
Symmetric Network Computation

David Pritchard
Department of Combinatorics and Optimization

University of Waterloo
Waterloo, ON, Canada

dagpritc@math.uwaterloo.ca

Santosh Vempala
Department of Mathematics

MIT
Cambridge, MA, USA

vempala@math.mit.edu

ABSTRACT
We introduce a simple new model of distributed compu-
tation — finite-state symmetric graph automata (FSSGA)
— which captures the qualitative properties common to
fault-tolerant distributed algorithms. Roughly speaking, the
computation evolves homogeneously in the entire network,
with each node acting symmetrically and with limited re-
sources. As a building block, we demonstrate the equiv-
alence of two automaton models for computing symmetric
multi-input functions. We give FSSGA algorithms for sev-
eral well-known problems.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of
Computation—automata, relations between models; D.1.3
[Programming Techniques]: Concurrent Programming—
distributed programming

General Terms
Algorithms, Reliability, Theory

Keywords
Symmetry, fault-tolerance, agents, election

1. INTRODUCTION
Distributed algorithms play a fundamental role in com-

puter science. In recent years, practical developments such
as sensor networks further motivate such algorithms, while
introducing restrictions on the resources of each node. For
example, Angluin et al. [1] have modeled a sensor network
by an interacting collection of identical finite-state agents.
In this paper, we present a model of distributed computation
whose goal is to foster fault-tolerant computation.

We consider decreasing benign faults: a node or edge may
permanently be deleted from the graph because it malfunc-
tions, but nodes and edges never join the network, and there

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’06, July 30–August 2, 2006, Cambridge, Massachusetts, USA.
Copyright 2006 ACM 1-59593-262-3/06/0007 ...$5.00.

is no malicious behaviour. Many simple distributed algo-
rithms cannot tolerate even a single fault. For example, a
spanning tree-based algorithm (like the β synchronizer [2])
fails if one of the tree edges dies, since then not all nodes
can communicate along the remainder of the tree.

Our starting point is the observation that the following
properties are common to many fault-tolerant algorithms:

(P1) Global Symmetry: the computation proceeds via a sin-
gle operation that is performed repeatedly by every
node.

(P2) Local Symmetry: every node acts symmetrically on its
neighbours.

(P3) Steady State Convergence: the network is brought to
a steady state when all nodes perform their operation
repeatedly.

We might call an algorithm that follows these three prin-
ciples a balancing algorithm. Each node ensures that a lo-
cal balancing rule is satisfied when it activates, and when
the whole graph is in equilibrium the algorithm is complete.
Faults may cause a temporary loss of balance, but as the
nodes iterate their operation, balance is restored in the net-
work.

Flajolet and Martin’s census algorithm [6] provides a good
illustration of these principles. The algorithm approximately
computes the number of nodes in a network of unknown size.
Hereafter let n = |V |, the number of nodes in the network.
Each node v has a k-bit vector v.m of memory; denote the
ith bit by v.mi, where 1 ≤ i ≤ k. The algorithm requires
k ≥ log2 n. Initially all memory is set to 0. Next, each node
v probabilistically performs one action: for 1 ≤ i ≤ k with
probability 2−i, it sets v.mi to 1, and with probability 2−k it
does nothing. In the remainder of the algorithm, each node
repeatedly sends its memory contents to all of its neighbours.
Whenever v receives message w.m from its neighbour w, it
sets v.m := v.m ORw.m. After stabilizing, each node esti-
mates n = 1.3 · 2` where ` is the minimum index of a 0 bit
in its memory. It can be shown that when no failures occur,
with high probability, the estimate is correct within a factor
of 2. The correctness is clearly unaffected by edge faults
that do not disconnect the network; this is essentially opti-
mal, considering the fundamental impossibility of complete
communication in any disconnected network. Furthermore,
even if some small parts of the original network G become
disconnected, for any connected component G′ of the final
network, with high probability, the nodes in G′ obtain an
estimate between 1

2
|V (G′)| and 2|V (G)|.

In Section 2, we define the notion of a k-sensitive algo-
rithm, which generalizes the fault-tolerance of the above al-
gorithm. Roughly speaking, for a k-sensitive algorithm, at
any point in the computation there are at most k critical
nodes, and failures at noncritical nodes are harmless. Usu-
ally, decentralized algorithms (e.g., [8] [10]) have sensitivity
0, agent-based algorithms (see Section 2.1) have sensitivity
1, and tree-based algorithms have sensitivity Θ(n). Thus,
ranking algorithms by their sensitivity, the decentralized
paradigm provides the most fault tolerance. This motivated
our choices (P1–P3) of key properties. In Sections 2.1 and
2.2 we show two more fault-tolerant algorithms from our
study: random walk-based biconnectivity and distributed
shortest paths.

In Section 3, we present our main contribution, a precise
model of symmetric computation with limited resources. In
brief, we imagine that each node of a graph has a copy of
the same finite-state automaton. Indeed, from (P1) above,
one would like the transition function at each node to be the
same and further, from (P2) it should be symmetric. Such
symmetric models have been considered before, e.g., cellular
automata (Conway’s “Life” [7]) but usually assume that the
graph is regular or has bounded degree. In our model, we
retain the symmetry but allow unbounded degrees. Our
model was thus designed to have the following properties:

(S0) An automaton with finite memory inhabits each node,
using its neighbours’ states as inputs.

(S1) All nodes, even those with different degrees, are inhab-
ited by identical automata.

(S2) Each automaton acts symmetrically on its neighbours.

We thought of two models whereby each node would it-
self use a constant amount of working space no matter how
many neighbours are to be processed. In the sequential
model, when a node activates, it treats its neighbours as
a sequence of inputs, and one by one they are fed into
the automaton’s transition function. In the parallel model,
the neighbours are processed via a divide-and-conquer ap-
proach. Each neighbour contributes a single unit of data,
and then the data are reduced pairwise. After all the data
have been combined, a state transition occurs. Of the au-
tomata in these two classes, we are interested in those that
also satisfy (S2). The main technical contribution of our pa-
per is a proof that the sequential and parallel versions are in
fact equivalent and can be characterized explicitly in terms
of mod and threshold operations.

In Section 4 we give a number of algorithms for our model.
As nodes have finite state but unbounded degree, a node
cannot even count its neighbours, and yet in Section 4.7 we
show that randomized leader election can be efficiently im-
plemented. This leads us to believe that our simple model
is both practical (there are limited resources per node and
nontrivial problems can be solved) and interesting (it has
multiple formulations). Despite these features, we are not
completely satisfied. One of our initial hopes was that the
model’s local symmetry would imply decentralization and
fault-tolerance for all algorithms meeting the model. Unfor-
tunately, this is not the case, and indeed the leader election
algorithm shows that global symmetry-breaking is still pos-
sible.

In Section 5 we discuss other issues related to our model.
We show how the isotonic web automaton model [19][14]

can simulate our model (with a Θ(m) factor slowdown) and
vice-versa. We note three other relevant models here. First,
the class of semi-lattice [16] (or infimum [23, §6.1.5]) func-
tions essentially provide the automatic fault-tolerance we
desire, but these functions are limited in their scope. One
example of a semi-lattice function is the iterated OR of the
Flajolet-Martin algorithm. Second, the parallel web automa-
ton model [18] is close in spirit to our model. In that model
every node and directed edge is an automaton; each node
reads its incident edges symmetrically and each edge reads
its two endpoints asymmetrically. However, that model is
not completely formalized and so no direct comparison is
possible. Third, we mentioned the “passive mobility” model
of Angluin et al. [1]; in that model all interactions occur in
asymmetric pairs, while in our model, nodes communicate
symmetrically, and with all neighbours at once.

2. K-SENSITIVE ALGORITHMS
For a distributed algorithm, let χ be a deterministic func-

tion whose input is the instantaneous description σ of the
state of a connected network, and whose output is a subset
χ(σ) of its nodes, called the critical nodes. In an execu-
tion of the algorithm, when the network is in state σ, a
critical failure is either the failure of a node in χ(σ), or a
node/edge failure that causes two nodes of χ(σ) to lie in dif-
ferent connected components of the network. If we always
have |χ(σ)| ≤ k, and if the algorithm is always “reasonably
correct” provided that no critical failures occur, then we
call the algorithm k-sensitive. Since a k-sensitive algorithm
is automatically (k+1)-sensitive, define the sensitivity of an
algorithm to be the least k for which it is k-sensitive.

Hereafter, we write G for a graph that models our dis-
tributed network, V (G) for its nodes, and E(G) for its edges;
we simply write V and E when the meaning of G is clear.
Our definition of “reasonably correct” is as follows. Con-
sider a run of the algorithm where f failures occur, none of
them critical. Let G0 be the initial network topology. When
the ith failure occurs, let σi be the current state of Gi−1, and
let Gi be a connected component of Gi−1 that contains all of
χ(σi). Let the final answer computed in the nodes of Gf be
A. We say that the algorithm was reasonably correct in this
execution if there is some graph G′ with G0 ⊇ G′ ⊇ Gf such
that executing the algorithm on G′ in a fault-free environ-
ment gives the same answer A.

The algorithms from the introduction exhibit two typical
sensitivity values. The tree-based β synchronizer has sensi-
tivity Θ(n), as a spanning tree may have n/2 internal nodes,
and the failure of any one disconnects the tree. In contrast,
the Flajolet-Martin algorithm is 0-sensitive, as it will work
on whatever portion of the network remains connected. We
describe two more low-sensitivity algorithms in the remain-
der of this section.

2.1 Biconnectivity via a Random Walk
An agent is an entity that inhabits one node of the net-

work at a time. An agent at v can move to w in one step
if and only if v and w are adjacent in G. Agent algorithms
often have small sensitivity; in this section and in Section
4.6 we give agent algorithms with sensitivity Θ(1).

A bridge of a connected graph is an edge whose deletion
separates the graph. We will describe a simple agent-based
algorithm for determining the bridges of a graph. First, fix
an arbitrary orientation on each edge. Each edge stores an

integral counter, initialized to zero. Whenever the agent
traverses an edge in agreement with that edge’s orientation,
increment its counter by 1; whenever the agent traverses
that edge the other way, decrement its counter by one.

It is easy to show that the counter for a bridge will al-
ways remain in {−1, 0, 1}. On the other hand, the counter
of any non-bridge may exceed ±1 if the agent takes a suitable
walk. In fact, if the agent takes a random walk — at each
step, it picks its next position uniformly at random from the
neighbours of its current position — then we can show that
all non-bridges will be quickly identified. Let n = |V | and
m = |E|. The following complexity analysis ignores failures.

Claim 2.1. If an edge is not a bridge, then the expected
number of steps before its counter exceeds 1 in absolute value
is O(mn).

Proof. Write V = {v1, . . . , vn} and let the edge be e =
(v1, v2), oriented towards v2. Write c for the value of e’s
counter. We construct a new graph. It has 3n + 1 nodes:
three labeled v−1

i , v0
i , v1

i for each vi ∈ V , plus the special
node Exceeded. The idea is that vr

i corresponds to a state
where c = r and the agent is at node vi, while the node
Exceeded corresponds to a state where c = ±2. Specifically,
this new graph has 3m + 1 undirected edges in total:

(vr
i , vr

i′) for each r ∈ {−1, 0, 1} and (vi, vi′) ∈ E−{(v1, v2)}

as well as

(v−1
1 , v0

2), (v
0
1 , v1

2), (v
1
1 ,Exceeded), (Exceeded, v−1

2).

It is straightforward to show that a random walk on the new
graph corresponds to the original process on the old graph.

Since (v1, v2) is not a bridge, we can reach any vr
i from

v0
1 : first, if r 6= 0, then traverse a cycle containing (v1, v2)

to set c correctly; second, walk to vi without using (v1, v2).
Thus, the new graph is connected. By applying the hitting
time bound for an undirected graph [15, p. 137], we expect
to reach Exceeded in at most 2(3m + 1)(3n) = O(mn)
steps.

To make a bridge-finding algorithm, we make each edge
remember if its counter has ever hit ±2. If the agent walks
for O(cmn log n) steps, then with probability 1 − n1−c, all
non-bridges of the graph will have been identified. In terms
of sensitivity, failures at non-agent nodes are unimportant,
so we may define χ(σ) to output just the agent’s position in
σ. Hence this algorithm is 1-sensitive.

2.2 Shortest Paths and Clustering
Fix a set of nodes T in the network. There is a decen-

tralized algorithm by which each node can determine its
distance to T. Each node v stores a single integer variable
`(v) which will, at termination, hold the distance from that
node to the nearest node in T. Each node in T fixes its label
at 0. When any other node v activates, it sets its label to 1
more than the minimum of its neighbours’ labels:

`(v) := 1 + min
(v,u)∈E(G)

`(u).

It is straightforward to show that a node v at distance d
from T will have its label stabilize at d, within d rounds.
Practically, we should also cap each label at n in case it
happens that some connected component contains no node
of T. This algorithm can be shown to be 0-sensitive.

These labels implicitly define shortest paths to T. As an
application, consider a sensor network where most nodes
have no permanent storage and T represents “data sinks.”
If each node routes packets to a minimum-label neighbour,
then every packet traverses a shortest path to the nearest
sink.

3. A FORMAL MODEL BASED ON FINITE-
STATE AUTOMATA

The starting point for our model is what Tel [23, p. 524]
calls read-all state communication. Each node activates at
certain times. When a node activates, it atomically reads its
own state and the states of its neighbours, and its new state
is determined by those inputs. We note that this model can
simulate the ubiquitous message-passing model, by using
message buffers.

3.1 Symmetric Multi-Input Finite-State Au-
tomata

In this section, we define a class of symmetric functions
that take in any number of arguments. These functions have
three equivalent descriptions, two of which are automaton-
based. Our new model of distributed computing will be
introduced in Section 3.4 but is essentially as follows. Given
an undirected, connected graph, we replace each node with
a copy of the same automaton, and the inputs for a given
node are the neighbours of that node.

To keep it simple, for each algorithm in our model, all
nodes’ states will be drawn from a finite set Q. A network
state (or instantaneous description [14]) is a function from
V to Q. We denote by σ the current network state, so σ(v)
represents the current state of node v. Let Q+ denote the
set of sequences, of any positive length, with elements drawn
from Q. We use |~q| to denote the number of elements in
the sequence ~q, and write ~q = (q1, . . . , q|~q|) for an arbitrary

element of Q+.
Motivated by (P1), we would like every node to use the

same transition function. Now, if our graph is regular of
degree ∆, then the transition function could be described as
a function of the form f : Q × Q∆ → Q. Namely, when a
node v with neighbours u1, . . . , u∆ operates, set

σ(v) := f(σ(v), (σ(u1), . . . , σ(u∆))). (1)

From (P2), the transition function should be symmetric.
Thus we would require f(q0, ~q) = f(q0, π(~q)) for all permu-
tations π ∈ S∆.

When the graph is not regular, we need to modify the
transition function to take in a variable number of neigh-
bours. If we only wish to use network topologies where each
node has degree at most ∆, then we can generalize the au-
tomaton described by Equation (1) as follows. Introduce a
special “null” symbol ε. In Equation (1), when a node v of
degree d < ∆ activates, we take σ(ud+1) = · · · = σ(u∆) = ε.
Thus f : Q × (Q ∪ {ε})∆ → Q. See [17][12][21] for similar
bounded-degree models.

For our new model, we did not want to restrict our at-
tention to bounded-degree graphs. Note that, if there are a
finite number of states, and unbounded degrees, then gener-
ally a node cannot even count its neighbours. Some “web
automaton” models [19] [14] [18] similarly allow unbounded
degrees but enforce symmetry restrictions.

The transition function for the graph automata which we

are describing operates as Q × Q+ → Q, that is, the first
argument is the current state of the activating node, the
second argument is the collection of its neighbours’ states,
and the output is the new state of that node. The essential
feature of our model (recall S0-S2) is that the nodes act
symmetrically, and are all the same, but take in differing
numbers of arguments. To narrow our discussion, we ignore
the first input for the time being.

Definition 3.1. Suppose |Q|, |R| < ∞. Let f : Q+ → R
be such that for all ~q, where |~q| = k, and for all π ∈ Sk,

f(q1, . . . , qk) = f(qπ(1), . . . , qπ(k)).

Then f is a SM function.

Here SM stands for “symmetric, multi-input.” In our appli-
cation to graph automata we will have R = Q, and Q will
be the set of node states.

3.2 Sequential and Parallel Automata for SM
Functions

A sequential SM function from Q to R is defined by a
tuple (W, w0, p, β). Here W is a finite set of working states,
w0 ∈ W is a distinguished starting state, p : W×Q → W is a
processing function, and β : W → R maps the final working
state back to a result in R. Using this tuple we define a
function from Q+ to R as follows. Initialize a “working
state” variable w to w0. Then, for each input qi, compute
w := p(w, qi). Finally, output β(w) after all inputs have
been processed. Keeping in mind (S2) and the definition of
an SM function, if the final value β(w) is independent of the
ordering of the inputs, then this process defines a sequential
SM function. A formal definition follows.

Definition 3.2. Suppose that we have |W | < ∞, w0 ∈
W, p : W × Q → W, and β : W → R. Suppose further that
for all ~q ∈ Q+, where |~q| = k, for all π ∈ Sk, the expression

β(p(p · · · p(p(w0, qπ(1)), qπ(2)), · · · , qπ(k))) (2)

is independent of π. Then the function f : Q+ → R which
maps ~q to Equation (2) is defined to be a sequential SM
function.

We call (W, w0, p, β) a sequential program for f.
The second form of finite-state symmetric processing we

consider uses the divide-and-conquer paradigm. Take a fi-
nite set of working states W and β : W → R as before
but instead of the distinguished state w0 we have a function
α : Q → W. On input ~q of length k, we turn each input
qi into its own working state α(qi). This defines a multiset
W of working states. Then, as long as W contains at least
two states, we remove two states w1, w2 from W and add
p(w1, w2) to W. Thus, we now have p : W ×W → W. Fi-
nally, when W contains only one state w, we return β(w).
One might visualize the combination process as a tree, as
shown in Figure 1. In order that the function be well-defined
and symmetric, we insist that the final result is independent
of the order in which elements are combined.

As the tree formulation is somewhat more concise, we
make the following definitions. For a rooted binary tree
T on more than one node, we write T.` for the left subtree
of T, we write T.r for the right subtree of T, and we write
T.root for the root node of T.

α(q3) α(q2) α(q5) α(q1) α(q4)

p(·, ·) p(·, ·)

p(·, ·)

result = p(·, ·)

Figure 1: Visualizing a parallel SM automaton as a

tree process.

Definition 3.3. Suppose that T is a rooted binary tree
with k leaves. Label the leaves from leftmost to rightmost as
t1, . . . , tk. Let p : W ×W → W. For each non-empty subtree
S of T, recursively define the function cS : W k → W by

cS(−→w) =

(

wi, if S.root = ti;

p(cS.`(−→w), cS.r(−→w)), otherwise.

Then we define the tree-combination of p on T, denoted
TC(p,T), to be cT .

Definition 3.4. Suppose that we have |W | < ∞, α : Q →
W, p : W ×W → W, and β : W → R. Suppose further that
for all ~q ∈ Q+, where |~q| = k, for all π ∈ Sk, and for all
rooted binary trees T with k leaves, the expression

β(TC(p,T)(α(qπ(1)), α(qπ(2)), . . . , α(qπ(k)))) (3)

is independent of π and T. Then the function f : Q+ → R
which maps ~q to Equation (3) is defined to be a parallel SM
function.

We call (W,α, p, β) a parallel program for f, similarly to
before.

The following lemma essentially says that, if we know how
to solve a problem by divide-and-conquer, we can simply
conquer one input at a time and solve it sequentially.

Lemma 3.5. Every parallel SM function can be written as
a sequential SM function.

Proof. Consider a parallel SM function with parallel
program (W,α, p, β). Then there is a sequential program
(W ′, w0, p

′, β) that computes the same function, defined by

W ′ = W ∪ {NIL};

w0 = NIL;

p′ : (w, q) 7→

(

α(q), if w = NIL,

p(α(q), w), otherwise.

3.3 Mod-Thresh Functions
Surprisingly, the converse of Lemma 3.5 is true: every se-

quential SM function can be written as a parallel SM func-
tion. Thus, regarded as computing devices, both models are
equally powerful. Our proof proceeds by showing that both
classes are equivalent to the set of mod-thresh functions,
which we define below. The mod-thresh model is more in
the style of a programming language, giving a more intuitive
description of sequential/parallel SM functions.

Write s = |Q|, and without loss of generality let Q =
{1, 2, . . . , s}. Denote by µi(~q) the multiplicity of i in ~q. We
need to define two kinds of boolean atoms. Each atom is a
logical statement in the unqualified variable ~q. A mod atom
is of the form “µi(~q) ≡ r (mod m),” where 0 ≤ k < m are
integers and i ∈ Q. A thresh atom is of the form “µi(~q) < t,”
where t is a positive integer and i ∈ Q. The set of mod-thresh
propositions is the closure, under (finite) logical conjunction,
disjunction, and negation, of the union of all mod atoms and
all thresh atoms.

Definition 3.6. Let P1, . . . , Pc−1 be mod-thresh proposi-
tions, and r1, . . . , rc be elements of R, not necessarily dis-
tinct. The function f : Q+ → R described procedurally by

procedure f(~q)
if P1 is true then return r1

else if P2 is true then return r2

· · ·
else return rc

end if

end procedure

is a mod-thresh SM function.

We call (P1, . . . , Pc−1; r1, . . . , rc) a mod-thresh program for f.
Note that a mod-thresh function is automatically symmetric
since it depends on ~q only via the symmetric functions µi.
Also note that there is another, quite different, proposition-
based model of distributed computing in [4].

Theorem 3.7. The classes of mod-thresh, parallel, and
sequential SM functions are all the same.

Proof. Let Sequential denote the class of sequential SM
functions, Parallel denote the class of parallel SM functions,
and Mod-Thresh denote the class of mod-thresh SM func-
tions. We will demonstrate that Mod-Thresh ⊆ Parallel
⊆ Sequential ⊆ Mod-Thresh. The second inclusion follows
from Lemma 3.5.

Lemma 3.8. Mod-Thresh ⊆ Parallel

Proof. Let f be any mod-thresh SM function, with pro-
gram MT = (P1, . . . , Pc−1; r1, . . . , rc). We demonstrate a
parallel program for f. Essentially, the multiplicity counts
needed to determine the outcome of MT are evaluated in a
divide-and-conquer fashion.

For each state i ∈ Q define the integers Mi and Ti by

Mi := lcm
“

{1} ∪
c−1
[

j=1

[

r≥0

{m : Pj 3 “µi(~q) ≡ r (mod m)”}
”

,

and Ti := max
“

{1} ∪
c−1
[

j=1

{t : Pj 3 “µi(~q) < t”}
”

.

In order to evaluate f(~q) for a given ~q, it suffices to know
the value of each µi(~q) (mod Mi), and whether µi(~q) < n
for each 0 ≤ n ≤ Ti, since from this information each of
the atoms can be evaluated. Thus, our working state will
consist of two finite-state counters for each i ∈ Q.

With δy
x the Dirac delta, define

W =
O

i∈Q

{0, 1, . . . , Mi − 1} × {0, 1, . . . , Ti − 1,∞},

α : q 7→
O

i∈Q

(δi
q , δ

i
q),

p :
O

i∈Q

(ai, bi),
O

i∈Q

(a′i, b
′
i) 7→

O

i∈Q

(ai + a′i, bi + b′i),

where the addition ai +a′i is performed modulo Mi, and the
addition bi + b′i produces ∞ if the result is greater than or
equal to Ti.

Finally, we need to define β. For each w =
N

i∈Q(ai, bi) ∈

W, replace each atom “µi(~q) ≡ r (mod m)” in MT with the
boolean value of (ai ≡ r (mod m)), and replace each atom
“µi(~q) < t” in MT with the boolean value of (bi < t). Then
the result of MT on w can be determined and so this defines
β(w).

The final containment is the most involved. Here g(a)

denotes the ath iterate of g.

Lemma 3.9. Sequential ⊆ Mod-Thresh

Proof. Fix a sequential function f and denote its pro-
gram by (W,w0, p, β). We will show that for each state j ∈
Q, the value of f(~q) depends on µj(~q) in a “mod-thresh
way.”

In the computation of f(~q) by the sequential program,
suppose that we process those items of ~q which are equal to
j first. This partial processing brings the working state w
to

w = p(p(p(· · · p(p(w0, j), j) · · · , j), j), j),

where p is applied µj(~q) times. We could also write this as

w = g
(µj(~q))

j (w0), where gj : x 7→ p(x, j). However, the fact
that the space W of working sets is finite means that the
iterated image of w0 under gj is “eventually periodic.” To be
precise, there are integers tj and mj such that for all z1, z2

such that z1 ≥ tj , z2 ≥ tj , and z1 ≡ z2 (mod mj), we have

g
(z1)
j (w0) = g

(z2)
j (w0).

For j ∈ Q, define ∼j to be the equivalence relation on
{n ∈ Z : n ≥ 0} with the (tj + mj) equivalence classes

{i}, 0 ≤ i < tj and {n ≥ tj : n ≡ i (mod mj)}, 0 ≤ i < mj .

Note that mod-thresh propositions can determine the equiv-
alence class of ∼j that contains µj(~q). Specifically we have

µj(~q) ∈ {i} ⇔ “(µj(~q) < (i + 1)) ∧ ¬(µj(~q) < i)” (4)

and

µj(~q) ∈ {n ≥ tj : n ≡ i (mod mj)}

⇔ “¬(µj(~q) < tj) ∧ (µi(~q) ≡ r (mod mj)).”
(5)

For any j, consider ~q and ~q ′ such that µi(~q) = µi(~q
′) for

all i 6= j, and µj(~q) ∼j µj(~q
′). We argue that f(~q) = f(~q ′).

Compute f(~q) and f(~q ′) using Equation (2), choosing each
π to put all occurrences of state j first and then the re-
maining elements of ~q and ~q ′ in the same order. Then the
working states for the two computations are the same after
processing all occurrences of j, by the definition of ti and
mi; following that, the same states are processed in both
computations, so they give the same result. Consequently
f(~q) = f(~q ′).

Using the above argument and stepping through all states
j ∈ Q, we can show that if µj(~q) ∼j µj(~q

′) for all j ∈ Q,
then f(~q) = f(~q ′). It follows that we can write a mod-thresh
program for f with Πs

i=1(ti + mi) clauses. Each clause is a
conjunction of s terms, where each term is like the right-
hand side of either Equation (4) or Equation (5). For each
proposition Pi, to determine its corresponding result ri, we
pick a representative value of µj(~q) for each j, thereby deter-
mining ~q up to order; then we set ri equal to the sequential
program’s output on (any permutation of) ~q.

By Lemmas 3.5, 3.8, and 3.9, the proof of Theorem 3.7 is
complete.

Henceforth let us call these three classes the FSM func-
tions (where F stands for “finite.”) We note briefly that the
constructions of Lemmas 3.8 and 3.9 can entail an exponen-
tial increase in program complexity.

3.4 Finite-State Symmetric Graph Automata
Having found an automaton model (in fact, two) that sat-

isfy (S0–S2), we now formally describe the associated model
of distributed computing. When a node activates, it com-
putes an FSM function of its neighbours’ states, and changes
its state to the output of that function. However, we also
allow the node to read in its own state a priori, and this de-
termines exactly which FSM function is used. So any node
acts symmetrically on its neighbours but asymmetrically on
itself.

Definition 3.10. Suppose that |Q| is a finite set of states.
For each q ∈ Q, let f [q] be any FSM function from Q+ to
Q. Then (Q, f) describes a finite-state symmetric graph au-
tomaton (FSSGA).

An FSSGA system can evolve either synchronously or
asynchronously. Let σ(~Γ(v)) denote a list of the states of
v’s neighbours. In the asynchronous model, nodes activate
one at a time, and when va activates, the network state σ is
succeeded by the network state

σ′ : v 7→

(

σ(v), if v 6= va;

f [σ(va)](σ(~Γ(va))), if v = va.

In the synchronous model, the network state σ is succeeded
by the network state σ′ defined by

σ′ : v 7→ f [σ(v)](σ(~Γ(v))).

In either model, by “running” an algorithm, we mean to
iteratively replace the current network state with its succes-
sor. We assume the network is connected and has more than
one node.

3.4.1 Randomness
So far, the model which we have described is deterministic.

However, some tasks are well-known to be impossible unless
some randomness is allowed, such as leader election [11].
Thus, we now state a probabilistic variant of the FSSGA
model. In keeping with the minimalism of our finite-state
model, each activating node is allowed a finite amount of
randomness.

Definition 3.11. Suppose that |Q| is a finite set of states
and r is a finite positive integer. For each q ∈ Q and
0 ≤ i < r, let f [q, r] be any FSM function from Q+ to Q.
Then (Q, r, f) describes a probabilistic FSSGA.

When a node va activates asynchronously, we uniformly se-
lect i ∈ {0, . . . , r − 1} at random, and the new state of va

is

f [σ(va), i](σ(~Γ(va))).

A synchronous step likewise incurs n independent random
choices of i.

4. ALGORITHMS FOR THE MODEL
We now describe several algorithms that can be imple-

mented in the FSSGA model. A Java applet demonstrat-
ing the algorithms of this section is currently available at
http://www.math.uwaterloo.ca/~dagpritc/fssga.html.
These algorithms culminate in a randomized leader election
protocol that works in O(n log n) time with high probability.

4.1 2-colouring
Here is a very simple FSSGA algorithm that determines

if a graph is bipartite, by attempting to 2-colour it. We take
Q = {BLANK,RED,BLUE ,FAILED}. Initially, one node
is in the state RED, and all others are in the state BLANK.
Each f [q] is as follows:

if ¬(µFAILED(~q) < 1) then return FAILED
else if ¬(µRED(~q) < 1) ∧ ¬(µBLUE(~q) < 1) then return

FAILED
else if ¬(µRED(~q) < 1) then return BLUE
else if ¬(µBLUE(~q) < 1) then return RED
else return BLANK
end if

4.2 Synchronizer
A synchronizer allows an asynchronous network to simu-

late a synchronous one. In the case of the FSSGA model we
can adapt the α synchronizer of Awerbuch [2]. The basic
idea behind the α synchronizer is that each node keeps a
clock recording the number of rounds it has performed, and
each pair of adjacent nodes keeps their clocks within ±1 of
each other. Each node remembers its “previous” state in or-
der that its slower neighbours can catch up. As noted in [9]
[3] [21] and elsewhere, adjacent nodes’ clock values always
differ by one of {−1, 0, 1}, so it suffices for nodes to keep
track of their clocks modulo 3, i.e., using finite memory.

In the message-passing model the α synchronizer increases
the communication complexity as a message is sent along ev-
ery edge each round. However, in the FSSGA model, neigh-
bour information is always available, and so the α synchro-
nizer entails no increase in complexity. Precisely, assume for
an asynchronous network that each node activates at least
once per unit time; then we can show that in k units of time
each node has advanced the clock of its synchronizer at least
k times.

Given a FSSGA (Q, f) designed for a synchronous net-
work, the synchronizer produces (Q×Q×{0, 1, 2}, fs), with
fs as follows. For each qc ∈ Q, where the sequential pro-
gram for f [qc] is (W,w0, p, β), for each qp ∈ Q and i ∈
{0, 1, 2}, define the sequential program for fs[qc, qp, i] to be
(W ∪ {WAIT}, w0, p

′, β′) where

p′ : (w, (q′c, q
′
p, i′)) 7→

8

>

<

>

:

WAIT, if w = WAIT or i′ = (i− 1) mod 3;

p(w, q′c), if w 6= WAIT and i′ = i;

p(w, q′p), if w 6= WAIT and i′ = (i + 1) mod 3.

β′ : w 7→

(

(qc, qp, i), if w = WAIT ;

(β(w), qc, (i + 1) mod 3), otherwise.

Here qc is the current state and qp is the previous state.
This is the last algorithm which we describe using formal
FSM programs; hereafter we use informal descriptions in
mod-thresh terms.

4.3 Breadth-First Search
In a synchronous setting, a breadth-first search (BFS) is

like a broadcast in that both expand outwards in all direc-
tions as fast as possible. For this reason, we describe a BFS
algorithm for the synchronous FSSGA model, and by using
the result of Section 4.2 this can be transformed into an
asynchronous algorithm.

In our implementation, each node labels itself according
to its mod-3 distance from the (unique) originator of the
search. If x is adjacent to y and the label of y is (modulo 3)
one more than the label of x, then we call y a successor of x
and x a predecessor of y. In this terminology, an algorithmic
description of our BFS protocol is shown in Algorithm 4.1.
In a formal mod-thresh definition, each of the clauses shown
would be copied three times, once for each numeric value of
label.

Algorithm 4.1 Breadth-first search in the FSSGA model.

let originator, target be fixed booleans
let label be a variable in {0, 1, 2, ?}
let status be a variable in {waiting, found, failed}
initialize label := ? and status := waiting
if originator = true and label = ? then

label := 0
else if (label = ?) and (a neighbour has label x 6= ?) then

label := (x + 1) mod 3
if target = true then

status := found
end if

else if status = waiting and any predecessor has status
found then

do nothing . avoid reporting non-shortest paths
else if status = waiting and any successor has status

found then

status := found
else if status = waiting and all successors have status

failed then

status := failed
end if

Note, to implement several “variables” as shown in the
pseudocode, we make the set of states equal to a cartesian
product of the variables’ ranges. Specifically the set Q of
node states is

{true, false}2 × {0, 1, 2, NIL} × {waiting, found, failed}.

We will use this trick again implicitly in the algorithm de-
scriptions to come.

4.4 Random Walk
The naive distributed description of a random walk, “if

you contain the walker, then send the walker to a random
neighbour,” does not work for FSSGAs since a node cannot
randomly pick from an arbitrarily large set of neighbours,
nor can it directly modify any neighbour’s state. Nonethe-
less there is a relatively simple randomized program which
gives rise to a random walk.

We assume the existence of a single distinguished node
in the network, which is the walker’s initial position. We
distinguish a subset Qw of Q as walker states. In every
time step, there will be exactly one node with state in Qw,
representing the walker’s position.

The basic idea is that the node containing the walker asks
its neighbours to flip coins, in order to determine who “wins”
the walker next. On each round, those neighbours which
flip heads are eliminated, until only one neighbour remains.
One catch is that, if everybody flips heads on a given round,
then the round must be re-run or else nobody would win.
Finally, when all neighbours but exactly one are eliminated,
the walker moves to that neighbour. It can be shown that,
when the walker is at a node of degree d, the expected num-
ber of rounds before it moves is Θ(log d).

We show pseudocode for a synchronous FSSGA random
walk in Algorithm 4.2. The walker states are

Qw := {flip!, waiting-for-flips, notails, onetails}.

The whole state space is

Q := Qw ∪ {blank, heads, tails, eliminated}. (6)

Algorithm 4.2 Random walk in the synchronous FSSGA
model.

if any neighbour is in a walker state qw ∈ Qw then

if qw = flip! and I am heads then

set my state to eliminated
else if qw = flip! and I am not eliminated then

pick my state randomly from {heads, tails}
else if qw = notails and I am heads then

pick my state randomly from {heads, tails}
else if qw = onetails and I am tails then

set my state to flip! . receive the walker
else if qw = onetails then

set my state to blank
end if

else if I am waiting-for-flips then

if no neighbours are in state tails then

set my state to notails
else if exactly one neighbour is in state tails then

set my state to onetails . send the walker
else

set my state to flip!
end if

else if I am notails or flip!, then

set my state to waiting-for-flips . neighbours flip
else if I am onetails then

set my state to blank . clear the walker’s remains
end if

4.5 Graph Traversal
The graph traversal problem is to make a single agent visit

every node of the network at least once. In [14], Milgram
gives an algorithm for graph traversal in the IWA model. We
can adapt this algorithm to the FSSGA model as follows.

Each node has a status drawn from the set

{blank, arm,hand, by-arm, visited}.

The set of nodes whose status lie in {arm, hand} always
form a sequence {v0, . . . , vk} such that

1. v0 is the originator node,

2. nodes v0, . . . , vk−1 have status arm, and

3. vi is adjacent to vj if and only if i = j ± 1.

To paraphrase Milgram, the last property implies that the
arm never touches or crosses itself. An unvisited non-arm
node is supposed to have status by-arm or blank according
to whether one of its neighbours has status arm or not, and
this allows us to maintain property 3. In the implementation
shown in Algorithm 4.3 we use the synchronizer’s counter
like a “clock” in order to alternate running the agent with
updating the by-arm information.

The hand moves from node to adjacent node, like an
agent. When possible, the hand moves onto a blank neigh-
bour of its current position, thereby extending the arm. In
order for the hand to choose a unique neighbour for exten-
sion, local symmetry breaking must be performed, and for
this we “call” the random walk automaton as a subroutine.
When the arm cannot extend, it instead retracts, and marks
its previous endpoint (the hand) as visited. We refer to [14]
for a full proof of correctness.

It can be shown that, in a given execution of Milgram’s
protocol, the arm traces out a tree. Specifically, the union
of the paths v0, . . . , vk is a scan-first search spanning tree;
and so the hand moves 2n − 2 times in total. Each step of
symmetry breaking requires O(log n) time, so the total time
complexity of this algorithm is O(n log n).

Algorithm 4.3 A synchronous traversal automaton.

if originator = true then

initialize status := hand
else

initialize status := blank
end if

if the current time is even then

if status ∈ {blank, by-arm} then

if any neighbour is arm then

status := by-arm
else

status := blank
end if

end if

else . the current time is odd
if status = arm then

if (originator = false and at most one neighbour
is arm or hand) or (originator = true and no
neighbour is arm or hand) then

status := hand . retract arm
end if

else if status = hand then

if no neighbour is blank then

status := visited . retract arm
else

update qrandom-walk to elect a blank neighbour
if the election is complete then

status := arm . extend arm
end if

end if

else if status = blank and I’ve been elected then

status := hand . extend arm
end if

end if

4.6 Greedy Traversal
Here we describe another graph traversal algorithm which

we call the greedy tourist. It is slightly slower than Milgram’s

algorithm, but has better sensitivity. Let T denote a sub-
set of V (G), initially T = V (G). Whenever a node in T is
visited by the agent, remove it from T. Finally, make the
agent always follow a shortest path to T. It is clear that the
agent will eventually visit each node of the graph. It can be
shown by [20] that the entire graph is traversed in O(n log n)
steps. We may determine the shortest path to T by using
the BFS of Section 4.3, obtaining (with slowdown due to
local-symmetry breaking) a traversal in O(n log2 n) time.
But, whereas Milgram’s algorithm has sensitivity Θ(n), the
greedy tourist has sensitivity 1. Note, when adapting the
greedy tourist to an asynchronous FSSGA network, the sen-
sitivity becomes 2, as there are times where the tourist is
“in transit” between two nodes. The same may be said of
the biconnectivity algorithm from Section 2.1.

4.7 Leader Election
An election algorithm is an algorithmic form of global

symmetry breaking; initially, all nodes are in the same state,
but at the end, exactly one node must be in the state leader.
We can implement an FSSGA leader election algorithm by
combining some existing algorithmic ideas.

The basic idea can be found in [3]. Each node keeps a
boolean flag remain, according to which we say that the
node is either “remaining” or “eliminated.” Each node is ini-
tially remaining, and once a node is eliminated, it never be-
comes remaining again. The algorithm proceeds in phases.
In each phase, each remaining node picks a label uniformly
at random from {0, 1}. Node v is eliminated in phase p if
and only if v has label 0 in phase p and v detects that some
other remaining node has label 1 in phase p. It follows that
there is always at least one remaining node. We keep nodes
synchronized in phases using a similar abstraction to that
given in Section 4.2; in the psuedocode to follow, the phase
counter p is a mod-3 variable. Our phases correspond to the
“RESET” of [3].

At the start of phase p, each remaining node v builds a
BFS cluster outwards from itself in all directions, hoping
either to verify that it is the only remaining node or to
discover other remaining nodes. We say that v is the root of
this cluster. Each cluster consists of a root plus eliminated
nodes, and each eliminated node joins the first cluster that
grows to meet it. We make each BFS cluster propagate
the label of its root. There are a few ways that a node w
can discover that there are multiple clusters. For example,
w may notice two neighbours propagating different labels
(both 0 and 1), or it may be that two growing BFS clusters
meet in the neighbourhood of w in such a way that the
clusters’ distance labels preclude the existence of just 1 root.

When a node determines that there are two or more re-
maining nodes (roots), it enters the state NPi, which de-
notes that a new phase must occur, and that the largest
label that it “knows about” is i. These NPi messages prop-
agate through the graph like a broadcast. Every node in-
crements its phase counter immediately after being in state
NPi. Consistent with our description above, a remaining
node in NP1 becomes eliminated if its label was 0 in that
phase.

The idea by which nodes verify their uniqueness comes
from a self-stabilizing leader election algorithm of Dolev [5].
Recall that each remaining node is the root of a BFS cluster.
When it appears that the BFS is complete, the root starts
colouring itself randomly (say, red or blue) at each time

step. These colours propagate, using the successor relation,
away from the root of each cluster. If there are more than
2 clusters, then some node v is in multiple clusters, and v is
likely to eventually notice that two of its predecessors have
different colours; this causes an NP message, hence a new
phase and more chances for elimination.

Otherwise, after about n rounds, if no inconsistency is
found, then the root elects itself as leader. A clever usage
of Milgram’s agent (Section 4.5) allows us to wait for about
n rounds even though we can’t explicitly count to n in our
model. This decreases the probability of failure to 2−Ω(n).
We give the pseudocode for this algorithm in Algorithm 4.4.

Algorithm 4.4 A synchronous election automaton.

initialize p := 0 and remain := true
at start of algorithm, pick a label and begin BFS
if any neighbor has phase p− 1 then

do nothing
else if (any neighbor has phase p + 1) or (state = NPx)

then

if (state = NP1) and (remain) and (label = 0) then

remain := false
end if

p := p+1
if (remain) then pick a label and begin BFS end if

else if (I detect a BFS or tree-recolouring inconsistency)
or (any neighbour is NPx) then

if (any neighbour is NP1) or (label = 1) or (any neigh-
bours’ label is 1) then

enter state NP1

else enter state NP0

end if

else if my BFS cluster is not complete then

participate in BFS cluster construction
propagate the label and colour of my cluster’s root

else if (remain) then

if my BFS cluster construction just finished then

release a Milgram agent
else if I have already released an agent then

choose a new colour to propagate down cluster
else if my agent just returned then

enter state leader
end if

end if

4.7.1 Correctness and Complexity

Claim 4.1. In a given phase, if u remains and some other
nodes remain, then u is eliminated with probability at least
1/4 in that phase.

Proof. For each node v let t(v) denote the (synchronous)
time that v entered this phase. Pick a remaining node v 6= u
so that t(v)+distG(v, u) is minimal. Then by considering the
growth of v’s BFS, and of the propagation of NP messages,
u will be eliminated in this phase if its label is 0 and v’s
label is 1, which happens with probability 1/4.

In the next claim, “steps” refer to synchronous time steps.

Claim 4.2. If there is more than one remaining node
in a given phase, then an inconsistency is detected during
random recolouring, within O(n) steps, with probability at

least 1− 2−n/2.

Proof. First, note that at least n recolourings have to
occur in total, even if there are multiple clusters, since each
step of an agent corresponds to a recolouring of its root, and
the agents visit every vertex. It follows easily that there are
at least n recolourings in the first n steps.

If there is more than one cluster, then each cluster is adja-
cent to at least one other cluster. So each randomly chosen
colour is compared to at least one other randomly chosen
colour. We now can show that at least n/2 colour pairs are
compared whose consistencies are independent, so the prob-
ability that no inconsistency is detected is at most 2−n/2.

It can be shown from Claim 4.1 that, with high probabil-
ity, there will be Θ(log n) phases, and from Claim 4.2 we can
argue that with high probability every phase but the last will
take O(n) time. The last phase uses Milgram’s agent and
so takes O(n log n) time. Thus the total time complexity of
our algorithm is

Θ(log n) ·O(n) + O(n log n) = O(n log n).

We note that in a long enough path graph, multiple nodes
will likely enter the leader state prematurely. However, at
termination, there is exactly one leader with high proba-
bility, and termination occurs in O(n log n) time with high
probability.

5. DISCUSSION
A possible generalization of our model is to allow each

node a binary tape of a certain size, instead of a finite choice
of state. Let N be a positive integer parameter, q, w :
N → N, and define QN := {0, 1}q(N), WN := {0, 1}w(N).
Suppose that w0N ∈ WN , βN : WN → QN , pN : WN ×
QN → WN are uniformly Turing-computable in N (so for
example, βN (w, q) is computed by a three-input Turing ma-
chine whose inputs are N, w, q). Finally suppose that for
each N, (WN , w0N , pN , βN) is a sequential program for a
SM function fN . Then extending the techniques of this pa-
per, we can get a uniformly Turing-computable parallel pro-

gram for fN with working states in {0, 1}w′(N) for w′(N) =

O(2q(N)w(N)). However, we do not know of an example
where we cannot take w′(N) = O(w(N)). Is it possible that
the class of SM functions is so restrictive that sequential
processing is never much more efficient than parallel pro-
cessing?

We also note that it seems that the state of the activating
node should be fed to α as a second input if tapes are used
instead of finite state. For example, v can sequentially de-
termine if any neighbour has the same tape-state as v, and
so this should also be possible in parallel processing.

5.1 Equivalence with Isotonic Web Automata
The isotonic web automaton (IWA) distributed model [14]

uses a finite-state agent and a finite set of node labels. It
resembles our model in that the computation is symmet-
ric and uses finitely many states. The main difference is
that the IWA model has a single locus of action whereas
our model has inherent parallelism. The agent has a fi-
nite set of transition rules. Each rule is conditional on the
presence/absence of a particular label in the neighbourhood
of the agent’s position; the effect of each rule is to relabel
the current position, for the agent to take a step to any
neighbour having some specified label, and for the agent to
enter a new state. A property that can be computed in the

IWA model can also be computed in the FSSGA model, and
vice-versa; this is easily shown by simulating each model in
the other, although we omit the details. An IWA can com-
pute a single synchronous FSSGA round in O(m) time, by
using Milgram’s traversal algorithm [14] and the neighbour-
counting technique from Lemma 3.8. An FSSGA network
can simulate an IWA with O(log ∆) time delay; this delay
is needed to break local symmetry and pick the agent’s next
destination, as in Sections 4.4–4.6.

5.2 Open FSSGA Problems
The firing squad problem for synchronous networks is, es-

sentially, to make every node in the network enter a distin-
guished state fire at the same time. On path graphs there is
a long history of solutions, some symmetric [22]. The usual
solution to the firing squad problem in non-path graphs [21]
is to find a spanning “virtual path graph” embedded in the
graph, and then to run an algorithm like [22] on that path.
The impossibility of permanent neighbour identification in
our model makes this strategy inapplicable, and finding a
non-path-based solution seems challenging.

An algorithm which is eventually correct despite any finite
number of arbitrary faults is called self-stabilizing [5]. A self-
stabilizing leader election algorithm for the FSSGA model
would allow many other FSSGA algorithms to be made self-
stabilizing. Of self-stabilizing election algorithms, there is
a finite-state one for cycle graphs [13] and there are low-
memory ones for general graphs [3][9], but none that we
know of can be adapted to the FSSGA model for general
graphs.

We have not yet found any practical use for mod atoms.
Perhaps they can be cleverly applied to one of these prob-
lems, or else removed to yield a simpler model.

6. REFERENCES
[1] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and

R. Peralta. Computation in networks of passively
mobile finite-state sensors. In Proc. 23rd Symp.
Principles of Distributed Computing, pages 290–299,
2004.

[2] B. Awerbuch. Complexity of network synchronization.
J. ACM, 32(4):804–823, 1985.

[3] B. Awerbuch and R. Ostrovsky. Memory-efficient and
self-stabilizing network reset. In Proc. 13th Symp.
Principles of Distributed Computing, pages 254–263,
1994.

[4] S. R. Buss, C. H. Papadimitriou, and J. N. Tsitsiklis.
On the predictability of coupled automata: An
allegory about chaos. In Proc. 31st Symp. Foundations
of Computer Science, pages 788–293, 1990.

[5] S. Dolev. Self-Stabilization. MIT Press, 2000.

[6] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput.
Syst. Sci., 31(2):182–209, 1985.

[7] M. Gardner. The fantastic combinations of John
Conway’s new solitaire game “life”. Scientific
American, 223:120–123, 1970.

[8] D. S. Hirschberg and J. B. Sinclair. Decentralized
extrema-finding in circular configurations of
processors. Commun. ACM, 23(11):627–628, 1980.

[9] G. Itkis and L. Levin. Fast and lean self-stabilizing
asynchronous protocols. In Proc. 35th Symp.

Foundations of Computer Science, pages 226–239,
1994.

[10] D. Kempe and F. McSherry. A decentralized
algorithm for spectral analysis. In Proc. 36th Symp.
Theory of Computing, pages 561–568, 2004.

[11] N. Lynch. A hundred impossibility proofs for
distributed computing. In Proc. 8th Symp. Principles
of Distributed Computing, pages 1–28, 1989.

[12] B. Martin. A geometrical hierarchy on graphs via
cellular automata. Fundamenta Informaticae,
52(1–3):157–181, 2002.

[13] A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung.
Self-stabilizing symmetry breaking in constant space.
In Proc. 24th Symp. Theory of Computing, pages
667–678, 1992.

[14] D. L. Milgram. Web automata. Information and
Control, 29(2):162–184, 1975.

[15] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 2000.

[16] S. Nath, P. B. Gibbons, Z. Anderson, and S. Seshan.
Synopsis diffusion for robust aggregation in sensor
networks. In Proc. 2nd Conf. Embedded Networked
Sensor Systems, pages 250–262, 2004.

[17] E. Rémila. Recognition of graphs by automata.
Theoret. Comput. Sci., 136(2):291–332, 1994.

[18] A. Rosenfeld. Networks of automata: some
applications. IEEE Trans. Systems, Man, and
Cybernetics, 5:380–383, 1975.

[19] A. Rosenfeld and D. L. Milgram. Web automata and
web grammars. Machine Intelligence, 7:307–324, 1972.

[20] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II.
An analysis of several heuristics for the traveling
salesman problem. SIAM J. Comput., 6(5):563–581,
1977.

[21] P. Rosenstiehl, J. Fiksel, and A. Holliger. Intelligent
graphs: Networks of finite automata capable of solving
graph problems. In R. C. Read, editor, Graph Theory
and Computing, pages 219–265. Academic Press, 1972.

[22] H. Szwerinkski. Time-optimal solution of the
firing-squad synchronization-problem for
n-dimensional rectangles with the general at an
arbitrary position. Theoret. Comput. Sci., 19:305–320,
1982.

[23] G. Tel. Introduction to Distibuted Algorithms.
Cambridge University Press, 2000.

