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Geometric Random Walks: A Survey

SANTOSH VEMPALA

Abstract. The developing theory of geometric random walks is outlined
here. Three aspects — general methods for estimating convergence (the
“mixing” rate), isoperimetric inequalities in Rn and their intimate connec-
tion to random walks, and algorithms for fundamental problems (volume
computation and convex optimization) that are based on sampling by ran-
dom walks — are discussed.

1. Introduction

A geometric random walk starts at some point in Rn and at each step, moves

to a “neighboring” point chosen according to some distribution that depends

only on the current point, e.g., a uniform random point within a fixed distance

δ. The sequence of points visited is a random walk. The distribution of the

current point, in particular, its convergence to a steady state (or stationary)

distribution, turns out to be a very interesting phenomenon. By choosing the

one-step distribution appropriately, one can ensure that the steady state distri-

bution is, for example, the uniform distribution over a convex body, or indeed

any reasonable distribution in Rn.

Geometric random walks are Markov chains, and the study of the existence

and uniqueness of and the convergence to a steady state distribution is a classical

field of mathematics. In the geometric setting, the dependence on the dimension

(called n in this survey) is of particular interest. Pólya proved that with prob-

ability 1, a random walk on an n-dimensional grid returns to its starting point

infinitely often for n ≤ 2, but only a finite number of times for n ≥ 3.

Random walks also provide a general approach to sampling a geometric distri-

bution. To sample a given distribution, we set up a random walk whose steady

state is the desired distribution. A random (or nearly random) sample is ob-

tained by taking sufficiently many steps of the walk. Basic problems such as

optimization and volume computation can be reduced to sampling. This con-
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nection, pioneered by the randomized polynomial-time algorithm of Dyer, Frieze

and Kannan [1991] for computing the volume of a convex body, has lead to many

new developments in recent decades.

In order for sampling by a random walk to be efficient, the distribution of

the current point has to converge rapidly to its steady state. The first part

of this survey (Section 3) deals with methods to analyze this convergence, and

describes the most widely used method, namely, bounding the conductance, in

detail. The next part of the survey is about applying this to geometric random

walks and the issues that arise therein. Notably, there is an intimate connection

with geometric isoperimetric inequalities. The classical isoperimetric inequality

says that among all measurable sets of fixed volume, a ball of this volume is the

one that minimizes the surface area. Here, one is considering all measurable sets.

In contrast, we will encounter the following type of question: Given a convex set

K, and a number t such that 0 < t < 1, what subset S of volume t · vol(K) has

the smallest surface area inside K (i.e., not counting the boundary of S that is

part of the boundary of K)? The inequalities that arise are interesting in their

own right.

The last two sections describe polynomial-time algorithms for minimizing a

quasi-convex function over a convex body and for computing the volume of a

convex body. The random walk approach can be seen as an alternative to the

ellipsoid method. The application to volume computation is rather remarkable

in the light of results that no deterministic polynomial-time algorithm can ap-

proximate the volume to within an exponential (in n) factor. In Section 9, we

briefly discuss the history of the problem and describe the latest algorithm.

Several topics related to this survey have been addressed in detail in the

literature. For a general introduction to discrete random walks, the reader is

referred to [Lovász 1996] or [Aldous and Fill ≥ 2005]. There is a survey by

Kannan [1994] on applications of Markov chains in polynomial-time algorithms.

For an in-depth account of the volume problem that includes all but the most

recent improvements, there is a survey by Simonovits [2003] and an earlier article

by Bollobás [1997].

Three walks. Before we introduce various concepts and tools, let us state

precisely three different ways to walk randomly in a convex body K in Rn. It

might be useful to keep these examples in mind. Later, we will see generalizations

of these walks.

The Grid Walk is restricted to a discrete subset of K, namely, all points in K

whose coordinates are integer multiples of a fixed parameter δ. These points form

a grid, and the neighbors of a grid point are the points reachable by changing

any one coordinate by ±δ. Let e1, . . . , en denote the coordinate vectors in Rn;

then the neighbors of a grid point x are {x ± δei}. The grid walk tries to move

to a random neighboring point.
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Grid Walk (δ)

• Pick a grid point y uniformly at random from the neighbors of the current

point x.

• If y is in K, go to y; else stay at x.

The Ball Walk tries to step to a random point within distance δ of the current

point. Its state space is the entire set K.

Ball Walk (δ)

• Pick a uniform random point y from the ball of radius δ centered at the

current point x.

• If y is in K, go to y; else stay at x.

Hit-and-run picks a random point along a random line through the current point.

It does not need a “step-size” parameter. The state space is again all of K.

Hit-and-run

• Pick a uniform random line ` through the current point x.

• Go to a uniform random point on the chord ` ∩ K.

To implement the first step of hit-and-run, we can generate n independent ran-

dom numbers, u1, . . . , un each from the standard Normal distribution, and then

the direction of the vector u = (u1, . . . , un) is uniformly distributed. For the

second step, using the membership oracle for K, we find an interval [a, b] that

contains the chord through x parallel to u so that |a − b| is at most twice (say)

the length of the chord (this can be done by a binary search with a logarithmic

overhead). Then pick random points in [a, b] till we find one in K.

For the first step of the ball walk, in addition to a random direction u, we

generate a number r in the range [0, δ] with density f(x) proportional to xn−1

and then z = ru/|u| is uniformly distributed in a ball of radius δ.

Do these random walks converge to a steady state distribution? If so, what

is it? How quickly do they converge? How does the rate of convergence depend

on the convex body K?

These are some of the questions that we will address in analyzing the walks.

2. Basic Definitions

Markov chains. A Markov chain is defined using a σ-algebra (K,A), where K

is the state space and A is a set of subsets of K that is closed under complements

and countable unions. For each element u of K, we have a probability measure

Pu on (K,A), i.e., each set A ∈ A has a probability Pu(A). Informally, Pu is the

distribution obtained on taking one step from u. The triple (K,A, {Pu : u ∈ K})
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along with a starting distribution Q0 defines a Markov chain, i.e., a sequence of

elements of K, w0, w1, . . ., where w0 is chosen from Q0 and each subsequent

wi is chosen from Pwi−1
. Thus, the choice of wi+1 depends only on wi and is

independent of w0, . . . , wi−1.

A distribution Q on (K,A) is called stationary if one step from it gives the

same distribution, i.e., for any A ∈ A,
∫

A

Pu(A) dQ(u) = Q(A).

A distribution Q is atom-free if there is no x ∈ K with Q(x) > 0.

The ergodic flow of subset A with respect to the distribution Q is defined as

Φ(A) =

∫

A

Pu(K \ A) dQ(u).

It is easy to verify that a distribution Q is stationary iff Φ(A) = Φ(K \A). The

existence and uniqueness of the stationary distribution Q for general Markov

chains is a rather technical issue that is not covered in this survey; see [Revuz

1975].1 In all the chains we study in this survey, the stationary distribution will

be given explicitly and can be easily verified. To avoid the issue of uniqueness of

the stationary distribution, we only consider lazy Markov chains. In a lazy ver-

sion of a given Markov chain, at each step, with probability 1/2, we do nothing;

with the rest we take a step according to the Markov chain. The next theorem is

folklore and will also be implied by convergence theorems that we present later.

Theorem 2.1. If Q is stationary with respect to a lazy Markov chain then it is

the unique stationary distribution for that Markov chain.

For some additional properties of lazy Markov chains, see [Lovász and Simonovits

1993, Section 1]. We will hereforth assume that the distribution in the definition

of Φ is the unique stationary distribution.

The conductance of a subset A is defined as

φ(A) =
Φ(A)

min{Q(A), Q(K \ A)}
and the conductance of the Markov chain is

φ = min
A

φ(A) = min
0<Q(A)≤ 1

2

∫

A
Pu(K \ A) dQ(u)

Q(A)
.

The local conductance of an element u is `(u) = 1 − Pu({u}).
The following weaker notion of conductance will also be useful. For any 0 ≤

s < 1
2 , the s-conductance of a Markov chain is defined as

φs = min
A:s<Q(A)≤ 1

2

Φ(A)

Q(A) − s
.

1For Markov chains on discrete state spaces, the characterization is much simpler; see
[Norris 1998], for example.
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Comparing distributions. We will often have to compare two distributions

P and Q (typically, the distribution of the current point and the stationary

distribution). There are many reasonable ways to do this. Here are three that

will come up.

(i) The total variation distance of P and Q is

‖P − Q‖tv = sup
A∈A

|P (A) − Q(A)|.

(ii) The L2 distance of P with respect to Q is

‖P/Q‖ =

∫

K

dP (u)

dQ(u)
dP (u) =

∫

K

(

dP (u)

dQ(u)

)2

dQ(u).

(iii) P is said to be M -warm with respect to Q if

M = sup
A∈A

P (A)

Q(A)
.

If Q0 is O(1)-warm with respect to the stationary distribution Q for some

Markov chain, we say that Q0 is a warm start for Q.

Convexity. Convexity plays a key role in the convergence of geometric random

walks. The following notation and concepts will be used.

The unit ball in Rn is Bn and its volume is vol(Bn). For two subsets A,B of

Rn, their Minkowski sum is

A + B = {x + y : x ∈ A, y ∈ B}.

The Brunn-Minkowski theorem says that if A,B and A+B are measurable, then

vol(A + B)1/n ≥ vol(A)1/n + vol(B)1/n. (2–1)

Recall that a subset S of Rn is convex if for any two points x, y ∈ S, the

interval [x, y] ⊆ S. A function f : Rn → R+ is said to be logconcave if for any

two points x, y ∈ Rn and any λ ∈ [0, 1],

f(λx + (1 − λ)y) ≥ f(x)λf(y)1−λ.

The product and the minimum of two logconcave functions are both logcon-

cave; the sum is not in general. The following fundamental properties, proved

by Dinghas [1957], Leindler [1972] and Prékopa [1973; 1971], are often useful.

Theorem 2.2. All marginals as well as the distribution function of a logcon-

cave function are logconcave. The convolution of two logconcave functions is

logconcave.

Logconcave functions have many properties that are reminiscent of convexity.

For a logconcave density f , we denote the induced measure by πf and its centroid

by zf = Ef (X). The second moment of f refers to Ef (|X−zf |2). The next three

lemmas are chosen for illustration from [Lovász and Vempala 2003c]. The first
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one was proved earlier by Grünbaum [1960] for the special case of the uniform

density over a convex body. We will later see a further refinement of this lemma

that is useful for optimization.

Lemma 2.3. Let f : Rn → R+ be a logconcave density function, and let H be

any halfspace containing its centroid . Then
∫

H

f(x) dx ≥ 1

e
.

Lemma 2.4. If X is drawn from a logconcave distribution in Rn, then for any

integer k > 0,

E(|X|k)1/k ≤ 2kE(|X|).

Note that this can be viewed as a converse to Hölder’s inequality which says that

E(|X|k)1/k ≥ E(|X|).

Lemma 2.5. Let X ∈ Rn be a random point from a logconcave distribution with

second moment R2. Then P(|X| > tR) < e−t+1.

A density function f : Rn → R+ is said to be isotropic, if its centroid is the

origin, and its covariance matrix is the identity matrix. This latter condition

can be expressed in terms of the coordinate functions as
∫

Rn

xixjf(x) dx = δij

for all 1 ≤ i, j ≤ n. This condition is equivalent to saying that for every vector

v ∈ Rn,
∫

Rn

(vT x)2f(x) dx = |v|2.

In terms of the associated random variable X, this means that

E(X) = 0 and E(XXT ) = I.

We say that f is near-isotropic up to a factor of C or C-isotropic, if

1

C
≤

∫

Rn

(vT x)2 dπf (x) ≤ C

for every unit vector v. The notions of “isotropic” and “near-isotropic” extend

to non-negative integrable functions f , in which case we mean that the density

function f/
∫

Rn f is isotropic. For any full-dimensional integrable function f with

bounded second moment, there is an affine transformation of the space bringing

it to isotropic position, and this transformation is unique up to an orthogonal

transformation of the space. Indeed if f is not isotropic, we can make the centroid

be the origin by a translation. Next, compute A = E(XXT ) for the associated

random variable X. Now A must be positive semi-definite (since each XXT is)

and so we can write A = BBT for some matrix B. Then the transformation

B−1 makes f isotropic.
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It follows that for an isotropic distribution in Rn, the second moment is

E(|X|2) =
∑

i

E(X2
i ) = n.

Further, Lemma 2.5 implies that for an isotropic logconcave distribution f ,

P(X > t
√

n ) < e−t,

which means that most of f is contained in a ball of radius O(
√

n), and this is

sometimes called its effective diameter.

Computational model. If the input to an algorithm is a convex body K in

Rn, we assume that it is given by a membership oracle which on input x ∈ Rn

returns Yes if x ∈ K and No otherwise. In addition we will have some bounds

on K —typically, Bn ⊆ K ⊆ RBn, i.e., K contains a unit ball around the origin

and is contained in a ball of given radius. It is enough to have any point x in K

and the guarantee that a ball of radius r around x is contained in K and one of

radius R contains K (by translation and scaling this is equivalent to the previous

condition). Sometimes, we will need a separation oracle for K, i.e., a procedure

which either verifies that a given point x is in K or returns a hyperplane that

separates x from K. The complexity of the algorithm will be measured mainly

by the number of oracle queries, but we will also keep track of the number of

arithmetic operations.

In the case of a logconcave density f , we have an oracle for f , i.e., for any

point x it returns Cf(x) where C is an unknown parameter independent of x.

This is useful when we know a function proportional to the desired density, but

not its integral, e.g., in the case of the uniform density over a bounded set, all we

need is the indicator function of the support. In addition, we have a guarantee

that the centroid of f satisfies |zf |2 < Z and the eigenvalues of the covariance

matrix of f are bounded from above and below by two given numbers. Again,

the complexity is measured by the number of oracle calls. We will say that an

algorithm is efficient if its complexity is polynomial in the relevant parameters.

To emphasize the essential dependence on the dimension we will sometimes use

the O∗(.) notation which suppresses logarithmic factors and also the dependence

on error parameters. For example, n log n/ε = O∗(n).

Examples. For the ball walk in a convex body, the state space K is the convex

body, and A is the set of all measurable subsets of K. Further,

Pu({u}) = 1 − vol (K ∩ (u + δBn))

vol(δBn)

and for any measurable subset A, such that u 6∈ A,

Pu(A) =
vol (A ∩ (u + δBn))

vol(δBn)
.
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If u ∈ A, then

Pu(A) = Pu(A \ {u}) + Pu({u}).
It is straightforward to verify that the uniform distribution is stationary, i.e.,

Q(A) =
vol(A)

vol(K)
.

For hit-and-run, the one-step distribution for a step from u ∈ K is given as

follows. For any measurable subset A of K,

Pu(A) =
2

voln−1(∂Bn)

∫

A

dx

`(u, x)|x − u|n−1
(2–2)

where `(u, x) is the length of the chord in K through u and x. The uniform

distribution is once again stationary. One way to see this is to note that the

one-step distribution has a density function and the density of stepping from u

to v is the same as that for stepping from v to u.

These walks can be modified to sample much more general distributions. Let

f : Rn → R+ be a nonnegative integrable function. It defines a measure πf (on

measurable subsets of Rn):

πf (A) =

∫

A
f(x) dx

∫

Rn f(x) dx
.

The following extension of the ball walk, usually called the ball walk with a

Metropolis filter has πf as its stationary distribution (it is a simple exercise to

prove, but quite nice that this works).

Ball walk with Metropolis filter (δ, f)

• Pick a uniformly distributed random point y in the ball of radius δ centered

at the current point x.

• Move to y with probability min
{

1, f(y)
f(x)

}

; stay at x with the remaining

probability.

Hit-and-run can also be extended to sampling from such a general distribution

πf . For any line ` in Rn, let π`,f be the restriction of π to `, i.e.,

π`,f (S) =

∫

p+tu∈S
f(p + tu) dt

∫

`
f(x) dx

,

where p is any point on ` and u is a unit vector parallel to `.

Hit-and-run (f)

• Pick a uniform random line ` through the current point x.

• Go to a random point y along ` chosen from the distribution π`,f .
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Once again, it is easy to verify that πf is the stationary distribution for this

walk. One way to carry out the second step is to use a binary search to find

the point p on ` where the function is maximal, and the points a and b on both

sides of p on ` where the value of the function is εf(p). We allow a relative error

of ε, so the number of oracle calls is only O(log(1/ε)). Then select a uniformly

distributed random point y on the segment [a, b], and independently a uniformly

distributed random real number in the interval [0, 1]. Accept y if f(y) > rf(p);

else, reject y and repeat.

3. Convergence and Conductance

So far we have seen that random walks can be designed to approach any

reasonable distribution in Rn. For this to lead to an efficient sampling method,

the convergence to the stationary distribution must be fast. This section is

devoted to general methods for bounding the rate of convergence.

One way to define the mixing rate of a random walk is the number of steps

required to reduce some measure of the distance of the current distribution to

the stationary distribution by a factor of 2 (e.g., one of the distance measures

from page 577). We will typically use the total variation distance. For a discrete

random walk (i.e., the state space is a finite set), the mixing rate is character-

ized by the eigenvalues gap of the transition matrix P whose ijth entry is the

probability of stepping from i to j, conditioned on currently being at i. Let

λ1 ≥ λ2 . . . ≥ λn be the eigenvalues of P . The top eigenvalue is 1 (by the defini-

tion of stationarity) and let λ = max{λ2, |λn|} (in the lazy version of any walk,

all the λi are nonnegative and λ = λ2). Then, for a random walk starting at

the point x, with Qt being the distribution after t steps, the following bound on

the convergence can be derived (see [Lovász 1996], for example). For any point

y ∈ K,

|Qt(y) − Q(y)| ≤
√

Q(y)

Q(x)
λt. (3–1)

Estimating λ can be difficult or impractical even in the discrete setting (if, for

example, the state space is too large to write down P explicitly).

Intuitively, a random walk will “mix” slowly if it has a bottleneck, i.e., a

partition S,K \ S of its state space, such that the probability of stepping from

S to K \ S (the ergodic flow out of S) is small compared to the measures of S

and K \S. Note that this ratio is precisely the conductance of S, φ(S). It takes

about 1/φ(S) steps in expectation to even go from one side to the other. As we

will see in this section, the mixing rate is bounded from above by 2/φ2. Thus,

conductance captures the mixing rate upto a quadratic factor. This was first

proved for discrete Markov chains by Jerrum and Sinclair [1989] who showed

that conductance can be related to the eigenvalue gap of the transition matrix.

A similar relationship for a related quantity called expansion was found by Alon
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[1986] and by Dodziuk and Kendall [1986]. The inequality below is a discrete

analogue of Cheeger’s inequality in differential geometry.

Theorem 3.1.
φ2

2
≤ 1 − λ ≤ 2φ.

As a consequence of this and (3–1), we get that for a discrete random walk

starting at x, and any point y ∈ K,

|Qt(y) − Q(y)| ≤
√

Q(y)

Q(x)

(

1 − φ2

2

)t

. (3–2)

For the more general continuous setting, Lovász and Simonovits [1993] proved

the connection between conductance and convergence. Their proof does not use

eigenvalues. We will sketch it here since it is quite insightful, but does not

seem to be well-known. It also applies to situations where the conductance can

be bounded only for subsets of bounded size (i.e., the s-conductance, φs, can

be bounded from below for some s > 0). We remind the reader that we have

assumed that our Markov chains are lazy.

To show convergence, we need to prove that |Qt(A) − Q(A)| falls with t for

every measurable subset A of K. However, this quantity might converge at

different rates for different subsets. So we consider

sup
A:Q(A)=x

Qt(A) − Q(A)

for each x ∈ [0, 1]. A bound for every x would imply what we want. To prove

inductively that this quantity decreases with t, Lovász and Simonovits define the

following formal upper bound. Let Gx be the set of functions defined as

Gx =

{

g : K → [0, 1] :

∫

u∈K

g(u) dQ(u) = x

}

.

Using this, define

ht(x) = sup
g∈Gx

∫

u∈K

g(u) (dQt(u) − dQ(u)) = sup
g∈Gx

∫

u∈K

g(u) dQt(u) − x,

It is clear that for A with Q(A) = x, ht(x) ≥ Qt(A) − Q(A) since the indicator

function of A is in Gx. The function ht(x) has the following properties.

Lemma 3.2. Let t be a positive integer .

a. The function ht is concave.

b. If Q is atom-free, then ht(x) = supA:Q(A)=x Qt(A)−Q(A) and the supremum

is achieved by some subset .

c. Let Q be atom-free and t ≥ 1. For any 0 ≤ x ≤ 1, let y = min{x, 1 − x}.
Then,

ht(x) ≤ 1
2ht−1(x − 2φy) + 1

2ht−1(x + 2φy).
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The first part of the lemma is easily verified. We sketch the second part: to

maximize ht, we should use a function g that puts high weight on points u with

dQt(u)/dQ(u) as high as possible. Let A be a subset with Q(A) = x, so that

for any point y not in A, the value of dQt(y)/dQ(y) is no more than the value

for any point in A (i.e., A consists of the top x fraction of points according to

dQt(u)/dQ(u)). Let g be the corresponding indicator function. These points

give the maximum payoff per unit of weight, so it is optimal to put as much

weight on them as possible. We mention in passing that the case when Q has

atoms is a bit more complicated, namely we might need to include one atom

fractionally (so that Q(A) = x). In the general case, ht(x) can be achieved by a

function g that is 0 − 1 valued everywhere except for at most one point.

The third part of the lemma, which is the key to convergence, is proved below.

Proof of Lemma 3.2c. Assume that 0 ≤ x ≤ 1
2 . The other range is proved

in a similar way. We will construct two functions, g1 and g2, and use these to

bound ht(x). Let A be a subset to be chosen later with Q(A) = x. Let

g1(u) =

{

2Pu(A) − 1 if u ∈ A,

0 if u /∈ A,
and g2(u) =

{

1 if u ∈ A,

2Pu(A) if u /∈ A.

First, note that 1
2 (g1 + g2)(u) = Pu(A) for all u ∈ K, which means that

1

2

∫

u∈K

g1(u) dQt−1(u) +
1

2

∫

u∈K

g2(u) dQt−1(u) =

∫

u∈K

Pu(A) dQt−1(u)

= Qt(A). (3–3)

By the laziness of the walk (Pu(A) ≥ 1
2 iff u ∈ A), the range of the functions g1

and g2 is between 0 and 1 and if we let

x1 =

∫

u∈K

g1(u) dQ(u) and x2 =

∫

u∈K

g2(u) dQ(u),

then g1 ∈ Gx1
and g2 ∈ Gx2

. Further,

1

2
(x1 + x2) =

1

2

∫

u∈K

g1(u) dQ(u) +
1

2

∫

u∈K

g2(u) dQ(u)

=

∫

u∈K

Pu(A) dQ(u) = Q(A) = x

since Q is stationary. Next, since Q is atom-free, there is a subset A ⊆ K that

achieves ht(x). Using this and (3–3),

ht(x) = Qt(A) − Q(A)

=
1

2

∫

u∈K

g1(u) dQt−1(u) +
1

2

∫

u∈K

g2(u) dQt−1(u) − Q(A)

=
1

2

∫

u∈K

g1(u) (dQt−1(u) − dQ(u)) +
1

2

∫

u∈K

g2(u) (dQt−1(u) − dQ(u))

≤ 1

2
ht−1(x1) +

1

2
ht−1(x2).
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0 x1 x(1−2ϕ) x x(1+2ϕ) x2 1

ht

ht−1

Figure 1. Bounding ht.

We already know that x1 + x2 = 2x. In fact, x1 and x2 are separated from x.

x1 =

∫

u∈K

g1(u) dQ(u)

= 2

∫

u∈A

Pu(A) dQ(u) −
∫

u∈A

dQ(u)

= 2

∫

u∈A

(1 − Pu(K \ A)) dQ(u) − x

= x − 2

∫

u∈A

Pu(K \ A) dQ(u)

= x − 2Φ(A)

≤ x − 2φx

= x(1 − 2φ).

(In the penultimate step, we used the fact that x ≤ 1
2 .) Thus we have,

x1 ≤ x(1 − 2φ) ≤ x ≤ x(1 + 2φ) ≤ x2.

Since ht−1 is concave, the chord from x1 to x2 on ht−1 lies below the chord from

x(1 − 2φ) to x(1 + 2φ) (see Figure 1). Therefore,

ht(x) ≤ 1
2ht−1(x(1 − 2φ)) + 1

2ht−1(x(1 + 2φ))

which is the conclusion of the lemma. �

In fact, a proof along the same lines implies the following generalization of part

(c).

Lemma 3.3. Let Q be atom-free and 0 ≤ s ≤ 1. For any s ≤ x ≤ 1 − s, let

y = min{x − s, 1 − x − s}. Then for any integer t > 0,

ht(x) ≤ 1

2
ht−1(x − 2φsy) +

1

2
ht−1(x + 2φsy).

Given some information about Q0, we can now bound the rate of convergence to

the stationary distribution. We assume that Q is atom-free in the next theorem
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and its corollary. These results can be extended to the case when Q has atoms

with slightly weaker bounds [Lovász and Simonovits 1993].

Theorem 3.4. Let 0 ≤ s ≤ 1 and C0 and C1 be such that

h0(x) ≤ C0 + C1 min{
√

x − s,
√

1 − x − s}.

Then

ht(x) ≤ C0 + C1 min{
√

x − s,
√

1 − x − s}
(

1 − φ2
s

2

)t

.

Proof. By induction on t. The inequality is true for t = 0 by the hypothesis.

Now, suppose it holds for all values less than t. Assume s = 0 (for convenience)

and without loss of generality that x ≤ 1/2. From Lemma 3.3, we know that

ht(x) ≤1

2
ht−1(x(1 − 2φ)) +

1

2
ht−1(x(1 + 2φ))

≤ C0 +
1

2
C1

(

√

x(1 − 2φ) +
√

x(1 + 2φ)
)

(

1 − φ2

2

)t−1

= C0 +
1

2
C1

√
x

(

√

1 − 2φ +
√

1 + 2φ
)

(

1 − φ2

2

)t−1

≤ C0 + C1

√
x

(

1 − φ2

2

)t

.

Here we have used
√

1 − 2φ +
√

1 + 2φ ≤ 2(1 − φ2

2 ). �

The following corollary, about convergence from various types of “good” starting

distributions, gives concrete implications of the theorem.

Corollary 3.5. a. Let M = supA Q0(A)/Q(A). Then,

‖Qt − Q‖tv ≤
√

M

(

1 − φ2

2

)t

.

b. Let 0 < s ≤ 1
2 and Hs = sup{|Q0(A) − Q(A)| : Q(A) ≤ s}. Then,

‖Qt − Q‖tv ≤ Hs +
Hs

s

(

1 − φ2
s

2

)t

.

c. Let M = ‖Q0/Q‖. Then for any ε > 0,

‖Qt − Q‖tv ≤ ε +

√

M

ε

(

1 − φ2

2

)t

.

Proof. The first two parts are straightforward. For the third, observe that the

L2 norm,

‖Q0/Q‖ = EQ0

(

dQ0(x)

dQ(x)

)

.

So, for 1−ε of Q0, dQ0(x)/dQ(x) ≤ M/ε. We can view the starting distribution

as being generated as follows: with probability 1 − ε it is a distribution with
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supQ0(A)/Q(A) ≤ M/ε; with probability ε it is some other distribution. Now

using part (a) implies part (c). �

Conductance and s-conductance are not the only known ways to bound the rate

of convergence. Lovász and Kannan [1999] have extended conductance to the

notion of blocking conductance which is a certain type of average of the conduc-

tance over various subset sizes (see also [Kannan et al. 2004]). In some cases, it

provides a sharper bound than conductance. Let φ(x) denote the minimum con-

ductance over all subsets of measure x. Then one version of their main theorem

is the following.

Theorem 3.6. Let π0 be the measure of the starting point . Then, after

t > C ln

(

1

ε

)
∫ 1

2

π0

dx

xφ(x)2

steps, where C is an absolute constant , we have ‖Qt − Q‖tv ≤ ε.

The theorem can be extended to continuous Markov chains. Another way to

bound convergence which we do not describe here is via the log-Sobolev inequal-

ities [Diaconis and Saloff-Coste 1996].

4. Isoperimetry

How to bound the conductance of a geometric random walk? To show that

the conductance is large, we have to prove that for any subset A ⊂ K, the

probability that a step goes out of A is large compared to Q(A) and Q(K \ A).

To be concrete, consider the ball walk. For any particular subset S, the points

that are likely to “cross over” to K \S are those that are “near” the boundary of

S inside K. So, showing that φ(S) is large seems to be closely related to showing

that there is a large volume of points near the boundary of S inside K. This

section is devoted to inequalities which will have such implications and will play

a crucial role in bounding the conductance.

To formulate an isoperimetric inequality for convex bodies, we consider a

partition of a convex body K into three sets S1, S2, S3 such that S1 and S2 are

“far” from each other, and the inequality bounds the minimum possible volume

of S3 relative to the volumes of S1 and S2. We will consider different notions of

distance between subsets. Perhaps the most basic is the Euclidean distance:

d(S1, S2) = min{|u − v| : u ∈ S1, v ∈ S2}.

Suppose d(S1, S2) is large. Does this imply that the volume of S3 = K \(S1∪S2)

is large? The classic counterexample to such a theorem is a dumbbell— two large

subsets separated by very little. Of course, this is not a convex set!

The next theorem, proved in [Dyer and Frieze 1991] (improving on a theorem

in [Lovász and Simonovits 1992] by a factor of 2; see also [Lovász and Simonovits

1993]) asserts that the answer is yes.
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Theorem 4.1. Let S1, S2, S3 be a partition into measurable sets of a convex

body K of diameter D. Then,

vol(S3) ≥
2d(S1, S2)

D
min{vol(S1), vol(S2)}.

A limiting version of this inequality is the following: For any subset S of a convex

body of diameter D,

voln−1(∂S ∩ K) ≥ 2

D
min{vol(S), vol(K \ S)}

which says that the surface area of S inside K is large compared to the volumes of

S and K \S. This is in direct analogy with the classical isoperimetric inequality,

which says that the surface area to volume ratio of any measurable set is at least

the ratio for a ball.

How does one prove such an inequality? In what generality does it hold? (i.e.,

for what measures besides the uniform measure on a convex set?) We will address

these questions in this section. We first give an overview of known inequalities

and then outline the proof technique.

Theorem 4.1 can be generalized to arbitrary logconcave measures. Its proof

is very similar to that of 4.1 and we will presently give an outline.

Theorem 4.2. Let f be a logconcave function whose support has diameter D

and let πf be the induced measure. Then for any partition of Rn into measurable

sets S1, S2, S3,

πf (S3) ≥
2d(S1, S2)

D
min{πf (S1), πf (S2)}.

In terms of diameter, this inequality is the best possible, as shown by a cylinder.

A more refined inequality is obtained in [Kannan et al. 1995; Lovász and Vempala

2003c] using the average distance of a point to the center of gravity (in place of

diameter). It is possible for a convex body to have much larger diameter than

average distance to its centroid (e.g., a cone). In such cases, the next theorem

provides a better bound.

Theorem 4.3. Let f be a logconcave density in Rn and πf be the corresponding

measure. Let zf be the centroid of f and define M(f) = Ef (|x− zf |). Then, for

any partition of Rn into measurable sets S1, S2, S3,

πf (S3) ≥
ln 2

M(f)
d(S1, S2)πf (S1)πf (S2).

For an isotropic density, M(f)2 ≤ Ef (|x − zf |2) = n and so M(f) ≤ √
n. The

diameter could be unbounded (e.g., an isotropic Gaussian).

A further refinement, based on isotropic position, has been conjectured in

[Kannan et al. 1995]. Let λ be the largest eigenvalue of the inertia matrix of f ,
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i.e.,

λ = max
v:|v|=1

∫

Rn

f(x)(vT x)2 dx. (4–1)

Then the conjecture says that there is an absolute constant c such that

πf (S3) ≥
c√
λ

d(S1, S2)πf (S1)πf (S2).

Euclidean distance and isoperimetric inequalities based on it are relevant for

the analysis of “local” walks such as the ball walk. Hit-and-run, with its nonlocal

moves, is connected with a different notion of distance.

The cross-ratio distance between two points u, v in a convex body K is com-

puted as follows: Let p, q be the endpoints of the chord in K through u and v

such that the points occur in the order p, u, v, q. Then

dK(u, v) =
|u − v‖p − q|
|p − u‖v − q| = (p : v : u : q).

where (p : v : u : q) denotes the classical cross-ratio. We can now define the

cross-ratio distance between two sets S1, S2 as

dK(S1, S2) = min{dK(u, v) : u ∈ S1, v ∈ S2}.

The next theorem was proved in [Lovász 1999] for convex bodies and extended

to logconcave densities in [Lovász and Vempala 2003d].

Theorem 4.4. Let f be a logconcave density in Rn whose support is a convex

body K and let πf be the induced measure. Then for any partition of Rn into

measurable sets S1, S2, S3,

πf (S3) ≥ dK(S1, S2)πf (S1)πf (S2).

All the inequalities so far are based on defining the distance between S1 and S2

by the minimum over pairs of some notion of pairwise distance. It is reasonable

to think that perhaps a much sharper inequality can be obtained by using some

average distance between S1 and S2. Such an inequality was proved in [Lovász

and Vempala 2004]. As we will see in Section 6, it leads to a radical improvement

in the analysis of random walks.

Theorem 4.5. Let K be a convex body in Rn. Let f : K → R+ be a logconcave

density with corresponding measure πf and h : K → R+, an arbitrary function.

Let S1, S2, S3 be any partition of K into measurable sets. Suppose that for any

pair of points u ∈ S1 and v ∈ S2 and any point x on the chord of K through u

and v,

h(x) ≤ 1

3
min(1, dK(u, v)).

Then

πf (S3) ≥ Ef (h(x))min{πf (S1), πf (S2)}.
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The coefficient on the RHS has changed from a “minimum” to an “average”. The

weight h(x) at a point x is restricted only by the minimum cross-ratio distance

between pairs u, v from S1, S2 respectively, such that x lies on the line between

them (previously it was the overall minimum). In general, it can be much higher

than the minimum cross-ratio distance between S1 and S2.

The localization lemma. The proofs of these inequalities are based on an

elegant idea: integral inequalities in Rn can be reduced to one-dimensional in-

equalities! Checking the latter can be tedious but is relatively easy. We illustrate

the main idea by sketching the proof of Theorem 4.2.

For a proof of Theorem 4.2 by contradiction, let us assume the converse of its

conclusion, i.e., for some partition S1, S2, S3 of Rn and logconcave density f ,
∫

S3

f(x) dx < C

∫

S1

f(x) dx and

∫

S3

f(x) dx < C

∫

S2

f(x) dx

where C = 2d(S1, S2)/D. This can be reformulated as
∫

Rn

g(x) dx > 0 and

∫

Rn

h(x) dx > 0 (4–2)

where

g(x) =







Cf(x) if x ∈ S1,

0 if x ∈ S2,

−f(x) if x ∈ S3.

and h(x) =







0 if x ∈ S1,

Cf(x) if x ∈ S2,

−f(x) if x ∈ S3.

These inequalities are for functions in Rn. The main tool to deal with them

is the localization lemma [Lovász and Simonovits 1993] (see also [Kannan et al.

1995] for extensions and applications).

Lemma 4.6. Let g, h : Rn → R be lower semi-continuous integrable functions

such that
∫

Rn

g(x) dx > 0 and

∫

Rn

h(x) dx > 0.

Then there exist two points a, b ∈ Rn and a linear function ` : [0, 1] → R+ such

that
∫ 1

0

`(t)n−1g((1 − t)a + tb) dt > 0 and

∫ 1

0

`(t)n−1h((1 − t)a + tb) dt > 0.

The points a, b represent an interval A and one may think of l(t)n−1dA as the

cross-sectional area of an infinitesimal cone with base area dA. The lemma says

that over this cone truncated at a and b, the integrals of g and h are positive.

Also, without loss of generality, we can assume that a, b are in the union of the

supports of g and h.

The main idea behind the lemma is the following. Let H be any halfspace

such that
∫

H

g(x) dx =
1

2

∫

Rn

g(x) dx.
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Let us call this a bisecting halfspace. Now either

∫

H

h(x) dx > 0 or

∫

Rn\H

h(x) dx > 0.

Thus, either H or its complementary halfspace will have positive integrals for

both g and h. Thus we have reduced the domains of the integrals from Rn to a

halfspace. If we could repeat this, we might hope to reduce the dimensionality

of the domain. But do there even exist bisecting halfspaces? In fact, they are

aplenty: for any (n−2)-dimensional affine subspace, there is a bisecting halfspace

with A contained in its bounding hyperplane. To see this, let H be halfspace

containing A in its boundary. Rotating H about A we get a family of halfspaces

with the same property. This family includes H ′, the complementary halfspace

of H. Now the function
∫

H
g −

∫

Rn\H
g switches sign from H to H ′. Since this

is a continuous family, there must be a halfspace for which the function is zero,

which is exactly what we want (this is sometimes called the “ham sandwich”

theorem).

If we now take all (n−2)-dimensional affine subspaces given by some xi = r1,

xj = r2 where r1, r2 are rational, then the intersection of all the corresponding

bisecting halfspaces is a line (by choosing only rational values for xi, we are

considering a countable intersection). As long as we are left with a two or higher

dimensional set, there is a point in its interior with at least two coordinates that

are rational, say x1 = r1 and x2 = r2. But then there is a bisecting halfspace H

that contains the affine subspace given by x1 = r1, x2 = r2 in its boundary, and

so it properly partitions the current set. With some additional work, this leads to

the existence of a concave function on an interval (in place of the linear function

` in the theorem) with positive integrals. Simplifying further from concave to

linear takes quite a bit of work.

Going back to the proof sketch of Theorem 4.2, we can apply the lemma to

get an interval [a, b] and a linear function ` such that

∫ 1

0

`(t)n−1g((1 − t)a + tb) dt > 0 and

∫ 1

0

`(t)n−1h((1 − t)a + tb) dt > 0.

(4–3)

(The functions g, h as we have defined them are not lower semi-continuous. How-

ever, this can be easily achieved by expanding S1 and S2 slightly so as to make

them open sets, and making the support of f an open set. Since we are proving

strict inequalities, we do not lose anything by these modifications).

Let us partition [0, 1] into Z1, Z2, Z3.

Zi = {t ∈ [0, 1] : (1 − t)a + tb ∈ Si}.



GEOMETRIC RANDOM WALKS: A SURVEY 591

Note that for any pair of points u ∈ Z1, v ∈ Z2, |u − v| ≥ d(S1, S2)/D. We can

rewrite (4–3) as
∫

Z3

`(t)n−1f((1 − t)a + tb) dt < C

∫

Z1

`(t)n−1f((1 − t)a + tb) dt

and
∫

Z3

`(t)n−1f((1 − t)a + tb) dt < C

∫

Z2

`(t)n−1f((1 − t)a + tb) dt.

The functions f and `(.)n−1 are both logconcave, so F (t) = `(t)n−1f((1−t)a+tb)

is also logconcave. We get,
∫

Z3

F (t) dt < C min

{
∫

Z1

F (t) dt,

∫

Z2

F (t) dt

}

. (4–4)

Now consider what Theorem 4.2 asserts for the function F (t) over the interval

[0, 1] and the partition Z1, Z2, Z3:
∫

Z3

F (t) dt ≥ 2d(Z1, Z2)min

{
∫

Z1

F (t) dt,

∫

Z2

F (t) dt

}

. (4–5)

We have substituted 1 for the diameter of the interval [0, 1]. Also, d(Z1, Z2) ≥
d(S1, S2)/D = C/2. Thus, Theorem 4.2 applied to the function F (t) contradicts

(4–4) and to prove the theorem in general, it suffices to prove it in the one-

dimensional case.

In fact, it will be enough to prove (4–5) for the case when each Zi is a single

interval. Suppose we can do this. Then, for each maximal interval (c, d) con-

tained in Z3, the integral of F over Z3 is at least C times the smaller of the

integrals to its left [0, c] and to its right [d, 1] and so one of these intervals is

“accounted” for. If all of Z1 or all of Z2 is accounted for, then we are done. If

not, there is an unaccounted subset U that intersects both Z1 and Z2. But then,

since Z1 and Z2 are separated by at least d(S1, S2)/D, there is an interval of Z3

of length at least d(S1, S2)/D between U ∩Z1 and U ∩Z2 which can account for

more.

We are left with proving (4–5) when each Zi is an interval. Without the factor

of two, this is trivial by the logconcavity of F . To get C as claimed, one can

reduce this to the case when F (t) = ect and verify it for this function [Lovász

and Simonovits 1993]. The main step is to show that there is a choice of c so

that when the current F (t) is replaced by ect, the LHS of (4–5) does not increase

and the RHS does not decrease.

5. Mixing of the Ball Walk

With the isoperimetric inequalities at hand, we are now ready to prove bounds

on the conductance and hence on the mixing time. In this section, we focus on

the ball walk in a convex body K. Assume that K contains the unit ball.
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A geometric random walk is said to be rapidly mixing if its conductance is

bounded from below by an inverse polynomial in the dimension. By Corollary

3.5, this implies that the number of steps to halve the variation distance to

stationary is a polynomial in the dimension. The conductance of the ball walk

in a convex body K can be exponentially small. Consider, for example, starting

at point x near the apex of a rotational cone in Rn. Most points in a ball of

radius δ around x will lie outside the cone (if x is sufficiently close to the apex)

and so the local conductance is arbitrarily small. So, strictly speaking, the ball

walk is not rapidly mixing.

There are two ways to get around this. For the purpose of sampling uniformly

from K, one can expand K a little bit by considering K ′ = K +αBn, i.e., adding

a ball of radius α around every point in K. Then for α > 2δ
√

n, it is not hard

to see that `(u) is at least 1/8 for every point u ∈ K ′. We can now consider the

ball walk in K ′. This fix comes at a price. First, we need a membership oracle

for K ′. This can be constructed as follows: given a point x ∈ Rn, we find a

point y ∈ K such that |x− y| is minimum. This is a convex program and can be

solved using the ellipsoid algorithm [Grötschel et al. 1988] and the membership

oracle for K, Second, we need to ensure that vol(K ′) is comparable to vol(K).

Since K contains a unit ball, K ′ ⊆ (1 + α)K and so with α < 1/n, we get that

vol(K ′) < evol(K). Thus, we would need δ < 1/2n
√

n.

Does large local conductance imply that the conductance is also large? We

will prove that the answer is yes. The next lemma about one-step distributions

of nearby points will be useful.

Lemma 5.1. Let u, v be such that |u − v| ≤ tδ√
n

and `(u), `(v) ≥ `. Then,

‖Pu − Pv‖tv ≤ 1 + t − `.

Roughly speaking, the lemma says that if two points with high local conductance

are close in Euclidean distance, then their one-step distributions have a large

overlap. Its proof follows from a computation of the overlap volume of the balls

of radius δ around u and v.

We can now state and prove a bound on the conductance of the ball walk.

Theorem 5.2. Let K be a convex body of diameter D so that for every point u

in K, the local conductance of the ball walk with δ steps is at least `. Then,

φ ≥ `2δ

16
√

nD
.

The structure of most proofs of conductance is similar and we will illustrate it

by proving this theorem.

Proof. Let K = S1 ∪ S2 be a partition into measurable sets. We will prove

that
∫

S1

Px(S2) dx≥ `2δ

16
√

nD
min{vol(S1), vol(S2)} (5–1)
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Note that since the uniform distribution is stationary,

∫

S1

Px(S2) dx =

∫

S2

Px(S1) dx.

Consider the points that are “deep” inside these sets, i.e. unlikely to jump

out of the set (see Figure 2):

S′
1 =

{

x ∈ S1 : Px(S2) <
`

4

}

and

S′
2 =

{

x ∈ S2 : Px(S1) <
`

4

}

.

Let S′
3 be the rest i.e., S′

3 = K \ S′
1 \ S′

2.

S′

1

S′

2

Figure 2. The conductance proof. The dark line is the boundary between S1

and S2.

Suppose vol(S′
1) < vol(S1)/2. Then

∫

S1

Px(S2) dx ≥ `

4
vol(S1 \ S′

1) ≥
`

8
vol(S1)

which proves (5–1).

So we can assume that vol(S ′
1) ≥ vol(S1)/2 and similarly vol(S ′

2) ≥ vol(S2)/2.

Now, for any u ∈ S′
1 and v ∈ S′

2,

‖Pu − Pv‖tv ≥ 1 − Pu(S2) − Pv(S1) > 1 − `

2
.

Applying Lemma 5.1 with t = `/2, we get that

|u − v| ≥ `δ

2
√

n
.
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Thus d(S1, S2) ≥ `δ/2
√

n. Applying Theorem 4.1 to the partition S ′
1, S

′
2, S

′
3, we

have

vol(S′
3) ≥

`δ√
nD

min{vol(S′
1), vol(S′

2)}

≥ `δ

2
√

nD
min{vol(S1), vol(S2)}

We can now prove (5–1) as follows:
∫

S1

Px(S2) dx =
1

2

∫

S1

Px(S2) dx +
1

2

∫

S2

Px(S1) dx ≥ 1
2vol(S′

3)
`

4

≥ `2δ

16
√

nD
min{vol(S1), vol(S2)}. �

As observed earlier, by going to K ′ = K + (1/n)Bn and using δ = 1/2n
√

n, we

have ` ≥ 1/8. Thus, for the ball walk in K ′, φ = Ω(1/n2D). Using Corollary 3.5,

the mixing rate is O(n4D2).

We mentioned earlier that there are two ways to get around the fact that the

ball walk can have very small local conductance. The second, which we describe

next, is perhaps a bit cleaner and also achieves a better bound on the mixing

rate. It is based on the observation that only a small fraction of points can have

small local conductance. Define the points of high local conductance as

Kδ =

{

u ∈ K : `(u) ≥ 3

4

}

Lemma 5.3. Suppose that K is a convex body containing a unit ball in Rn.

a. Kδ is a convex set .

b. vol(Kδ) ≥ (1 − 2δ
√

n)vol(K).

The first part follows from the Brunn-Minkowski inequality (2–1). The second

is proved by estimating the average local conductance [Kannan et al. 1997] and

has the following implication: if we set δ ≤ ε/2
√

n, we get that at least (1 − ε)

fraction of points in K have large local conductance. Using this, we can prove

the following theorem.

Theorem 5.4. For any 0 ≤ s ≤ 1, we can choose the step-size δ for the ball

walk in a convex body K of diameter D so that

φs ≥ s

200nD
.

Proof. The proof is quite similar to that of Theorem 5.2. Let S1, S2 be a

partition of K. First, since we are proving a bound on the s-conductance, we

can assume that vol(S1), vol(S2) ≥ svol(K). Next, we choose δ = s/4
√

n so that

by Lemma 5.3,

vol(Kδ) ≥ (1 − 1
2s)vol(K).
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So only an s/2 fraction of K has small local conductance and we will be able to

ignore it. Define
S′

1 =
{

x ∈ S1 ∩ Kδ : Px(S2) < 3
16

}

,

S′
2 =

{

x ∈ S2 ∩ Kδ : Px(S1) < 3
16

}

.

As in the proof of Theorem 5.2, these points are “deep” in S1 and S2 respectively

and they are also restricted to be in Kδ. Recall that the local conductance of

every point in Kδ is at least 3/4. We can assume that vol(S ′
1) ≥ vol(S1)/3.

Otherwise,
∫

S1

Px(S2) dx ≥
(

2
3vol(S1) − 1

2svol(K)
)

3
16 ≥ 1

32vol(S1).

which implies the theorem. Similarly, we can assume that vol(S ′
2) ≥ vol(S2)/3.

For any u ∈ S′
1 and v ∈ S′

2,

‖Pu − Pv‖tv ≥ 1 − Pu(S2) − Pv(S1) > 1 − 3
8 .

Applying Lemma 5.1 with t = 3/8, we get that

|u − v| ≥ 3δ

8
√

n
.

Thus d(S1, S2) ≥ 3δ/8
√

n. Let S′
3 = Kδ \ (S′

1 ∪S′
2) Applying Theorem 4.1 to the

partition S′
1, S

′
2, S

′
3 of Kδ, we have

vol(S′
3) ≥

3δ

4
√

nD
min{vol(S′

1), vol(S′
2)}

≥ s

16nD
min{vol(S1), vol(S2)}

The theorem follows:
∫

S1

Px(S2) dx ≥ 1
2vol(S′

3)
3
16 >

s

200nD
min{vol(S1), vol(S2)}. �

Using Corollary 3.5(b), this implies that from an M-warm start, the variation

distance of Qt and Q is smaller than ε after

t ≥ C
M2

ε2
n2D2 ln

(

2M

ε

)

(5–2)

steps, for some absolute constant C.

There is another way to use Lemma 5.3. In [Kannan et al. 1997], the following

modification of the ball walk, called the speedy walk, is described. At a point

x, the speedy walk picks a point uniformly from K ∩ x + δBn. Thus, the local

conductance of every point is 1. However, there are two complications with

this. First, the stationary distribution is not uniform, but proportional to `(u).

Second, each step seems unreasonable—we could make δ > D and then we

would only need one step to get a random point in K. We can take care of

the first problem with a rejection step at the end (and using Lemma 5.3). The

root of the second problem is the question: how do we implement one step of
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the speedy walk? The only general way is to get random points from the ball

around the current point till one of them is also in K. This process is the ball

walk and it requires 1/`(u) attempts in expectation at a point u. However, if we

count only the proper steps, i.e., ones that move away from the current point,

then it is possible to show that the mixing rate of the walk is in fact O(n2D2)

from any starting point [Lovász and Kannan 1999]. Again, the proof is based

on an isoperimetric inequality which is slightly sharper than Theorem 4.2. For

this bound to be useful, we also need to bound the total number of improper or

“wasted” steps. If we start at a random point, then this is the number of proper

steps times E(1/`(u)), which can be unbounded. But, if we allow a small overall

probability of failure, then with the remaining probability, the expected number

of wasted steps is bounded by O(n2D2) as well.

The bound of O(n2D2) on the mixing rate is the best possible in terms of the

diameter, as shown by a cylinder. However, if the convex body is isotropic, then

the isoperimetry conjecture (4–1) implies a mixing rate of O(n2).

For the rest of this section, we will discuss how these methods can be extended

to sampling more general distributions. We saw already that the ball walk can

be used along with a Metropolis filter to sample arbitrary density functions.

When is this method efficient? In [Applegate and Kannan 1990] and [Frieze

et al. 1994] respectively, it is shown that the ball walk and the lattice walk are

rapidly mixing from a warm start, provided that the density is logconcave and

it does not vary much locally, i.e., its Lipschitz constant is bounded. In [Lovász

and Vempala 2003c], the assumptions on smoothness are eliminated, and it is

shown that the ball walk is rapidly mixing from a warm start for any logconcave

function in Rn. Moreover, the mixing rate is O(n2D2) (ignoring the dependence

on the start), which matches the case of the uniform density on a convex body.

Various properties of logconcave functions are developed in [Lovász and Vempala

2003c] with an eye to the proof. In particular, a smoother version of any given

logconcave density is defined and used to prove an analogue of Lemma 5.3. For

a logconcave density f in Rn, the smoother version is defined as

f̂(x) = min
C

1

vol(C)

∫

C

f(x + u) du,

where C ranges over all convex subsets of the ball x + rBn with vol(C) =

vol(Bn)/16. This function is logconcave and bounded from above by f every-

where (using Theorem 2.2). Moreover, for δ small enough, its integral is close to

the integral of f . We get a lemma very similar to Lemma 5.3. The function f̂

can be thought of as a generalization of Kδ.

Lemma 5.5. Let f be any logconcave density in Rn. Then

(i) The function f̂ is logconcave.

(ii) If f is isotropic, then
∫

Rn f̂(x) dx ≥ 1 − 64δ1/2n1/4.
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Using this along with some technical tools, it can be shown that φs is large.

Perhaps the main contribution of [Lovász and Vempala 2003c] is to move the

smoothness conditions from requirements on the input (i.e., the algorithm) to

tools for the proof.

In summary, analyzing the ball walk has led to many interesting developments:

isoperimetric inequalities, more general methods of proving convergence (φs) and

many tricks for sampling to get around the fact that it is not rapidly mixing from

general starting points (or distributions). The analysis of the speedy walk shows

that most points are good starting points. However, it is an open question as

to whether the ball walk is rapidly mixing from a pre-determined starting point,

e.g., the centroid.

6. Mixing of Hit-and-Run

Hit-and-run, introduced in [Smith 1984], offers the attractive possibility of

long steps. There is some evidence that it is fast in practice [Berbee et al. 1987;

Zabinsky et al. 1993].

Warm start. Lovász [1999] showed that hit-and-run mixes rapidly from a warm

start in a convex body K. If we start with an M -warm distribution, then in

O

(

M2

ε2
n2D2 ln

(

M

ε

))

steps, the distance between the current distribution and the stationary is at most

ε. This is essentially the same bound as for the ball walk, and so hit-and-run

is no worse. The proof is based on cross-ratio isoperimetry (Theorem 4.5) for

convex bodies and a new lemma about the overlap of one-step distributions. For

x ∈ K, let y be a random step from x. Then the step-size F (x) at x is defined

as

P (|x − y| ≤ F (x)) = 1
8 .

The lemma below asserts that if u, v are close in Euclidean distance and cross-

ratio distance then their one-step distributions overlap substantially. This is

analogous to Lemma 5.1 for the ball walk.

Lemma 6.1. Let u, v ∈ K. Suppose that

dK(u, v) <
1

8
and |u − v| <

2√
n

max{F (u), F (v)}.

Then

‖Pu − Pv‖tv < 1 − 1

500
.

Hit-and-run generalizes naturally to sampling arbitrary functions. The iso-

perimetry, the one-step lemma and the bound on φs were all extended to arbi-

trary logconcave densities in [Lovász and Vempala 2003d]. Thus, hit-and-run is

rapidly mixing for any logconcave density from a warm start. While the analysis
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is along the lines of that in [Lovász 1999] and uses the tools developed in [Lovász

and Vempala 2003c], it has to overcome substantial additional difficulties.

So hit-and-run is at least as fast as the ball walk. But is it faster? Can it get

stuck in corners (points of small local conductance) like the ball walk?

Any start. Let us revisit the bad example for the ball walk: starting near the

apex of a rotational cone. If we start hit-and-run at any interior point, then

it exhibits a small, but inverse polynomial, drift towards the base of the cone.

Thus, although the initial steps are tiny, they rapidly get larger and the current

point moves away from the apex. This example shows two things. First, the

“step-size” of hit-and-run can be arbitrarily small (near the apex), but hit-and-

run manages to escape from such regions. This phenomenon is in fact general as

shown by the following theorem, proved recently in [Lovász and Vempala 2004].

Theorem 6.2. The conductance of hit-and-run in a convex body of diameter D

is Ω(1/nD).

Unlike the ball walk, we can bound the conductance of hit-and-run (for arbitrar-

ily small subsets). From this we get a bound on mixing time.

Theorem 6.3. Let K be a convex body that contains a unit ball and has centroid

zK . Suppose that EK(|x − zK |2) ≤ R2 and ‖Q0/Q‖ ≤ M . Then after

t ≥ Cn2R2 ln3 M

ε
,

steps, where C is an absolute constant , we have ‖Qt − Q‖tv ≤ ε.

The theorem improves on the bound for the ball walk (5–2) by reducing the

dependence on M and ε from polynomial (which is unavoidable for the ball

walk) to logarithmic, while maintaining the (optimal) dependence on R and n.

For a body in near-isotropic position, R = O(
√

n) and so the mixing time is

O∗(n3). One also gets a polynomial bound starting from any single interior

point. If x is at distance d from the boundary, then the distribution obtained

after one step from x has ‖Q1/Q‖ ≤ (n/d)n and so applying the above theorem,

the mixing time is O(n4 ln3(n/dε)).

The main tool in the proof is a new isoperimetric inequality based on “average”

distance (Theorem 4.5). The proof of conductance is on the same lines as shown

for Theorem 5.2 in the previous section. It uses Lemma 6.1 for comparing one-

step distributions.

Theorems 6.2 and 6.3 have been extended in [Lovász and Vempala 2004] to

the case of sampling an exponential density function over a convex body, i.e.,

f(x) is restricted to a convex body and is proportional to eaT x for some fixed

vector a. It remains open to determine if hit-and-run mixes rapidly from any

starting point for arbitrary logconcave functions.

As in the ball walk analysis, it is not known (even in the convex body case)

if starting at the centroid is as good as a warm start. Also, while the theorem is
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the best possible in terms of R, it is conceivable that for an isotropic body the

mixing rate is O(n2).

7. Efficient Sampling

Let f be a density in Rn with corresponding measure πf . Sampling f , i.e.,

generating independent random points distributed according to πf is a basic

algorithmic problem with many applications. We have seen in previous sections

that if f is logconcave there are natural random walks in Rn that will converge

to πf . Does this yield an efficient sampling algorithm?

Rounding. Take the case when f is uniform over a convex body K. The

convergence depends on the diameter D of K (or the second moment). So the

resulting algorithm to get a random point would take poly(n,D) steps. However,

the input to the algorithm is only D and an oracle. So we would like an algorithm

whose dependence on D is only logarithmic. How can this be done? The ellipsoid

algorithm can be used to find a transformation that achieves D = O(n1.5) in

poly(n, log D) steps.

Isotropic position provides a better solution. For a convex body in isotropic

position D ≤ n. For an isotropic logconcave distribution, (1 − ε) of its measure

lies in a ball of radius
√

n ln(1/ε). But how to make f isotropic? One way is by

sampling. We get m random points from f and compute an affine tranformation

that makes this set of points isotropic. We then apply this transformation to f .

It is shown in [Rudelson 1999], that the resulting distribution is near-isotropic

with m = O(n log2 n) points for convex bodies and and m = O(n log3 n) for

logconcave densities [Lovász and Vempala 2003c] with large probability.

Although this sounds cyclic (we need samples to make the sampling efficient)

one can bootstrap and make larger and larger subsets of f isotropic. For a convex

body K such an algorithm was given in [Kannan et al. 1997]. Its complexity is

O∗(n5). This has been improved to O∗(n4) in [Lovász and Vempala 2003b].

The basic approach in [Kannan et al. 1997] is to define a series of bodies, Ki =

K ∩ 2i/nBn. Then K0 = Bn is isotropic upto a radial scaling. Given that Ki

is 2-isotropic, Ki+1 will be 6-isotropic and so we can sample efficiently from it.

We use these samples to compute a transformation that makes Ki+1 2-isotropic

and continue. The number of samples required in each phase is O∗(n) and the

total number of phases is O(n log D). Since each sample is drawn from a near-

isotropic convex body, the sample complexity is O∗(n3) on average (O∗(n4) for

the first point and O∗(n3) for subsequent points since we have a warm start).

This gives an overall complexity of O∗(n5). The improvement to O∗(n4) uses

ideas from the latest volume algorithm [Lovász and Vempala 2003b], including

sampling from an exponential density and the pencil construction (see Section

9).
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A similar method also works for making a logconcave density f isotropic

[Lovász and Vempala 2003c]. We consider a series of level sets

Li =

{

x ∈ Rn : f(x) ≥ Mf

2(1+1/n)i

}

where Mf is the maximum value of f . In phase i, we make the restriction of f to

Li isotropic. The complexity of this algorithm is O∗(n5). It is an open question

to reduce this to O∗(n4).

Independence. The second important issue to be addressed is that of inde-

pendence. If we examine the current point every m steps for some m, then are

these points independent? Unfortunately, they might not be independent even

if m is as large as the mixing time. Another problem is that the distribution

might not be exactly πf . The latter problem is easier to deal with. Suppose

that x is from some distribution π so that ‖π − πf‖tv ≤ ε. Typically this affects

the algorithm using the samples by some small function of ε. There is a general

way to handle this (sometimes called divine intervention). We can pretend that

x is drawn from πf with probability 1− ε and from some other distribution with

probability at most ε. If we draw k samples, then the probability of success (i.e.,

each sample is drawn from the desired distribution) is at least 1 − kε.

Although points spaced apart by m steps might not be independent, they are

“nearly” independent in the following sense. Two random variables X,Y will be

called µ-independent (0 < µ < 1) if for any two sets A,B in their ranges,

∣

∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣

∣ ≤ µ.

The next lemma summarizes some properties of µ-independence.

Lemma 7.1. (i) Let X and Y be µ-independent , and f, g be two measurable

functions. Then f(X) and g(Y ) are also µ-independent .

(ii) Let X,Y be µ-independent random variables such that 0 ≤ X ≤ a and

0 ≤ Y ≤ b. Then
∣

∣E(XY ) − E(X)E(Y )
∣

∣ ≤ µab.

(iii) Let X0,X1, . . . , be a Markov chain, and assume that for some i > 0, Xi+1

is µ-independent from Xi. Then Xi+1 is µ-independent from (X0, . . . ,Xi).

The guarantee that π is close to πf will imply the following.

Lemma 7.2. Let Q be the stationary distribution of a Markov chain and t be

large enough so that for any starting distribution Q0 with ‖Q0/Q‖ ≤ 4M we

have ‖Qt − Q‖tv ≤ ε. Let X be a random point from a starting distribution Q0

such that ‖Q0/Q‖ ≤ M . Then the point Y obtained by taking t steps of the chain

starting at X is 2ε-independent from X.
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Proof. Let A,B ⊆ Rn; we claim that

∣

∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣

∣

= P(X ∈ A)
∣

∣P(Y ∈ B| X ∈ A) − P(Y ∈ B)
∣

∣

≤ 2ε.

Since

∣

∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣

∣

=
∣

∣P(X ∈ Ā, Y ∈ B) − P(X ∈ Ā)P(Y ∈ B)
∣

∣

we may assume that Q0(A) ≥ 1/2. Let Q′
0 be the restriction of Q0 to A, scaled

to a probability measure. Then Q′
0 ≤ 2Q0 and so ‖Q′

0/Q‖ ≤ 4‖Q0/Q‖ ≤ 4M .

Imagine running the Markov chain with starting distribution Q′
0. Then, by the

assumption on t,
∣

∣P(Y ∈ B| X ∈ A) − P(Y ∈ B)
∣

∣ = ‖Q′
t(B) − Qt(B)‖tv

≤ ‖Q′
t(B) − Q(B)‖tv + ‖Qt(B) − Q(B)‖tv

≤ 2ε,

and so the claim holds. �

Various versions of this lemma, adapted to the mixing guarantee at hand, have

been used in the literature. See [Lovász and Simonovits 1993; Kannan et al.

1997; Lovász and Vempala 2003b] for developments along this line.

We conclude this section with an effective theorem from [Lovász and Vempala

2003a] for sampling from an arbitrary logconcave density.

Theorem 7.3. If f is a near-isotropic logconcave density function, then it can

be approximately sampled in time O∗(n4) and in amortized time O∗(n3) if n or

more nearly independent sample points are needed ; any logconcave function can

be brought into near-isotropic position in time O∗(n5).

8. Application I: Convex Optimization

Let S ⊂ Rn, and f : S → R be a real-valued function. Optimization is the

following basic problem: min f(x) s.t. x ∈ S, that is, find a point x ∈ S which

minimizes by f . We denote by x∗ a solution for the problem. When the set S

and the function f are convex2, we obtain a class of problems which are solvable

in poly(n, log(1/ε)) time where ε defines an optimality criterion. If x is the point

found, then |x − x∗| ≤ ε.

The problem of minimizing a convex function over a convex set in Rn is a com-

mon generalization of well-known geometric optimization problems such as linear

2In fact, it is enough for f to be quasi-convex.
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programming as well as a variety of combinatorial optimization problems includ-

ing matchings, flows and matroid intersection, all of which have polynomial-time

algorithms [Grötschel et al. 1988]. It is shown in [Grötschel et al. 1988] that the

ellipsoid method [Judin and Nemirovskĭı 1976; Hačijan 1979] solves this problem

in polynomial time when K is given by a separation oracle. A different, more ef-

ficient algorithm is given in [Vaidya 1996]. Here, we discuss the recent algorithm

of [Bertsimas and Vempala 2004] which is based on random sampling.

Note that minimizing a quasi-convex function is easily reduced to the feasi-

bility problem: to minimize a quasi-convex function f(x), we simply add the

constraint f(x) ≤ t and search (in a binary fashion) for the optimal t.

In the description below, we assume that the convex set K is contained in the

axis-aligned cube of width R centered at the origin; further if K is non-empty

then it contains a cube of width r. It is easy to show that any algorithm with

this input specification needs to make at least n log(R/r) oracle queries. The

parameter L is equal to log R
r .

Algorithm.

Input: A separation oracle for a convex set K and L.

Output: A point in K or a guarantee that K is empty.

1. Let P be the axis-aligned cube of side length R and center z = 0.

2. Check if z is in K. If so, report z and stop. If not, set

H = {x | aT x ≤ aT z}.

where aT x ≤ b is the halfspace containing K reported by the oracle.

3. Set P = P ∩ H. Pick m random points y1, y2, . . . , ym from P . Set z to

be their average.

4. Repeat steps 2 and 3 at most 2nL times. Report K is empty.

The number of samples required in each iteration, m, is O(n). Roughly speaking,

the algorithm is computing an approximate centroid in each iteration. The idea

of an algorithm based on computing the exact centroid was suggested in [Levin

1965]. Indeed, if we could compute the centroid in each iteration, then by Lemma

2.3, the volume of P falls by a constant factor (1 − 1/e) in each iteration. But,

finding the centroid, is #P-hard, i.e., computationally intractable.

The idea behind the algorithm is that an approximate centroid can be com-

puted using O(n) random points and the volume of P is likely to drop by a

constant factor in each iteration with this choice of z. This is formalized in the

next lemma. Although we need it only for convex bodies, it holds for arbitrary

logconcave densities.
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P
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K

H

Figure 3. An illustration of the algorithm.

Lemma 8.1. Let g be a logconcave density in Rn and z be the average of m

random points from πg. If H is a halfspace containing z,

E (πg(H)) ≥
(

1

e
−

√

n

m

)

.

Proof. First observe that we can assume g is in isotropic position. This is

because a linear transformation A affects the volume of a set S as vol(AS) =

|det(A)|vol(S) and so the ratio of the volumes of two subsets is unchanged by

the transformation. Applying this to all the level sets of g, we get that the ratio

of the measures of two subsets is unchanged.

Since z = 1
m

∑m
i=1 yi,

E
(

|z|2
)

=
1

m2

m
∑

i=1

E
(

|yi|2
)

=
1

m
E

(

|yi|2
)

=
1

m

n
∑

j=1

E
(

(yi
j)

2
)

=
n

m
,

where the first equality follows from the independence between yi’s, and equali-

ties of the second line follow from the isotropic position. Let h be a unit vector

normal to H. We can assume that h = e1 = (1, 0, . . . , 0).

Next, let f be the marginal of g along h, i.e.,

f(y) =

∫

x:x1=y

g(x) dx. (8–1)

It is easy to see that f is isotropic. The next lemma (from [Lovász and Vempala

2003c]; see [Bertsimas and Vempala 2004] for the case of f arising from convex

bodies) states that its maximum must be bounded.
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Lemma 8.2. Let f : R → R+ be an isotropic logconcave density function. Then,

max
y

f(y) < 1.

Using Lemma 2.3,
∫ ∞

z1

f(y) dy =

∫ ∞

0

f(y) dy −
∫ z1

0

f(y) dy

≥ 1

e
− |z1|max

y
f(y)

≥ 1

e
− |z|.

The lemma follows from the bound on E(|z|). �

The guarantee on the algorithm follows immediately. This optimal guarantee is

also obtained in [Vaidya 1996]; the ellipsoid algorithm needs O(n2L) oracle calls.

Theorem 8.3. With high probability , the algorithm works correctly using at

most 2nL oracle calls (and iterations).

The algorithm can also be modified for optimization given a membership oracle

only and a point in K. It has a similar flavor: get random points from K; restrict

K using the function value at the average of the random points; repeat. The

oracle complexity turns out to be O(n5L) which is an improvement on previous

methods. This has been improved for linear objective functions using a variant

of simulated annealing [Kalai and Vempala 2005].

9. Application II: Volume Computation

Finally, we come to perhaps the most important application and the princi-

pal motivation behind many developments in the theory of random walks: the

problem of computing the volume of a convex body.

Let K be a convex body in Rn of diameter D such that Bn ⊂ K. The next

theorem from [Bárány and Füredi 1987], improving on [Elekes 1986], essentially

says that a deterministic algorithm cannot estimate the volume efficiently.

Theorem 9.1. For every deterministic algorithm that runs in time O(na) and

outputs two numbers A and B such that A ≤ vol(K) ≤ B for any convex body

K, there is some convex body for which the ratio B/A is at least
(

cn

a log n

)n

where c is an absolute constant .

So, in polynomial time, the best possible approximation is exponential in n and

to get a factor 2 approximation (say), one needs exponential time. The basic

idea of the proof is simple. Consider an oracle that answers “yes” for any point



GEOMETRIC RANDOM WALKS: A SURVEY 605

Reference Complexity New ingredient(s)

[Dyer et al. 1991] n23 Everything

[Lovász and Simonovits 1990] n16 Localization lemma

[Applegate and Kannan 1990] n10 Logconcave sampling

[Lovász 1990] n10 Ball walk

[Dyer and Frieze 1991] n8 Better error analysis

[Lovász and Simonovits 1993] n7 Many improvements

[Kannan et al. 1997] n5 Isotropy, speedy walk

[Lovász and Vempala 2003b] n4 Annealing, hit-and-run

Table 1. Complexity comparison

in a unit ball and “no” to any point outside. After m “yes” answers, the convex

body K could be anything between the ball and the convex hull of the m query

points. The ratio of these volumes is exponential in n.

Given this lower bound, the following result of Dyer, Frieze and Kannan [Dyer

et al. 1991] is quite remarkable.

Theorem 9.2. For any convex body K and any 0 ≤ ε, δ ≤ 1, there is a random-

ized algorithm which computes an estimate V such that with probability at least

1 − δ, we have (1 − ε)vol(K) ≤ V ≤ (1 + ε)vol(K), and the number of oracle

calls is poly(n, 1/ε, log(1/δ).

Using randomness, we can go from an exponential approximation to an arbitrar-

ily small one!

The main tool used in [Dyer et al. 1991] is sampling by a random walk. They

actually used the grid walk and showed that by “fixing up” K a bit without

changing its volume by much, the grid walk can sample nearly random points

in polynomial time. Even though the walk is discrete, its analysis relies on a

continuous isoperimetric inequality, quite similar to the one used for the anal-

ysis of the ball walk. The original algorithm of Dyer, Frieze and Kannan had

complexity O∗(n23). In the years since, there have been many interesting im-

provements. These are summarized in Table 9. In this section, we describe the

latest algorithm from [Lovász and Vempala 2003b] whose complexity is O∗(n4).

Let us first review the common structure of previous volume algorithms. As-

sume that the diameter D of K is poly(n). All these algorithms reduce volume

computation to sampling from a convex body, using the “Multi-Phase Monte-

Carlo” technique. They construct a sequence of convex bodies K0 ⊆ K1 ⊆ · · · ⊆
Km = K, where K0 = Bn or some body whose volume is easily computed.

They estimate the ratios vol(Ki−1)/vol(Ki) by generating sufficiently many in-

dependent (nearly) uniformly distributed random points in Ki and counting

the fraction that lie in Ki−1. The product of these estimates is an estimate of

vol(K0)/vol(K).
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In order to get a sufficiently good estimate for the ratio vol(Ki−1)/vol(Ki), one

needs about mvol(Ki)/vol(Ki−1) random points. So we would like to have the

ratios vol(Ki)/vol(Ki−1) be small. But, the ratio of vol(K) and vol(K0) could

be nΩ(n) and so m has to be Ω(n) just to keep the ratios vol(Ki)/vol(Ki−1) poly-

nomial. The best choice is to keep these ratios bounded; this can be achieved,

for instance, if K0 = Bn and Ki = K ∩ (2i/nBn) for i = 1, 2, . . . ,m = Θ(n log n).

Thus, the total number of random points used is O(m2) = O∗(n2). Since

vol(Ki) ≤ 2vol(Ki−1) for this sequence, a random point in Ki−1 provides a

warm start for sampling from Ki. So each sample takes O∗(n3) steps to gener-

ate, giving an O∗(n5) algorithm. In [Applegate and Kannan 1990; Lovász and

Simonovits 1993], sampling uniformly from Ki was replaced by sampling from a

smooth logconcave function to avoid bad local conductance and related issues.

The number of phases, m, enters the running time as its square and one would

like to make it as small as possible. But, due to the reasons described above,

m = Θ(n log n) is optimal for this type of algorithm and reducing m any further

(i.e., o(n)) seems to be impossible for this type of method.

The algorithm in [Lovász and Vempala 2003b] can be viewed as a variation of

simulated annealing. Introduced in [Kirkpatrick et al. 1983], simulated annealing

is a general-purpose randomized search method for optimization. It walks ran-

domly in the space of possible solutions, gradually adjusting a parameter called

“temperature”. At high temperature, the random walk converges to the uni-

form distribution over the whole space; as the temperature drops, the stationary

distribution becomes more and more biased towards the optimal solutions.

Instead of a sequence of bodies, the algorithm in [Lovász and Vempala 2003b]

constructs a sequence of functions f0 ≤ f1 ≤ . . . ≤ fm that “connect” a function

f0 whose integral is easy to find to the characteristic function fm of K. The

ratios (
∫

fi−1)/(
∫

fi) can be estimated by sampling from the distribution whose

density function is proportional to fi, and averaging the function fi−1/fi over

the sample points. Previous algorithms can be viewed as the special case where

the functions fi are characteristic functions of the convex bodies Ki. By choosing

a different set of fi, the algorithm uses only m = O∗(
√

n) phases, and O∗(
√

n)

sample points in each phase. In fact, it uses exponential functions of the form

f(x) = e−aT x/T restricted to some convex body. The temperature T will start

out at a small value and increase gradually. This is the reverse of what happens

in simulated annealing.

Besides annealing, the algorithm uses a pre-processing step called the pencil

construction. We describe it next.

Let K be the given body in Rn and ε > 0. Let C denote the cone in Rn+1

defined by

C =

{

x ∈ Rn+1 : x0 ≥ 0,

n
∑

i=1

x2
i ≤ x2

0

}
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where x = (x0, x1 . . . , xn)T. We define a new convex body K ′ ∈ Rn+1 as follows:

K ′ =
(

[0, 2D] × K
)

∩ C.

In words, K ′ is a sharpened (n + 1)-dimensional “pencil” whose cross-section is

K and its tip is at the origin. See Figure 4. The idea of the algorithm is to start

Figure 4. The pencil construction when K is a square.

with a function that is concentrated near the tip of the pencil, and is thus quite

close to an exponential over a cone, and gradually move to a nearly constant

function over the whole pencil, which would give us the volume of the pencil.

The integral of the starting function is easily estimated. The sharpening takes

less than half of the volume of the pencil away. Hence, if we know the volume of

K ′, it is easy to estimate the volume of K by generating O(1/ε2) sample points

from the uniform distribution on [0, 2D] × K and then counting how many of

them fall into K ′.
We describe the annealing part of the algorithm in a bit more detail. For each

real number a > 0, let

Z(a) =

∫

K′

e−ax0 dx

where x0 is the first coordinate of x. For a ≤ ε2/D, an easy computation shows

that

(1 − ε)vol(K ′) ≤ Z(a) ≤ vol(K).

On the other hand, for a ≥ 2n the value of Z(a) is essentially the same as the

integral over the whole cone which is easy to compute. So, if we select a sequence

a0 > a1 > . . . > am for which a0 ≥ 2n and am ≤ ε2/D, then we can estimate

vol(K ′) by

Z(am) = Z(a0)

m−1
∏

i=0

Z(ai+1)

Z(ai)
.

The algorithm estimates each ratio Ri = Z(ai+1)/Z(ai) as follows. Let µi be

the probability distribution over K ′ with density proportional to e−aix0 , i.e., for

x ∈ K ′,
dµi(x)

dx
=

e−aix0

Z(ai)
.



608 SANTOSH VEMPALA

To estimate the ratio Ri, the algorithm draws random samples X1, . . . ,Xk from

µi, and computes

Wi =
1

m

m
∑

j=1

e(ai−ai+1)(X
j)0 .

It is easy to see that E(Wi) = Ri. The main lemma in the analysis is that the

second moment of Wi is small.

Lemma 9.3. Let X be a random sample from dµi and

Y = e(ai−ai+1)X0 .

Then,
E(Y 2)

E(Y )2
≤ a2

i+1

ai(2ai+1 − ai)
.

From the lemma, it follows that with

ai+1 = ai

(

1 − 1√
n

)

we get that E(Y 2)/E(Y )2 is bounded by a constant. So with k samples,

E(W 2
i )

E(Wi)2
≤

(

1 +
O(1)

k

)

.

Hence, the standard deviation of the estimate Z = W1W2 . . .Wm is at most ε

times E(W1W2 . . .Wm) = vol(K), for k = O(m/ε2). Further, the number of

phases needed to go from a0 = 2n to am ≤ ε2/D is only
√

n log(D/ε2). So the

total number of sample points needed is only O∗(n) (it would be interesting to

show that this is a lower bound for any algorithm that uses a blackbox sampler).

As mentioned earlier, the samples obtained are not truly independent. This

introduces technical complications. In previous algorithms, the random variable

estimating the ratio was bounded (between 1 and 2) and so we could directly

use Lemma 7.1. For the new algorithm, the individual ratios being estimated

could be unbounded. To handle this further properties of µ-independence are

developed in [Lovász and Vempala 2003b]. We do not go into the details here.

How fast can we sample from µi? Sampling from µ0 is easy. But each µi−1 no

longer provides a warm start for µi, i.e., dµi−1(x)/dµi(x) could be unbounded.

However, as the next lemma asserts, the L2 distance is bounded.

Lemma 9.4. ‖µi−1/µi‖ < 8.

The proof of this lemma and that of Lemma 9.3 are both based on the following

property of logconcave functions proved in [Lovász and Vempala 2003b].

Lemma 9.5. For a > 0, any convex body K and logconcave function f in Rn,

the function

Z(a) = an

∫

K

f(ax) dx
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is logconcave.

Finally, hit-and-run only needs bounded L2 norm to sample efficiently, and by

the version of Theorem 6.3 for the exponential density, we get each sample in

O∗(n3) time. Along with the bound on the number of samples, this gives the

complexity bound of O ∗ (n4) for the volume algorithm.

It is apparent that any improvement in the mixing rate of random walks will

directly affect the complexity of volume computation. Such improvements seem

to consistently yield interesting new mathematics as well.
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[Bárány and Füredi 1987] I. Bárány and Z. Füredi, “Computing the volume is difficult”,
Discrete Comput. Geom. 2:4 (1987), 319–326.

[Berbee et al. 1987] H. C. P. Berbee, C. G. E. Boender, A. H. G. Rinnooy Kan, C. L.
Scheffer, R. L. Smith, and J. Telgen, “Hit-and-run algorithms for the identification
of nonredundant linear inequalities”, Math. Programming 37:2 (1987), 184–207.

[Bertsimas and Vempala 2004] D. Bertsimas and S. Vempala, “Solving convex programs
by random walks”, J. Assoc. Comput. Mach. 51:4 (2004), 540–556.

[Bollobás 1997] B. Bollobás, “Volume estimates and rapid mixing”, pp. 151–182 in
Flavors of geometry, edited by S. Levy, Math. Sci. Res. Inst. Publ. 31, Cambridge
Univ. Press, Cambridge, 1997.

[Diaconis and Saloff-Coste 1996] P. Diaconis and L. Saloff-Coste, “Logarithmic Sobolev
inequalities for finite Markov chains”, Ann. Appl. Probab. 6:3 (1996), 695–750.
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informational complexity of mathematical programming problems”, Èkonom. i Mat.
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[Prékopa 1973] A. Prékopa, “On logarithmic concave measures and functions”, Acta

Sci. Math. (Szeged) 34 (1973), 335–343.

[Revuz 1975] D. Revuz, Markov chains, North-Holland, Amsterdam, 1975.

[Rudelson 1999] M. Rudelson, “Random vectors in the isotropic position”, J. Funct.

Anal. 164:1 (1999), 60–72.

[Simonovits 2003] M. Simonovits, “How to compute the volume in high dimension?”,
Math. Program. 97:1-2, Ser. B (2003), 337–374.



612 SANTOSH VEMPALA

[Smith 1984] R. L. Smith, “Efficient Monte Carlo procedures for generating points
uniformly distributed over bounded regions”, Oper. Res. 32:6 (1984), 1296–1308.

[Vaidya 1996] P. M. Vaidya, “A new algorithm for minimizing convex functions over
convex sets”, Math. Programming Ser. A 73:3 (1996), 291–341.

[Zabinsky et al. 1993] Z. B. Zabinsky, R. L. Smith, J. F. McDonald, H. E. Romeijn, and
D. E. Kaufman, “Improving hit-and-run for global optimization”, J. Global Optim.

3:2 (1993), 171–192.

Santosh Vempala

Department of Mathematics

Massachusetts Institute of Technology

Cambridge, MA 02139

vempala@mit.edu


