
Semantic Communication for Simple Goals is
Equivalent to On-line Learning?

Brendan Juba1?? and Santosh Vempala2? ? ?

1 MIT CSAIL and Harvard University
Maxwell Dworkin 140

33 Oxford St.
Cambridge, MA 02138
bjuba@alum.mit.edu

2 Georgia Tech
Klaus Advanced Computing Building 2224

266 Ferst Dr.
Atlanta, GA 30332-0765
vempala@cc.gatech.edu

Abstract. Previous works [11, 6] introduced a model of semantic com-
munication between a “user” and a “server,” in which the user attempts
to achieve a given goal for communication. They show that whenever
the user can sense progress, there exist universal user strategies that can
achieve the goal whenever it is possible for any other user to reliably do
so. A drawback of the actual constructions is that the users are ineffi-
cient: they enumerate protocols until they discover one that is successful,
leading to the potential for exponential overhead in the length of the de-
sired protocol. Goldreich et al. [6] conjectured that this overhead could
be reduced to a polynomial dependence if we restricted our attention
to classes of sufficiently simple user strategies and goals. In this work,
we are able to obtain such universal strategies for some reasonably gen-
eral special cases by establishing an equivalence between these special
cases and the usual model of mistake-bounded on-line learning [3, 15].
This equivalence also allows us to see the limits of constructing universal
users based on sensing and motivates the study of sensing with richer
kinds of feedback. Along the way, we also establish a new lower bound for
the “beliefs model” [12], which demonstrates that constructions of effi-
cient users in that framework rely on the existence of a common “belief”
under which all of the servers in a class are designed to be efficient.

Keywords: semantic communication, on-line learning, feedback models

1 Introduction

The semantic communication model [11, 6] was introduced to model the problem
of communication in the presence of possible misunderstanding. In particular,

? This work is also presented in Chapters 4 and 8 of the first author’s thesis [10].
?? Supported by NSF Awards CCF-0939370, CCF-04-27129, and CCF-09-64401.

? ? ? Supported by NSF Awards AF-0915903 and AF-0910584.

it was intended to address settings where two computers communicate using
communications protocols designed and implemented by different parties. In such
settings, the possiblity of incompatibility arises, and so it would be desirable for
one (or both) of these computers to utilize a universal communications protocol
that automatically corrects miscommunication. The main results of these works
demonstrated that when a goal for communication is fixed in advance, such a
universal protocol – that achieves its goal whenever its partner supports such
functionality – can often be constructed

Here, we attempt to address one of the main deficiencies of earlier results,
specifically of results in the infinite executions model [6], reviewed in Sec. 2.
To be more precise, the main results constructing universal protocols (such as
Thm. 5) relied on enumerating all algorithms. We are motivated by the desire
for constructions that do not suffer from prohibitive overhead, as conjectured to
exist [6]. In the finite executions model (e.g., the subject of Juba and Sudan [11])
this overhead can be controlled by assuming that the server was “designed” to
permit a typical user protocol to run efficiently with respect to some “beliefs”
[12]. The constructions do not give good strategies in the infinite execution
model, though, since they do not give a finite bound on the number of errors. 3

We observe that for a restricted kind of goal and sensing that is viable with
respect to a class of simple user strategies, the problem of constructing a univer-
sal user from sensing is precisely the problem of learning the class of concepts
corresponding to the simple strategies in the usual on-line learning model [3,
15] (Thm. 8). Thus, each solution to the on-line learning problem for a concept
class yields a generic construction of a universal user from a sensing function
that is viable with respect to the corresponding class – allowing us to translate
an algorithm for efficiently learning linear threshold functions in Thm. 11 to
an efficient strategy that works whenever a linear threshold strategy is viable –
and vice-versa, allowing us to also translate the negative results. This settles the
conjecture of Goldreich et al. [6], establishing that for natural classes of simple
strategies and goals, universal user strategies can achieve polynomial overhead in
the description length of the desired strategy. We further establish lower bounds
that suggest limits to the power of universal users based on the kind of sensing
discussed thus far—between the lower bounds that we obtain from the on-line
learning model and the new lower bounds we obtain, basic sensing seems to
only be adequate for the construction of efficient universal users in very simple
settings. But, some natural kinds of richer feedback allow the construction of
efficient universal users for correspondingly richer user strategies, and we sug-
gest the exploration of such richer feedback as a next step towards constructing
universal users of suitable efficiency.

3 One of our results supports these notions, though: we show in Sec. 5.1 that in order
for an efficient user for a class of servers to exist, there must be a common “belief”
among indistinguishable servers in the class under which typical users are efficient.

2 Semantic Communication in Infinite Executions

The basic model involves a system of three interacting entities, a user, a server,
and an environment. Each entity has some internal state, and they are each joined
by a (two-way) communications channel that also has some fixed state on each
round. Each entity has a strategy that specifies a distribution over new internal
states and outgoing messages for the following round, given the entity’s current
state and incoming messages. We will generally denote the user strategies by U ,
server strategies by S, and environment strategies by E, respectively.

Thus, given strategies for each of the entities, the system is modeled by a
discrete-time Markov process with a state space Ω. We will refer to the infinite
sequence of random variables {Xt}∞t=1 where Xt is the state of the system in
round t as an execution; the execution produced by the interaction between a user
strategy U , a server strategy S, and an environment strategy E will be denoted
by (E,U, S). An execution started from state σ1 is an execution conditioned
on X1 = σ1. We denote the space of internal states of the user, server, and
environment by Ω(u), Ω(s), and Ω(e), resp., and for i, j ∈ {u, e, s}, the state of
the communication channel from i to j is a member of Ω(i,j). Given a state of
the system σ, we will let the respective superscripts denote the projection of σ
on to the respective components—e.g., σ(u,e) is the user’s outgoing message to
the environment in σ. We wish to design algorithms for user strategies, to be
executed by the user in pursuit of a goal:

Definition 1 (Goals and robust achievement). A goal is given by a pair
(E , R), consisting of a non-deterministic environment strategy and a referee: A
referee R is a function taking an (infinite) sequence of environment states to a
boolean value; we say that an execution is successful if the referee evaluates to 1.
A non-deterministic strategy E is given by a set of (probabilistic) strategies. If
a pair of user and server strategies is successful at (E , R) for all E ∈ E and all
initial states of the execution, we say that the pair robustly achieves the goal.

The interpretation of the environment’s non-deterministic strategy is that
the environment adversarially chooses a probabilistic strategy E from the set
E , effectively making its non-deterministic choices “up-front,” allowing us to
(sanely) analyze the resulting probabilistic system.

The algorithmic problem we consider is to compute a user strategy that
achieves a fixed goal of communication with a large class of server strategies—a
universal strategy for the goal:

Definition 2 (Universal user). A user strategy U is S-universal with respect
to a goal G if for every server strategy S ∈ S, (U, S) robustly achieves the goal.

We will focus on universal strategies U for which the period of miscommuni-
cation in any execution (E,U, S) is uniformly bounded by a polynomial in a size
parameter associated with the states of the system, sz : Ω → N. The size will
remain fixed throughout an execution (although the world’s states may induce
many different sizes associated with the same goal).

We will restrict our attention to goals in which time is divided into sessions
of a fixed length. This is a special case of the multi-session goals of Goldreich
et al. [6]; we prefer to consider only the special case here because the classes
of user strategies we consider are particularly simple, only generating messages
for a fixed number of rounds (initially, just one round). Our decision to only
consider the special case will also have the added benefit of simplifying the
other definitions we use (namely, the number of errors and the corresponding
quantitative aspect of our “sensing functions”).4

Definition 3 (Fixed length multi-session goals). A goal G = (E , R) is said
to be a k-round multi-session goal if the following hold:

1. (The environment’s states.) The environment’s states are partitioned into k

sets, Ω
(e)
1 , . . . , Ω

(e)
k . We refer to the elements of Ω

(e)
1 as start-session states,

and the elements of Ω
(e)
k as end-session states. In each case, the elements of

Ω
(e)
i are a pair consisting of an integer index and a contents.

2. (Starting a new session.) When in an end-session state, the environment non-
deterministically moves to a start-session state with an incremented index;
furthermore, this non-deterministic choice is independent of the contents of
the end-session state.

3. (Execution of a session.) When the environment is in some state (j, σ) ∈ Ω(e)
i

for i 6= k, E(j, σ)(e) is a distribution over Ω
(e)
i+1 such that every element

in its support has index j. Furthermore, the distribution over contents and
messages is independent of the index and environment’s actual strategy.

4. (Compact referee) There is a temporal decision function R′ taking end-
session states to Boolean verdicts, and R is satisfied with an infinite exe-
cution iff R′ evaluates to zero at most finitely many times.

The number of times R′ evaluates to 0 in an execution is the number of errors.5

2.1 Sensing: Implicit Descriptions of Goals in Terms of Feedback

Success at a goal of communication is defined as a function of the environment’s
states, which are not directly visible to the user. Naturally, it is helpful for the
user to have some idea of whether or not its current communication strategy
is working—indeed, it is essential if the user is to be able to reliably succeed
in a single session, and many natural goals of communication allow a user to
compute such feedback [10]. Although feedback is not known to be essential in
any sense in multi-session goals, better feedback seems to allow the design of
better user strategies [6]. In particular, in this work (as in previous works on
semantic communication) we will focus on a relatively minimal kind of feedback
that can be computed by the user during an execution.

4 NB: the decision of “when to halt” is not at issue here, cf. [10, Chapters 2 and 5].
5 This is a simplification of the notion of errors used by Goldreich et al. [6] where the

referee suspending a decision for too long was also onsidered to be an error.

Definition 4 (Sensing, safety, and viability). A sensing function V is a
boolean function of the user’s view. Let G = (E , R) be a fixed-length multi-session
goal with temporal decision function R′ and size parameter function sz : Ω → N,
let S be a server strategy, and let U be a class of user strategies. For functions
B : N→ N and ε : N→ [0, 1/3],
– We say that V is (B, ε)-safe for G w.r.t. U and S if ∀E ∈ E , U ∈ U , σ1 ∈ Ω,

whenever R′(σ1) = 0, then w.p. 1− ε(sz(σ1)), either only B(sz(σ1)) errors
will occur, or for some t ≤ B(sz(σ1)), V evaluates to 0 in some state Xt of
the execution (E,U, S) started from state σ1.

– We say that V is (B, ε)-viable for G w.r.t. U and S if ∃U ∈ U ∀E ∈ E , σ1 ∈
Ω, w.p. at least 1 − ε(sz(σ1)), after B(sz(σ1)) rounds, V evaluates to 1 in
every subsequent round in the execution (E,U, S) started from state σ1.

If ε ≡ 0, we say that safety (or viability, resp.) holds perfectly, and we may refer
to such a sensing function as B-safe (B-viable, resp.).

Thus, sensing functions encapsulate goal-specific feedback for solving a com-
munications problem. It has been pointed out (by B. Patt-Shamir [17] and an
anonymous reviewer) that the role of a sensing function is analogous to that
of a failure detector in distributed computing [5, 9]. The main difference is that
the feedback provided by a failure detector is generally a tentative set of faulty
processes (which is the main obstacle in such settings), whereas sensing pro-
vides tentative feedback about success at a problem—for example, Juba and
Sudan [11] use an interactive proof system to obtain feedback for the goal of
computing a function. Although we will motivate a turn to richer feedback in
Sec. 5, the main theorems of Goldreich et al. [6] show this simple type of feedback
is sufficient for the construction of universal strategies for many goals:

Theorem 5 (On the existence of universal strategies – [6]). Let G =
(E , R) be a fixed-length goal,6 U be an enumerable set of user strategies, S be a
set of server strategies, and ε : N→ [0, 1/3] be such that the following hold:

1. There is a sensing strategy V s.t. ∀U ∈ U , there is a bounding function B
s.t. V is (B, ε)-safe with U and S for G, and ∀S ∈ S ∃U ∈ U s.t. for the
bounding function B associated with U , V is (B, ε)-viable with respect to
(U, S), Furthermore, the mapping U 7→ B is computable.
Let B denote the set of bounds that appear in the image of this mapping; that
is, B = {Bi : i ∈ N}, where Bi is the bound for the ith user strategy in U .

2. One of the following two conditions hold: (a) The viability condition holds
perfectly (i.e., ε ≡ 0). or (b) For every i, Bi+1 < Bi/2ε.

Then there is a S-universal user strategy U s.t. ∀S ∈ S ∃B ∈ B (U, S) robustly
achieves the goal G with O(B2) errors, where the constant in the O-notation
depends on S. Furthermore, if B-viability holds and the composition of any U ∈
U with the sensing and enumeration strategies also resides in U , then, ∀S ∈ S,
the complexity of U is bounded by the complexity of some fixed strategy in U .

6 Actually, the theorem holds for the broader class of compact goals, not defined here.

Generic Users for Goals Implicitly Specified by Sensing Theorem 5 gives
a single, “generic” construction of a universal user from a sensing function, which
can be applied to a variety of examples of sensing functions yielding universal
users [6]. In this work, by contrast, we consider the capabilities and limits of
such generic constructions, that is, the capabilities and limits of constructions
based on sensing: rather than directly describing goals, we will assume that we
are given a sensing function for a goal, and so the goal is implicitly described
by the feedback available to the user and the class of strategies that suffice to
achieve good feedback, as guaranteed by the viability condition. We then say
that the construction is generic when it produces a universal user strategy that
achieves any goal given only this information:

Definition 6 (Generic universal user). For a class of goals in infinite ex-
ecutions G, a class of user strategies U , and functions B : U × N → N, s :
N → N and v : N → N, we say that U is a B-error (U , s, v)-generic univer-
sal user for G if ∀G ∈ G, any server S, and any sensing function V that is
s-safe with S for G and v-viable with S with respect to U for G, when U is
provided the verdicts of V as auxiliary input, (U, S) robustly achieves G with
minUS∈U :US v−viable with S B(US , ·) errors.

There are two primary differences from the statement of Thm. 5: first, Thm. 5
allows for the bounding functions s and v for sensing to vary with the user strat-
egy, and second, the number of errors incurred by Thm. 5 as stated was allowed
to depend (arbitrarily) on the server S, whereas we demand that a generic uni-
versal user in the present sense obtains a bound that depends uniformly on the
“best” user strategy in U . That said, it turns out that for any enumerable class
of user strategies U , and B(Ui, n) = 3imax{s(n), v(n)}2, the proof of Thm. 5
actually constructs a B-error (U , s, v)-generic universal user for any fixed-length
goal. (Where Ui denotes the ith strategy in the given enumeration of U .) As
suggested, we want user strategies that only make polynomially many errors (in
the length of the description of a target strategy in U , and the size parameter
of the execution). Goldreich et al. [6] showed, however, that a polynomial de-
pendence cannot be achieved without some restrictions on the class of servers:
briefly, servers with passwords force any strategy to suffer a number of errors
that is exponential in the length of the password, and hence in the length of the
description of the target strategy.

Thus, we will consider the problem of constructing a generic universal user
that succeeds in a polynomial number of errors, given that it is viable with
respect to a simple class of strategies. In particular, in Sec. 4, we show that
if the class of user strategies U in the viability condition is sufficiently simple,
then we can efficiently identify a good strategy for the class of one-round multi-
session goals; in Sec. 5.1, on the other hand, we will see that even for one-round
multi-session goals, we will need richer kinds of feedback to efficiently compute
good strategies when U is not so simple. In both cases, the results will follow
from an equivalence to on-line learning that we describe in more detail next.

3 On-line Learning is Equivalent to Semantic
Communication with One-round Goals

Given that an exponential number of errors in the description length of the de-
sired user strategy is unavoidable in general, we would like to know when it can
be avoided. Specifically, we would like to have some conditions under which we
can develop efficient universal user strategies for goals in infinite executions. In
this section, we investigate one such set of conditions: we will restrict our atten-
tion to multi-session goals of communication in which each round corresponds to
a distinct session, and assume that sensing with very good safety and viability is
available, in which moreover, the sensing function is viable with respect to some
class of simple user strategies. Then, a generic construction of universal users
from such sensing functions is equivalent to the design of an on-line learning al-
gorithm, and we will find that generic constructions of universal user strategies
exist for a variety of classes of simple user strategies.

The model of on-line learning that we consider was introduced by Bārzdiņš
and Frievalds [3]. We assume that a target concept or target function f is drawn
from some a priori fixed class of functions C and the learning algorithm is run in
an infinite sequence of trials consisting of the following steps: 1. The algorithm
is provided an instance x ∈ X as input. 2. The algorithm produces a prediction
from Y . 3. The algorithm receives reinforcement feedback, indicating whether its
prediction equaled f(x). In Littlestone’s [15] setting,X = {0, 1}n and Y = {0, 1},
and then n is a natural size parameter, and C is finite, but we only require that
a suitable notion of size can be defined for X and C. The main parameter used
to evaluate these algorithms is the worst case number of mistakes:

Definition 7 (Mistake bounded learning). For a given on-line learning al-
gorithm A and a concept class C with size parameter n : C → N, and any target
concept f : X → Y for f ∈ C, let MA(f) be the maximum, over all sequences of
instances x̄ = {xi ∈ X}∞i=1, of the number of trials in which A outputs y such
that y 6= f(xi). We then say that a learning algorithm A has mistake bound
m : N → N if ∀n′ ∈ N maxf∈C:n(f)=n′MA(f) ≤ m(n′). If the state of A does
not change when the algorithm receives positive feedback, then we say A is a
conservative algorithm.

Mistake bounded learning algorithms are easily made conservative.
We now show our main theorem, that the special case of semantic communi-

cation introduced here – generic users for one-round multi-session goals with a
1-safe and 1-viable sensing function – is equivalent to mistake-bounded learning.

Theorem 8. Let G be a class of one-round multi-session goals in which the
user’s incoming messages on each round are drawn from a set Ω(·,u), and its
outgoing messages are from the set Ω(u,·). Let U be a class of functions {U :
Ω(·,u) → Ω(u,·)} with a size parameter n : U → N. Then a conservative m(n)-
mistake bounded learning algorithm for U is a m′-error (U , 1, 1)-generic universal
user for G for error bound m′(U, n′) = m(n(U)) + 1, and conversely, a m′-error

(U , 1, 1)-generic universal user for G for error bound m′(U, n′) = m(n(U)) is a
m(n)-mistake bounded learning algorithm for U .

Proof. (⇒:) We suppose we are given a conservative m(n)-mistake bounded
learning algorithm A for U . We will show that A serves as a generic universal
user as follows. Suppose we are given G ∈ G, a server S, and a sensing function
V that is 1-safe with S for G and 1-viable with S with respect to U for G.

By the definition of 1-viability, there is US ∈ U s.t. if the user sends the
same messages as US , after one round V will provide a positive indication on
every round. Thus, US will correspond to the target concept. Each round of
the execution will correspond to a trial for the learning algorithm. Suppose we
provide the incoming messages to A as the instance, take the prediction of A as
the outgoing messages, and provide the verdict of V on the following round as
the reinforcement. In particular, if A sends the same outgoing message as US ,
A will receive a positive indication from the sensing function, which we take
as positive feedback. Conversely, if V produces a negative indication, then A
must not have sent the same outgoing message as US would have sent on the
incoming messages in that round. V may also produce positive indications when
the outgoing message A sent differs from what US would have sent, but since A
is conservative, the state of A does not change. Now, since A is a m(n)-mistake
bounded learning algorithm for U , it only receives negative reinforcement m(n)
times in any execution.

Since G is a 1-round multi-session goal, R′ evaluates to 0 or 1 on each round;
when it evaluates to 0, the 1-safety of V guarantees that either that is the only
error that will occur, or that V evaluates to 0 in the current round. V is therefore
only allowed to evaluate to 1 when an error occurs once, so our strategy therefore
makes at most m(n) + 1 errors.

(⇐:) Let a target concept U ∈ U and any sequence of instances x̄ = {xi ∈
Ω(e,u) × Ω(s,u)}∞i=1 be given. We will show how to embed the corresponding
sequence of trials into a one-round multi-session goal with a 1-safe and 1-viable
sensing function for some server S.

Consider the following one-round multi-session goal GU = (E , RU): the en-

vironment non-deterministically chooses (σ
(e,u)
i , σ

(s,u)
i+1) ∈ Ω(e,u) ×Ω(s,u) for each

round i, and sends (σ
(e,u)
i , b) to the user and σ

(s,u)
i+1 to the server. The temporal

decision function R′U for the referee RU then is satisfied in session i if the user

returns U(σ
(e,u)
i , σ

(s,u)
i). Let S be the server that forwards the message it received

from the environment in the previous round to the user in the current round.
Let VU be the sensing function that returns 1 if the user’s message on the ith

round is U(σ
(e,u)
i , σ

(s,u)
i). Note that when the user executes with S, VU computes

R′U , so VU is 1-safe with S for GU . Furthermore, whenever the user sends the
same message as U ∈ U , VU is trivially satisfied on the following round, so VU is
also 1-viable with S with respect to U for GU . We can embed x̄ in an execution

in the following way: let the execution start from the state where σ(e,u) = x
(e,u)
1 ,

σ(s,u) = x
(s,u)
1 , and σ(e,s) = x

(s,u)
2 , and suppose that the environment’s nonde-

terministic choice for the ith round is (x
(e,u)
i+1 , x

(s,u)
i+2). Then, we can check that in

each ith round of this execution, the user receives xi.
Now, supposing that we are given a m′-error (U , 1, 1)-generic universal user

for G A, for every target concept U ∈ U , A robustly achieves GU with m′(U, n′) =
m(n(U)) errors when given the feedback from VU in an execution with S—in
particular, in the execution we constructed for a given sequence of trials x̄. By
definition of GU , now, A makes an error in the ith round iff it does not send
the same messages as U in that round, so when A is provided the feedback from
VU , it makes at most m(n(U)) mistakes in the sequence of trials x̄. We now note
that VU computes the same function as the learner’s reinforcement, so when A
is provided access to the reinforcement instead of A, it still only makes m(n(U))
mistakes, as needed.

4 Universal Users from On-line Learning Algorithms

We now exploit Thm. 8 to obtain generic constructions of efficient universal
users for one-round multi-session goals. In particular, we show that for a variety
of halfspace learning, we can confirm one of the main conjectures of Goldre-
ich et al. [6]: there is a universal strategy for a nontrivial class of servers with
polynomial overhead. The particular variant we consider has the feature that,
unlike previous algorithms (with the exception of the perceptron algorithm) the
number of mistakes does not depend on the size of the examples.

Definition 9 (Linear threshold strategies). The class of linear threshold
strategies in n dimensions with b-bit weights, ULT(n,b), is as follows. We iden-
tify the user’s incoming messages with Qn. Then, for any weight vector w ∈
{−2b+1 + 1, . . . , 2b+1 − 1}n and threshold c ∈ {−2b+1 + 1, . . . , 2b+1 − 1}, the
user strategy that on incoming message x ∈ Qn sends Uw,c(x) to the server and
environment where Uw,c(x) = 1 if

∑n
i=1 wixi ≥ c and 0 otherwise is in ULT(n,b).

An algorithm for efficiently learning linear threshold functions with general
weights was given by Maas and Turán [16], based on a reduction to the problem
of finding feasible points in convex programs given by a separation oracle:

Definition 10 (Convex feasibility with a separation oracle). Let a convex
set K ⊂ Rn be given. For r ∈ N, we say that K has guarantee r if the volume of
K ∩ Ball(0, r) is at least r−n. A separation oracle for K answers queries of the
form x ∈ Qn with “yes” if x ∈ K and otherwise non-deterministically returns
a vector v ∈ Qn and c ∈ Q such that 〈x, v〉 ≥ c, but that for every y ∈ K,
〈y, v〉 < c. If the longest vector v returned by the separation oracle is ` bits, we
will say that the oracle is `-bounded.

Now, we say that an oracle algorithm A(·) solves the search problem of convex
feasibility with a `-bounded separation oracle in time t(n, log r, `) and query
complexity q(n, log r, `) if, for any `-bounded separation oracle for a convex body
K with guarantee r, A(·) produces a point in K in time t(n, log r, `), and making
at most q(n, log r, `) queries to the oracle.

There are efficient algorithms for solving convex programs in this model, yielding
algorithms for learning linear threshold functions. The one by Vaidya [18], and
an algorithm based on random walks [4] both make at most O(n log r) queries.

Actually, the above algorithm(s) were for a different problem than the one we
consider here: in their model, the instance space was assumed to be b-bit integer
points (as opposed to Qn) while the linear threshold functions used arbitrary
precision (though poly(b) bits suffice to represent all linear thresholds on the
b-bit instance space), and the time and query complexity of their algorithm
depended the size of the instances. Although it is clear that we cannot hope to
eliminate the dependence of the computation time of the size of the instances, it
turns out that the dependence on the size of instances in the mistake bound can
be eliminated in our setting, using techniques for solving convex programming
problems when the convex set K is not of full dimension [7, 8].

Theorem 11. Suppose there is an algorithm that solves convex feasibility with a
`-bounded separation oracle in time t(n, log r, `) and query complexity q(n, log r)
for polynomials t and q. Then there is a m(n, b)-mistake bounded on-line learning
algorithm for ULT(n,b) running in time t′(n, log b, `) on each trial for a polynomial
t′ where ` is the length in bits of the longest received instance x ∈ Qn, and
m(n, b) = O(n · q(n, b+ log n)).

Sketch of proof The weight vector and threshold of the function Uw,c is an
integer point in [−2b+1 + 1, 2b+1 − 1]n+1, which is a convex set, and a coun-
terexample x to a proposed linear threshold (w′, c′) defines a hyperplane such
that either 〈(w′, c′), (x,−1)〉 ≥ 0 > 〈(w, c), (x,−1)〉 or 〈(w, c), (x,−1)〉 ≥ 0 >
〈(w′, c′), (x,−1)〉, and either way (x,−1) and 0 gives us a separating hyperplane.

Thus, we pass our counterexamples to the feasibility algorithm, and the algo-
rithm terminates once it finds some point (w̃, c̃) s.t. any halfspace of the remain-
ing feasible set not containing (w̃, c̃) has volume less than the guarantee. Then, if
we get another counterexample, the hyperplanes given by our counterexamples
define a set containing (w, c) of volume less than the guarantee.

By choosing the guarantee sufficiently small, we will be able to ensure that
there is a hyperplane such that all of the points with integer coordinates (in-
cluding the target (w, c)) lie in this hyperplane; we will then be able to find
this hyperplane, and reduce to the problem of finding a feasible point in a lower
dimensional space by projecting onto it. After we repeat this process n+1 times,
(w, c) is uniquely determined.

Algorithms for k-round Goals and Strategies with Larger Message Spaces. We
exclusively focused on one-round goals and user strategies with Boolean mes-
sage spaces here. Naturally, this is because the notion of feedback we obtain
from sensing only agrees with the usual notions of feedback in on-line learning
for Boolean functions, and conversely, on-line learning usually does not handle
stateful “concepts.” It turns out, though, that a result due to Auer and Long [2]
allows us to slightly relax both of these restrictions, giving efficient algorithms
for, e.g., O(log log n)-round goals or messages of size O(log log n).

5 Richer Feedback and the Limitations of Basic Sensing

5.1 Limitations of Basic Sensing

We start by presenting a strong lower bound when the space of messages is large.
We obtain this via a lower bound on the number of algorithms that an oblivious
schedule (including Levin-style enumerations and sampling algorithms) must use
to escape from a “bad” set of states whenever a class of servers does not have
a common prior under which escaping the bad set is easy. We then refine it to
handle adaptive algorithms under the assumption that executions with servers
in their respective collections of bad states produce indistinguishable user views.
The key definition enabling us to state these theorems captures subsets of states
of the execution that are hard for typical users to escape:

Definition 12 (Effectively closed). For a non-deterministic environment strat-
egy E with size parameter sz : Ω → N, a server S, a distribution over user
strategies P , t : N → N, and γ : N → [0, 1], we say that the set of server and
environment states Θ ⊆ Ω(s) × Ω(e) is (t, γ)-effectively closed with respect to
P if, ∀(σ(s), σ(e)) ∈ Θ, t ≤ t(sz(σ)) the probability that, for a user strategy U

drawn from P , (X
(s)
t , X

(e)
t) ∈ Θ is at least 1−γ(sz(σ)) in the execution (E,U, S)

started from σ (for the initial state σ(u) specified by U), where the probability is
taken over the choice of U from P and the random evolution of the execution.

These lower bounds also turn out to justify the features of a model introduced
in another attempt to refine the notions of semantic communication to reduce the
overhead: the “beliefs” model of communication [12]. There, it was assumed that
a server was designed to be efficient with respect to “typical” users under a given
“belief” (prior) distribution; a user strategy for which communication has low
overhead whenever a user has beliefs that are close to those of the server designer
then exists. Of course, in order for this approach to guarantee low overhead
with respect to an entire class of servers, there must be a common belief under
which all of the servers were designed well. Our lower bound establishes that
this common belief was essential in a sense: suppose that we wish to achieve
some goal that cannot be achieved while the execution is in one of our “bad
sets.” Then, our lower bounds demonstrate that when the class of servers lacks
a suitable common notion of “natural users” under which escaping the bad sets
is easy, a universal user cannot be too efficient, and the best possible running
time is roughly obtained by sampling from the best common distribution.

Theorem 13. Let G = (E , R) be a goal and S be a class of servers s.t. ∀E ∈
E , S ∈ S we have designated some set of pairs of states of E and S, ΘS,E. Let
δ ∈ [0, 1] be given. Now, suppose that ∃(t, ε) ∈ N× [0, 1] s.t. for every distribution
over user strategies from the class U , Q, ∃E ∈ E , S ∈ S such that ΘS,E is (t, ε)-
effectively closed with respect to Q in E. Then, for any sequence of user strategies
and running times (U1, t1), (U2, t2), . . . s.t. each ti ≤ t, ∃S ∈ S, E ∈ E s.t. if in
the execution where the user runs U1 for t1 steps, U2 for t2 steps, and so on, the

first step τ for which (X
(s)
τ , X

(e)
τ) /∈ ΘS,E is at most

∑k
i=1 ti with probability at

least δ, then k ≥ 1
ε(1+1/δ) .

Proof. In a zero-sum game between a “user” player and a “server/environment”
player, in which the strategy sets are U and S × E , and the payoff of U with
(S,E) is given by the maximum probability, over executions starting from initial
states from ΘS,E , that the execution exits ΘS,E in t steps, our assumption on
distributions over U means that the server/environment player always has a
good strategy. Loomis’ Theorem then yields that there is some distribution Q̃
over S × E such that when any user strategy U1 ∈ U that is run for t1 ≤ t steps
with a server and environment pair (S,E) drawn from Q̃ and started in any
state of ΘS,E , the probability that the execution (E,U1, S) enters a state σ such
that (σ(s), σ(e)) /∈ ΘS,E is at most ε.

It then follows by induction on k that, given that the execution never entered
a state σ such that (σ(s), σ(e)) /∈ ΘS,E during the runs of U1, . . . , Uk−1, during
the tk step run of Uk, the probability that the execution enters such a state σ is
at most ε

1−kε . Therefore, while kε < 1, a union bound gives a total probability

of exiting ΘS,E in the first k runs of at most kε
1−kε . In particular, some (S∗, E∗)

in the support of Q̃ must give (U1, t1), . . . , (Uk, tk) probability at most kε
1−kε of

exiting ΘS∗,E . Thus, if we exit ΘS∗,E with probability at least δ by the end of
the kth run, this requires k ≥ 1

ε(1+1/δ) , as needed.

We can extend Theorem 13 to cover adaptive algorithms, given that the
servers generate indistinguishable views so long as they remain in the bad states.
The key point is that in this case, the algorithm generates a schedule nearly
independently of the actual server, essentially reducing to the earlier analysis.

Corollary 14. Let G, U , S, sets of states ΘS,E for each E ∈ E and each S ∈ S,
and δ ∈ [0, 1] be given as in Theorem 13. Suppose that ∃E ∈ E s.t. for every
distribution Q over U , ∃S ∈ S s.t. ΘS,E is (t, ε)-effectively closed with respect

to Q in E. Suppose further that ∀U ∈ U , S1 ∈ S, S2 ∈ S, (σ(s)
1 , σ

(e)
1) ∈ ΘS1,E,

∃(σ(s)
2 , σ

(e)
2) ∈ ΘS2,E s.t. the distribution over user views in the first t steps of the

execution (E,U, S1) started from a state (σ
(e)
1 , σ(u), σ

(s)
1) is γ-statistically close

to the user view in the first t steps of the execution (E,U, S2) started from the

state (σ
(e)
2 , σ(u), σ

(s)
2). Then for any algorithm U that on each step either starts

running a new strategy from U from its initial state or continues running the
same strategy from U for up to at most t steps, ∃S ∈ S s.t. if U reaches a state
σ s.t. (σ(s), σ(e)) /∈ ΘS,E w.p. ≥ δ by running up to k strategies from their initial
states, then k ≥ 1

ε(1+1/δ)+γ/δ .

Note that we can also apply Corollary 14 to the case where the sets ΘS,E are
chosen to be states of the execution where a given sensing function fails. This
will allow us to obtain lower bounds on the performance of any user strategy
that uses such a sensing function. Recall that Goldreich et al. [6] showed simple
conditions implied an exponential lower bound on the number of errors made by
universal users for classes including password-protected servers. Now, for the case
of one-round multi-session goals, we know that a lower bound on the number of
rounds before the referee is satisfied translates into a lower bound on the number

of errors. In this case, we obtain lower bounds with respect to many other classes
of user strategies with large message spaces.

Theorem 15. Let U be a class of stateless user strategies computing functions
U : X → Y s.t. for every outgoing message y and incoming message x, some
U ∈ U satisfies U(x) = y. Let G = (E , R) be a one-round goal in which the
environment non-deterministically selects an infinite sequence of elements of X,
E = {Ex̄ : x̄ = {xi ∈ X}∞i=1}, s.t. each ith session consists of Ex̄ sending xi to
both the user and server. The referee’s temporal decision function R′ is satisfied
iff the server receives a message consisting of “1” from the server. Now, let the
class of servers S = S(U) be s.t. ∀U ∈ U , ∃SU ∈ S(U) s.t. in each round, the
server stores the message x ∈ X it received from the server until the next round;
the server then sends “1” to the user and environment if the user sent a message
y ∈ Y on that round such that y = U(x) for the previous message x that the
server received from the environment, and sends “0” to the user and environment
otherwise. Then for any user strategy, ∃S∗ ∈ S(U) s.t. the user strategy makes
at least |Y |/3 errors w.p. ≥ 1/2, and at least |Y |/2 errors in the worst case.

It is easy to construct specific examples for which learning functions on a
message space Y requires an overhead of |Y | − 1—Auer and Long[2] describe
one such example. Theorem 15, on the other hand, applies to many simple cases
of interest, such as linear transformations:

Example 16 (Lower Bound for Linear Transformations). Let U be the class of
linear transformations A : Fn → Fn for some finite field F. Suppose that the
instance space is given by Fn \ {0}. Now, for any nonzero x, y ∈ Fn we know
that there is some Ax,y such that A(x) = y. So, Thm. 15 shows that any on-line
learning algorithm makes at least (|F|n − 1)/2 mistakes in the worst case.

We can also use Thm. 8 directly to recover impossibility results for learning
Boolean functions. Angluin [1] noted that an efficient mistake-bounded learning
algorithm gives an efficient PAC-learning algorithm, so negative results for effi-
cient PAC-learning also translate to negative results for generic universal users,
and so even most natural classes of Boolean strategies do not have efficient uni-
versal users under cryptographic assumptions (cf. [13, 14]).

5.2 Richer Feedback

Thus, Thm 8 gives a reasonable picture of which classes of strategies we can
efficiently learn generically from basic sensing – i.e., with success/fail feedback
– and which classes we cannot. Unfortunately, the boundary falls short of where
we would like—we can only learn strategies with very small message spaces,
and under standard cryptographic assumptions, even then only for fairly simple
classes of user strategies.

Recall that our motivation for focusing on this notion of sensing was that
we had results, such as Thm. 5, effectively saying that whenever sensing was
possible, it was feasible to achieve a goal with any helpful server. As we are

primarily interested in user strategies that do not experience such overhead
as that suffered by these constructions, though, we find that we are strongly
motivated to investigate some notions of stronger feedback (that may not always
be available). That is, we view negative results showing that (U , 1, 1)-generic
universal users cannot be mistake-efficient and/or time-efficient as limitations of
basic sensing, and so we seek alternative notions of sensing that do not suffer
these limitations. For example, Auer and Long [2] showed how some useful,
richer kinds of feedback can be simulated given only basic sensing, but only if
the feedback is still limited in the sense that it can be simulated by a logarithmic
number of queries; but if these kinds of feedback are directly available, then since
we don’t need to simulate the feedback, we don’t experience this overhead.

Example 17 (Efficient Universal Linear Transformation Strategies from Richer
Sensing). Consider the class of user strategies computing linear transformations
A : Fn → Fn for some finite field F, as considered in Example 16. There, we saw
that given only basic sensing, any generic universal strategy experiences at least
(|F|n − 1)/2 errors for one-round multi-session goals, where Auer and Long’s
technique yields a universal strategy making Õ(|F|n) errors.

Suppose now that we had richer sensing feedback, that not only provided
positive or negative indications, but on a negative indication also provided some
index i ∈ {1, . . . , n} such that if on the previous round we received an incoming
message vector x ∈ Fn and responded with y ∈ Fn, a viable linear transforma-
tion strategy A would not have responded with (A(x))i = yi. Then, e.g., for
F2, we could use Gaussian elimination to learn each ith row of a viable linear
transformation on Fn2 in n mistakes, for n2 mistakes (and time O(n3) per round)
overall. Auer and Long’s technique can then also be used to simulate access to
(A(x))i over Fq for q > 2 with an overhead of Õ(q) mistakes, thus allowing us to
use essentially the same learning algorithm over Fq. As long as the field size is
still small, this yields polynomial error and polynomial time bounded universal
strategies, in contrast to the exponential lower bound of Example 16.

Similarly, if the sensing function also told us that the user’s messages in some
ith round of the previous session was unsatisfactory, then this feedback would
enable us to construct efficient universal users for k-round multi-session goals,
given that there are stateless viable user strategies such that a time and mistake
efficient on-line learning algorithm for the class of user strategies when restricted
to any single round (even if k is polynomially large).

Conclusion These observations suggest the following program for future work.
In order to obtain flexible protocols for interesting goals with low overhead, we
could first try to identify what kind of feedback is available in those goals, and
second, try to determine which classes of strategies can be efficiently learned
from such feedback. The hope is that with rich enough feedback, reasonably
strong classes of strategies can be learned.

Acknowledgments

This direction was motivated by conversations with Leslie Kaelbling and Leslie
Valiant. We thank Oded Goldreich for insightful comments that improved the
presentation. Finally, we thank the anonymous referees for their comments.

References

1. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
2. Auer, P., Long, P.M.: Structural results about on-line learning models with and

without queries. Mach. Learn. 36(3), 147–181 (1999)
3. Bārzdiņš, J., Freivalds, R.: On the prediction of general recursive functions. Soviet

Math. Dokl. 13, 1224–1228 (1972)
4. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. J. ACM

51(4), 540–556 (2004)
5. Chandra, T. D., Toueg, S.: Unreliable failure detectors for reliable distributed

systems. J. ACM 43(2), 225–267 (1996)
6. Goldreich, O., Juba, B., Sudan, M.: A theory of goal-oriented communication.

Tech. Rep. TR09-075, ECCC (2009)
7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric methods in combinatorial opti-

mization. In: Pulleybank, W.R. (ed.) Proc. Silver Jubilee Conf. on Combinatorics.
pp. 167–183. Progress in Combinatorial Optimization, Academic Press, New York
(1984)

8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial
optimization. Springer, New York, second edn. (1993)

9. Jayanti, P., Toueg, S.: Every problem has a weakest failure detector. In: 27th PODC
(2008)

10. Juba, B.: Universal Semantic Communication. Ph.D. thesis, MIT (2010)
11. Juba, B., Sudan, M.: Universal semantic communication I. In: 40th STOC (2008)
12. Juba, B., Sudan, M.: Efficient semantic communication via compatible beliefs. In:

2nd Innovations in Computer Science (2011)
13. Kearns, M., Valiant, L.: Cryptographic limitations on learning Boolean formulae

and finite automata. J. ACM 41, 67–95 (1994)
14. Kharitonov, M.: Cryptographic hardness of distribution-specific learning. In: 25th

STOC. pp. 372–381 (1993)
15. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. Mach. Learn. 2(4), 285–318 (1988)
16. Maass, W., Turán, G.: How fast can a threshold gate learn? In: Hanson, S.J.,

Drastal, G.A., Rivest, R.L. (eds.) Computational learning theory and natural learn-
ing systems: Constraints and prospects, vol. 1, pp. 381–414. MIT Press, Cambridge,
MA (1994)

17. Patt-Shamir, B.: Personal communication (2010)
18. Vaidya, P.M.: A new algorithm for minimizing convex functions over convex sets.

Mathematical Programming 73(3), 291–341 (1996)

