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Abstract

The class of logconcave functions in Rn is a common generalization of
Gaussians and of indicator functions of convex sets. Motivated by the
problem of sampling from a logconcave density function, we study their
geometry and introduce a technique for “smoothing” them out.

These results are applied to analyze two efficient algorithms for sam-
pling from a logconcave distribution in n dimensions, with no assumptions
on the local smoothness of the density function. Both algorithms, the ball
walk and the hit-and-run walk, use a random walk (Markov chain) to gen-
erate a random point. After appropriate preprocessing, they produce a
point from approximately the right distribution in time O∗(n4), and in
amortized time O∗(n3) if many sample points are needed (where the aster-
isk indicates that dependence on the error parameter and factors of log n
are not shown). These bounds match previous bounds for the special case
when the distribution to sample from is the uniform distribution over a
convex body.

1 Introduction

Virtually all known algorithms to sample from a high-dimensional convex body
K (i.e., to generate a uniformly distributed random point in K) work by defining
a Markov chain whose states are the points of K (or a sufficiently dense subset
of it), and whose stationary distribution is uniform. Running the chain long
enough produces an approximately uniformly distributed random point. The
most thoroughly analyzed versions are the lattice walk [5, 8], the ball walk
[14, 12, 11] and the hit-and-run walk [23, 24, 6, 15]. The hit-and-run walk, first
proposed by Smith [23], has the same worst-case time complexity as the more
thoroughly analyzed ball walk, but seems to be fastest in practice.

For what distributions is the random walk method efficient? These sampling
algorithms can be extended to any other (reasonable) distribution in Rn, but the
methods for estimating their mixing time all depend on convexity properties.
A natural class generalizing uniform distributions on convex sets is the class of
logconcave distributions. For our purposes, it suffices to define these as prob-
ability distributions on Rn which have a density function f and the logarithm
of f is concave. Well-known examples include the Boltzmann and Gaussian
densities and the uniform density over a convex body. Such distributions play
an important role in stochastic optimization [21] and other applications [10].
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We assume that the function is given by an oracle, i.e., by a subroutine that
returns the value of the function at any point x. We measure the complexity of
the algorithm by the number of oracle calls.

The analysis of the lattice walk and ball walk have been extended to log-
concave distributions [1, 7], but this analysis needs explicit assumptions on the
Lipschitz constant of the distribution. In this paper, we avoid such assumptions
by considering a smoother version of the function in the analysis. The smoother
version is bounded by the original, continues to be logconcave, and has almost
the same integral, i.e. it is almost equal at most points.

Our main result is that after appropriate preprocessing (bringing the dis-
tribution into isotropic position), both the ball walk (with a Metropolis filter)
and the hit-and-run walk can be used to generate a sample using O∗(n4) ora-
cle calls. We get a better bound of O∗(n3) if we consider a warm start. This
means that we start the walk not from a given point but from a random point
that is already quite well distributed in the sense that its density function is
at most a constant factor larger than the target density f . While this sounds
quite restrictive, it is often the case (for example, when generating many sample
points, or using a “bootstrapping” scheme as in [12]) that this bound gives the
actual cost of the algorithm per random point. Our amortized bound for sam-
pling logconcave functions matches the best-known bound for the special case
of sampling uniformly from a convex set. We also give an O∗(n5) algorithm for
bringing an arbitrary logconcave distribution to isotropic position.

To justify the rather lengthy analysis of both algorithms, let us point out
that on the one hand, the ball walk is simpler and more natural; on the other,
the hit-and-run walk seems to be more efficient in practice and it has the im-
portant property that the dependence of its running time on the distance of the
starting point from the boundary is only logarithmic (while this dependence is
polynomial for the ball walk). This fact is proved in another paper [17].

Our analysis uses various geometric properties of logconcave functions; some
of these are new, while others are well-known or folklore, but since a reference
is not readily available, we prove them in Section 5.

2 Results

2.1 Preliminaries.

A function f : Rn → R+ is logconcave if it satisfies

f(αx + (1− α)y) ≥ f(x)αf(y)1−α

for every x, y ∈ Rn and 0 ≤ α ≤ 1. This is equivalent to saying that the support
K of f is convex and log f is concave on K.

An integrable function f : Rn → R+ is a density function, if
∫
Rn f(x) dx = 1.

Every non-negative integrable function f gives rise to a probability measure on
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the measurable subsets of Rn defined by

πf (S) =
∫

S

f(x) dx

/∫

Rn

f(x) dx .

The centroid of a density function f : Rn → R+ is the point

zf =
∫

Rn

f(x)x dx;

the covariance matrix of the function f is the matrix

Vf =
∫

Rn

f(x)(x− zf )(x− zf )T dx

(we assume that these integrals exist). The variance of the density function is

Var(f) = tr(Vf ) =
∫

Rn

|x− zf |2f(x) dx.

For any logconcave function f : R → Rn, we denote by Mf its maximum
value. We denote by

Lf (t) = {x ∈ Rn : f(x) ≥ t}
its level sets, and by

ft(x) =

{
f(x), if f(x) ≥ t,

0, otherwise.

its restriction to the level set. It is easy to see that ft is logconcave.
A density function f : Rn → R+ is isotropic, if its centroid is 0, and its

covariance matrix is the identity matrix. This latter condition can be expressed
in terms of the coordinate functions as

∫

Rn

xixjf(x) dx = δij

for all 1 ≤ i, j ≤ n. This condition is equivalent to saying that for every vector
v ∈ Rn, ∫

Rn

(v · x)2f(x) dx = |v|2.

In terms of the associated random variable X, this means that

E(X) = 0 and E(XXT ) = I.

For an isotropic density function in Rn, we have Var(f) = n.
We say that f is near-isotropic up to a factor of C, or shortly C-isotropic, if

1
C
≤

∫
(uT x)2 dπf (x) ≤ C
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for every unit vector u. The notions of “isotropic” and “non-isotropic” extend
to non-negative integrable functions f , in which case we mean that the density
function f/

∫
Rn f is isotropic. Given any density function f with finite second

moment
∫
Rn |x|2f(x) dx, there is an affine transformation of the space bringing

it to isotropic position, and this transformation is unique except that it can be
followed by an orthogonal transformation of the space.

We say that a density function is a-rounded, if for every 0 ≤ s ≤ 1 it has a
level set L of probability at most s that contains a ball of radius a ·s. In Section
5.4 (Lemma 5.13) we show that every isotropic logconcave density function is
(1/e)-rounded.

Let f be a logconcave distribution in Rn. For any line ` in Rn, let µ`,f be
the measure induced by f on `, i.e.

µ`,f (S) =
∫

p+tu∈S

f(p + tu)dt,

where p is any point on ` and u is a unit vector parallel to `. We abbreviate
µ`,f (.) by µ`(.) if f is understood, and also µ`(`) by µ`. The probability measure
π`(S) = µ`(S)/µ` is the restriction of f to `.

For two points u, v ∈ Rn, we denote by d(u, v) their euclidean distance. For
two probability distributions ν, τ on the same underlying σ-algebra, let

dtv(ν, τ) = sup
A

(ν(A)− τ(A))

be their total variation distance.

2.2 The random walks

Let f be a logconcave distribution on Rn. We define two random walks on the
points on Rn.

The ball walk (with a Metropolis filter) to sample from f is defined as follows:

Ball walk.

• Pick a uniformly distributed random point y in the ball of radius r centered
at the current point.

• Move to y with probability min(1, f(y)/f(x)); stay at the current point
with the remaining probability.

(The radius r will be specified shortly.)
The other random walk we study is the hit-and-run walk:

Hit-and-run walk.

• Pick a uniformly distributed random line ` through the current point.

• Move to a random point y along the line ` chosen from the distribution
π`.
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A ”uniformly distributed random line” through a point x means that it is
uniformly distributed with respect to the measure we get from the uniform
measure on the unit sphere by identify opposite points. We shall sometimes call
this simply a random line through x.

It is easy to see that both walks are time-reversible. For technical reasons,
we will also make them lazy, i.e., at each step with probability 1/2 we do noth-
ing, and with probability 1/2 we do the above. We denote by Pu and Qu the
distributions obtained when we make a ball walk step and hit-and-run step from
u, respectively.

Our first main theorem concerns functions that are near-isotropic (up to
some fixed constant factor c). In Section 2.5, we discuss how to preprocess the
function in order to achieve this.

Theorem 2.1 If f is near-isotropic, then it can be approximately sampled in
time O∗(n4) and in amortized time O∗(n3) if more than n sample points are
needed; any logconcave function can be brought into near-isotropic position in
time O∗(n5).

Either the ball walk or the hit-run walk can be used in this algorithm.
Theorem 2.1 is based on the following two more explicit results about a “warm
start” for well-rounded density functions.

Theorem 2.2 Let f be a logconcave density function in Rn that is a-rounded.
Let σ be a starting distribution and assume that there is an H > 0 such that
σ(S) ≤ Hπf (S) for every set S. Let σm be the distribution obtained after m
steps of the ball walk applied to f . Then after m steps of the ball walk with

r ≤ aε2

210H2
and m >

1010nVar(f)
r2

log
H

ε
,

the total variation distance between σm and πf is less than ε.

For the hit-and-run walk, we prove:

Theorem 2.3 Let f be a c-isotropic logconcave density function in Rn. Let σ
be a starting distribution and assume that there is an H > 0 such that σ(S) ≤
Hπf (S) for every set S. Let σm be the distribution obtained after m steps of
the hit-and-run walk applied to f . Then for

m > 1030c4H4 n3

ε4
ln3 2H

ε
,

the total variation distance of σm and πf is less than ε.

In particular, we have

Corollary 2.4 If f is near-isotropic, then with a warm start, both the ball walk
and the hit-and-run walk mix in time O∗(n3).
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If we start from a single point, we may not get any bound on the mixing time
at all: if the distribution has an unbounded support, and we start very far from
the origin, then mixing may take arbitrarily long. However, if we start at the
origin, then at least in the case of the hit-and-run walk, we only lose a factor of
n [17]. It is an open question whether the results of [11] can be adopted to get
rid of this additional factor of n (the “start penalty”). It is also open whether
analogous result holds for the ball walk.

We end this section with a discussion of the implementation of these random
walks. For both algorithms, the first step is easy to implement. For example,
we can generate n independent random numbers U1, . . . , Un from the standard
normal distribution, and consider the vector U = (U1, . . . , Un). For the ball
walk, we generate a further random number η uniformly distributed in [0, 1],
and use vector U ′ = (rη1/(n−1)/‖U‖)U as the step. For the hit-end-run walk,
we use the vector U to determine the direction of the line.

To describe the implementation of the second step, we have to discuss how
the density function is given. We assume that it is given by an oracle: this
means that for any x ∈ Rn, the oracle returns the value f(x). (We ignore here
the issue that if the value of the function is irrational, the oracle only returns an
approximation of f .) It would be enough to have an oracle which returns the
value C · f(x) for some unknown constant C > 0 (this situation occurs in many
sampling problems e.g., in statistical mechanics and simulated annealing).

For technical reasons, we also need a “guarantee” from the oracle that the
centroid zf of f satisfies |zf | ≤ Z and that all the eigenvalues of the covariance
matrix are bounded from above and below.

To implement the second step of the ball walk is trivial, but for the hit-and-
run walk this needs a little thought. One way to do it is to use a binary search
to find the point p on ` where the function is maximal, and the points a and b
on both sides of p on ` where the value of the function is ε0f(p). We allow a
relative error of ε0 = ε/2 (say), so the number of oracle calls is only O(log(1/ε)).
Then select a uniformly distributed random point y on the segment [a, b], and
independently a uniformly distributed random real number r in the interval
[0, 1]. Accept y if f(y) > rf(p); else, reject y and repeat. The distribution of
the point generated this way is closer to the desired distribution than ε0, and
the expected number of oracle calls needed is O(log(1/ε)). (For explicitly given
density functions, there may be much more efficient direct methods.)

2.3 Distances

For two points u, v ∈ Rn, let `(u, v) denote the line through them. Let [u, v]
denote the segment connecting u and v, and let `+(u, v) denote the semiline in
` starting at u and not containing v. Furthermore, let

f+(u, v) = µ`,f (`+(u, v)),
f−(u, v) = µ`,f (`+(v, u)),

f(u, v) = µ`,f ([u, v]).
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We introduce the following “distance”:

df (u, v) =
f(u, v)f(`(u, v))
f−(u, v)f+(u, v)

.

The function df (u, v) does not satisfy the triangle inequality in general, but
we could take ln(1 − df (u, v)) instead, and this quantity would be a metric;
however, it will be more convenient to work with df .

Suppose f is the uniform distribution over a convex set K. Let u, v be two
points in K and p, q be the endpoints of `(u, v) ∩K, so that the points appear
in the order p, u, v, q along `(u, v). Then,

df (u, v) = dK(u, v) =
|u− v||p− q|
|p− u||v − q| .

2.4 Isoperimetry.

To bound the mixing time of our walk we use the conductance technique of
Jerrum and Sinclair [9] and its extension to continuous Markov chains [16] (as
do most of the previous papers). For the ball walk, for example, we show that
any set of measure s has conductance Ω(as2/nR) (see Section 9). The bound on
the mixing time then follows from standard relationships between conductance
and the mixing time. As we’ll show, an isotropic density function is (1/e)-
rounded and its variance is n, and hence the conductance of the ball walk in
this case is Ω(ε2/n3/2) and the mixing time is O(n3/ε4).

As in almost all papers since [5], bounding the conductance depends on a
geometric isoperimetric inequality. We will use an extension of Theorem 6 from
[15] to logconcave functions.

Theorem 2.5 Let f be a logconcave density function on Rn with support K.
For any partition of K into three measurable sets S1, S2, S3,

πf (S3) ≥ dK(S1, S2)πf (S1)πf (S2).

To illustrate the theorem, it is useful to consider the situation where S1 and
S2 are large subsets (in probability mass). Then, roughly speaking, the theorem
says that the measure of the remainder grows with the dK distance between S1

and S2.

2.5 Transforming to isotropic position.

The results of section 2.2 above use the assumption that the given density func-
tion is near-isotropic. To bring the function to this position can be considered
as a preprocessing step, which only needs to be done once, and then we can
generate any number of independent samples at the cost of O∗(n3) or O∗(n4)
oracle calls per sample, as described earlier. But the problem of transforming
into near-isotropic position is closely intertwined with the sampling problem,
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since we use sampling to transform an arbitrary logconcave density function
into near-isotropic position.

In this section we describe an algorithm to achieve near-isotropic position.
The following theorem is a consequence of a generalized Khinchine Inequality
(Theorem 5.22) and Rudelson’s Theorem [22] and is the basis of the algorithm.

Theorem 2.6 Let f : Rn → R+ be an isotropic logconcave function. Let
v1, v2, . . . , vm be independent samples from πf with

m = 100 · n

η2
· log3 n

η2
.

Then

E
∣∣∣ 1
m

m∑

i=1

viv
T
i − I

∣∣∣ ≤ η.

A corollary of this result is the following:

Corollary 2.7 Let f : Rn → R+ be a (not necessarily isotropic) logconcave
function. Let v1, v2, . . . , vm be independent samples from πf (where m is defined
as above). Compute the matrices V = 1

m

∑m
i=1 viv

T
i and W = V −1/2. Then with

probability at least 1− (η/δ), we have

|V − Vf | < δ,

and hence the transformed function f̂(x) = f(Wx) is near-isotropic up to a
factor of 1/(1− δ).

The error probability of η/δ is not good enough for us; we cannot choose η
small because the number of sample points m depends badly on η. The following
trick reduces the error probability for a moderate cost:

Algorithm A.

• Choose η = 1/100 and δ = 1/10.

• Repeat the construction in Corollary 2.7 q times, to get q matrices
V (1), . . . , V (q).

• For each of these matrices V (i), count how many other matrices V (j) satisfy

|V (j) − V (i)|) < .2. (1)

If you find one for which this number is larger than q/2, return this as an
approximation of Vf . Otherwise, the procedure fails.

Theorem 2.8 With probability at least 1−(4/5)q, Algorithm A returns a matrix
V satisfying |V − Vf | < .3.
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Proof. For each 1 ≤ j ≤ k, we have

P
(
|V (j) − Vf |) < .1

)
> .9. (2)

Hence (by Chernoff’s inequality) with probability at least 1− (4/5)k, more than
half of the V (j) satisfy (2). If both V (i) and V (j) satisfy (2), then they clearly
satisfy (1), and hence in this case algorithm cannot fail. Furthermore, if V (i)

is returned, then by pigeon hole, there is a j such that both (2) and (1) are
satisfied, and hence |V (i) − Vf | < .3 as claimed. ¤

Now the algorithm to bring f to near-isotropic position can be sketched as
follows. Define

Tk =
Mf

2(1+1/n)k k = 0, 1, . . .

The algorithm is iterative and in the k-th phase it brings the function gk = fTk

into near-isotropic position.

Algorithm B.

• Choose p = Cn log n and q = log(p/ε).

• Bring the level set {x : f(x) ≥ Mf/2} to near-isotropic position (using
e.g. the algorithm from [12]).

• For k = 0, 1, . . . , p, compute an approximation V of Vgk
using Algorithm

A, and apply the linear transformation V −1/2.

By Corollary 5.20, we have that after phase k, not only gk is approximately
isotropic, but also gk+1 is near-isotropic; in addition a random sample from gk

provides a warm start for sampling from gk+1 in the next phase. So we need to
walk only O∗(n3) steps to get a point from (approximately) gk+1. By Lemma
5.16 together with Theorem 5.14(e), the measure of the function outside the set
{x : f(x) ≥ Mf/TCn log n} is negligible and so Cn log n phases suffice to bring
f itself to near-isotropic position.

The above description of the algorithm suits analysis, but is not how one
implements it. We don’t transform the body, rather, we transform the euclidean
norm of the space. More precisely, we maintain a basis u1, . . . , un, which is
initialized as ui = ei in phase 0. The ui are fixed throughout each phase. To
generate a line through the current point, we generate n independent random
numbers X1, . . . , Xn from the standard Gaussian distribution, and compute the
vector X1u1 + . . . Xnun. The line we move on will be the line containing this
vector.

At the end of phase k, we have generated m independent random points
v1, . . . , vm from the distribution fTk+1 . We compute the matrix W =(

1
m

∑m
i=1 viv

T
i

)1/2 and update the vectors ui by letting ui = Wei.
Each sample (after the first) takes O∗(n3) oracle calls and hence each phase

takes O∗(n5) calls. The overall complexity of the algorithm is O∗(n5) oracle
calls.
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3 Outline of analysis

The proof of the main theorem about the mixing time is based on showing that
the s-conductance [16] of the Markov chain is large. This is defined as

φs = inf
A⊂Rn,s<πf (A)≤1/2

Φ(A)
πf (A)− s

,

where Φ(A) is the ergodic flow from A to its complement, Ā. By the results
of [16], specifically Corollary 1.6 (stated later in this paper as Theorem 9.1),
a lower bound on φs directly gives a bound on the mixing time from a warm
start, roughly about 1/φ2

s.
The advantage of considering s-conductance is that we can ignore subsets

that have measure smaller than s (the penalty is that we need some condition
similar to a warm start). This fact allows us to replace the given density f (only
in the analysis!) by another function f̂ ≤ f , which is smoother, also logconcave
and has almost the same integral.

To bound the s-conductance, we need two properties. First, if two points
are “close,” then the distributions obtained by taking one step from them have
significant overlap. Here, the right notion of “close” is based on both Euclidean
distance and the f -distance, df . This property is proven precisely as Lemma
7.1 for the ball walk and Lemma 7.2 for hit-and-run. Second, we need an
isoperimetric inequality that puts a lower bound on the measure of points “near”
the boundary of a subset. This is provided by Theorem 2.5.

To prove these properties and put them together in the final mixing proof,
we will need several technical lemmas about spherical geometry and logconcave
functions. We collect these in the next two sections.

4 Spheres and balls

We denote by πn the volume of the unit ball B in Rn. Our first lemma summa-
rizes some folklore facts about volumes of sections of spheres.

Lemma 4.1 Let H be a halfspace in Rn and B, a ball whose center is at a
distance t > 0 from H. Then

(a) if t ≤ 1/
√

n, then

vol(H ∩B) >

(
1
2
− t

√
n

2

)
vol(B);

(b) if t > 1/
√

n then

1
10t
√

n
(1− t2)(n+1)/2vol(B) < vol(H ∩B) <

1
t
√

n
(1− t2)(n+1)/2vol(B).
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We define a function t : [0, 1/2] → R that will be convenient to use in
the sequel. Let C be a cap on the unit sphere S in Rn, with radius r and let
voln−1(C) = cvoln−1(S), c < 1/2. We define the function by

t(c) = π/2− r.

Clearly t(c) is a monotone decreasing function of c. This function is difficult
to express exactly, but for our purposes, the following folklore bounds will be
enough:

Lemma 4.2 (a) If 0 < c < 2−n, then

1
2
c−1/n < t(c) < 2c−1/n.

(b) If 2−n < c < 1/4, then

1
2

√
ln(1/c)

n
< t(c) < 2

√
ln(1/c)

n
;

(c) If 1/4 < c < 1/2, then

1
2

(
1
2
− c

)
1√
n

< t(c) < 2
(

1
2
− c

)
1√
n

.

Using this function t(c), we can formulate a fact that can be called “strong
expansion” on the sphere:

Lemma 4.3 Let T1 and T2 be two sets on the unit sphere S in Rn, so that
voln−1(Ti) = civoln−1(S). Then the angular distance between T1 and T2 is at
most t(c1) + t(c2).

Proof. Let d denote the angular distance between T1 and T2. The measure
of Ti corresponds to the measure of a spherical cap with radius π/2− t(c1). By
spherical isoperimetry, the measure of the d-neighborhood of T1 is at least as
large as the measure of the d-neighborhood of the corresponding cap, which is
a cap with radius π/2 − t(c1) + d. The complementary cap has radius π/2 +
t(c1)− d and volume at least c2, and so it has radius at least π/2− t(c2). Thus
π/2 + t(c1)− d ≥ π/2− t(c2), which proves the lemma. ¤

The next lemma and its corollary quantify the following phenomenon: Con-
sider a convex body K and imagine growing a sphere centered at some point
inside K. For a while, the sphere is fully contained in K. When a significant
portion of the sphere is outside K, it rapidly reaches a point where most of the
sphere is outside K.

Lemma 4.4 Let K be a convex body in Rn containing the unit ball B, and let
r > 1. If φ(r) denotes the fraction of the sphere rS that is contained in K, then

t(1− φ(r)) + t(φ(2r)) ≥ 3
8r

.
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Proof. Let T1 = (rS) \ K and T2 = (1/2)((2rS) ∩ K). We claim that the
angular distance of T1 and T2 is at least 3/(8r). Consider any y1 ∈ T1 and
y2 ∈ T2, we want to prove that the angle α between them is at least 3/(8r). We
may assume that this angle is less than π/4 (else, we have nothing to prove).
Let y0 be the nearest point to 0 on the line through 2y2 and y1. Then y0 /∈ K
by convexity, and so s = |y0| > 1. Let αi denote the angle between yi and y0.
Then

sinα = sin(α2 − α1) = sin α2 cosα1 − sin α1 cos α2.

Here, cos α1 = s/r and cos α2 = s/(2r); expressing the sines and substituting,
we get

sin α =
s

r

√
1− s2

4r2
− s

2r

√
1− s2

r2
.

We estimate this by standard tricks from below:

sin α =

s2

r2

(
1− s2

4r2

)
− s2

4r2

(
1− s2

r2

)

s

r

√
1− s2

4r2
+

s

2r

√
1− s2

r2

>

s2

r2

(
1− s2

4r2

)
− s2

4r2

(
1− s2

r2

)

s

r
+

s

2r

=
s

2r
>

1
2r

Since α > sinα, this proves the lemma. ¤
The way this lemma is used is exemplified by the following:

Corollary 4.5 Let K be a convex body in Rn containing the unit ball B, and
let 1 < r <

√
n/32. If K misses 1% of the sphere rS, then it misses at least

99% of the sphere 2rS.

5 The geometry of logconcave functions.

In this section we state geometric properties of logconcave functions that are
used in the analysis of our algorithm. Many of these facts are well-known or even
folklore, but references are not easy to pin down. Since the constants involved
are needed to formalize our algorithm (not only to analyze it), we found that
we have to include this section containing the proofs with explicit constants.

5.1 Marginals

We start with some definitions. The marginal of a function f : Rn → R+ on the
set S = {i1, . . . , ik} of variables is defined by

G(xi1 , . . . , xik
) =

∫

Rn−k

f(x1, . . . , xn) dxj1 . . . dxjn−k
, (3)

13



where {j1, . . . , jn−k} = {1, . . . , n} \ {i1, . . . , ik}. The first marginal

g(t) =
∫

x2,...,xn

f(t, x2, . . . , xn) dx2 . . . dxn

will be used most often. The distribution function of f is defined by

F (t1, . . . , tn) =
∫

x1≤t1,...,xn≤tn

f(x1, . . . , xn) dx1 . . . dxn.

Clearly, the product and the minimum of logconcave functions is logconcave.
The sum of logconcave functions is not logconcave in general; but the following
fundamental properties of logconcave functions, proved by Dinghas [4], Leindler
[18] and Prékopa [19, 20], can make up for this in many cases.

Theorem 5.1 All marginals as well as the distribution function of a logcon-
cave function are logconcave. The convolution of two logconcave functions is
logconcave.

We’ll also need the following easy fact:

Lemma 5.2 If f is in isotropic position, then so are its marginals.

Proof. Let G be a marginal of f on the set {x1, . . . , xk} of variables. Then
for any two 1 ≤ i, j ≤ k,

∫

Rk

xixjG(x1, . . . , xk) dx1 . . . dxk

=
∫

Rk

xixj

(∫

Rn−k

f(x1, . . . , xn) dxk+1 . . . dxn

)
dx1 . . . dxk

=
∫

Rn

xixjf(x1, . . . , xn) dx1 . . . dxn = δij .

The proof of the fact that the centroid of the marginal is 0 is similar. ¤

5.2 One-dimensional functions

Let g : R+ → R+ be an integrable function such that g(x) tends to 0 faster than
any polynomial as x →∞. Define its moments, as usual, by

Mn(f) =
∫ ∞

0

tng(t) dt.

Lemma 5.3 (a) The sequence (Mn(f) : n = 0, 1, . . . ) is logconvex.
(b) If g is monotone decreasing, then the sequence defined by

M ′
n(f) =

{
nMn−1(g)), if n > 0,

g(0) if n = 0.

14



is also logconvex.
(c) If g is logconcave, then the sequence Mn(g)/n! is logconcave.
(d) If g is logconcave, then

g(0)M1(g) ≤ M0(g)2.

(i.e., we could append g(0) at the beginning of the sequence in (c) and maintain
logconcavity).

Proof. (a) We have for every real x

0 ≤
∫ ∞

0

(t + x)2tng(t) dt = x2Mn(g) + 2xMg(n + 1) + Mn+2(g).

Hence the discriminant of the quadratic polynomial on the right hand side must
be non-positive:

Mn+1(g)2 −Mn(g)Mn+2(g) ≤ 0,

which is just the logconvexity of the sequence.
(b) We may assume (by approximating) that g is differentiable. Then −g′

is nonnegative, which by (a) implies that the sequence Mn(−g′) is logconvex.
Integrating by parts,

Mn(−g′) = −
∫ ∞

0

tng′(t) dt = −[tng(t)]∞0 +
∫ ∞

0

ntn−1g(t) dt = nMn−1(g)

for n ≥ 1, and

M0(−g′) = −
∫ ∞

0

g′(t) dt = g(0).

This proves (b).
(c) Let h(t) = βe−γt be an exponential function (β, γ > 0) such that

Mn(h) = Mn(g) and Mn+2(h) = Mn+2(g)

(it is easy to see that such an exponential function exists). Then we have
∫ ∞

0

tn(h(t)− g(t)) dt = 0,

∫ ∞

0

tn+2(h(t)− g(t)) dt = 0.

From this it follows that the graph of h must intersect the graph of g at least
twice. By the logconcavity of g, the graphs intersect at exactly two points a < b.
Furthermore, h ≤ g in the interval [a, b] and h ≥ g outside this interval. So the
quadratic polynomial (t−a)(t−b) has the same sign pattern as h−g, and hence

∫ ∞

0

(t− a)(t− b)tn(h(t)− g(t)) dt ≥ 0.

Expanding and rearranging, we get
∫ ∞

0

tn+2(h(t)−g(t)) dt+ab

∫ ∞

0

tn(h(t)−g(t)) dt ≥ (a+b)
∫ ∞

0

tn+1(h(t)−g(t)) dt.
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The left hand side is 0 by the definition of h, so the right hand side is nonpositive,
which implies that

Mn−1(h) =
∫ ∞

0

tn+1h(t) dt ≤
∫ ∞

0

tn+1g(t) dt = Mn+1(g).

In other words, this shows that it is enough to verify the inequality for expo-
nential functions. But for these functions, the inequality holds trivially.

(d) The proof is similar and is left to the reader. ¤

Lemma 5.4 Let X be a random point drawn from a one-dimensional logconcave
distribution. Then

P(X ≥ EX) ≥ 1
e
.

Proof. We may assume without loss of generality that EX = 0. It will be con-
venient to assume that |X| ≤ K; the general case then follows by approximating
a general logconcave distribution by such distributions.

Let G(x) = P(X ≤ x). Then G is logconcave, monotone increasing, and we
have G(x) = 0 for x ≤ −K and G(x) = 1 for x ≥ K. The assumption that 0 is
the centroid implies that ∫ K

−K

xG′(x) dx = 0,

which by partial integration means that
∫ K

−K

G(x) dx = K.

We want to prove that G(0) ≥ 1/e.
The function ln G is concave, so it lies below its tangent at 0; this means that

G(x) ≤ G(0)ecx, where c = G′(0)/G(0) > 0. We may choose K large enough so
that 1/c < K. Then

G(x) ≤
{

G(0)ecx if x ≤ 1/c,

1 if x > 1/c.

and so

K =
∫ K

−K

G(x) dx

≤
∫ 1/c

−∞
G(0)ecx dx +

∫ K

1/c

1 dx

=
eG(0)

c
+ K − 1

c
,

which implies that G(0) ≥ 1/e as claimed. ¤
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Lemma 5.5 Let g : R→ R+ be an isotropic logconcave density function.
(a) For all x, g(x) ≤ 1.
(b) g(0) ≥ 1

8 .

Proof. (a) Let the maximum of g be attained at a point z, and suppose that
g(z) > 1. For i = 0, 1, 2, let

Mi =
∫ ∞

z

(x− z)i g(x) dx,

Ni =
∫ z

−∞
(z − x)i g(x) dx.

Clearly

M0 + N0 = 1, N1 −M1 = z, M2 + N2 = 1 + z2.

So

M2 + N2 = (M0 + N0)2 + (M1 −N1)2

= (M0 −M1)2 + (N0 −N1)2 + 2(M0N0 −M1N1) + 2(M0M1 + N0N1)
≥ 2(M0M1 + N0N1),

since by Lemma 5.3(d), we have M1 ≤ M2
0 /g(z) ≤ M0, and similarly N1 ≤

N2
0 /g(z) ≤ N0.

On the other hand, by Lemma 5.3(c) and (d), we have

M2 ≤ 2M2
1 /M0 ≤ 2M1M0/g(z) < 2M1M0, N2 < 2N1N0,

and so
M2 + N2 < 2(M0M1 + N0N1),

a contradiction proving (a).
(b) We may assume that g(x) is monotone decreasing for x ≥ 0 (else, consider

g(−x)). Let g0 be the restriction of g to the nonnegative semiline. By Lemma
5.3(b),

M ′
1(g0)3 ≤ M ′

0(g0)M ′
2(g0)2,

which means that
M0(g0) ≤ g(0)2/3(3M2(g0)1/3.

Here trivially M2(g0) ≤ M2(g) = 1, while Lemma 5.4 implies that

M0(g0) =
∫ ∞

0

g(t) dt ≥ 1
e

∫ ∞

∞
g(t) dt =

1
e
M0(g) =

1
e
.

Substituting these bounds, we get

g(0) ≥
√

1
3e3

≥ 1
8
.
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¤
Lemma 5.5(a) is tight, as shown by the function

g(x) =

{
e−1−x, if x ≥ −1,

0, if x < −1.

Part (b) is not tight; most probably the right constant is 1/(2 · √3), attained
by the uniform distribution on the interval [−√3,

√
3].

Lemma 5.6 Let X be a random point drawn from a logconcave density function
g : R→ R+.

(a) For every c ≥ 0,
P(g(X) ≤ c) ≤ c

Mg
.

(b) For every 0 ≤ c ≤ g(0),

P(min g(2X), g(−2X) ≤ c) ≥ c

4g(0)
.

Proof. (a) We may assume that the maximum of g is assumed at 0. Let q > 0
be defined by g(q) = c, and let h(t) = g(0)e−γt be an exponential function such
that h(q) = g(q). Clearly such a γ exists, and h(0) = g(0), γ > 0. By the
logconcavity of the function, the graph of h is below the graph of g between 0
and q, and above outside. Hence

∫∞
q

g(t) dt∫∞
0

g(t) dt
≤

∫∞
q

h(t) dt∫∞
0

h(t) dt

Here ∫ ∞

0

h(t) dt =
g(0)
γ

,

∫ ∞

q

h(t) dt =
g(q)
γ

=
c

γ
,

and so we get that ∫ ∞

q

g(t) dt ≤ c

g(0)

∫ ∞

0

g(t) dt.

Here g(0) = Mg, furthermore
∫ ∞

q

g(t) dt = P(X > q) = P(g(X) < c, X > 0),

and ∫ ∞

0

g(t) dt = P(X > 0),

so we get that
P(g(X) < c, X > 0) ≤ c

Mg
P(X > 0).
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Similarly,
P(g(X) < c, X < 0) ≤ c

Mg
P(X < 0).

Adding up these two inequalities, the assertion follows.
(b) We may assume that P(X ≤ 0) ≥ 1/2. Let q > 0 be defined by g(q) = c.

If P(X ≥ q/2) > 1/4 then the conclusion is obvious, so suppose that P(X ≥
q/2) ≤ 1/4. Similarly, we can assume that P(−q/2 < X < 0) ≥ 1

4 .
Let h(t) = βe−γt be an exponential function such that

∫ 0

−q/2

h(t) dt =
∫ 0

−q/2

g(t) dt = a,

and ∫ q

q/2

h(t) dt =
∫ q

q/2

g(t) dt = b.

It is easy to see that such β and γ exist, and that β, γ > 0. From the definition
of h we have

β

γ
(eγq/2 − 1) = a,

β

γ
(e−γq/2 − e−γq) = b.

Dividing these equations with each other, we obtain

eγq =
a

b
.

By the logconcavity of the function, the graph of h must intersect the graph
of g in a point in the interval [−q/2, 0] as well as in a point in the interval
[q/2, q]; it is below the graph of g between these two points and above outside.
In particular, we get

c = g(q) ≤ h(q) = βe−γq = β
b

a
,

and
g(0) ≥ h(0) = β,

so
b ≥ a

c

g(0)
≥ c

4g(0)
.

¤
We conclude with a useful lemma about the tail of a logconcave distribution.

Lemma 5.7 Let X be a random point drawn from a logconcave distribution on
R. Assume that

E(X2) ≤ 1.

Then for every t > 1,
P(|X| > t) < e−t+1.
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Proof. First note that for t ∈ [1, 3] the bound follows using Chebychev’s
inequality: We have E(X2) ≥ t2P(|X| > t), and so P(|X| > t) ≤ 1/t2. From
this, the conclusion follows if t ≤ 3.

Fix t > 3 and let f : R→ R+ be an integrable logconcave function satisfying
∫

R
x2f(x) dx ≤

∫

R
f(x) dx. (4)

and ∫ −t

−∞
f(x) dx +

∫ ∞

t

f(x) dx = Ce−t+1

∫

R
f(x) dx (5)

where C is as large as possible. Our goal is to prove that C < 1.
Using a variant of Lemma 2.6 of [13], there exists an interval [a, b] ∈ R and

a real γ satisfying ∫ b

a

x2eγx dx ≤
∫ b

a

eγx dx (6)

we have ∫ −t

a

eγx dx +
∫ b

t

eγx dx = Ce−t+1

∫ b

a

eγx dx. (7)

We will prove that for any (a, b, γ) satisfying (6), we must have C < 1 in (7).
We can assume that γ > 0 by replacing (a, b, γ) by (−b,−a,−γ) if necessary.

Also, b ≥ 0; if not, we can consider a logconcave function f̂ which is zero outside
[a, 0], nonzero in [a, 0], equal to eγx for x ∈ [a,−1] and

∫ 0

−1

f̂(x) dx =
∫ b

−1

eγx dx.

The function f̂ has the same integral as eγx overall and in the interval [a,−t],
but the second moment is smaller, i.e.,

∫ 0

a

x2f̂(x) <

∫ b

a

x2eγx dx.

So by rescaling f̂ to make the moment larger without violating (4), we can
obtain a function with a larger value of C. This contradicts the assumption
about f .

We now evaluate both sides of (6) and cancel a common factor of 1/γ to get

eγb

(
b2 − 2b

γ
+

2
γ2

)
− eγa

(
a2 − 2a

γ
+

2
γ2

)
≤ eγb − eγa

which can be rewritten as

eγb

(
b2 − 2b

γ
+

2
γ2
− 1

)
≤ eγa

(
a2 − 2a

γ
+

2
γ2
− 1

)
. (8)

20



For any fixed γ > 0, the function

g(γ, x) = eγx

(
x2 − 2x

γ
+

2
γ2
− 1

)

is monotone increasing in (−∞,−1), decreasing in (−1, 1) and increasing again
in (1,∞).

We next prove that b < 2. Note that a ≤ 1 (otherwise, (6) is violated), and
so g(γ, a) ≤ g(γ,−1). Further, (8) says that

g(γ, b) ≤ g(γ, a), (9)

which implies that g(γ, b) ≤ g(γ,−1). We get b < 2 using this and the inequality
g(γ, 2) > g(γ,−1) for γ > 0. The latter follows by verifying that

h(γ) = γ2eγ(g(γ, 2)− g(γ,−1))

satisfies h(0) = h′(0) = h′′(0) = 0 and h′′(γ) > 0 for γ > 0.
Since b < 2 and t > 3, we can assume that a < −3. Again, from the

inequality (9) and the monotonicity, we get g(γ, a) ≥ g(γ, 1). On the other
hand, it can be verified by a routine calculation that g(γ, a) < g(γ, 1) for a =
−1/(1−γ) < −3 and since a is monotone increasing in this range, we must have
a ∈ [−1/(1− γ),−3]. Thus, for a ≤ −3, γ ≥ (a + 1)/a.

Using this, for t ≥ 3,
∫ −t

a
eγx dx

∫ b

a
eγx dx

≤ e−(a+1)t/a − ea+1

1− ea+1
≤ e−(a+1)t/a < e−t+1

which proves the lemma. ¤
The lemma is tight (up to the +1 in the exponent) as shown by the function

which is ex for x ≤ 1 and 0 otherwise.

5.3 Crossratios

For the next set of lemmas, it will be convenient to introduce the following
notation: for a function g : R→ R+ and a < b, let

g(a, b) =
∫ b

a

g(t) dt.

Furthermore, for a < b < c < d, we consider the cross-ratio

(a : c : b : d) =
(d− a)(c− b)
(b− a)(d− c)

,

and its generalized version

(a : c : b : d)g =
g(a, d)g(b, c)
g(a, b)g(c, d)

.
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(The strange order of the parameters was chosen to conform with classical no-
tation.) Clearly, (a : c : b : d)g = (a : c : b : d) if g is a constant function.

We start with a simple bound:

Lemma 5.8 Let g : R → R+ be a logconcave function and let a < b < c < d.
Then

(a : c : b : d)g ≥ g(b)
g(c)

− 1.

Proof. We may assume that g(b) > g(c) (else, there is nothing to prove).
Let h(t) be an exponential function such that h(b) = g(b) and h(c) = g(c). By
logconcavity, g(x) ≤ h(x) for x ≤ b and g(x) ≥ h(x) for b ≤ x ≤ c. Hence

(a : c : b : d)g =
g(a, d)g(b, c)
g(a, b)g(c, d)

≥ g(b, c)
g(a, b)

≥ h(b, c)
h(a, b)

=
h(c)− h(b)
h(b)− h(a)

≥ h(c)− h(b)
h(b)

=
g(b)
g(c)

− 1.

¤

Lemma 5.9 Let g : R → R+ be a logconcave function and let a < b < c < d.
Then

(a : c : b : d)g ≥ (a : c : b : d).

Proof. By Lemma 2.6 from [12], it suffices to prove this in the case when
g(t) = et. Furthermore, we may assume that a = 0. Then the assertion is just
Lemma 7 in [15]. ¤

Lemma 5.10 Let g : R → R+ be a logconcave function and let a < b < c.
Then

g(a, b)
b− a

≤
(

1 +
∣∣∣∣ln

g(b)
g(c)

∣∣∣∣
+

)
g(a, c)
c− a

.

Proof. Let h(t) = βeγt be an exponential function such that

∫ b

a

h(t) dt = g(a, b) and
∫ c

b

h(t) dt = g(b, c).

It is easy to see that such β and γ exist, and that β > 0. The graph of h intersects
the graph of g somewhere in the interval [a, b], and similarly, somewhere in the
interval [b, c]. By logconcavity, this implies that h(b) ≤ g(b) and h(c) ≥ g(c).

If γ > 0 then h(t) is monotone increasing, and so

g(a, b)
b− a

=
h(a, b)
b− a

≤ h(a, c)
c− a

=
g(a, c)
c− a

,
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and so the assertion is trivial. So suppose that γ < 0. For notational conve-
nience, we can rescale the function and the variable so that β = 1 and γ = −1.
Also write u = b− a and v = c− b. Then we have

g(a, b) = 1− e−u and g(a, c) = 1− e−u−v.

Hence
g(a, b)
g(a, c)

=
1− e−u

1− e−u−v
≤ u(v + 1)

u + v
= (v + 1)

b− a

c− a
.

(The last step can be justified like this: (1 − e−u)/(1 − e−u−v) is monotone
increasing in u if we fix v, so replacing e−u by 1−u < e−u both in the numerator
and denominator increases its value; similarly replacing e−v by 1/(v + 1) in the
denominator decreases its value). To conclude, it suffices to note that

ln
g(b)
g(c)

≥ ln
h(b)
h(c)

= ln
e−u

e−u+v
= v.

¤
The following lemma is a certain converse to Lemma 5.9:

Lemma 5.11 Let g : R→ R+ be a logconcave function and let a < b < c < d.
Let C = 1 + max{ln(g(b)/g(a)), ln(g(c)/g(d))}. If

(a : c : b : d) ≤ 1
2C

,

then
(a : c : b : d)g ≤ 6C(a : c : b : d).

Proof. By the definition of (a : c : b : d) and Lemma 5.10,

(a : c : b : d) =
(d− a)(c− b)
(b− a)(d− c)

>
c− b

b− a
>

c− b

c− a
≥ 1

C

g(b, c)
g(a, c)

.

Hence by the assumption on (a : c : b : d),

g(b, c)
g(a, c)

=
g(b, c)

g(a, b) + g(b, c)
≤ 1

2
,

which implies that g(a, b) ≥ g(b, c). Similarly, g(c, d) ≥ g(b, c). We may assume
by symmetry that g(a, b) ≤ g(c, d). Then g(a, d) = g(a, b) + g(b, c) + g(c, d) ≤
3g(c, d), and so we have

(a : c : b : d)g =
g(a, d)g(b, c)
g(a, b)g(c, d)

≤ 3g(b, c)
g(a, b)

≤ 6g(b, c)
g(a, c)

.

Using Lemma 5.10 again (for the order c, b, a), we get

(a : c : b : d)g ≤ 6C
c− b

c− a
≤ 6C

c− b

b− a
≤ 6C

(c− b)(d− a)
(b− a)(d− c)

= 6C(a : b : c : d).

¤
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5.4 Higher dimensional functions

Now consider a logconcave density function f : Rn → R. Lemma 5.4 extends
to any dimension without difficulty. A different proof for the special case when
f is uniform over a convex body is given in [2].

Lemma 5.12 Let f : Rn → R+ be a logconcave density function, and let H be
any halfspace containing its centroid z. Then

∫

H

f(x) dx ≥ 1
e
.

Proof. We may assume without loss of generality H is orthogonal to the first
axis. Then the assertion follows by applying Lemma 5.4 to the first marginal of
f . ¤

Lemma 5.13 Every isotropic logconcave density function is (1/e)-rounded.

Proof. We want to prove that if L is a level set of an isotropic logconcave
density function f on Rn, and L does not contain a ball of radius t, then∫

L
f(x)dx ≤ et. Let

h(x) =

{
f(x), if x ∈ L,

0, otherwise.

Then h is logconcave. Let z be the centroid of h. Assume that L does not
contain a ball of radius t. Then by the convexity of L, there exists u ∈ Rn,
|u| = 1 such that

max
x∈L

uT (x− z) < t.

Rotate the coordinates so that u = (1, 0, . . . , 0)T , i.e.

max
x∈L

x1 − z1 < t.

The first marginal g of f is also logconcave. Further since f is in isotropic
position, so is g. Lemma 5.5 implies that g ≤ 1. Hence

∫

x1≥z1

h(x) dx ≤
∫

z1≤x1≤z1+t

f(x) dx

=
∫

z1≤x1≤z1+t

g(x1) dx1 ≤ t.

This bounds the probability of one “half” of L. But since h is a logconcave
function, we have by Lemma 5.4 that

∫

L

f(x) dx =
∫

Rn

h(x) dx ≤ et.

¤
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Theorem 5.14 Let f : Rn → R+ be an isotropic logconcave density function.
(a) For every v ∈ Rn with 0 ≤ |v| ≤ 1/9, we have 2−9n|v|f(0) ≤ f(v) ≤

29n|v|f(0).
(b) f(x) ≤ 22n+4f(0) for every x.
(c) There is an x ∈ Rn such that f(x) > (4eπ)−n/2.
(d) 2−7n ≤ f(0) ≤ n(20n)n/2.
(e) f(x) ≤ 28nnn/2 for every x.

Proof. (a) We prove the lower bound; the upper bound is analogous. Sup-
pose that there is a point u with |u| = t ≤ 1/9 and f(u) < 2−9ntf(0). Let
v = (1/(9t))u, then by logconcavity, f(v) < 2−nf(0). Let H be a hyperplane
through v supporting the convex set {x ∈ Rn : f(x) ≥ f(v)}. We may assume
that H is the hyperplane x1 = a for some 0 < a ≤ 1/9. So f(x) < 2−nf(0) for
every x with x1 = a.

Let g be the first marginal of f . Then g is also isotropic, and hence g(y) ≤ 1
for all y, by Lemma 5.5. We also know by Lemma 5.4 that

∫ ∞

0

g(y) dy ≥ 1
e
.

We claim that

g(2a) ≤ g(a)
2

. (10)

Indeed, using the logconcavity of f , we get for every x with x1 = a

f(2x) ≤ f(x)2

f(0)
≤ f(x)

2n
,

and hence

g(2a) =
∫

(x1=2a)

f(x) dx2 . . . dxn ≤ 2−n2n−1

∫

(x1=a)

f(x) dx2 . . . dxn =
g(a)
2

.

Inequality (10) implies, by the logconcavity of g, that g(x + a) ≤ g(x)/2 for
every x ≥ a. Hence

∫ ∞

a

g(y) dy ≤ 2
∫ 2a

a

g(y) dy ≤ 2a,

and hence
∫ ∞

0

g(y) dy =
∫ a

0

g(y) dy +
∫ ∞

a

g(y) dy ≤ 3a <
1
e
,

a contradiction.

(b) Let w be an arbitrary point with f(w) > f(0). Let H be a hyperplane
through 0 supporting the convex set {x ∈ Rn : f(x) ≥ f(0)}. We may assume
that H is the hyperplane x1 = 0. So f(x) ≤ f(0) for every x with x1 = 0. Let
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g be the first marginal of f . Let Ht denote the hyperplane x1 = t. We may
assume that w ∈ Hb with b > 0.

Let x be a point on H0, and let x′ be the intersection point of the line
through w and x with the hyperplane Hb/2. Then by logconcavity,

f(w)f(x) ≤ f(x′)2,

whence

f(x′) ≥ f(w)1/2f(x)1/2 ≥
(

f(w)
f(x)

)1/2

f(x) ≥
(

f(w)
f(0)

)1/2

f(x),

and hence

g(b/2) =
∫

Hb/2

f(x) dx ≥ 21−n

(
f(w)
f(0)

)1/2 ∫

H0

f(x) dx = 21−n

(
f(w)
f(0)

)1/2

g(0).

So, using Lemma 5.5(b), we get

g(b/2) ≥ 2−2−n

(
f(w)
f(0)

)1/2

.

On the other hand, by Lemma 5.5(a), we have g(b/2) ≤ 1. This proves (b).

(c) For a random point X from the distribution, we have E(|X|2) = n, and
hence by Markov’s inequality, P(|X|2 ≤ 2n) ≥ 1/2. In other words,

∫
√

2nB

f(x) dx ≥ 1
2
.

On the other hand,
∫
√

2nB

f(x) dx ≤ Mfvol(
√

2nB) = Mf (2n)n/2vol(B),

whence
Mf ≥ 1

2(2n)n/2vol(B)
> (4πe)−n/2.

(d) The lower bound follows from parts (b) and (c). Part (a) implies that
∫

Rn

f(x) dx ≥
∫

|x|≤1/9

f(x) dx ≥ 1
9n

vol(B)
f(0)
2n

,

and since this integral is 1, we get that

f(0) ≤ 18n

vol(B)
< n(20n)n/2.

(e) is immediate from (d). ¤
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Lemma 5.15 Let f : Rn → R+ be an isotropic logconcave density function.
Then for every line ` through 0,

∫

`

f(x) dx ≥ 2−7n.

(The integration is with respect to the Lebesgue measure on `.)
Proof. We may assume that ` is the xn-axis. Consider the marginal

h(x1, . . . , xn−1) =
∫ ∞

−∞
f(x1, . . . , xn−1, t) dt.

This is also an isotropic logconcave density function, so by Theorem 5.14(d) ,
we have ∫

`

f(x) dx = h(0) ≥ 2−7(n−1) > 2−7n.

¤
The following lemma generalizes Lemma 5.6(a) to arbitrary dimension.

Lemma 5.16 Let X be a random point drawn from a distribution with a log-
concave density function f : Rn → R+. If β ≥ 2, then

P(f(X) ≤ e−β(n−1)Mf ) ≤ (e1−ββ)n−1.

Proof. We may assume that f is continuous, Mf is attained at the origin,
and Mf = f(0) = 1. Let c = e−β(n−1). Using polar coordinates, we have

1 =
∫

Rn

f(x) dx =
∫

Sn−1

∫ ∞

0

f(tu)tn−1 dt du

and

P(f(X) ≤ c) =
∫

f(x)≤c

f(x) dx =
∫

Sn−1

∫

t: f(tu)≤c

f(tu)tn−1 dt du

Fix a unit vector u, and let q > 0 be defined by f(qu) = c. By logconcavity,

f(tu)

{
≥ e−β(n−1)t/q, if t ≤ q,

≤ e−β(n−1)t/q, if t ≥ q.

Hence ∫∞
q

f(tu)tn−1 dt∫∞
0

f(tu)tn−1 dt
≤

∫∞
q

e−β(n−1)t/qtn−1 dt∫∞
0

e−β(n−1)t/qtn−1 dt
.

The integrals on the right hand side can be evaluated:

∫ ∞

0

e−β(n−1)t/qtn−1 dt = (n− 1)!
(

β(n− 1)
q

)−n

,
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and

∫ ∞

q

e−β(n−1)t/qtn−1 dt = (n− 1)!
(

β(n− 1)
q

)−n

e−β(n−1)
n−1∑

k=0

(β(n− 1))k

k!
.

The last sum can be estimated by 2(β(n− 1))n−1/(n− 1)! < (eβ)n−1. Thus
∫ ∞

q

f(tu)tn−1 dt ≤ (e1−ββ)n−1

∫ ∞

0

f(tu)tn−1 dt,

and so

P(f(X) ≤ c) =
∫

u∈S

∫

t: f(tu)≤c

f(tu)tn−1 dt

≤ (e1−ββ)n−1

∫

u∈S

∫ ∞

0

f(tu)tn−1 dt

= (e1−ββ)n−1.

¤

Lemma 5.17 Let X ∈ Rn be a random point from a logconcave distribution
with E(X2) = C2. Then for any R > 1, P(|X| > RC) < e−R+1.

Proof. We have ∫

Rn

(|x|2 − C2)f(x) dx = 0,

and if the assertion is false, then
∫

|x|>RC

f(x) dx− e−R+1

∫

Rn

f(x) dx > 0.

The Localization Lemma (Corollary 2.4 in [13]), we have two points a, b and a
γ > 0 so that ∫ 1

0

(|(1− t)a + tb|2 − C2)(1 + γt)n dt = 0, (11)

and
∫

0≤t≤1
|(1−t)a+tb|>RC

(1 + γt)n dt− e−R+1

1∫

0

(1 + γt)n dt > 0. (12)

It will be convenient to re-parametrize this segment [a, b] by considering the
closest point v of its line to the origin, and a unit vector u pointing in the
direction of b − a. Let R′ =

√
R2C2 − |v|2, then we can rewrite (11) and (12)

as ∫ t2

t1

(|v|2 + t2 − C2)(1 + γ′(t− t1))n dt = 0, (13)
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and ∫

t1≤t≤t2
|t|>R′

(1 + γ′(t− t1))n dt− e−R+1

∫ t2

t1

(1 + γ′(t− t1))n dt > 0 (14)

(with some t1, t2 and γ > 0). Equation (13) implies that |v| < √
n. Introducing

the new variable s = t/
√

C2 − |v|2, we get
∫ s2

s1

(s2 − 1)(1 + γ′′(s− s1))n ds = 0,

and
∫

s1≤s≤s2
|s|>R′′

(1 + γ′′(s− s1))n ds− e−R+1

∫ s1

s0

(1 + γ′′(s− s1))n ds > 0,

where R′′ = R′/
√

C2 − |v|2 > R, and s1, s2, γ
′′ are similarly transformed. Now

this contradicts Lemma 5.7. ¤
The following lemma generalizes the upper bound in Theorem 4.1 of [13]:

Lemma 5.18 Let f : Rn → R be an isotropic logconcave function, and let z
be a point where it assumes its maximum. Then |z| ≤ n + 1.

The characteristic function of an isotropic regular simplex shows that the
bound is essentially tight.
Proof. Write x = x + tu, where t ∈ R+ and |u| = 1. Let w = z/|z|. We can
write

1 =
∫

Rn

(wTx)2f(x) dx =
∫

|u|=1

∫ ∞

0

(wT(z + tu))2f(tu)tn−1 dt du.

Fix any u, and let g(t) = f(tu). Then the inside integral is
∫ ∞

0

(wT(z+tu))2g(t)tn−1 dt = |z|2Mn−1(g)+2|z|(wTu)Mn(g)+(wTu)2Mn+1(g).

By Lemma 5.3(b), we have here

(n + 1)2Mn(g)2 ≤ n(n + 2)Mn−1(g)Mn+1(g),

and so

|z|2 n(n + 2)
(n + 1)2

Mn−1(g) + 2|z|(wTu)Mn(g) + (wTu)2Mn+1(g) ≥ 0

(since the discriminant of this quadratic form is nonpositive). So

|z|2Mn−1(g) + 2|z|(wTu)Mn(g) + (wTu)2Mn+1(g) ≥ 1
(n + 1)2

|z|2Mn−1(g).
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Substituting this in the integral, we get

1 ≥ 1
(n + 1)2

|z|2,

which proves the lemma. ¤

Lemma 5.19 Let f : Rn → R be a logconcave function. Then for 0 < s < t <
Mf ,

vol(Lf (s))
vol(Lf (t))

≤
(

ln(Mf/s)
ln(Mf/t)

)n

Proof. Fix a point z where f(z) = Mf . Consider any point a on the boundary
of L(s). Let b be the intersection of the line through a and z with the boundary
of L(t). Let b = ua + (1− u)z. Since f is logconcave,

t ≥ M1−u
f su,

and so

u ≥ ln(Mf/t)
ln(Mf/s)

.

This means that (ln(Mf/s)/ ln(Mf/t))L(t) contains Lf (s), and hence

vol(Lf (s))
vol(Lf (t))

≤
(

ln(Mf/s)
ln(Mf/t)

)n

,

as claimed. ¤

Lemma 5.20 Let f : Rn → R be a logconcave function, and let ft denote
the restriction of f to the level set Lf (t). Let 0 < s < t ≤ Mf such that
tn+1 ≤ snMf , and assume that ft is isotropic. Then fs is near-isotropic up to
a factor of 6.

Proof. Lemma 5.19 implies that
∫

Rn

fs(x) dx ≤ 3
∫

Rn

ft(x) dx.

Hence for every unit vector u,

∫

Rn

(uT x)2 dπfs(x) =

∫
Lf (s)

(uT x)2f(x) dx∫
Lf (s)

f(x) dx

≥
∫

Lf (t)
(uT x)2f(x) dx∫

Lf (s)
f(x) dx

≥ 1
3

∫
Lf (t)

(uT x)2f(x) dx∫
Lf (t)

f(x) dx

=
1
3

∫

Rn

(uT x)2 dπft(x).
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On the other hand, Let L′ be obtained by blowing up Lf (t) from center z by a
factor of 1 + 1/n. Then Lf (s) ⊆ L′ by logconcavity, so

∫

Lf (s)

(uT x)2f(x) dx ≤
∫

L′
(uT x)2f(x) dx

=
(
1 +

1
n

)n
∫

Lf (t)

[
uT

((
1 +

1
n

)
x− 1

n
z
)]2

f
((

1 +
1
n

)
x− 1

n
z
)

dx.

Using that f decreases along semilines starting from z, we get
∫

Lf (s)

(uT x)2f(x) dx

≤
(
1 +

1
n

)n
∫

Lf (t)

[
uT

((
1 +

1
n

)
x− 1

n
z
)]2

f(x) dx

We can expand this into three terms:
(
1 +

1
n

)n+2
∫

Lf (t)

(uT x)2f(x) dx

−2
1
n

(
1 +

1
n

)n+1
∫

Lf (t)

(uT x)(uTz)f(x) dx

+
1
n2

(
1 +

1
n

)n
∫

Lf (t)

(uTz)2f(x) dx.

Here the middle term is 0 since ft is isotropic, and the last term is

1
n2

(
1 +

1
n

)n
∫

Lf (t)

(uTz)2f(x) dx

=
1
n2

(
1 +

1
n

)n

(uTz)2
∫

Lf (t)

f(x) dx

<
e

n2
|z|2

∫

Lf (t)

f(x) dx < 3
∫

Lf (t)

f(x) dx

by Lemma 5.18. The first term is
(
1 +

1
n

)n+2
∫

Lf (t)

(uT x)2f(x)) dx < 3
∫

Lf (t)

(uT x)2f(x) dx,

and hence
∫

Rn

(uT x)2 dπfs(x) =

∫
Lf (s)

(uT x)2f(x) dx∫
Lf (s)

f(x) dx
≤ 3 + 3

∫
Lf (t)

(uT x)2f(x) dx∫
Lf (t)

f(x) dx

= 3 + 3
∫

Rn

(uT x)2 dπft(x) = 6.

¤
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We end this section with an important folklore theorem, generalizing Khin-
chine’s inequality to logconcave functions. First an elementary lemma, whose
proof is omitted:

Lemma 5.21 For every α ≤ β,

∫ β

α
e−ttk dt

∫ β

α
e−t dt

≤ kk ·
(∫ β

α
e−t|t| dt

∫ β

α
e−t dt

)k

Using this lemma, we prove:

Theorem 5.22 If X is a random point from a logconcave distribution in Rn,
then

E(|X|k)1/k ≤ 2kE(|X|).

Note that the Hölder inequality gives an opposite relation:

E(|X|k)1/k ≥ E(|X|).

Proof. We can write this inequality as

∫
Rn f(x)|x|k dx∫
Rn f(x) dx

≤ (2k)k ·
(∫

Rn f(x)|x| dx∫
Rn f(x) dx

)k

.

By Lemma 2.6 in [13], it suffices to prove that for any two points a, b ∈ Rn and
c ∈ R, we have

∫ 1

0
ect|ta + (1− t)b|k dt∫ 1

0
ect dt

≤ (2k)k ·
(∫ 1

0
ect|ta + (1− t)b| dt∫ 1

0
ect dt

)k

.

Let c be the closest point of the segment [a, b] to the origin. We can write
any point on the segment [a, b] as c + s(b− a), where α = −|c− a|/|b− a| ≤ s ≤
β = |b− c|/|b− a|. In this case,

|c + s(b− a)| ≥ max{|c|, |s| · |b− a|}, (15)

and of course
|c + s(b− a)| ≤ |c|+ |s| · |b− a|.

Hence
∫ β

α

ec(s−α)|c + s(b− a)|k ds

≤ 2k−1

∫ β

α

ec(s−α)|c|k ds + 2k−1

∫ β

α

ec(s−α)|s|k|b− a|k ds .
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Here the first term is easy to evaluate, while the second term can be estimated
using Lemma 5.21. We get that

∫ β

α
ec(s−α)|c + s(b− a)|k ds

∫ β

α
ec(s−α) ds

≤ 2k−1|c|k + 2k−1|b− a|kkk

(∫ β

α
ec(s−α)|s| ds

∫ β

α
ec(s−α) ds

)k

= 2k−1

(∫ β

α
ec(s−α)|c| ds

∫ β

α
ec(s−α) ds

)k

+ 2k−1kk

(∫ β

α
ec(s−α)|s||b− a| dt
∫ β

α
ec(s−α) ds

)k

≤ (2k)k

(∫ β

α
ec(s−α)|c + s(b− a)| ds

∫ β

α
ec(s−α) ds

)k

,

where the last step uses (15). ¤

6 Taming the function

6.1 Smoothing out

In this section, we define a ”smoothed-out” version of the given density function
f and prove its basic properties. Define

f̂(x) = inf
C

1
vol(C)

∫

C

f(x + u) du,

where C ranges over all convex subsets of the ball rB with vol(C) = πnrn/16.
(The parameter r will be specified later, and in the case of the ball walk it will
be the radius of the ball used in each step.) Note that by the logconcavity of f ,
the level set {f ≥ f(x)} is convex, and hence there is a half-ball of B on which
f ≤ f(x). This implies that

f̂(x) ≤ f(x). (16)

The somewhat complicated definition of the function f̂ serves to assure its
logconcavity (Lemma 6.2). We’ll also show that this function is not much smaller
than f on the average (Lemma 6.3). We start with a simple observation that
shows that we could (at the cost of a factor of 2) replace equality in the condition
on C by inequality:

Lemma 6.1 For every convex subset D ⊆ rB with vol(D) ≥ vol(rB)/16, we
have

1
vol(D)

∫

D

f(x + u) du ≥ 1
2
f̂(x).

Proof. We can slice up D into convex sets D = D1 ∪ · · · ∪ Dm so that
πnrn/16 ≤ vol(Di) ≤ πnrn/8. For at least one i, we have

1
vol(Di)

∫

Di

f(x + u) du ≤ 1
vol(D)

∫

D

f(x + u) du.
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Let C be any convex subset of Di of volume vol(rD)/16, then

1
vol(C)

∫

C

f(x + u) du ≤ 2
vol(Di)

∫

Di

f(x + u) du.

Since by definition
1

vol(C)

∫

C

f(x + u) du ≥ f̂(x),

this proves the lemma. ¤

Lemma 6.2 The function f̂ is logconcave.

Proof. For a fixed convex set C ⊆ rB, the function

fC(x) =
∫

C

f(x + u) du

is the convolution of the function f with the characteristic function of the convex
set −C, and so it is logconcave by Theorem 5.1. Thus f is the infimum of the
family {fC} of logconcave functions, and so it too is logconcave. ¤

Lemma 6.3 Suppose f is a-rounded. Then
∫

Rn

f̂(x) dx ≥ 1− 32
a1/2

r1/2n1/4.

If in particular f is isotropic, then
∫

Rn

f̂(x) dx ≥ 1− 64r1/2n1/4.

To prove Lemma 6.3, we need a lemma from [12] (in a paraphrased form).

Lemma 6.4 Let K be a convex set containing a ball of radius t. Let X be a
uniform random point in K and let Y be a uniform random in X + sB. Then

P(Y /∈ K) ≤ s
√

n

2t
.

Proof. [of Lemma 6.3]. Consider the set {(X, T ) ∈ Rn×R+ : T < f(X)}, and
select a pair (X, T ) randomly and uniformly from this set. Choose a uniform
random point Z in X + rB. We estimate the probability that T > f(Z).

First, fix X and Z, and then choose T . Since T is uniform in the interval
[0, f(X)], the probability that T > f(Z) is

PT (T > f(Z)) =

{
0, if f(Z) > f(X),
1− f(Z)

f(X) , if f(Z) ≤ f(X).
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which we can also write as

PT (T > f(Z)) = max
{

1− f(Z)
f(X)

, 0
}

.

Taking the expectation also over the choice of Z,

PT,Z(T > f(Z)) =
1

πnrn

∫

X+rB

PT (T > f(z)) dz

=
1

πnrn

∫

X+rB

max
{

1− f(Z)
f(X)

, 0
}

dz.

Let C be the convex set attaining the minimum in the definition of f̂(X), then
it follows that

PT,Z(T > f(Z)) ≥ 1
πnrn

∫

C

(
1− f(z)

f(X)

)
dz

=
1
16

(
1− f̂(X)

f(X)

)
.

Finally, taking expectation in X (which is from the distribution πf ), we get

PT,Z,X(T > f(Z)) ≥ 1
16

∫

Rn

(
1− f̂(x)

f(x)

)
f(x) dx

=
1
16

(
1−

∫

Rn

f̂(x) dx

)
. (17)

Next, start by choosing T from its appropriate marginal distribution, and
then choose X uniformly from Lf (T ), and then choose Z. Fix some t ≥ f(Z)
and let c = πf (Lf (t)). We clearly have

P(T > t) ≤ πf (Lf (t)) = c.

On the other hand, if T ≤ t, then Lf (T ) contains a ball of radius ac, and so by
Lemma 6.4, the probability that Z /∈ Lf (T ) is at most r

√
n/(ac). Hence

P(t ≥ T > f(Z)) ≤ r
√

n/(ac).

Thus
P(T > f(Z)) ≤ c + r

√
n/(ac).

This bound is tightest if we choose t so that c = r1/2n1/4/a1/2, in which case
we get

P(T > f(Z)) ≤ 2
r1/2n1/4

a1/2
.

We may not be able to choose this c, if πf (Lf (f(Z))) < c; but then the inequality
holds trivially.

Now comparing with (17), the lemma follows. ¤
This lemma implies that the distributions πf and πf̂ are close:

35



Corollary 6.5 If f is isotropic, then the total variation distance between πf

and πf̂ is less than 80r1/2n1/4.

Proof. Let c = 64r1/2n1/4. The density function of πf̂ is at most f̂/(1 − c),
and hence (using that f̂ ≤ f and c < 1/5),

dtv(πf , πf̂ ) =
∫

Rn

max

{
f̂(x)
1− c

− f(x)

}
dx ≤

∫

Rn

f(x)
1− c

− f(x) dx =
c

1− c

< 80r1/2n1/4.

¤
Another simple consequence of Lemma 6.3 is the following:

Corollary 6.6 Let X be a random point from an isotropic logconcave distribu-
tion with density function f . Then

P(f̂(X) <
1
2
f(X)) ≤ 128r1/2n1/4.

Proof. Let
Z = {x ∈ Rn : f̂(x) <

1
2
f(x)}.

We have
∫

Rn

f̂(x) dx ≤
∫

Rn\Z
f(x) dx +

∫

Z

1
2
f(x) dx = 1− 1

2
πf (Z).

By Lemma 6.3,
πf (Z) ≤ 128r1/2n1/4,

and the corollary follows. ¤

6.2 Smoothness measures

The quotient

δ(x) =
f̂(x)
f(x)

is a certain measure of the smoothness of the function f at x. The value

ρ(x) =
r

16
√

nt(δ(x)/4)
≈ r

16
√

ln(4/δ(x))

will also play an important role; the function is well behaved in a ball with
radius ρ(x) about x.
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Lemma 6.7 Let x ∈ Rn, and let y be a uniform random point in x+rB. Then
with probability at least 15/16,

f(y) ≤ 2
δ(x)

f(x).

Proof. Consider the set

S =
{

u ∈ x + rB : f(u) >
2

δ(x)
f(x)

}
.

Clearly S is convex, and so is the set S′ obtained by reflecting S in x. Further-
more, for every y ∈ S′ we have by logconcavity

f(y)f(2x− y) ≤ f(x)2,

and since f(2x − y) > 2f(x)2/f̂(x) by definition, we have f(y) < 1
2 f̂(x). By

Lemma 6.1, this can only happen on a convex set of measure less than 1/16,
which proves the lemma. ¤

Lemma 6.8 For every x, y ∈ Rn with |x− y| ≤ r
2
√

n
, we have

δ(x)
2

≤ f(y)
f(x)

≤ 2
δ(x)

.

Proof. Let a be the closest point to x with f(a) ≤ f̂(x)/2. Consider the
supporting hyperplane of the convex set {y ∈ Rn : f(y) ≥ f̂(x)/2}, and the
open halfspace H bounded by this hyperplane that does not contain x. Clearly
f(y) < f̂(x) for y ∈ H. By the definition of f̂ , it follows that the volume of the
convex set H ∩ (x + rB) must be less than πnrn/16. On the other hand, by
Lemma 4.1, the volume of this set is at least

(
1
2
− |a|√n

2r

)
πnrn.

Comparing these two bounds, it follows that

|a| > 7
8

r√
n

>
r

2
√

n
.

This proves the first inequality. The second follows easily, since for the point
y′ = 2x− y we have |y′− x| = |y− x| < r/(2

√
n), and so by the first inequality,

f(y′) ≥ f̂(x)
2

.

Then logconcavity implies that

f(y) ≤ f(x)2

f(y′)
≤ 2

f(x)2

f̂(x)
,

as claimed. ¤
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Lemma 6.9 (a) Let 0 < q < (δ(x)/4)1/nr. Then,

vol

(
y ∈ x + qS : f(y) <

f̂(x)
2

)
≤

(
1− δ(x)

4

)
vol(qS).

(b) Let 0 < q ≤ ρ(x). Then,

vol

(
y ∈ x + qS : f(y) ≤ f̂(x)

2

)
≤ δ(x)

4
vol(qS).

Proof. (a) We may assume, for notational convenience, that x = 0. Let
δ = δ(x) and L = L(f̂(0)/2). To prove (a), suppose that this fraction is larger
than 1− δ/4. Let C = rB ∩H, where H is a halfspace that avoids the points y
with f(y) > f(0) and also vol(H ∩ (rB) = πnrn/16 which. We can write

∫

C

f(y) dy =
∫

C\L
+

∫

C∩L

.

Since f(y) ≤ f(0) for all y ∈ C and f(y) ≤ f̂(0)/2 on the first set,
∫

C

f(y) dy ≤ f̂(0)
2

vol(C \ L)) + f(0)vol(C ∩ L).

The first term can be estimated simply by (f̂(0)/2)vol(C). The second term we
split further:

vol(C ∩ L) ≤ vol((C ∩ L) \ (qB)) + vol(C ∩ (qB)).

Since the fraction of every sphere tS, t ≥ q, inside L is at most δ/4, it follows
that the first term is at most δvol(C)/4. We claim that also the second term is
less than δvol(C)/4. Indeed,

vol(C ∩ L ∩ (qB)) ≤ 1
16

vol(qB) =
1
16

(q

r

)n

vol(rB) ≤ δ

4
vol(C).

Thus ∫

C

f(y) dy <
f̂(0)

2
vol(C) + 2f(0)

δ

4
vol(C) = f̂(0)vol(C),

which contradicts the definition of f̂ . This proves (a).
To prove (b), suppose that a fraction of more than δ of the sphere qS is not

in L. On the other hand, a fraction of at least δ of the sphere 2qS is in L. This
follows from part (a) if q < δ1/nr. If this is not the case, then we have

q ≤ ρ(x) <
r

16
√

ln(4/δ(x))
,

from where it is easy to conclude that q < r/(2
√

n). From Lemma 6.8 we get
that all of the sphere qS is in L.
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Now we apply Lemma 4.4 to the set L. By Lemma 6.8, this set contains a
ball of radius r/(2

√
n) centered at zero. From the previous paragraph,

vol(qS \ L)
vol(qS)

≥ δ

4
and

vol(2qS ∩ L)
vol(qS)

≥ δ

4
.

Thus, after scaling so that the ball inside L has unit radius, Lemma 4.4 implies
that

2t

(
δ

4

)
≥ 3r

16q
√

n
,

which contradicts the assumption that q ≤ ρ(x). ¤
For the hit-and-run walk, we need another smoothness measure, which (in

view of Lemma 6.7, is analogous to δ(x). For a point x ∈ K, define α(x) as the
smallest s ≥ 3 for which

P(f(y) ≥ sf(x)) ≤ 1
16

,

where y is a hit-and-run step from x.

Lemma 6.10 Let u be a random point from the stationary distribution πf . For
every t > 0,

P(α(u) ≥ t) ≤ 16
t

.

Proof. If t ≤ 3, then the assertion is trivial, so let t ≥ 3. Then for every x
with a(x) ≥ t, we have

P(f(y) ≥ α(x)f(x)) =
1
16

,

and hence α(x) ≥ t if and only if

P(f(y) ≥ tf(x)) ≥ 1
16

.

Let µ(x) denote the probability on the left hand side. By Lemma 5.6(a),
for any line `, a random step along ` will go to a point x such that f(x) ≤
(1/t)maxy∈` f(y) with probability at most 1/t. Hence for every point u, the
probability that a random step from u goes to a point x with f(x) ≤ (1/t)f(u)
is again at most 1/t. By time-reversibility, for the random point u we have

E(µ(u)) ≤ 1
t
.

On the other hand,

E(µ(u)) ≥ 1
16

P

(
µ(u) ≥ 1

16

)
=

1
16

P(α(u) ≤ t),
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which proves the lemma. ¤
We study a hit-and-run step in greater detail. Let x be a point and `, a line

through x. We say that the pair (x, `) is ordinary, if both points u ∈ ` with
|u−x| = ρ(x) satisfy f(u) ≥ f̂(x)/2. Note that this implies that f(y) ≥ f̂(x)/2
for all points y with |y − x| ≤ ρ(x).

Lemma 6.11 Let x ∈ Rn and let ` be a random line through x. Then with
probability at least 1− δ(x)/2, (x, `) is ordinary.

Proof. If (x, `) is not ordinary, then one of the points u on ` at distance ρ(x)
has f(u) < f(x)/2. By Lemma 6.9, the fraction of such points on the sphere
x+ρ(x)S is at most δ(x)/4. So the probability that ` is not ordinary is at most
δ(x)/2. ¤

Lemma 6.12 Suppose that (x, `) is ordinary. Let p, q be intersection points of
` with the boundary of L(F/8) where F is the maximum value of f along `, and
let s = max{ρ(x)/4, |x− p|/32, |x− q|/32}. Choose a random point y on ` from
the distribution π`. Then

P(|x− y| > s) >

√
δ(x)
8

.

Proof. We may assume that x = 0. Suppose first that the maximum in
the definition of s is attained by ρ(0)/4. Let y be a random step along `, and

apply lemma 5.6(b) with c =
√

f(0)f̂(0)/2. We get that the probability that
f(2y) ≤ c or f(−2y) ≤ c is at least

c

4f(0)
=

√
δ(0)
8

.

Suppose f(2y) ≤ c. Then logconcavity implies that f(4y) ≤ c2/f(0) = f̂(0)/4.
Since ` is ordinary, this means that in such a case |4y| > ρ(x), and so |x− y| =
|y| > ρ(x)/4.

So suppose that the maximum in the definition of s is attained by (say)
|p|/32. We have the trivial estimates

∫

|y|<s

f(y) dy ≤ 2sF,

but ∫

`

f(y) dy ≥ |p− q|F
8

,

and so
P(|y| ≤ s) ≤ 16s

|p− q| .
Hence if |p− q| > 24s, then the conclusion of the lemma is valid.

So we may assume that |p − q| < 24s. Then q is between 0 and p, and so
for every point y in the interval [p, q], we have |y| ≥ 8s. Since the probability
of y ∈ [p, q] is at least 7/8 the lemma follows again. ¤
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6.3 Cutting off small parts

The next two lemmas will allow us to ignore small troublesome regions that are
very far from the center of gravity or where the function value is very small. We
prove them for isotropic densities; the arguments are similar for nearly isotropic
functions.

Lemma 6.13 Let f be an isotropic density function in Rn with distribution πf .
For t > 0, let

Kt = {x ∈ Rn : |x| ≤ t
√

n, f(x) > e−2(n−1)−2tMf}.
Then

πf (Kt) > 1− 2e−t.

Proof. Let U = {x ∈ Rn : f(x) ≤ e−2(n−1)−2tMf} and V = Rn \ t
√

nB.
Then by Lemma 5.16,

πf (U) ≤
((

2 +
2t

n− 1

)
e−1− 2t

n−1

)n−1

< e−t,

and by Lemma 5.17,
πf (V ) ≤ e−t,

and so
πf (Kt) ≥ 1− πf (U)− πf (V ) ≥ 1− 2e−t.

¤
Define

t0 = 8 ln
2
ε
, R = t0

√
n,

and
K = Kt0 = {x ∈ Rn : |x| ≤ R, f(x) ≥ e−2(n−1)−2R/

√
nMf}.

For points in the interior of K, there are some simple but important relations
between three distance functions we have to consider: the Euclidean distance
d(u, v), the f -distance df (u, v) and the K-distance dK(u, v) (recall that this is
the same as f -distance when f is replaced by the uniform distribution over K).

Lemma 6.14 For any two points u, v ∈ K,
(a) dK(u, v) ≤ df (u, v);
(b) dK(u, v) ≥ 1

2Rd(u, v);
(c) dK(u, v) ≥ 1

6n+6t0
min(1, df (u, v)).

Proof. Part (a) follows from Lemma 5.9; (b) is immediate from the definition
of K. For (c), we may suppose that dK(u, v) ≤ 1/(6n + 6t0) (else, the assertion
is obvious). By Lemma 5.16 and the definition of K, we have for any two points
x, y ∈ K

f(x)
f(y)

≤ Mf

f(y)
≤ e2(n−1)+2t0 .
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So we can apply Lemma 5.11, with C = 2n + 2t0 (for which dK(u, v) ≤ 1/2C)
and get that

dK(u, v) ≥ 1
6n + 6t0

df (u, v),

proving (c). ¤

7 Geometric distance and probabilistic dis-
tance.

Our goal in this section is to show that if two points are close in a geometric
sense, then the distributions obtained after making one step of the random
walk (ball or hit-and-run) from them are also close in total variation distance.
This will be relatively easy for the ball walk, but much more complicated for
hit-and-run.

7.1 Ball walk

Recall that Pu be the distribution obtained on taking one ball step from u.

Lemma 7.1 Let u, v ∈ Rn such that

d(u, v) <
r

8
√

n
and df (u, v) <

1
8
.

Then

dtv(Pu, Pv) < 1− max{δ(u), δ(v)}
18

Proof. Let Bu, Bv be the balls of radius r around u and v, respectively.
Suppose that f(u) ≤ f(v), and let H be a halfspace with u on the boundary
where f(x) ≤ f(u). Let C = Bu∩Bv and C ′ = H∩C. Since d(u, v) ≤ r/(8

√
n),

we have
vol(C ′) ≥ 1

4
vol(C) >

1
8
vol(rB).

It follows by the definition of f̂ that

f̂(u), f̂(v) ≤ 2
vol(C ′)

∫

C′
f(x) dx ≤ 16

vol(rB)

∫

C′
f(x) dx.

For any point x ∈ C ′, the probability density of going from u to x or v to x is
at least

1
vol(rB)

f(x)
f(v)

.

Thus,

dtv(Pu, Pv) ≤ 1− 1
vol(rB)

∫

x∈C′

f(x)
f(v)

dx ≤ 1− max{f̂(u), f̂(v)}
16f(v)

.
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Hence

dtv(Pu, Pv) ≤ 1− f̂(v)
16f(v)

= 1− 1
16

δ(v).

By the condition that δf (u, v) < 1/8 and by Lemma 5.8, we have

8
9
≤ f(u)

f(v)
≤ 9

8
,

and so

dtv(Pu, Pv) ≤ 1− f̂(u)
16f(u)

= 1− 1
18

δ(u).

¤

7.2 Hit-and-run

Recall that Qu be the distribution obtained on taking one ball step from u. It
is not hard to see that

Qu(A) =
2

nπn

∫

A

f(x) dx

µf (u, x)|x− u|n−1
. (18)

The following lemma is the key to the analysis of the hit-and-run walk.

Lemma 7.2 Let u, v be two points in Rn such that

df (u, v) <
1

27 ln(3 + α(u))
and d(u, v) <

r

210
√

n
.

Then

dtv(Qu, Qv) < 1− δ(u)
212

.

Proof. Let δ = δ(u) and α = α(u). We will show that there exists a set
A ⊆ K0 such that Qu(A) ≥

√
δ/32 and for every subset A′ ⊂ A,

Qv(A′) ≥
√

δ

128
Qu(A′).

To this end, we define certain “bad” lines through u. Let σ be the uniform
probability measure on lines through u. Let B0 be the set of non-ordinary lines
through u. By Lemma 6.11, σ(B0) ≤ δ/2.

Let B1 be the set of lines that are not almost orthogonal to u − v, in the
sense that for any point x 6= u on the line,

|(x− u)T (u− v)| > 2√
n
|x− u||u− v|.

The measure of this subset can be bounded as σ(B1) ≤ 1/8.
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Next, let B2 be the set of all lines through u which contain a point y with
f(y) > 2αf(u). By Lemma 5.6(a), if we select a line from B2, then with
probability at least 1/2, a random step along this line takes us to a point x with
f(x) ≥ αf(u). From the definition of α, this can happen with probability at
most 1/16, which implies that σ(B2) ≤ 1/8.

Let A be the set of points in K which are not on any of the lines in B0 ∪
B1 ∪B2, and which are far from u in the sense of Lemma 6.12:

|x− u| ≥ max
{

1
4
ρ(u),

1
32
|u− p|, 1

32
|u− q|

}
.

Applying Lemma 6.12 to each such line, we get

Qu(A) ≥
(

1− 1
8
− 1

8
− δ

2

) √
δ

8
≥
√

δ

32
.

We are going to prove that if we do a hit-and-run step from v, the density of
stepping into x is not too small whenever x ∈ A. By the formula (18), we have
to treat |x− v| and µf (v, x).

We start by noting that f(u) and f(v) are almost equal. Indeed, Lemma 5.8
implies that

64
65
≤ f(v)

f(u)
≤ 65

64
.

Claim 1. For every x ∈ A,

|x− v|n ≤ 2√
δ
|x− u|n.

Indeed, since x ∈ A, we have

|x− u| ≥ 1
4
ρ(u) =

r

64
√

nt(δ/4)

We can estimate this using Lemma 4.2. Assume that (b) applies (when (a)
applies, the implication below follows easily). Then by the assumption of the
present lemma,

r

64
√

nt(δ/4)
≥ r

128
√

ln(4/δ)
≥ 8

√
n√

ln(4/δ)
|u− v|.

On the other hand,

|x− v|2 = |x− u|2 + |u− v|2 + 2(x− u)T (u− v)

≤ |x− u|2 + |u− v|2 +
4√
n
|x− u||u− v|

≤ |x− u|2 +
ln(4/δ)

64n
|x− u|2 +

√
ln(4/δ)
2n

|x− u|2

≤ (1 +
ln(4/δ)

n
)|x− u|2
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Hence:

|x− v|n ≤
(

1 +
ln(4/δ)

n

)n
2

|x− u|n <
2√
δ
|x− u|n.

The main part of the proof is the following claim:
Claim 2. For every x ∈ A,

µf (v, x) < 64
|x− v|
|x− u|µf (u, x).

To prove this, let y, z be the points where `(u, v) intersects the boundary
of L(f(u)/2), so that these points are in the order y, u, v, z. Let y′, z′ be the
points where `(u, v) intersects the boundary of K. By f(y) = f(u)/2, we have
f(y′, u) ≤ 2f(y, u), and so (using logconcavity in the last step),

df (u, v) =
f(u, v)f(y′, z′)
f(y′, u)f(v, z′)

≥ f(u, v)
f(y′, u)

≥ f(u, v)
2f(y, u)

≥ |u− v|
4|y − u| .

It follows that

|y − u| ≥ |u− v|
4df (u, v)

≥ 32 ln(3 + α) · |u− v| > 32|u− v|. (19)

A similar argument shows that

|z − v| ≥ 32 ln(3 + α) · |u− v| > 32|u− v|. (20)

Next, we compare the function values along the lines `(u, x) and `(v, x). Let
F denote the maximum value of f along `(u, x), and let p, q be the intersection
points of `(u, x) with the boundary of L(F/8), so that q is in the same direction
from p as x is from u. Since x ∈ A, we know that

|u− p|, |u− q| ≤ 32|x− u|. (21)

For each point a ∈ `(u, x) we define two points a′, a′′ ∈ `(v, x) as follows. If
a is on the semiline of `(u, x) starting from x containing u, then we obtain a′

by projecting a from y to `(v, x), and we obtain a′′ by projecting a from z. If a
is on the complementary semiline, then the other way around, we obtain a′ by
projecting from z and a′′ by projecting from y.

Simple geometry shows that if

|a− u| < |y − u|
|u− v| |x− u|, |z − u|

|u− v| |x− u|,

then a′, a′′ exist and a′′ is between v and a′. Furthermore, a 7→ a′ and a 7→ a′′

are monotone mappings in this range.
A key observation is that if |a− u| ≤ 32|x− u|, then

f(a′) < 2f(a). (22)
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Figure 1: Comparing steps from nearby points.

To prove this, let b = a′. We have to distinguish three cases.
(a) a ∈ [u, x]. Then, using (19),

|a− b|
|y − b| ≤

|u− v|
|y − v| ≤

|u− v|
|y − u| ≤

1
128 ln(3 + α)

.

Further, by the logconcavity of f ,

f(a) ≥ f(b)
|y−a|
|y−b| f(y)

|a−b|
|y−b| .

Thus,

f(b) ≤ f(a)
|y−b|
|y−a|

f(y)
|a−b|
|y−a|

= f(a)
(

f(a)
f(y)

) |a−b|
|y−a|

.

Here
f(a) ≤ 2αf(u) ≤ 4αf(y),

since x ∈ A2. Thus

f(b) ≤ f(a)(4α)
1

128 ln(3+α) < 2f(a).
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(b) a ∈ `+(x, u). By Menelaus’ theorem,

|a− b|
|b− z| =

|x− a|
|x− u| ·

|u− v|
|v − z| .

By (21), |x− a|/|x− u| ≤ 16, and so by (20),

|a− b|
|b− z| ≤ 16df (u, v) ≤ 1

4 ln(3 + α)
.

By logconcavity,
f(a) ≥ f(b)|a−z|/|b−z|f(z)|a−b|/|b−z|

Rewriting, we get

f(b) ≤ f(a)|b−z|/|a−z|

f(z)|a−b|/|a−z| = f(a)
(

f(a)
f(z)

)|a−b|/|a−z|

≤ f(a)(4α)
1

4 ln(3+α)−1 ≤ 2f(a).

(c) a ∈ `+(u, x). By Menelaus’ theorem again,

|a− b|
|b− y| =

|x− a|
|x− u| ·

|u− v|
|v − y| .

Again by (21), |x− a|/|x− u| ≤ 16. Hence, using (19) again,

|a− b|
|b− z| ≤ 16df (u, v) ≤ 1

4 ln(3 + α)
.

By logconcavity,
f(a) ≥ f(b)|a−y|/|b−y|f(z)|a−b|/|b−y|

Rewriting, we get

f(b) ≤ f(a)|b−y|/|a−y|

f(y)|a−b|/|a−y| = f(a)
(

f(a)
f(y)

)|a−b|/|a−y|

≤ f(a)(4α)
1

4 ln(3+α)−1 ≤ 2f(a).

This proves inequality (22).
Similar argument shows that if |a− u| ≤ 32|x− u|, then

f(a′′) >
1
2
f(a). (23)

Let a ∈ `(u, x) be a point with f(a) = F . Then a ∈ [p, q], and hence
|a− u| < max{|p− u|, |q − u|} ≤ 32|x− u| (since x ∈ A).

These considerations describe the behavior of f along `(v, x) quite well. Let
r = p′ and s = q′. (22) implies that f(r), f(r) ≤ F/4. On the other hand,
f(a′′) > F/2 by (23).
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Next we argue that a′′ ∈ [r, s]. To this end, consider also the point b ∈
`(u, x) defined by b′ = a′′. It is easy to see that such a b exists and that b
is between u and a. This implies that |b − u| < 32|x − u|, and so by (22),
f(b) > f(b′)/2 = f(a′′)/2. Thus f(b) > F/4, which implies that b ∈ [p, q], and
so b′ ∈ [p′, q′] = [r, s].

Thus f assumes a value at least F/2 in the interval [r, s] and drops to at
most F/4 at the ends. Let c be the point where f attains its maximum along
the line `(v, x). It follows that c ∈ [r, s] and so c = d′ for some d ∈ [p, q]. Hence
by (22), f(c) ≤ 2f(b) ≤ 2F . Thus we know that the maximum value F ′ of f
along `(v, x) satisfies

1
2
F ≤ F ′ ≤ 2F. (24)

Having dealt with the function values, we also need an estimate of the length
of [r, s]:

|r − s| ≤ 2
|x− v|
|x− u| |p− q|. (25)

To prove this, assume e.g. that the order of the points along `(u, x) is
p, u, x, q (the other cases are similar). By Menelaus’ theorem,

|x− r|
|v − r| =

|u− y|
|v − y| ·

|x− p|
|u− p| =

(
1− |v − u|

|v − y|
) |x− p|
|u− p| .

Using (19), it follows that

|x− r|
|v − r| ≥

31
32
|x− p|
|u− p| .

Thus,

|x− v|
|v − r| =

|x− r|
|v − r| − 1 ≥ 31

32
|x− p|
|u− p| − 1

=
|x− u|
|u− p| −

1
32
|x− p|
|u− p|

=
|x− u|
|u− p|

(
1− 1

32
|x− p|
|x− u|

)

>
|x− u|
|u− p|

(
1− 1

32
· 16

)
=

1
2
|x− u|
|u− p| .

In the last line above, we have used (21). Hence,

|v − r| < 2
|x− v|
|x− u| |u− p|. (26)

Similarly,

|v − s| < 2
|x− v|
|x− u| |u− q|.
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Adding these two inequalities proves (25).
Now Claim 2 follows easily. We have

µ(`(u, x)) ≥ F

8
|p− q|, (27)

while we know by Lemma 5.6(a) that

µ(`(v, x)) ≤ 2f [r, s].

By (24) and (25),

f(r, s) ≤ 2F |r − s| ≤ 4F |p− q| |x− v|
|x− u| ,

and hence, using (27),

µ(`(v, x)) < 64
|x− v|
|x− u|µ(`(u, x)),

proving Claim 2.
Using Claims 1 and 2, we get for any A′ ⊂ A,

Qv(A′) =
2

nπn

∫

A′

f(x) dx

µf (v, x)|x− v|n−1

≥ 2
64nπn

∫

A′

|x− u|f(x) dx

µf (u, x)|x− v|n

≥ 2
√

δ

128nπn

∫

A′

f(x) dx

µf (u, x)|x− u|n−1

≥
√

δ

128
Qu(A′).

This concludes the proof of Lemma 7.2. ¤

8 Proof of the isoperimetric inequality.

Here we prove Theorem 2.5. Let hi be the characteristic function of Si for
i = 1, 2, 3, and let h4 be the constant function 1 on K. We want to prove that

dK(S1, S2)
(∫

fh1

)(∫
fh2

)
≤

(∫
fh3

)(∫
fh4

)
.

Let a, b ∈ K and g be a nonnegative linear function on [0, 1]. Set v(t) =
(1− t)a + tb, and

Ji =
∫ 1

0

hi(v(t))f(v(t))gn−1(v(t)) dt.
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By Theorem 2.7 of [13], it is enough to prove that

dK(S1, S2)J1 · J2 ≤ J3 · J4. (28)

A standard argument [12, 15] shows that it suffices to prove the inequality for
the case when J1, J2, J3 are integrals over the intervals [0, u1], [u2, 1] and (u1, u2)
respectively (0 < u1 < u2 < 1).

Consider the points ci = (1− ui)a + uib. Since ci ∈ Si, it is easy to see that

dK(c1, c2) ≤ (a : u2 : u1 : b)

while
J3 · J4

J1 · J2
= (a : u2 : u1 : b)f .

Thus (28) follows from Lemma 5.9.

9 Proof of the mixing bounds.

Consider a random walk on Rn with stationary distribution πf , and let Pu

denote the distribution after one step from u. For every measurable set S ⊆ Rn,
define the ergodic flow from S by

Φ(S) =
∫

S

Pu(Rn \ S) dπf (u).

We can read this quantity as follows: we select a random point X from distri-
bution π and make one step to get Y . What is the probability that X ∈ S and
Y /∈ S? It is easy to check that

Φ(Rn \ S) = Φ(S).

For 0 < s ≤ 1/2, we define (as in [16]) the s-conductance of the Markov
chain by

Φs = inf
s<πf (A)≤1/2

Φ(A)
πf (A)− s

,

and invoke Corollary 1.6(b) from [16] as a lemma. Let σm denote the distri-
bution of the current position in the walk after t steps, and define the starting
error by

Hs = sup{|σ0(A)− πf (A)| : πf (A) ≤ s}
Then:

Lemma 9.1 Let 0 < s ≤ 1/2. Then for every measurable S ⊆ Rn, and every
m ≥ 0,

|σm(S)− φf (S)| ≤ Hs +
Hs

s

(
1− 1

2
Φ2

s

)m

.

After these preliminaries, we have to treat the ball walk and the hit-and-run
walk separately.
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9.1 Ball walk

In this section, we prove Theorem 2.2. Set

r =
aε2

210
√

n
, R = 8

√
Var(f) ln(1/ε), ε1 = r1/2n1/4.

Let
K0 = {x : |x| < R, f(x) > e−2n−8 ln(1/ε)Mf}.

Then
πf (K0) ≥ 1− ε

n8
. (29)

By Lemma 6.3, ∫

Rn

f̂(x) dx ≥ 1− 64ε1. (30)

To apply Lemma 9.1, we need a lower bound on the ε2-conductance of the
walk, where ε2 = 256ε1. This will follow from the next lemma.

Lemma 9.2 Let Rn = S1 ∪ S2 be a partition into measurable sets with
πf (S1), πf (S2) > ε2. Then

Φ(S1) ≥ r

215
√

nR
(πf (S1)− ε2)(πf (S2)− ε2) (31)

Proof. For i ∈ {1, 2}, let

S′i = {x ∈ Si ∩K0 : Px(S3−i) <
1
64

δ(x)},
and S′3 = K0 \ S′1 \ S′2.

First, suppose that πf (S′1) ≤ πf (S1)/2. Then the left hand side of the
desired inequality is at least

∫

u∈(S1∩K0)\S′1

f̂(u)
64f(u)

f(u) du =
1
64

πf̂ ((S1 ∩K0) \ S′1).

Using (30) and (29),

πf̂ ((S1 ∩K0) \ S′1) ≥ πf (S1 ∩K0 \ S′1)−
ε2

4
≥ πf (S1)− πf (Rn \K0)− πf (S′1)−

ε2

4

≥ 1
2
(πf (S1)− ε2).

Hence, ∫

S1

Pu(S2) dπf ≥ 1
128

(πf (S1)− ε2)

which implies the lemma.

51



So we can assume that πf (S′1) ≥ πf (S1)/2, and similarly πf (S′2) ≥ πf (S2)/2.
We now claim that

dK(S′1, S
′
2) ≥

r

64R
√

n
. (32)

Let u ∈ S′1 and v ∈ S′2. Then

d(Pu, Pv) > 1− max{δ(u), δ(v)}
32

,

and so by Lemma 7.1, one of the following holds:

d(u, v) ≥ r

8
√

n
, (33)

or
df (u, v) ≥ 1

8
. (34)

By Lemma 6.14(b), inequality (33) implies that

dK(u, v) ≥ r

64R
√

n
.

By Lemma 6.14(c), inequality (34) implies that

dK(u, v) ≥ df (u, v)
6n + 48 ln(2/ε))

≥ 1
48n + 400 ln(2/ε))

>
r

64R
√

n
.

This proves (32). Now using the Isoperimetry Theorem 2.5 for dK and πf̂ , we
get

πf̂ (S′3) ≥ dK(S′1, S
′
2)πf̂ (S′1)πf̂ (S′2)

≥ r

64R
√

n
(πf (S′1)−

ε2

2
)(πf (S′2)−

ε2

2
)

≥ r

256R
√

n
(πf (S1)− ε2)(πf (S2)− ε2).

We can now complete the proof of the lemma:
∫

S1

Pu(S2) dπf =
1
2

(∫

S1

Pu(S2) dπf +
∫

S2

Pu(S1) dπf

)

≥ 1
2

∫

S′3

f̂(u)
64f(u)

f(u)du

=
1

128
πf̂ (S′3)

≥ r

215
√

nR
(πf (S1)− ε2)(πf (S2)− ε2).

¤
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To complete the proof of Theorem 2.2, let s = ε/(2H). Then Lemma (9.2)
implies

Φs ≥ r

215
√

nR
,

and trivially
Hs ≤ H · s,

so Lemma 9.1 gives that

|σm(S)− πf (S)| ≤ Hs + H exp
(
− mr2

231nR2

)
.

Hence Theorem 2.2 follows.

9.2 Hit-and-run

We recall the values of the following parameters:

t0 = 8 ln(2/ε), R = t0
√

n and r =
ε2

218
√

n
.

Lemma 9.3 Let S1 ∪ S2 be a partition of Rn into measurable sets with
πf (S1), πf (S2) > ε. Then,

∫

S1

Pu(S2) dπf ≥ r

225
√

nR
(πf (S1)− ε)(πf (S2)− ε) (35)

Proof. For i ∈ {1, 2}, let

S′i = {x ∈ Si : Px(S3−i) <
1

213
δ(x)},

and S′3 = Rn \ S′1 \ S′2.

First, suppose that πf̂ (S′1) ≤ πf̂ (S1)/2. Then the left hand side of (35) is at
least

1
213

∫

u∈S1\S′1

f̂(u)
f(u)

f(u) du =
1

213
πf̂ (S1 \ S′1) ≥

1
214

πf̂ (S1).

Corollary 6.5 implies that

πf̂ (S1) ≥ πf (S1)− ε

4
.

Hence, ∫

S1

Pu(S2) dπf ≥ 1
214

(πf (S1)− ε

4
)

which implies (35).
So we can assume that πf (S′1) ≥ πf (S1)/2, and similarly πf (S′2) ≥ πf (S2)/2.

Let W be the subset of Rn with α(u) > 230nR/rε. Then by Lemma 6.10,

πf (W ) ≤ εr

226nR
. (36)
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By Lemma 7.2, for any two points u1 ∈ S′1 \ W , u2 ∈ S′2 \ W , one of the
following holds:

df (u, v) ≥ 1
128 ln(3 + α(u))

≥ 1
212 ln(nR/ε)

(37)

d(u, v) ≥ r

210
√

n
(38)

Define

S′′i = S′i ∩K \W for i = 1, 2
and S′′3 = K \ S′′1 \ S′′2 .

Then we get a lower bound on dK(u, v) for any u ∈ S′′1 , v ∈ S′′2 .

dK(u, v) ≥ r

211
√

nR
. (39)

Indeed, if (37) holds, Lemma 6.14(c) implies that

dK(u, v) ≥ 1
6n + 6t0

· 1
212 ln(nR/ε)

>
r

211
√

nR
.

If (38) holds, then Lemma 6.14(b) implies that

dK(u, v) ≥ 1
2R

· r

210
√

n
=

r

211
√

nR
.

Using (39), we can apply Theorem 2.5 to f̂ restricted to K to get

πf̂ (S′′3 ) ≥ r

211
√

nR
πf̂ (S′′1 )πf̂ (S′′2 ).

For i = 1, 2, using Lemma 6.13 and (36),

πf̂ (S′′i ) ≥ πf (Si)− ε

2
.

Therefore,
πf̂ (S′′3 ) ≥ r

211
√

nR
(πf (S1)− ε

2
)(πf (S2)− ε

2
).

Using this,

∫

S1

Pu(S2) dπf ≥ 1
2

∫

S′′3

f̂(u)
213f(u)

f(u)du− πf (W )

≥ 1
214

πf̂ (S′′3 )− πf (W )

≥ r

225
√

nR
(πf (S1)− ε)(πf (S2)− ε)
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and (35) is proved. ¤
Invoking Lemma 9.1 with s = ε, it follows that for every m ≥ 0, and every

measurable set S,

|σm(S)− πf (S)| ≤ Hε + H exp
(
− mr2

251nR2

)
< Hε + H

(
− mε4

299n2 ln(2/ε)2

)
.

Hence Theorem 2.3 follows on replacing ε by ε/(2H).
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