, there exists a norm
‖ ∗ ‖ ∈ C on Rn, such that

(5.6) dist(`n
∞, ‖ ∗ ‖) ≤ dist(`n

∞, d) .

The proof of this lemma appears in the Appendix.
Next, we need the following quantitative version of

a theorem by James [16], communicated to us, together
with an outline of its proof, by W.B. Johnson and
G. Schechtman:

Theorem 5.3. Assume that γ = (1+δ)2
r

, and n ≥ k2r

,
where r, k ∈ N, and 0 ≤ δ < 1. Then, if an n-
dimensional norm ‖∗‖ is γ-close (in the sense of metric
distortion) to `n

∞, then there exists a subspace L of Rn

of dimension dim(L) = k, such that the restriction of
‖ ∗ ‖ to L is 1+δ

1−δ -close to an `∞ norm on L.

The theorem as stated follows from a lemma from [21],
pp.74-75, which establishes L of dimension k, such that
the restriction of ‖ ∗ ‖ to L satisfies ‖

∑
i αivi‖ ≤

(1 + δ) · maxi |αi| · ‖vi‖ , together with a simple claim
[17] that,

‖
∑

i

αivi‖ ≤ (1 + δ) ·max
i
|αi| · ‖vi‖

⇒ ‖
∑

i

αivi‖ ≥ (1− δ) ·max
i
|αi| · ‖vi‖ .

Finally, we prove Theorem 5.2. Assume for simplic-
ity that n is of the form n = k2r

. The metric µk 6∈ C,
being a metric on k points, isometrically embeds into

`k
∞. We conclude by Theorem 5.3 that for any C-norm
‖ ∗ ‖ on Rn it holds

dist(‖ ∗ ‖, `n
∞) ≥

(
1 +

β − 1
β + 1

)2r

.

The same estimate holds, by Lemma 5.1, for any metric
d ∈ C on Rn. Thus, for such n, the theorem holds with
constant α = logk

(
1 + β−1

β+1

)
. If n is not of the form k2r

,
take the largest such power ≤ n, at the cost of paying
an extra factor 1/2 in the above α. This concludes the
proof of Theorem 5.2.

6 Concluding remarks

We already mentioned the main open problem in the in-
troduction, namely, to understand metrics whose small
sets embed isometrically into `1. Theorems 3.1 and 3.5
provide a starting point for a further research.

Approximating general (or special) metrics by met-
rics from some nontrivial baseline class C may have in-
teresting algorithmic applications. We conjecture that
for any n ∈ N, there exists an n-point metric dn such
that dist(dn ↪→ C) ≥ Ω(logα

n) for some constant α > 0
depending on C. A corresponding upper bound with
α < 1 would be most interesting. Regarding special
metrics, it would be interesting to show, e.g., that any
planar metric can be approximated by a metric in M6

with constant distortion. This is closely related to the
famous question about `1-embeddability of planar met-
rics (see, e.g., [15]). Gupta [14] showed that planar met-
rics embed with constant distortion into neg, and hence
into M2k.

It might be of interest to study the implications
of a local property on a different global property. For
example, the extremal metrics constructed in the proof
of Theorem 4.2, while far from being ultrametrics, are
essentially very simple metrics. In particular, they
are outerplanar and, up to a factor of π/2, Euclidean.
It makes sense to ask, for example, if metrics that
are locally almost ultrametric are globally almost `1
metrics.

The findings of this paper and other results indi-
cate that the shortest path metrics of random k-regular
graphs have a surprisingly simple local structure. Fur-
ther research leading to a better understanding of this
local structure, may prove useful for constructing lower
bounds.
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A Proof of Lemma 5.1:

W.l.o.g., in what follows we restrict our attention to d’s
dominating `n

∞, and respectively, speak of (supremum)
stretch incurred by d instead of speaking of distortion.
It will be convenient to bring the discussion back to the
realm of discrete metric spaces. Instead of proving (5.6)
for Rn, we shall prove it for Zn. Clearly, this is a fully
equivalent statement. Observe that a norm on Zn is
just a translation-invariant scalable metric.

First, we construct a translation-invariant metric
d∗ ∈ C on Zn, such that the stretch incurred by d∗ is
no more than that of d. The construction is as follows.
Given d and a point p ∈ Zn, define a metric d+p on Zn

by

d+p(x, y) = d(x + p, y + p) .

Observe that by the symmetry of C, d+p(x, y) ∈ C.
Moreover, it dominates Zn equipped with the `n

∞ metric,
and has the same stretch as d.

For an integer i let [−i, i] = {−i, . . . , i}. Let
[−i, i]n ⊆ Zn denote the corresponding discrete cube.
For a point x ∈ Zn let [−i, i]n−x = {y−x | y ∈ [−i, i]n}
denote the shifted cube. Consider a sequence of metrics
d = d0, d1, d2, . . . defined by:

di =
1

|[−i, i]n|
∑

p∈[−i,i]n

d+p .

Clearly di belongs to C, it dominates the `n
∞ metric, and

the stretch incurred by di is no more than that incurred



by d. Observe also that For every x, y ∈ Zn we have

lim
i→∞

|di(x, y)− di(0, y − x)|

= lim
i→∞

| 1
(2i + 1)n

∑
p∈[−i,i]n

d(x + p, y + p)

− 1
(2i + 1)n

∑
p∈[−i,i]n

d(p, y − x + p) |

≤ lim
i→∞

1
(2i + 1)n

∑
p∈ [−i,i]n4 ([−i,i]n−x)

d(x + p, y + p)

≤ lim
i→∞

1
(2i + 1)n

· 2n · ‖x‖∞ · (2i + 1)n−1 ·

· dist(`n
∞, d)‖x− y‖∞ = 0.

Next, we employ the following standard procedure.
Order all vectors of Zn in some order v1, v2, v3, ....
Consider an infinite subsequence of {di} such that the
value of di(0, v1) converges on it; call this limit ν(v1).
Do the same with the latter subsequence to obtain
ν(v2) and a sub-subsequence, and continue in the same
manner ad infinitum. Finally, for each x, y ∈ Zn, define

d∗(x, y) = ν(y − x) .

The above observation implies that d∗ is indeed a
translation-invariant metric. Clearly, d∗ ∈ C, it is `n

∞-
dominating, and the stretch incurred by it is bounded
by the stretch incurred by d.

Second, we use d∗ to construct d∗∗ ∈ C with the
same properties, which is not only translation-invariant,
but also scalable. The construction is similar to the pre-
vious one, but is a bit simpler. Consider a sequence of
translation-invariant metrics d(0), d(1), d(2), . . . defined
as follows:

d(r)(x, y) = 2−r d∗(2r · x, 2r · y) .

Observe that d(r)’s are (pointwise) monotone non-
increasing with r, since for any a ∈ N+, and for a = 2 in
particular, d∗(ax, ay) ≤ ad∗(x, y) due to translation-
invariance of d∗.

Taking the limit of d(r)’s we obtain the desired
d∗∗. It is easy to check that d∗∗ has all the required
properties. E.g., the scalability holds, since, by the
previous observation, the limit limr→∞ a−1d(r)(ax, ay)
exists for every natural a. Therefore d∗∗ is scalable with
respect to all a ∈ N+, and hence with respect to all
a ∈ Q+, as required. �


