
Tensor Decomposition and Approximation Schemes
for Constraint Satisfaction Problems

W. Fernandez de la Vega
∗

LRI, Université de Paris-Sud,
Orsay.

lalo@lri.fr

Marek Karpinski
†

Dept. of Computer Science,
University of Bonn, Bonn.

marek@cs.uni-bonn.de

Ravi Kannan
‡

Computer Science, Yale
New Haven, CT 06520.

kannan@cs.yale.edu

Santosh Vempala
Σ

Mathematics, MIT,
Cambridge, MA 02139.

vempala@math.mit.edu

ABSTRACT
The only general class of MAX-rCSP problems for which
Polynomial Time Approximation Schemes (PTAS) are known
are the dense problems. In this paper, we give PTAS’s for a
much larger class of weighted MAX-rCSP problems which
includes as special cases the dense problems and, for r = 2,
all metric instances (where the weights satisfy the triangle
inequality) and quasimetric instances; for r > 2, our class in-
cludes a generalization of metrics. Our algorithms are based
on low-rank approximations with two novel features: (1) a
method of approximating a tensor by the sum of a small
number of “rank-1” tensors, akin to the traditional Singular
Value Decomposition (this might be of independent inter-
est) and (2) a simple way of scaling the weights. Besides
MAX-rCSP problems, we also give PTAS’s for problems
with a constant number of global constraints such as maxi-
mum weighted graph bisection and some generalizations.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms

∗Supported in part by PROCOPE Project and by IST Grant
1496 (RAND-APX).
†Supported in part by DFG Grants, Max-Planck Research
Prize, and by IST Grant 14036 (RAND-APX).
‡Supported in part by NSF Grant CCR-0310805.
ΣSupported by NSF award CCR-0307536 and a Sloan foun-
dation fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05, May 22-24, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

General Terms: Algorithms, Theory

Keywords
Tensor decomposition, Approximation scheme

1. INTRODUCTION
The singular value decomposition is a useful tool in the

design of efficient algorithms for a variety of problems (e.g.,
[10, 14]). In this paper, motivated by boolean constraint sat-
isfaction problems (CSP’s) with r variables per constraint,
we propose an extension of low-rank approximation to ten-

sors, i.e., r-dimensional real arrays. We give an efficient
algorithm for finding such an approximation and apply it to
weighted MAX-rCSP, i.e., the problem of finding a boolean
assignment that maximizes the total weight of satisfied con-
straints. As a consequence, for any MAX-rCSP that satis-
fies a certain density condition, we obtain a polynomial-time
approximation scheme. In the past, there has been much
progress on special cases; in particular, there are polynomial-
time approximation schemes for dense unweighted problems
[2, 3, 8, 11, 4, 1], and several cases of MAX-2CSP with met-
ric weights including maxcut and partitioning [5, 12, 6, 7].
We will show that our density condition captures all known
special cases for which PTAS’s exist as well as the metric
MAX-2CSP (for which no PTAS was known before) and
some natural generalizations.

A MAX-rCSP problem can be formulated as a problem
of maximizing a homogenous degree r polynomial in the
variables x1, x2, . . . xn, (1−x1), (1−x2), . . . (1−xn) (see e.g.
[1].) Let

S = {y = (x1, . . . xn, (1 − x1), . . . (1 − xn)) : xi ∈ {0, 1}}

be the solution set. Then the problem is

Maxy∈S

2n
X

i1,i2,...ir=1

Ai1,i2,...ir yi1yi2 . . . yir .

where A is a given nonnegative symmetric r-dimensional
array i.e.,

Ai1,i2,...ir = Aiσ(1) ,iσ(2),...iσ(r)

for any permutation σ. The entries of the r-dimensional
array A can be viewed as the weights of an r-uniform hy-
pergraph on 2n vertices. Throughout, we assume that r is
fixed.

Our main tool to solve this problem is a generalization
of low-rank matrix approximation. A rank-1 tensor is the
outer product of r vectors x(1), . . . x(r−1), x(r), given by the r-

dimensional array whose (i1, . . . ir)’th entry is x
(1)
i1

x
(2)
i2

, . . . x
(r)
ir

;

it is denoted x(1)⊗x(2)⊗. . . x(r). We will show the following:

1. For any r-dimensional array A, there exists a good
approximation by the sum of a small number of rank-
1 tensors.

2. We can algorithmically find such an approximation.

In the case of matrices, traditional Linear Algebra algo-
rithms find good approximations. Indeed, we can find the
best approximations under both the Frobenius and L2 norms
using the Singular Value Decomposition. Unfortunately,
there is no such theory (or algorithm) for r-dimensional ar-
rays when r ≥ 2. Here, we will develop sampling-based
algorithms for finding low-rank approximations which serve
our purpose. These claims are formalized in the next lemma
and theorem (see Section 3 for the definition of the general-
ized norms).

Lemma 1. For any tensor A, and any ε > 0, there exist

k ≤ 1/ε2 rank-1 tensors, B1, B2, . . . Bk such that

||A − (B1 + B2 + . . . Bk)||2 ≤ ε||A||F .

Theorem 2. For any tensor A, and any ε > 0, we can

find k rank-1 tensors B1, B2, . . . Bk, where k ≤ 4/ε2, in time

(n/ε)O(1/ε4) such that with high probability at least 3/4 we

have

||A − (B1 + B2 + . . . Bk)||2 ≤ ε||A||F .

The proofs and the algorithm for low-rank tensor approxi-
mation are given in Section 3. For r = 2, the running time
is a fixed polynomial in n and exponential only in ε.

Next, we give a density condition so that if a MAX-rCSP
viewed as a weighted r-uniform hypergraph satisfies this
condition, then there is a PTAS for the problem. This
condition provides a unified framework for a large class of
weighted MAX-rCSP’s.

Define the node weights D1, . . . , Dn of A and their average
as

Di =
X

i2,i3,...ir∈V

Ai1,i2,...i D̄ =
1

2n

n
X

i=1

Di.

Note that when r = 2 and A is the adjacency matrix of a
graph, the Di are the degrees of the vertices and D̄ is the
average degree.

Definition 1. The core-strength of a weighted r-uniform

hypergraph given by an r-dimensional tensor A is

2n
X

i=1

Di

!r−2
X

i1,i2,...,ir

A2
i1,...,ir

Qr
j=1(Dij

+ D̄)

We say that a class of weighted hypergraphs (MAX-rCSP’s)
is core-dense if the core-strength is O(1) (i.e., independent
of A,n).

To motivate the definition, first suppose the class consists
of unweighted hypergraphs. Then if a hypergraph in the
class has E as the edge set with m edges, the condition says
that

mr−2
X

(i1,...,ir)∈E

1
Qr

j=1(Dij
+ D̄)

= O(1). (1)

Note that here the Di’s are the degrees of the hypergraph
vertices in the usual sense of the number of edges incident
to the vertex. It is easy to see this condition is satisfied for
dense hypergraphs, i.e., for r− uniform hypergraphs with
Ω(nr) edges, because in this case, D̄ ∈ Ω(nr−1).

The condition can be specialized to the case r = 2, where
it says that

X

i,j

A2
ij

(Di + D̄)(Dj + D̄)
= O(1). (2)

We will show that all metrics satisfy this condition. Also,
so do quasimetrics. These are weights that satisfy the tri-
angle inequality up to a constant factor (e.g., powers of a
metric) and arise in clustering applications [6, 17, 4]. So, as
a special case of our main result, we get PTAS’s for metrics
and quasimetrics. (While PTAS’s were known for the dense
case, they were not known previously for the metric case.)
Our main algorithmic result is the following.

Theorem 3. There is a PTAS for any core-dense weighted

MAX-rCSP.

The algorithm and proof are given in Section 4. We will
also show (in Section 5) that a generalization of the notion
of metric for higher r also satisfies our core-dense condition.

Theorem 4. Suppose for a MAX-rCSP, the tensor A
satisfies the following local density condition:

∀ i1, . . . , ir, Ai1,...,ir ≤ c

nr−1

r
X

j=1

Dij

where c is a constant. Then there is a PTAS for the MAX-

rCSP defined by A.

The condition in the theorem says that no entry of A is
“wild” in that it is at most a constant times the average
entry in the r “planes” passing through the entry. The rea-
son for calling such tensors “metric tensors” will become
clear when we show in Section 5 that for r = 2, metrics do
indeed satisfy this condition. When the matrix A is the ad-
jacency matrix of a graph, then the condition says that for
any edge, one of its end points must have degree Ω(n). This
is like the “everywhere” dense condition in [2]. Theorem
4 has the following corollary for “quasi-metrics”, where the
triangle inequality is only satisfied within constant factors -
Aik ≤ c(Aij + Ajk).

Corollary 5. There exists a PTAS for metric and quasi-

metric instances of MAX-CSP.

2. THE 2-DIMENSIONAL CASE
In this section, we prove Theorem 3 in the case r = 2.

This case already contains the idea of scaling which we will
use for the case of higher r. But, as mentioned earlier, this
case does not need special algorithms for finding low-rank
approximations - they are already available from Linear Al-
gebra.

Recall that we want to find

Maxy∈SAijyiyj = yT Ay,

where S = {y = (x1, x2, . . . xn, (1 − x1), (1 − x2), . . . (1 −
xn)), xi ∈ {0, 1}} is the solution set. We will describe in
this section an algorithm to solve this problem to within
additive error O(εnD̄), under the assumption that that the
core-strength of A is at most a constant c. The algorithm
will run in time polynomial in n for each fixed ε > 0. Note
that Maxy∈SyT Ay ≥ E(yT Ay) = 1

2
nD̄, where E denotes ex-

pectation over uniform random choice of x ∈ {0, 1}n. Thus,
this will prove Theorem (3) for this case (of r = 2).

The algorithm first scales the matrix A to get a matrix B
given by :

B = D−1AD−1

where, D is the diagonal matrix with Dii =
p

Di + D̄. The

scaling Bij =
Aij√

Di

√
Dj

is very natural and has been used in

other contexts (for example when A is the transition matrix
of a Markov Chain). This scaling unfortunately scales up
“small degree” nodes too much for our purpose and so we
use the modified scaling given here; we will see that while
the addition of D̄ does not increase the error in our approx-
imation algorithms, it helps by modulating the scaling up of
low degree nodes. Clearly,

Claim 1. ||B||2F is the core-strength of the matrix A.

By carrying out the standard Singular Value Decomposition
(SVD) of the matrix B, we can find in polynomial-time, for

any ε > 0, a matrix B̂ of rank l ≤ 4/ε2 such that

||B − B̂||2 ≤ ε

2
||B||F .

In fact, as shown in [10], such a matrix B̂ can be computed
in linear in n time with ε twice as large. We now let

Â = DB̂D.

Note that the rank of Â equals the rank of B̂. We then solve
the following problem approximately to within additive error
O(εnD̄).

max
y∈S

yT Ây (3)

We will show how to do this approximate optimization
presently. First, we analyze the error caused by replacing A
by Â :

Maxy∈S|yT (A − Â)y| = Maxy∈S|yT D(B − B̂)Dy|
≤ Maxy∈S|Dy|2||B − B̂||2
≤ ε

X

i

(Di + D̄)||B||F

≤ 4εnD̄(core-strength of A)1/2,

the last because of Claim 1 and the fact that
P

i Di = 2nD̄.
Now for solving the non-linear optimization problem (3),

we proceed as follows : suppose the SVD of B̂ expressed B̂
as UΣV , where the U is a 2n × l matrix with orthonormal
columns, Σ is a l×l diagonal matrix with the singular values
of B̂ and V is a l × 2n matrix with orthonormal rows. Now
we write

yT Ây = (yT DU)Σ(V Dy) = uT Σv

where, uT = yT DU and v = V Dy

are two l− vectors. This implies that there are really only 2l
“variables” - ui, vi in the problem (and not the n variables -
y1, y2, . . . yn). This is the idea we will exploit. Note that for
y ∈ S, we have (since U, V have orthonormal columns, rows
respectively)

|u|2 ≤ |yT D|2 ≤
X

i

(Di + D̄) ≤ 4nD̄.

Similarly, |v|2 ≤ 4nD̄. So letting

α =
p

nD̄,

we see that the the vectors u, v live in the rectangle

R = {(u, v) : −2α ≤ ui, vj ≤ +2α}.

Also, the gradient of the function uT Σv with respect to u is
Σv and with respect to v is uT Σ; in either case, the length
of the gradient vector is at most 2ασ1(B̂) ≤ 2α

√
c. We now

divide up R into small cubes; each small cube will have side

η =
εα

20
√

l
,

and so there will be ε−O(l) small cubes. The function uT Σv
does not vary by more than εnD̄

√
c/10 over any small cube.

Thus we can solve (3) by just enumerating all the small
cubes in R and for each determining whether it is feasible
(i.e., whether there exists a 0-1 vector x such that for some
(u, v) in this small cube, we have uT = yT Du, v = V Dy, for
y = (x, 1 − x).)

For each small cube C in R, this is easily formulated as an
integer program in the n 0,1 variables x1, x2, . . . xn with 4l
constraints (arising from the upper and lower bounds on the
coordinates of u, v which ensure that (u, v) is in the small
cube.)

For a technical reason, we have to define a Di to be “ex-
ceptional” if Di ≥ ε6nD̄/106; also call an i exceptional if
either Di or Di+n is exceptional. Clearly, the number of
exceptional Di is at most 2×106/ε6 and we can easily iden-

tify them. We enumerate all possible sets of 2O(1/ε6) 0,1
values of the exceptional xi and for each of these set of val-
ues, we have an Integer Program again, but now only on the
non-exceptional variables.

We consider the Linear Programming (LP) relaxation of
each of these Integer Programs obtained by relaxing xi ∈
{0, 1} to 0 ≤ xi ≤ 1. If one of these LP’s has a feasible
solution, then, it has a basic feasible solution with at most 4l
fractional variables, Rounding all these fractional variables
to 0 changes Dy by a vector of length at most

q

4lε6nD̄/106 ≤ η.

Thus, the rounded integer vector y gives us a (u, v) in the
small cube C enlarged (about its center) by a factor of 2
(which we call 2C). Conversely, if none of these LP’s has
a feasible solution, then clearly neither do the correspond-
ing Integer Programs and so the small cube C is infeasible.
Thus, for each small cube C, we find (i) either C is infeasi-
ble or (ii) 2C is feasible. Note that uT Σv varies by at most
εnD̄/5 over 2C. So, it is clear that returning the maximum
value of uT Σv over all centers of small cubes for which (ii)
holds suffices. This is what the algorithm does.

Remark We could have carried this out with any “scal-
ing’. The current choice turns out to be useful for the two

important special cases here. Note that we are able to add
the D̄ almost “for free” since we have

P

i Di + D̄ ≤ 2
P

Di.

2.1 Maximum Weighted Bisection and other
problems

The maximum weighted bisection problem in an undi-
rected graph is to split the vertices into equal parts so as
to maximize the total weight of edges from one part to the
other. We will show that this problem has a PTAS for the
case of core-dense weights. In fact, we will show something
more general : consider a family of problems of the form :

Maxy∈SyT Ay subject to Cx ≤ d xi ∈ {0, 1},
where

(i) the number of constraints in Cx ≤ d is O(1),
(ii) for every solution of Cx ≤ d ; 0 ≤ xi ≤ 1, we can

round only the fractional valued variables to integer values
to get a solution to Cx ≤ d , xi{0, 1} and

(iii) the family has a core-dense weights matrix (A).
Our result is that any such family admits a PTAS. The

argument proceeds the same way as when there are no “side-
constraints” Cx ≤ d. But we note that using (i), there are
still only O(l) fractional variables in a basic feasible solution
of every LP. By (ii), we can round them to produce an in-
tegral solution with the same error bounds (within constant
factors) as we get for the problem with no side-constraints.

Note that for the maximum weighted bisection problem,
Cx ≤ d has just two constraints -

P

i xi ≤ n/2 and
P

i xi ≥
n/2 and (ii) is easily seen to be valid. Indeed, more generally,
we may also have node weights and require that we split into
two parts of equal node weight, as long as (ii) is valid. More
generally, we can also require some O(1) subsets of vertices
must all be bisected etc.

3. FAST TENSOR APPROXIMATION VIA
SAMPLING

Corresponding to A, there is an r-linear form which for a
set of r vectors x(1), x(2), . . . x(r−1), x(r), is defined as

A(x(1), x(2), . . . x(r)) =
X

i1,i2,...ir

Ai1,i2,...ir−1,ir x
(1)
i1

x
(2)
i2

, . . . x
(r)
ir

.

We will use the following two norms of r-dimensional ar-
rays corresponding to the Frobenius norm and L2 norm for
matrices.

||A||F =
“

X

A2
i1,i2,...ir

” 1
2

||A||2 = max
x(1),x(2),...x(r)

A(x(1), x(2), . . . x(r−1), x(r))

|x(1)||x(2)|

We begin with a proof of Lemma 1 about the existence of
a low-rank tensor decomposition.

Proof. If ||A||2 ≤ ε||A||F , then we are done. If not, there

are vectors x(1), x(2), . . . , x(r), all of length 1 such that

A(x(1), x(2), . . . , x(r)) ≥ ε||A||F .

Now consider the r−dimensional array

B = A − (A(x(1), x(2), . . . , x(r)))x(1) ⊗ x(2) ⊗ . . . x(r).

It is easy to see that

||B||2F = ||A||2F − (A(x, y, z, . . .)2).

We can repeat on B and clearly this process will only go on
for at most 1/ε2 steps.

From the proof of Lemma 1, it suffices to find x(1), x(2), . . . , x(r)

all of length 1, maximizing A(x(1), x(2), . . . , x(r)) to within
additive error ε||A||F /2. We will give an algorithm to solve
this problem. We need a bit more notation. For any r − 1
vectors x(1), x(2), . . . x(r−1), we define A(x(1), x(2), . . . x(r−1), ·)
as the vector whose i’th component is

X

i1,i2,...ir−1

Ai1,i2,...ir−1,ix
(1)
i1

x
(2)
i2

, . . . x
(r−1)
ir−1

.

Tensor decomposition

Set η = ε2/100r
√

n and s = 105r/ε2.

1. Pick s random (r − 1)-tuples (i1, i2, . . . ir−1) with
probabilities proportional to the sum of squared en-
tries on the line defined by it:

p(i1, i2, . . . ir−1) =

P

i A2
i1,i2,...ir−1,i

||A||2F
.

Let I be the set of s r − 1 tuples picked.

2. For each i1, i2, . . . ir−1 ∈ I, enumerate all possible

values of z
(1)
i1

, z
(2)
i2

, . . . z
(r−1)
ir−1

whose coordinates are

in the set

J = {−1,−1+η,−1+2η, . . . 0, . . . 1−η, 1}s(r−1).

(a) For each set of ẑ(t), for each i ∈ Vr, compute

yi =
X

(i1,...ir−1)∈I

A(i1, . . . ir−1, i)ẑ
(1)
i1

. . . ẑ
(r−1)
ir−1

.

and normalize the resulting vector y to be a
unit vector (a candidate for z(r)).

(b) Consider the (r − 1)-dimensional array A(y)
defined by

(A(y))i1,i2,...ir−1 =
X

i

Ai1,i2,i3...ir−1,i yi

and apply the algorithm recursively to find the
optimum

A(y)(x(1), x(2), . . . x(r−1))

with |x(1)| = . . . |x(r−1)| = 1 to within
additive error ε||A(y)||F /2. (Note that
||A(y)||F ≤ ||A||F by Cauchy-Schwartz).

3. Output the set of vectors that given the maximum
among all these candidates.

Here is the idea behind the algorithm. Suppose z(1), z(2), . . . z(r)

are the (unknown) unit vectors that maximize A(x(1), x(2), . . .).
Since

A(z(1), . . . z(r−1), z(r)) = z(r) · A(z(1), . . . z(r−1), ·),

we have

z(r) =
A(z(1), z(2), . . . z(r−1), ·)
|A(z(1), z(2), . . . z(r−1), ·)| .

Thus, if we had z(1), z(2), . . . z(r−1), then we could find z(r).
In fact, we can estimate the components of z(r) if we had suf-
ficiently many random terms in the sum A(z(1), . . . z(r−1), ·).
It turns out that we need only s = O(1/ε2) terms for a good

estimate. Now we do not need to know the z(1), z(2), . . . , z(r−1)

completely; only s(r − 1) of their coordinates in total are
needed for the estimate. We enumerate all possibilities for
the values of these coordinates (in steps of a certain size)
and one of the sets of coordinates we enumerate will corre-
spond to the optimal z(1), z(2), . . . z(r−1), whence we get the
an estimate of z(r). For each candidate z(r), we can reduce
the problem to maximizing an (r − 1)-dimensional tensor
and we solve this recursively.

We will now analyze the algorithm and consequently prove
Theorem 2. We begin by showing the discretization does not
cause any significant loss.

Lemma 6. Let z(1), z(2), . . . z(r−1) be the optimal unit vec-

tors. Suppose w(1), w(2), . . . w(r−1) are obtained from the z(t)

’s by rounding each coordinate down to the nearest integer

multiple of η. Then,

˛

˛

˛
A(z(1), . . . z(r−1), ·) − A(w(1), . . . w(r−1), ·)

˛

˛

˛
≤ ε2

100
||A||F .

Proof. We may write

˛

˛

˛
A(z(1), z(2), . . . z(r−1), ·) − A(w(1), w(2), . . . w(r−1), ·)

˛

˛

˛

≤
˛

˛

˛
A(z(1), z(2), . . . z(r−1), ·) − A(w(1), z(2), . . . z(r−1), ·)

˛

˛

˛
+

˛

˛

˛A(w(1), z(2), . . . z(r−1), ·) − A(w(1), w(2), z(3), . . . z(r−1), ·)
˛

˛

˛ . . .

A typical term above is

|A(w(1), . . . w(t), z(t+1), . . . z(r−1), ·)
−A(w(1), . . . w(t), w(t+1), z(t+2), . . . z(r−1), ·)|
≤
˛

˛

˛
B(z(t+1) − w(t+1))

˛

˛

˛

≤ ||B||2|z(t+1) − w(t+1)|
≤ ||B||F η

√
n ≤ ||A||F η

√
n.

Here, B is the matrix defined as the matrix whose ij’th entry
is

X

j1,...jt,jt+2...jr−1

Aj1,...jt,i,jt+2,...jr−1,jw
(1)
j1

. . . w
(t)
jt

z
(t+2)
jt+2

. . . z
(r−1)
jr−1

The claim follows.

Next, we analyze the error incurred by sampling.
Consider an (r − 1)-tuple (i1, i2, . . . ir−1) ∈ I and define

the random variables variables Xi for i by

Xi =
Ai1,i2,...ir−1,iw

(1)
11

w
(2)
i2

. . . w
(r−1)
ir−1

p(i1, i2, . . . ir−1)
.

It follows that

E(Xi) = A(w(1), w(2) . . . w(r−1), ·)i.

We estimate the variance:

X

i

Var(Xi) ≤
X

i

X

i1,i2,...

A2
i1,i2,...ir−1,i(w

(1)
i1

. . . w
(r−1)
ir−1

)2

p(i1, i2, . . .)

≤
X

i1,i2,...

(z
(1)
i1

. . . z
(r−1)
ir−1

)2

p(i1, i2, . . .)

X

i

A2
i1,i2,...ir−1,i

≤ ||A||2F .

Consider the yi computed by the algorithm when all ẑ
(t)
it

are

set to w
(t)
it

. This will clearly happen sometime during the
enumeration. This yi is just the sum of s i.i.d. copies of Xi,
one for each element of I. Thus, we have that

E(y) = sA(w(1), w(2) . . . w(r−1), ·)
and

Var(y) = E(|y − E(y)|2) ≤ s||A||2F .

We will sketch the rest of the argument. Define

ζ = A(z(1), z(2), . . . z(r−1), ·) and ∆ = y − sζ.

From the above, it follows that with probability at least
1 − (1/10r), we have

|∆| ≤ 10r
√

s||A||F .

Using this,
˛

˛

˛

˛

y

|y| −
ζ

|ζ|

˛

˛

˛

˛

=
|(y|ζ| − ζ|y|)|

|y||ζ|

=
1

|y||ζ| |(∆ + sζ)|ζ| − ζ(|y| − s|ζ| + s|ζ|)|

≤ 2|∆|
(s|y|) ≤ ε

50
,

assuming |y| ≥ ε||A||F /100. If this assumption does not
hold, we know that the |ζ| ≤ ε||A||F /20 and in this case,
the all-zero tensor is a good approximation to the optimum.
From this, it can be shown that

||A(
y

|y|) − A(
ζ

|ζ|)||F ≤ ε

10
||A||F .

Thus, for any r − 1 unit length vectors a(1), a(2), . . . a(r−1),
we have
˛

˛

˛

˛

A(a(1), . . . a(r−1),
y

|y|) − A(a(1), . . . a(r−1),
ζ

|ζ|)
˛

˛

˛

˛

≤ ε

10
||A||F .

This implies that the optimal set of vectors for A(y/|y|) are

nearly optimal for A(ζ/|ζ|). Since z(r) = ζ/|ζ|, the optimal

vectors for the latter problem are z(1), . . . , z(r−1).
The running time of algorithm is dominated by the num-

ber of candidates we enumerate, and is

poly(n)

„

1

η

«s2r

=
“n

ε

”O(1/ε4)

.

4. APPROXIMATION SCHEMES FOR CORE-
DENSE MAX-RCSP’S

In this section, we give a PTAS for core-dense weighted
MAX-rCSP’s proving Theorem 3. For this, we now only
need to describe the scaling (which is a direct generalization
of the case r = 2) and how to optimize in the case where

the coefficient tensor is the sum of a small number of rank-1
tensors. First we describe the scaling.

We wish to solve the problem

max
y∈S

A(y, y, . . . , y).

The algorithm first scales the entries of A to get an r-
dimensional tensor B, as follows :

Bi1,...,ir =
Ai1,...,ir
Qr

j=1 αij

where α = (α1, . . . , αn) ∈ R
n is defined by αj =

p

D̄ + Dj .
Note that again for any y ∈ S, using the substitution,

zj = yjαj , we get

A(y, . . . , y) = B(z, . . . , z).

Then, applying the sampling algorithm from Section 3 to
get a tensor B̂ of rank at most k satisfying

||B − B̂||2 ≤ ε

2
||B||F .

We then solve the following problem approximately to within
additive error ε|α|r ||B||F /2.

max
z:yj∈S1

B̂(z, z, . . . , z).

The error of approximating B by B̂ is bounded by

max
z∈S1

|(B − B̂)(z, . . . , z)|

≤ max
z:|z|≤|α|}

|(B − B̂)(z, . . . , z)|

≤ |α|r||B − B̂||2
≤ ε|α|r||B||F

≤ ε(

n
X

i=1

(D̄ + Di))
r/2

X

i1,...,ir

A2
i1,...,ir

Qr
j=1 Dij

!1/2

≤ ε2r/2c(

n
X

i=1

Di)

where c is the bound on the core-strength, noting that
P

i(D̄+
Di) = 2

P

i Di.

4.1 Optimizing constant-rank tensors
From the above it suffices to deal with a tensor of constant

rank. Let A be a tensor of dimension r and rank `, say:

A =
X

1≤j≤`

A(j)

with

A(j) = ajx
(j,1) ⊗ x(j,2)... ⊗ x(j,r)

where the x(j,i) ∈ R2n are length one vectors and moreover
we have that ||A(j))||F ≤ ||A||F and ` = O(ε−2). We want
to maximize approximately B(y, y, · · · y), over the set of vec-
tors y satisfying for each i ≤ n either (yi, yn+i) = (0, αn+i)
or (yi, yn+i) = (αi, 0) where α is a given 2n-dimensional
positive vector. Let us define the tensor B by

Bi1,i2,...ir = αi1αi2 , ...αir Ai1,i2,...ir ∀ i1, i2, ...ir ∈ V.

Then, with yj = αjxj , we have that

B(x, x, ...x) = A(y, y, ...y).

Thus, we can as well maximize approximately B now for y
in S. We have

B(y, y, · · · y) =
X̀

j=1

aj

r
Y

k=1

(z(j,k) · y
!

(4)

with

z(j,r) = αT x(j,r), 1 ≤ j ≤ `, 1 ≤ k ≤ r.

Similarly as in the 2-dimensional case, B(y, y, · · · y) depends

really only on the `r variables uj,i, say, where uj,i = z(j,i) ·
y, j = 1, 2, ..., `, i = 1, 2, ..., r, and the values of each of these
products are confined to the interval [−2|α|, +2|α|]. Then,
exactly similarly as in the 2-dimensional case, we can get
in polynomial time approximate values for the uj,i within
ε|α| from the optimal ones. Inserting then these values in
(4) gives an approximation of maxB(y) with additive error

O (ε|α|r ||B||F) which is what we need (taking A = B̂ of the
previous subsection.)

5. METRIC TENSORS
Lemma 7. Let A be an r-dimensional tensor satisfying

the following local density condition:

∀ i1, . . . , ir ∈ V, Ai1,...,ir ≤ c

rnr−1

r
X

j=1

Dij

where c is a constant. Then A is a core-dense hypergraph

with core-strength c.

Proof. We need to bound the core-strength of A. To
this end,

X

i1,i2,...,ir∈V

A2
i1,...,ir

Qr
j=1(Dij

+ D̄)

≤ c

rnr−1

X

i1,i2,...,ir∈V

Ai1,...,ir

Pr
j=1 Dij

Qr
j=1(Dij

+ D̄)

≤ c

rnr−1

X

i1,i2,...,ir∈V

Ai1,...,ir

r
X

j=1

1
Q

k∈{1,...,r}\j(Dik
+ D̄)

≤ c

rnr−1

X

i1,i2,...,ir∈E

Ai1,...,ir

!

r

D̄r−1

=
c

(
Pn

i=1 Di)r−2
.

Thus, the core-strength is at most

(
n
X

i=1

Di)
r−2

X

i1,i2,...,ir∈E

A2
i1,...,ir

Πr
j=1(Dij

+ D̄)
≤ c.

Theorem 4 follows directly from Lemma 7 and Theorem
3. We next prove Corollary 5 for metrics.

Proof. (of Corollary 5) For r = 2, the condition of The-
orem 4 says that for any i, j ∈ V ,

Ai,j ≤ c

2n
(Di + Dj).

We will verify that this holds for a metric MAX-2CSP with
c = 2. When the entries of A form a metric, for any i, j, k,
we have

Ai,j ≤ Ai,k + Ak,j

and so

Ai,j ≤ 1

n

n
X

k=1

Ai,k +

n
X

k=1

Aj,k

!

=
1

n
(Di + Dj).

A nonnegative real function d defined on M ×M is called
quasimetric (cf. [13], [16]; [15]) if d(x, y) = 0 whenx = y,
d(x, y) = d(y, x) and d(x, z) ≤ C(d(x, y) + d(y, z)), the last
for some positive real number C, and all x, y, z ∈ M . Thus
if it holds with C = 1, then d is a metric on M . The proof of
Corollary 5 easily extends to quasimetrics. An interesting
property of a quasimetric d(x, y) is that d(x, y)a is also a
quasimetric for every positive real number a (cf.[13]). Thus
this notion encompasses a large number of interesting dis-
tance functions which are not metrics, like the squares of
Euclidean distances used in clustering applications.

5.1 Core-dense graphs
We now confine attention to the case of graphs. As we

saw already, dense graphs are core-dense graphs, but the
converse is not in general true. One simple example is a
graph consisting of a dense graph on Ω(n3/4) vertices, up to
O(n) edges in the subraph defined by the rest of the vertices

and up to O(n5/4) edges from high-degree vertices of the
dense subgraph to the rest. We show below that as in this
example, in fact there are always “large” dense subgraphs
in a core-dense graph.

Theorem 8. A core-dense graph with m edges contains

a dense induced subgraph with θ(
√

m) vertices.

Proof. Since G is core-dense, we have

X

i,j∈E

1

(di + d̄)(dj + d̄)
≤ c

for some c.
We assume that m < n2/16c; otherwise, G itself is a dense

graph.
We partition the vertices of the graph into 3 subsets R, S, T

according to their degrees:

R = {i ∈ V : di ≥ 8
√

m}

S = {i ∈ V :

√
m

64c
≤ di < 8

√
m}

T = {i ∈ V : di <

√
m

64c
}

We will prove that |S| ≥ √
m/8. Suppose not for a con-

tradiction.
Using the density condition, the number of edges in the

subgraph induced by T is at most

c

„√
m

64c
+

m

n

«2

<
m

16
.

Similarly, the number of edges between S and T is at most

c(8
√

m +
m

n
)(

√
m

64c
+

m

n
) <

m

8
.

Next, the number of vertices in R is at most 2m/8
√

m =√
m/4. Thus the total number of edges in the graph induced

by R is at most m/32. Also, the number of edges between
R and S is at most

|S|
√

m

4
<

m

32
.

Adding up these bounds, the total number of edges in G not
in the subgraph induced by S is at most m/2. Therefore,
the number of vertices in S is at least

m

8
√

m
=

√
m

8

which contradicts our assumption.
Thus G contains an induced subgraph with

√
m/8 vertices

and minimum degree
√

m/64c.

6. REFERENCES
[1] N. Alon, W. Fernandez de la Vega, R. Kannan and M.

Karpinski, Random Sampling and MAX-CSP

Problems, Proc. 34th ACM STOC (2002), pp. 232-239.

[2] S. Arora, D. Karger and M. Karpinski, Polynomial

Time Approximation Schemes for Dense Instances of

NP-Hard Problems, Proc. 27th STOC (1995), pp.
284-293; J. Computer and System Sciences 58 (1999),
pp. 193-210.

[3] W. Fernandez de la Vega, MAX-CUT has a

Randomized Approximation Scheme in Dense Graphs,
Random Structures and Algorithms 8 (1996), pp.
187-198.

[4] W. Fernandez de la Vega and M. Karpinski,
Polynomial time approximation of dense weighted

instances of MAX-CUT, Random Structures and
Algorithms 16 (2000), pp. 314-332.

[5] W. Fernandez de la Vega and C. Kenyon, A

randomized approximation scheme for metric

MAX-CUT, Proc. 39th IEEE FOCS (1998), pp.
468-471, final version in J. Computer and System
Sciences 63 (2001), pp. 531-541.

[6] W. Fernandez de la Vega, M. Karpinski, C. Kenyon
and Y. Rabani, Approximation schemes for clustering

problems, Proc. 35th ACM STOC (2003), pp. 50-58.

[7] W. Fernandez de la Vega, M. Karpinski and C.
Kenyon, Approximation Schemes for Metric Bisection

and Partitioning, Proc. 15th ACM-SIAM SODA
(2004), pp. 499-508.

[8] A. M. Frieze and R. Kannan, The Regularity Lemma

and Approximation Schemes for Dense Problems,
Proc. 37th IEEE FOCS (1996), pp. 12-20.

[9] A. M. Frieze and R. Kannan, Quick Approximation to

Matrices and Applications, Combinatorica 19 (2)
(1999), pp. 175-120.

[10] A. M. Frieze, R. Kannan and S. Vempala, Fast

Monte-Carlo Algorithms for Finding Low-Rank

Approximations, J. of the ACM 51(6) (2004), pp.
1025-1041.

[11] O. Goldreich, S. Goldwasser and D. Ron, Property

Testing and its Connection to Learning and

Approximation, Proc. 37th IEEE FOCS (1996), pp.
339-348; J. ACM 45 (1998), pp. 653-750.

[12] P. Indyk, A Sublinear Time Approximation Scheme

for Clustering in Metric Spaces, Proc. 40th IEEE
FOCS (1999), pp. 154-159.

[13] R. Macias and C. Segovia, Lipschitz functions on

spaces of homogenous type, Advances in Mathematics
33 (1979), pp. 257-270.

[14] F. McSherry, Spectral Partitioning of Random Graphs,
FOCS 2001, pp.529-537

[15] R. R. Mettu and C. G. Plaxton, The Online Median

Problem, Proc. 41st IEEE FOCS (2000), pp. 339-348.

[16] S. Semmes, A brief introduction to Gromov’s notion of

hyperbolic groups, Mathematics, arXiv: math
CA/021341 (2003), pp. 1-10.

[17] P. H. Sneath and R. R. Sokal, Numerical Taxonomy,
Freeman, London, 1973.

