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Abstract

We show that the hit-and-run random walk mixes rapidly starting from any interior

point of a convex body. This is the first random walk known to have this property. In

contrast, the ball walk can take exponentially many steps from some starting points. The

proof extends to sampling an exponential density over a convex body.

1 Introduction

Consider a random walk in R
n. It starts somewhere, and at each step moves to a randomly chosen

“neighboring” point (which could be the current point). With a suitable choice of the “neighbor”
transition, the steady state distribution of such a walk can be the uniform distribution over a
convex body, or indeed any reasonable distribution in R

n. For example, to sample uniformly
from a convex body K, the ball walk at a point x chooses a point y uniformly in a ball of fixed
radius centered at x and then goes to y if y is in K; else, the step is wasted and it stays at x.

In the last decade and a half, there has been much progress in analyzing these walks [4, 10,
1, 8, 11, 2, 7, 5]. In [7] it was shown that the ball walk mixes in O∗(n3) steps from a warm

start after appropriate preprocessing. (A warm start means that the starting point is chosen
from a distribution that already is not too far from the target in the sense that its density at
any point is at most twice the density of the target distribution. The O∗ notation suppresses
logarithmic factors and dependence on other parameters like error bounds.) While this result is
sufficient to get polynomial-time algorithms for important applications, it is rather cumbersome
to generate a warm start and increases the complexity substantially. Kannan and Lovász [5]
have shown that the ball walk mixes in O∗(n3) time from any starting point, if wasted steps are
not counted. However, the ball walk can take an exponential number of (mostly wasted) steps
to mix from some starting points, e.g., a point close to the apex of a rotational cone. (This is
because most of the volume of the ball around the start is outside the cone.) Moreover, even
starting from a fairly deep point (i.e., the distance to the boundary is much larger than the ball
radius), the mixing time can be exponential1. The only known way to avoid this problem is to
invoke a warm start; it has been an open question as to whether there is a random walk that
mixes rapidly starting from, say, the center of gravity of the convex body.

Is there a random walk that mixes rapidly starting from a(ny) single point? Hit-and-run,
introduced by Smith [14], is defined as follows:

• Pick a uniformly distributed random line ` through the current point.

• Move to a uniform random point along the chord ` ∩ K.

∗Microsoft Research, One Microsoft Way, Redmond, WA 98052
†Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.
1 Random walks on a discrete subset of R

n (e.g., the lattice walk) avoid this local conductance problem,
but have other complications that make their convergence less efficient, although still polynomial. Also, one is
sampling from a discrete subset, which might be okay for applications but is a bit unsatisfactory.
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It was proved in [14] that the stationary distribution of the hit-and-run walk is the uniform
distribution πK over K. In [9], it was shown that hit-and-run mixes in O∗(n3) steps from a
warm start after appropriate preprocessing, i.e., it is no worse than the ball walk. In this paper,
we show that it actually mixes rapidly from any interior starting point.

To be more precise, the mixing time can be big if we start from a very tight corner. But our
bound will be logarithmic in the the distance; thus, if e.g. the convex body is described by a
system of linear inequalities with rational coefficients, and the starting point is given by rational
coordinates, then the mixing time will be polynomial in the input data.

To derive this mixing result, we prove a theorem that still assumes a bound on the density
of the starting distribution:

Theorem 1.1 Let K be a convex body that contains a ball of radius r and is contained in a ball

of radius R. Let σ be a starting distribution and let σm be the distribution of the current point

after m steps of hit-and-run in K. Let ε > 0, and suppose that the density function dσ/dπK is

bounded by M except on a set S with σ(S) ≤ ε/2. Then for

m > 1010 n2R2

r2
ln

M

ε
,

the total variation distance of σm and πK is less than ε.

The condition on the starting density captures the case when the L2 distance of σ and π is
bounded (as shown in Section 5). The theorem improves on existing bounds by reducing the
dependence on M and ε from polynomial (which is unavoidable for the ball walk) to logarithmic,
while maintaining the optimal dependence on r, R and n. To bound the convergence to station-
arity when starting from a specific point at distance d from the boundary, we do one step and
then (if this is not too short) we apply Theorem 1.1 with the starting distribution obtained this
way.

Corollary 1.2 Under the conditions of Theorem 1.1, suppose that the starting distribution σ is

concentrated on a single point in K at distance d from the boundary. Then for

m > 1011 n3R2

r2
ln

R

dε
,

the total variation distance of σm and πK is less than ε.

At the heart of this theorem is a bound of Ω(r/nR) on the conductance of every subset
(Theorem 4.2) (for the ball walk, the conductance of small sets can be arbitrarily small; therefore
the need for a warm start). As we discuss in Section 5, the condition that K is contained in a
ball of radius R can be replaced by the weaker condition that its second moment is at most R2,
i.e., EK(|x − zK |2) ≤ R2 where zK is the centroid of K. The mixing time goes up by a factor of
O(ln2(M/ε)). For a body in near-isotropic position, R/r = O(

√
n) and so the number of steps

required is O(n3 ln3(M/ε)). It follows that hit-and-run mixes in O(n4 ln3(n/d)) steps starting
from a point at distance d from the boundary. Such a guarantee is not possible for the ball walk.

Our main tool is a new isoperimetric inequality (Section 2). To formulate an isoperimetric
inequality, one considers a partition of a convex body K into three sets S1, S2, S3 such that S1

and S2 are “far” from each other, and the inequality bounds the minimum possible volume of S3

relative to the volumes of S1 and S2. All previous inequalities have viewed the distance between
S1 and S2 as the minimum distance between points in S1 and points in S2. For example, if
d(S1, S2) is the minimum Euclidean distance between S1 and S2, then

vol(S3) ≥
2d(S1, S2)

D
min{vol(S1), vol(S2)}
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where D is the diameter of K [3, 6]. One can get a similar inequality using the cross-ratio
distance (see Section 2) instead of Euclidean distance [9]:

vol(S3) ≥ dK(S1, S2)
vol(S1)vol(S2)

vol(K)
.

In this paper, by means of a weight function h(x) on K that measures the distance between
S1 and S2 as a certain average distance, we obtain a more general inequality that can be much
stronger. We formulate it for general logconcave functions in Theorem 2.1. For a convex body,
it says that

vol(S3) ≥ EK(h(x)) min{vol(S1), vol(S2)}.
The weight h(x) at a point x is restricted only by the cross-ratio distance between pairs u, v
from S1, S2 respectively, for which x ∈ [u, v]. In general, the weight h(x) can be much higher
than the minimum cross-ratio distance between S1 and S2.

Hit-and-run can be extended to sampling general densities f in R
n as follows:

• Pick a uniformly distributed random line ` through the current point.

• Move to a random point y along the line ` chosen from the distribution induced by f on `.

The stationary distribution of this walk is πf , the probability measure with density f . It has
been shown that it is efficient for any logconcave density from a warm start [12]. (Similar results
are also known for the ball walk with a Metropolis filter [12].) It is natural to ask if hit-and-run is
rapidly mixing from any starting point even for arbitrary logconcave functions. There are some
technical problems with extending the results of this paper to arbitrary logconcave functions;
but we make some progress in this direction by showing that this is indeed the case for an
exponential density over a convex body. This class of density functions is interesting for other
reasons as well—these are the functions used in “simulated annealing” and in the fastest volume
algorithm [13]. We prove the following theorem in Section 6. The condition on the starting
density captures the case of bounded L2-norm; the proof uses the same isoperimetric inequality
(Theorem 2.1).

Theorem 1.3 Let K ⊆ R
n be a convex body and let f be a density supported on K which is

proportional to e−aT x for some vector a ∈ R
n. Assume that the level set of f of probability

1/8 contains a ball of radius r, and Ef (|x − zf |2) ≤ R2, where zf is the centroid of f . Let σ
be a starting distribution and let σm be the distribution of the current point after m steps of

hit-and-run applied to f . Let ε > 0, and suppose that the density function dσ/dπf is bounded by

M except on a set S with σ(S) ≤ ε/2. Then for

m > 1030 n2R2

r2
ln5 MnR

rε
,

the total variation distance of σm and πf is less than ε.

1.1 Overview of analysis

We wish to bound the rate of convergence of the Markov chain underlying hit-and-run to the
uniform distribution πK on the convex body K. For this we use the notion of conductance,
which is defined as follows: For any measurable subset S ⊆ K and x ∈ K, we denote by Px(S)
the probability that a step from x goes to S. If 0 < πK(S) < 1, then the conductance φ(S) is
defined as

φ(S) =

∫

x∈S Px(K \ S) dπK

min{πK(S), πK(K \ S)} .

3



The minimum value over all subsets S is the conductance, φ, of the Markov chain. Lovász and
Simonovits [11], extending a result of Jerrum and Sinclair, have shown that the mixing rate
(roughly, the number of steps needed to halve the distance to the stationary distribution) is
bounded by O(1/φ2) (and is at least 1/φ).

The main part of our proof shows that the conductance of the hit-and-run Markov chain is
Ω(r/nR). All previous attempts to bound the conductance of geometric random walks could
only prove that the conductance of “large” subsets is large, namely the conductance bound for
a subset S was proportional to πK(S). For this reason, one had to limit the probability that we
start in one of bad small sets, which leads to the use of a warm start. As mentioned earlier, the
example of starting at a point x near the apex of a rotational cone shows that the ball walk can
in fact take exponentially many steps from some starting points: Most points of a ball around x
are outside the cone and hence most steps from x are wasted.

Hit-and-run, on the contrary, exhibits a sizeable (inverse polynomial) drift towards the base
of the cone. Thus, although the initial steps are tiny, they quickly get larger and the current
point moves away from the apex. By bounding the conductance, we show that this phenomenon
is general, i.e., hit-and-run mixes rapidly starting from any interior point of a convex body. To
prove this, we use the new isoperimetric inequality. Besides the inequality, a key observation in
the proof is that the “median” step length from points in K is a concave function.

2 A weighted isoperimetric inequality

To analyze the walk, we use a non-Euclidean notion of distance [9]. Let u, v be two distinct
points in K, let `(u, v) denote the line through u and v, and let p, q be the endpoints of the
segment `(u, v) ∩ K, so that the points appear in the order p, u, v, q along `(u, v). Then,

dK(u, v) =
|u − v||p − q|
|p − u||v − q| .

For two subsets S1, S2 of K, we define

dK(S1, S2) = min
u∈S1,v∈S2

dK(u, v).

Theorem 2.5 from [12] asserts the following: if f is logconcave function on a convex set K, ε > 0
and S1 ∪ S2 ∪ S3 is a partition of K into three measurable sets such that for any u ∈ S1 and
v ∈ S2 we have dK(u, v) ≥ ε, then

∫

K

f(x) dx

∫

S3

f(x) dx ≥ ε

∫

S1

f(x) dx

∫

S2

f(x) dx. (1)

We prove the following related result:

Theorem 2.1 Let K be a convex body in R
n. Let f : K → R+ be a logconcave function and

h : K → R+, an arbitrary function. Let S1, S2, S3 be any partition of K into measurable sets.

Suppose that for any pair of points u ∈ S1 and v ∈ S2 and any point x on the chord of K through

u and v,

h(x) ≤ 1

3
min(1, dK(u, v)).

Then
∫

S3

f(x) dx

min
{

∫

S1

f(x) dx,
∫

S2

f(x) dx
} ≥

∫

K
h(x)f(x) dx

∫

K f(x) dx
.
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Remark: For a logconcave density function f , and corresponding distribution πf , the conclusion
of the theorem can be stated as:

πf (S3) ≥ Ef (h(x)) min{πf (S1), πf (S2)}.

Proof. We can assume that
∫

S1

f(x) dx ≤
∫

S2

f(x) dx. Suppose that the conclusion is false.

Then there exists an A ≤ 1/2 such that

∫

K

f(x) dx =
1

A

∫

S1

f(x) dx

and
∫

S3

f(x) dx < A

∫

K

h(x)f(x) dx.

Now we invoke the Localization Lemma, specifically the version given in Corollary 2.4 of [6].
This implies that there exist two points a, b ∈ K and a linear function ` : [0, 1] → R+ with the
following properties. Set

F (t) = `(t)n−1f(ta + (1 − t)b), G(t) = h(ta + (1 − t)b),

and
Ji = {t ∈ [0, 1] : ta + (1 − t)b ∈ Si} (i = 1, 2, 3),

then

∫ 1

0

F (t) dt =
1

A

∫

J1

F (t) dt,

∫

J3

F (t) dt < A

∫ 1

0

G(t)F (t) dt,

and hence
∫ 1

0

F (t) dt

∫

J3

F (t) dt <

∫

J1

F (t) dt

∫ 1

0

G(t)F (t) dt.

For u, v ∈ K, let Muv denote the maximum of h(x) over the chord through u and v, then

∫ 1

0

G(t)F (t) dt ≤ Mab

∫ 1

0

F (t) dt,

and so
∫

J3

F (t) dt < Mab

∫

J1

F (t) dt (2)

We also have
∫

J1

F (t) dt = A

∫ 1

0

F (t) dt ≤ 1

2

∫ 1

0

F (t) dt. (3)

Let u ∈ J1 and v ∈ J2, and (say) u < v. Then by hypothesis,

v − u

u(1 − v)
≥ dK(ua + (1 − u)b, va + (1 − v)b) ≥ 3Mab,

and hence by the 1-dimensional case of (1), we have

∫ 1

0

F (t) dt

∫

J3

F (t) dt ≥ 3Mab

∫

J1

F (t) dt

∫

J2

F (t) dt.
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Comparing with (2), we get
∫ 1

0

F (t) dt > 3

∫

J2

F (t) dt.

Using this and (3), it follows that

∫

J3

F (t) dt =

∫ 1

0

F (t) dt −
∫

J1

F (t) dt −
∫

J2

F (t) dt

>

(

1 − 1

2
− 1

3

)
∫ 1

0

F (t) dt

=
1

6

∫ 1

0

F (t) dt.

But then (2) and (3) imply that Mab > 1/3, a contradiction. �

3 Bounding the step-size

For x ∈ K, let y be a random step from x. Following [9], we define F (x) as

P (|x − y| ≤ F (x)) =
1

8
. (4)

Roughly speaking, this is the “median” step length from x. The goal of this section is to
bound this function from below by a concave function.

For x ∈ K, let

λ(x, t) =
vol(K ∩ (x + tB))

vol(tB)

denote the fraction of a ball of radius t around x that intersects K. For a fixed γ ≥ 0, define
s : K → R+ as

s(x) = sup{t ∈ R+ : λ(x, t) ≥ γ}.
The value s(x) is a measure of how close x is to the boundary of K. Its somewhat complicated
definition guarantees some useful properties.

Lemma 3.1 For any γ > 0, s(x) is a concave function.

Proof. Let x1, x2 ∈ K with s(x1) = r1 and s(x2) = r2. Let Ai = K ∩ (x1 + riB) (i = 1, 2).
Let x = (x1 + x2)/2 and consider A = (A1 + A2)/2. By convexity, A ⊆ K. Further, any point
y ∈ A can be written as

y =
1

2
(x1 + z1 + x2 + z2) = x +

z1 + z2

2
.

for some z1, z2 such that |z1| ≤ r1 and |z2| ≤ r2. Thus,

A ⊆ K ∩
(

x +
r1 + r2

2
B

)

.

Next, by the Brunn-Minkowski inequality,

vol(A)
1

n ≥ 1

2

(

vol(A1)
1

n + vol(A2)
1

n

)

≥ 1

2
γ

1

n vol(B)
1

n (r1 + r2)

= γ
1

n vol(
r1 + r2

2
B)

1

n .
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It follows that

vol

(

K ∩
(

x +
r1 + r2

2
B

)

)

≥ vol(A) ≥ γvol(
r1 + r2

2
B)

and thus s(x) ≥ (r1 + r2)/2. �

Lemma 3.2 If γ ≥ 63/64, then for all x ∈ K,

F (x) ≥ s(x)

32
.

Proof. Set s = s(x). Let p denote the fraction of the surface of the ball x + (s/2)B that is not
in K. Then

vol((x + sB) \ K) ≥ pvol(sB) − vol((s/2)B).

By the definition of s,
vol((x + sB) \ K) ≤ (1 − γ)vol(sB),

and hence

p ≤ 1 − γ + 2−n ≤ 1

32
.

Take a random line ` through x; then with probability at least 1− 2p, ` ∩ (x + (s/2)B) ⊆ K. If
this happens, then for the point y chosen uniformly from ` ∩ K, we have

P

(

|y − x| ≤ s

32
| `

)

≤ 1

16
,

and so

P

(

|y − x| ≤ s

32

)

≤ 1

16
+

15

16
· 1

16
<

1

8
.

This proves the Lemma. �

Let us quote Corollary 4.6 in [7] as a Lemma:

Lemma 3.3 Suppose K contains a ball of radius r . Then,

∫

K

∫

y∈x+tB\K

dy dx ≤ t
√

n

2r
vol(K)vol(tB).

This lemma can be used to bound the average value of s(x) from below:

Lemma 3.4 Suppose K contains a unit ball. Then,

∫

K

s(x) dx ≥ 1 − γ√
n

vol(K).

Proof. ¿From Lemma 3.3,

∫

K

λ(x, t) dx ≥
(

1 − t
√

n

2

)

vol(K).

On the other hand,
∫

K

λ(x, t) dx ≤ γvol(K) + (1 − γ)vol({x ∈ K : λ(x, t) ≥ γ})

and so

vol({x ∈ K : λ(x, t) ≥ γ}) ≥
(

1 − t
√

n

2(1 − γ)

)

vol(K).
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Using this,

∫

K

s(x) dx =

∫ ∞

0

vol({x ∈ K : λ(x, t) ≥ γ}) dt

≥ vol(K)

∫ ∞

0

(

1 − t
√

n

2(1 − γ)

)+

dt

=
1 − γ√

n
vol(K).

�

4 A scale-free bound on the conductance

For a point u ∈ K, let Pu be the distribution obtained by taking one hit-and-run step from u.
Then (as shown in [9]),

Pu(A) =
2

voln−1(∂B)

∫

A

dx

`(u, x)|x − u|n−1
(5)

where `(u, x) is the length of the chord through u and x.
Let dtv(P, Q) denote the total variation distance between distributions P and Q. The fol-

lowing lemma from [9] connects the geometric distance of two points to the variation distance
of the distributions obtained by taking one hit-and-run step.

Lemma 4.1 [9] Let u, v ∈ K. Suppose that

dK(u, v) <
1

8
and |u − v| <

2√
n

max{F (u), F (v)}.

Then

dtv(Pu, Pv) < 1 − 1

500
.

The main theorem of this section is the following.

Theorem 4.2 Let K be a convex body in R
n of diameter D, containing a unit ball. Then the

conductance of hit-and-run in K is at least 1
224nD .

Proof. Let K = S1 ∪ S2 be a partition into measurable sets. We will prove that
∫

S1

Px(S2) dx ≥ 1

224nD
min{vol(S1), vol(S2)} (6)

We can read the left hand side as follows: we select a random point X from the uniform
distribution and make one step to get Y . What is the probability that X ∈ S1 and Y ∈ S2? It
is well known that this quantity remains the same if S1 and S2 are interchanged.

Consider the points that are deep inside these sets, i.e. unlikely to jump out of the set:

S′
1 = {x ∈ S1 : Px(S2) <

1

1000
}

and

S′
2 = {x ∈ S2 : Px(S1) <

1

1000
}.

Let S′
3 be the rest i.e., S′

3 = K \ S′
1 \ S′

2.
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Suppose vol(S′
1) < vol(S1)/2. Then

∫

S1

Px(S2) dx ≥ 1

1000
vol(S1 \ S′

1) ≥
1

2000
vol(S1)

which proves (6).
So we can assume that vol(S ′

1) ≥ vol(S1)/2 and similarly vol(S ′
2) ≥ vol(S2)/2. For any u ∈ S′

1

and v ∈ S′
2,

dtv(Pu, Pv) ≥ 1 − Pu(S2) − Pv(S1) > 1 − 1

500
.

Thus, by Lemma 4.1, either

dK(u, v) ≥ 1

8
(7)

or

|u − v| ≥ 2√
n

max{F (u), F (v)}. (8)

We want to apply Theorem 2.1 to the partition S′
1, S

′
2, S

′
3 and the function h(x) = s(x)/(48D

√
n),

where s(x) is as defined in section 3 with γ = 63/64. To verify the condition, let u ∈ S ′
1, v ∈ S′

2,
and x any point on the chord pq through u and v (where p is the endpoint closer to u than v).
Clearly h(x) ≤ 1/3. If (7) holds, then h(x) ≤ dK(u, v)/3 is trival. So suppose that (8) holds.
Let e.g., x be between u and q. Then, using the concavity of s (Lemma 3.1), we have

s(x) ≤ |x − p|
|u − p|s(u) ≤ 32

|q − p|
|u− p|F (u) (using Lemma 3.2)

≤ 16
|q − p|
|u− p|

√
n|u − v| (using (8) above)

= 16dK(u, v)
√

n|q − v|
≤ 16dK(u, v)D

√
n,

and hence h(x) ≤ dK(u, v)/3 follows again. Thus, Theorem 2.1 applies with f being the uniform
density and we get

vol(S′
3)

min{vol(S′
1), vol(S′

2)}
≥ 1

48D
√

n
· 1

vol(K)

∫

K

s(x) dx

>
1

4000nD
.

Here we have used Lemma 3.4 with γ = 63/64. Therefore,

∫

S1

Px(S2) dx ≥ 1

2
· 1

1000
vol(S′

3)

≥ 1

223nD
min{vol(S′

1), vol(S′
2)}

≥ 1

224nD
min{vol(S1), vol(S2)}

which again proves (6). �

5 Proof of the mixing bound

First note that hit-and-run is invariant under a scaling of space (i.e., there is a 1 − 1 mapping
between the random walk in K and cK) and so the conductance bound of Ω(r/nR) follows by
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considering K/r. Next, suppose we start with an M -warm distribution σ, i.e., for any subset S
of K, σ(S) ≤ MπK(S). Then using Corollary 1.5 of [11], the distribution σm obtained after m
steps satisfies

dtv(σ
m, πK) ≤

√
M

(

1 − φ2

2

)m

and so after m > Cn2 R2

r2 ln M
ε steps (C is a constant), the total variation distance of σm and πK

is less than ε.
If we only know that σ ≤ MπK except for the subsets of a set S with σ(S) < ε/2, then we

think of a random point of K as being generated with probability 1− ε/2 from a distribution σ′

that is (2M)-warm with respect to πK and with probability ε/2 from some other distribution.
After m steps, we have

dtv(σm, πK) ≤ ε

2
+

(

1 − ε

2

)

√

2M

ε

(

1 − φ2

2

)m

.

which implies Theorem 1.1.
In some applications, the L2 norm of σ w.r.t. π is bounded, i.e., suppose that

∫

K

(

dσ

dπ

)2

dπ ≤ M.

This will also be sufficient for mixing. The set

S =

{

x :
dσ

dπ
>

2M

ε

}

has measure π(S) of at most ε/2. So we can apply the mixing theorem with 2M/ε in place of
M .

As mentioned in the introduction, Theorem 1.1 can be strengthened to requiring only that
EK(||x− zK ||2) ≤ R2 with a small increase in the mixing time. It is well-known that the volume
of K outside a ball of radius R ln(2/δ) is at most a δ/2 fraction. Thus the conductance of any
subset of measure x is at least

φ(x) =
cr

nR ln(2/x)

for some constant c. Then the average conductance theorem of [5] implies that after m >
C(n2R2/r2) ln3(M/ε) steps (where C is a constant), we get that dtv(σm, πK) ≤ ε.

Finally, Corollary 1.2 follows by bounding M for the distribution obtained after one step of
hit-and-run.

6 Exponential density over a convex body

Here we extend the main theorem to sampling an exponential density over a convex body. We
will use the following notation. Let f be a density function in R

n. For any line ` in R
n, let µ`,f

be the measure induced by f on `, i.e.,

µ`,f (S) =

∫

p+tu∈S

f(p + tu)dt,

where p is any point on ` and u is a unit vector parallel to `. We abbreviate µ`,f by µ` if f is
understood, and also µ`(`) by µ`. The probability measure π`(S) = µ`(S)/µ` is the restriction

of f to `.
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For two points u, v ∈ R
n, let `(u, v) denote the line through them. Let [u, v] denote the

segment connecting u and v, and let `+(u, v) denote the semiline in ` starting at u and not
containing v. Furthermore, let

f+(u, v) = µ`,f (`+(u, v)),

f−(u, v) = µ`,f (`+(v, u)),

f(u, v) = µ`,f ([u, v]).

For any T > 0, let L(T ) = {x : f(x) ≥ T} be the level set of function value T . It will be
convenient to let πn denote the volume of the unit ball in R

n.

6.1 Distance

The following “distance” was used in [12]:

df (u, v) =
f(u, v)f(`(u, v))

f−(u, v)f+(u, v)
.

(This quantity is not really a distance, since it does not satisfy the triangle inequality. To get a
proper distance function, one could consider ln(1 + df (u, v)); but it will be more convenient to
work with df .)

Note that when f is the uniform distribution over a convex set K, then df (u, v) = dK(u, v).
The next lemma describes how the two are related in general.

Lemma 6.1 Let f be a density function in R
n with support a convex body K. Let G =

maxK f(x)/ minK f(x).

1. df (u, v) ≥ dK(u, v).

2.

dK(u, v) ≥ min{3, df (u, v)}
6(1 + ln G)

.

The first inequality is Lemma 5.9 in [12] and the second inequality is a direct implication of
Lemma 5.11 in [12].

6.2 Step-size

Let f be a density function whose support is a convex body K. We define three parameters that
all measure the local smoothness of f . First, for a fixed β and γ, we define

λ(x, t) =
vol((x + tB) ∩ L(βf(x)))

vol(tB)
and s(x) = sup{t ∈ R+ : λ(x, t) ≥ γ}.

Second, we define F (x) by

P (|x − y| ≤ F (x)) =
1

8
,

where y be a random step from x. Third, we define α(x) (as in [12]) as the smallest s ≥ 3 for
which a hit-and-run step y from x satisfies

P(f(y) ≥ sf(x)) ≤ 1

16
.

We will shortly fix β = 3/4 and γ = 63
64 . Note that λ(x, t), s(x) and F (x) as defined here are

generalizations of the definitions in Section 3 (where f(x) was the uniform density over K).
The following lemma was proved in [12].
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Lemma 6.2 ([12], Lemma 6.10)

πf (u : α(u) ≥ t) ≤ 16

t
.

Our next lemma extends a crucial property of s(x) to exponential functions (it does not hold
for general logconcave functions).

Lemma 6.3 Suppose f(x) is proportional to e−aT x inside a convex body K and zero outside.

Then for any fixed β, γ > 0, the function s(x) is concave.

Proof. Let x1, x2 ∈ K with s(x1) = r1 and s(x2) = r2. Define

A1 = {y ∈ x1 + r1B : f(y) ≥ βf(x1)} and A2 = {y ∈ x2 + r2B : f(y) ≥ βf(x2)}

Now let x = (x1 + x2)/2 and consider A = (A1 + A2)/2. Any point y ∈ A can be written as

y = x +
z1 + z2

2

for some z1, z2 such that z1 ∈ r1B and z2 ∈ r2B. Thus

A ⊆ x +
r1 + r2

2
B.

Also, since f(x) is proportional to e−aT x, we have f((x + y)/2) =
√

f(x)f(y) and so for any
y ∈ A,

f(y) = f(
y1 + y2

2
) =

√

f(y1)f(y2)

where y1 ∈ A1 and y2 ∈ A2. By the definition of these subsets, f(y1) ≥ βf(x1) and f(y2) ≥
βf(x2). Thus

f(y) ≥ β
√

f(x1)f(x2) = βf

(

x1 + x2

2

)

= βf(x).

and so

A ⊆ {y ∈ x +
r1 + r2

2
B : f(y) ≥ βf(x)}.

Finally, by the Brunn-Minkowski inequality,

vol(A)
1

n ≥ 1

2

(

vol(A1)
1

n + vol(A2)
1

n

)

≥ 1

2
(γπn)

1

n (r1 + r2)

= γ
1

n vol

(

r1 + r2

2
B

)
1

n

.

It follows that s(x) ≥ (r1 + r2)/2. �

Next, we bound the expected value of s(x).

Lemma 6.4 Let f be any logconcave density such that the level set of f of measure 1/8 contains

a ball of radius r. Then with β = 3/4 and γ = 63/64,

Ef (s(x)) ≥ r

210
√

n
.
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Proof. Let L0 be the level set
L0 = {x : f(x) ≥ f0},

such that the measure of L0 is 1/8. For i = 1, 2, . . ., consider the level sets

Li = {x : f(x) ≥
(

3

4

)i

f0}

Note that since f is logconcave, each Li is a convex body. We will first bound Ef (1− λ(x, t)) as
follows:
∫

Rn

f(x)

∫

y∈x+tB:f(y)<3f(x)/4

dy

vol(tB)
dx ≤ 1

8
+

∑

i>0

f0

(4/3)i−1

∫

x∈Li\Li−1

∫

y∈x+tB\Li

dy

vol(tB)
dx

≤ 1

8
+

∑

i

f0

(4/3)i−1

∫

x∈Li

∫

y∈x+tB\Li

dy

vol(tB)
dx

≤ 1

8
+

t
√

n

2r

∑

i

f0

(4/3)i−1
vol(Li).

In the last step, we applied Lemma 3.3 to the convex set Li which contains a ball of radius r by
assumption. Now for any x ∈ Li \ Li−1,

f0

(4/3)i
≤ f(x) <

f0

(4/3)i−1
.

Using this,

∑

i

f0

(4/3)i−1
vol(Li) ≤

∑

i

4f0

(4/3)i−1
vol(Li \ Li−1)

≤ 16

3

∫

Rn

f(x) dx < 6.

Thus,

Ef (1 − λ(x, t)) ≤ 1

8
+

3t
√

n

r
.

Next, since λ(x, t) can at most be 1, we get
∫

x:λ(x,t)≥3/4

f(x) dx ≥ 1

2
− 12t

√
n

r

We will use the following claim to complete the proof: If λ(x, t) ≥ 3/4 then for c > 1,

λ(x, t/c) ≥ 1 − e−( c

4
−1)2/2.

To see the claim, note that since λ(x, t) ≥ 3/4, there must be a ball of radius t/2
√

n inside K
centered at x. The claim then follows by applying Lemma 4.4 in [12].

Setting c = 16 above, we get λ(x, t/16) ≥ 1 − e−9/2 > 63/64. Using this,
∫

Rn

s(x)f(x) dx ≥ 1

16

∫ ∞

t=0

∫

x:λ(x,t)≥3/4

f(x) dx dt

≥ 1

16

∫ ∞

t=0

(

1

2
− 12t

√
n

r

)+

dt

≥ r

210
√

n
.

�

We can also relate the maximum value of s(x) to the diameter D.
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Lemma 6.5 Let G = maxK f(x)
minK f(x) where f is proportional to e−aT x with support K. Suppose K

has diameter D. Then,

max
K

s(x) ≤ min{2
√

nD

ln G
, D}.

Proof. Let t = 1/|a|. Then along the direction of a, the function value drops by 1/e each time
we move distance t. Hence,

t ≤ D

ln G
.

On the other hand, for any point x, we claim that

s(x) ≤ 2t
√

n.

To see this, consider the nearest point y along the line through x in direction of a with f(y) ≤
f(x)/2. This point satisfies |x − y| ≤ t. Now the portion of the ball x + s(x)B in the halfspace
{z : aT z ≥ aT y} must have volume at most 1/4 of the volume of s(x)B by the definition of s(x)
(in a ball of radius 2t

√
n, a halfspace at distance t from the center cuts off at least 1/4 of the

volume of the ball). This implies the inequality. The lemma follows. �

The next lemma is about the step-size along a given line.

Lemma 6.6 Let f be logconcave and ` be any line through a point x. Let p, q be intersection

points of ` with the boundary of L(F/8) where F is the maximum value of f along `, and let

s = max{|x − p|/32, |x − q|/32}. Choose a random point y on ` from the distribution π`. Then

P(|x − y| > s) >
3

4
.

Proof. We will use the following observation. For any logconcave function g that is nonin-
creasing on an interval [a, b]

∫

[a,b]

g(x) dx ≥ |a − b| g(a) − g(b)

ln g(a) − ln g(b)
.

The proof is by noting that the exponential function with value g(a) at a and g(b) at b is a lower
bound on any such function.

In our case, suppose f attains its maximum at a point z ∈ [p, q]. Then, applying the
observation separately to the intervals [p, z] and [z, q], we get

∫

[p,q]

f(x) dx ≥ 7F

8 ln 8
|p − q|.

Also, by Lemma 3.5(a) in [12] (whose proof uses a similar reduction to the exponential function),
P(y ∈ [p, q]) ≥ 7/8. We now consider two cases. If x ∈ [p, q], then s ≤ |p − q|/32 and so

P(|x − y| ≤ s) ≤ 2sF
∫

[p,q]
f(x) dx

≤ ln 8

14
<

1

4
.

Suppose x 6∈ [p, q]. Let u be the unit vector along p − q. Then,

|[x − su, x + su] ∩ [p, q]| ≤ |p − q|
32

and so,

P(|x − y| ≤ s) ≤ 1

8
+

F |p − q|/32

7F |p − q|/8 ln 8
<

1

4
.

�

Finally, s(x) gives a lower bound on F (x) as in section 3.
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Lemma 6.7 If γ ≥ 63/64 and β ≥ 3/4, then

F (x) ≥ s(x)

64
.

Proof. What we need to prove is following: If x ∈ R
n, and s > 0 satisfies

vol
(

(x + sB) ∩ {f ≤ βf(x)}
)

≤ (1 − γ)vol(x + sB),

then for a hit-and-run step y from x,

P(|x − y| ≤ s

64
) ≤ 1

8
. (9)

Let p denote the fraction of the surface of x + (s/2)B in the set {f ≤ βf(x)}. Clearly

vol
(

(x + sB) ∩ {f ≤ βf(x)}
)

≥ pvol(x + sB) − vol(x + (s/2)B) = (p − 2−n)vol(x + sB),

by our hypothesis on s,

p ≤ 1 − γ + 2−n ≤ 1

32
.

Thus if we choose a random line through x, with probability at least 15/16 it will intersect the
surface of x + (s/2)B in points z1, z2 with f(zi) ≥ βf(x).

Suppose that we have chosen such a line, and let u be a unit vector parallel to this line. Then
we have

f(x + tu) ≥ βf(x) (−s

2
≤ t ≤ s

2
),

and also (by logconcavity)

f(x + tu) ≤ β−2|t|/sf(x) (−∞ < t < ∞).

We have

P

(

|x − y| ≤ s

64

)

=

∫ s/64

−s/64

f(x + tu) dt

/
∫ ∞

−∞

f(x + tu) dt.

Here
∫ ∞

−∞

f(x + tu) dt ≥
∫ s/2

−s/2

f(x + tu) dt ≥ sβf(x),

while
∫ s/64

−s/64

f(x + tu) dt ≤ s

32
β−1/32f(x),

and so

P

(

|x − y| ≤ s

64

)

≤ 1

32
β−33/32 <

1

16
.

Thus the probability that |x−y| ≤ s/64 is bounded by 2p+1/16 ≤ 1/8. This proves the Lemma.
�

6.3 Conductance

For a point u ∈ K, let Pu be the distribution obtained by taking one hit-and-run step from u.
Let µf (u, x) be the integral of f along the line through u and x. Then,

Pu(A) =
2

nπn

∫

A

f(x) dx

µf (u, x)|x − u|n−1
. (10)

The next lemma is analogous to Lemma 4.1. It holds for any logconcave density f , although
we know how to use it only for the exponential density. Its proof is closely related to Lemma
7.2 in [12].
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Lemma 6.8 Let u, v ∈ K. Suppose that

df (u, v) <
1

128 ln(3 + α(u))
and |u − v| <

1

4
√

n
max{F (u), F (v)}.

Then

dtv(Pu, Pv) < 1 − 1

500
.

Proof. We will show that there exists a set A ⊆ K such that Pu(A) ≥ 1
2 and for any subset

A′ ⊂ A,

Pv(A′) ≥ 1

200
Pu(A′).

To this end, we define certain ”bad” lines through u. Let σ be the uniform probability
measure on lines through u.

Let B1 be the set of lines that are not almost orthogonal to u − v, in the sense that for any
point x 6= u on the line,

|(x − u)T (u − v)| >
2√
n
|x − u||u− v|.

The measure of this subset can be bounded as σ(B1) ≤ 1/8.
Next, let B2 be the set of all lines through u which contain a point y with f(y) > 2α(u)f(u)

(see Section 6.2 for the definition of α). By Lemma 3.5(a) in [12], if we select a line from B2,
then with probability at least 1/2, a random step along this line takes us to a point x with
f(x) ≥ α(u)f(u). From the definition of α(u), this can happen with probability at most 1/16,
which implies that σ(B2) ≤ 1/8.

Let A be the set of points x in K which are not on any of the lines in B1 ∪ B2, and which
are far from u in the sense of Lemma 6.6:

|x − u| ≥ 1

32
max {|u − p|, |u − q|} .

Applying Lemma 6.6 to each such line, we get

Pu(A) ≥ (1 − 1

8
− 1

8
)
3

4
>

1

2
.

We will show that for any subset A′ ⊆ A,

Pv(A′) ≥ 1

200
Pu(A′)

using the next two claims.

Claim 1. For every x ∈ A,

|x − v| ≤ (1 +
1

n
)|x − u|.

Claim 2. For every x ∈ A,

µf (v, x) < 64
|x − v|
|x − u|µf (u, x).

Claim 1 is easy to prove (cf. [9]) and the proof of Claim 2 is identical to that given in [12].
Thus, for any A′ ⊂ A,

Pv(A′) =
2

nπn

∫

A′

f(x) dx

µf (v, x)|x − v|n−1

≥ 2

64nπn

∫

A′

|x − u|f(x) dx

µf (u, x)|x − v|n

≥ 2

64enπn

∫

A′

f(x) dx

µf (u, x)|x − u|n−1

≥ 1

64e
Pu(A′).
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The lemma follows. �

We are now ready to state and prove the main theorem.

Theorem 6.9 Let f be a density in R
n proportional to e−aT x whose support is a convex body

K of diameter D. Assume that any level set of measure 1/8 contains a ball of radius r. Then

for any subset S, with πf (S) = p ≤ 1/2, the conductance of hit-and-run satisfies

φ(S) ≥ r

1013nD ln(nD
rp )

.

Proof. The proof has the same structure as that of Theorem 4.2.
Let K = S1∪S2 be a partition into measurable sets, where S1 = S and p = πf (S1) ≤ πf (S2).

We will prove that

∫

S1

Px(S2) dx ≥ r

1013nD ln nD
rp

πf (S1) (11)

Consider the points that are deep inside these sets:

S′
1 = {x ∈ S1 : Px(S2) <

1

1000
} and S′

2 = {x ∈ S2 : Px(S1) <
1

1000
}.

Let S′
3 be the rest i.e., S′

3 = K \ S′
1 \ S′

2.
Suppose πf (S′

1) < πf (S1)/2. Then

∫

S1

Px(S2) dx ≥ 1

1000
πf (S1 \ S′

1) ≥
1

2000
πf (S1)

which proves (11).
So we can assume that πf (S′

1) ≥ πf (S1)/2 and similarly πf (S′
2) ≥ πf (S2)/2.

Next, define the exceptional subset W as set of points u for which α(u) is very large.

W = {u ∈ S : α(u) ≥ 227nD

rp
}.

By Lemma 6.2,

πf (W ) ≤ rp

223nD
.

Next, for any u ∈ S′
1 \ W and v ∈ S′

2 \ W ,

dtv(Pu, Pv) ≥ 1 − Pu(S2) − Pv(S1) > 1 − 1

500
.

Thus, by Lemma 6.8, either

df (u, v) ≥ 1

128 ln(3 + α(u))
≥ 1

212 ln nD
rp

or

|u − v| ≥ 1

4
√

n
max{F (u), F (v)}.

But by Lemmas 6.1 and 6.7, this implies that either

dK(u, v) ≥ 1

215 ln nD
rp (1 + ln G)

(12)
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or

|u − v| ≥ 1

28
√

n
max{s(u), s(v)} (13)

holds. Now, by Lemma 6.5, condition (12) implies that

dK(u, v) ≥ 1

217 ln nD
rp

max s(x)√
nD

. (14)

Next, we define

h(x) =
s(x)

219D
√

n ln nD
rp

and apply Theorem 2.1 to the partition S′
1 \W , S′

2 \W and the rest. If (14) holds, then clearly
h(x) ≤ dK(u, v)/3. Otherwise, (13) holds. Let x be a point on the chord pq of K, say between
u and q. Then, using the concavity of s (Lemma 6.3),

s(x) ≤ |x − p|
|u − p|s(u) ≤ 28 |q − p|

|u − p|
√

n|u − v|

≤ 28dK(u, v)D
√

n

and hence h(x) ≤ dK(u, v)/3 again. Thus,

πf (S′
3) ≥ Ef (h)πf (S′

1 \ W )πf (S′
2 \ W ) − πf (W )

≥ r

230nD ln nD
ra

πf (S1).

Here we have used Lemma 6.4 and the bound on πf (W ). Therefore,

∫

S1

Px(S2) dx ≥ 1

2
· 1

1000
πf (S′

3)

≥ r

1013nD ln nD
rp

πf (S1)

which again proves (11) �

6.4 Mixing time

Since f satisfies Ef (|x−zf |2) ≤ R2, we consider the restriction of f to the ball of radius R ln(4e/a)
around zf and then by Lemma 5.17 in [12], the measure of f outside this ball is at most a/4. In
the proof of the conductance bound, we can consider the restriction of f to this set. In the bound
on the conductance for a set of measure a, the diameter D is effectively replaced by R ln(4e/a).

The bound on the mixing time then follows by applying Theorem 6.9 along with either
Corollary 1.6 in [11] or the average conductance theorem of [5]. For the latter, we have that for
any subset of measure x, the conductance is at least

φ(x) ≥ cr

nR ln(nR/rx) ln(4e/x)
≥ cr

nR ln2(nR/rx)
.

Then the theorem of [5] implies that after m > C(n2R2/r2) ln5(MnR/rε) steps, we have
dtv(σ

m, πf ) < ε.
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