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Summary. Spectral methods refer to the use of eigenvalues, eigenvectors, sin-
gular values and singular vectors. They are widely used in Engineering, Ap-
plied Mathematics and Statistics. More recently, spectral methods have found
numerous applications in Computer Science to “discrete” as well “continuous”
problems. This book describes modern applications of spectral methods, and
novel algorithms for estimating spectral parameters.

In the first part of the book, we present applications of spectral methods to
problems from a variety of topics including combinatorial optimization, learning
and clustering.

The second part of the book is motivated by efficiency considerations. A fea-
ture of many modern applications is the massive amount of input data. While
sophisticated algorithms for matrix computations have been developed over a
century, a more recent development is algorithms based on “sampling on the
fly” from massive matrices. Good estimates of singular values and low rank ap-
proximations of the whole matrix can be provably derived from a sample. Our
main emphasis in the second part of the book is to present these sampling meth-
ods with rigorous error bounds. We also present recent extensions of spectral
methods from matrices to tensors and their applications to some combinatorial
optimization problems.
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Chapter 1

The Best-Fit Subspace

To provide an in-depth and relatively quick introduction to SVD and its ap-
plicability, in this opening chapter, we consider the best-fit subspace problem.
Finding the best-fit line for a set of data points is a classical problem. A natural
measure of the quality of a line is the least squares measure, the sum of squared
(perpendicular) distances of the points to the line. A more general problem, for
a set of data points in Rn, is finding the best-fit k-dimensional subspace. SVD
can be used to find a subspace that minimizes the sum of squared distances
to the given set of points in polynomial time. In contrast, for other measures
such as the sum of distances or the maximum distance, no polynomial-time
algorithms are known.

A clustering problem widely studied in theoretical computer science is the
k-means problem. The goal is to find a set of k points that minimize the sum of
their squared distances of the data points to their nearest facilities. A natural
relaxation of the k-means problem is to find the k-dimensional subspace for
which the sum of the distances of the data points to the subspace is minimized
(we will see that this is a relaxation). We will apply SVD to solve this relaxed
problem and use the solution to approximately solve the original problem.

1.1 Singular Value Decomposition

For an n×n matrix A, an eigenvalue λ and corresponding eigenvector v satisfy
the equation

Av = λv.

In general, i.e., if the matrix has nonzero determinant, it will have n nonzero
eigenvalues (not necessarily distinct). For an introduction to the theory of
eigenvalues and eigenvectors, several textbooks are available.

Here we deal with an m×n rectangular matrix A, where the m rows denoted
A(1), A(2), . . . A(m) are points in Rn; A(i) will be a row vector.

If m 6= n, the notion of an eigenvalue or eigenvector does not make sense,
since the vectors Av and λv have different dimensions. Instead, a singular value
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4 CHAPTER 1. THE BEST-FIT SUBSPACE

σ and corresponding singular vectors u ∈ Rm, v ∈ Rn simultaneously satisfy
the following two equations

1. Av = σu

2. uTA = σvT .

We can assume, without loss of generality, that u and v are unit vectors. To
see this, note that a pair of singular vectors u and v must have equal length,
since uTAv = σ‖u‖2 = σ‖v‖2. If this length is not 1, we can rescale both by
the same factor without violating the above equations.

Now we turn our attention to the value max‖v‖=1 ‖Av‖2. Since the rows of
A form a set of m vectors in Rn, the vector Av is a list of the projections of
these vectors onto the line spanned by v, and ‖Av‖2 is simply the sum of the
squares of those projections.

Instead of choosing v to maximize ‖Av‖2, the Pythagorean theorem allows
us to equivalently choose v to minimize the sum of the squared distances of the
points to the line through v. In this sense, v defines the line through the origin
that best fits the points.

To argue this more formally, Let d(A(i), v) denote the distance of the point
A(i) to the line through v. Alternatively, we can write

d(A(i), v) = ‖A(i) − (A(i)v)vT ‖.

For a unit vector v, the Pythagorean theorem tells us that

‖A(i)‖2 = ‖(A(i)v)vT ‖2 + d(A(i), v)2.

Thus we get the following proposition. Note that ‖A‖2F =
∑
i,j A

2
ij refers to the

squared Frobenius norm of A.

Proposition 1.1.

max
‖v‖=1

‖Av‖2 = ||A||2F− min
‖v‖=1

‖A−(Av)vT ‖2F = ||A||2F− min
‖v‖=1

∑
i

‖A(i)−(A(i)v)vT ‖2

Proof. We simply use the identity:

‖Av‖2 =
∑
i

‖(A(i)v)vT ‖2 =
∑
i

‖A(i)‖2 −
∑
i

‖A(i) − (A(i)v)vT ‖2

The proposition says that the v which maximizes ‖Av‖2 is the “best-fit”
vector which also minimizes

∑
i d(A(i), v)2.

Next, we claim that v is in fact a singular vector.

Proposition 1.2. The vector v1 = arg max‖v‖=1 ‖Av‖2 is a singular vector,
and moreover ‖Av1‖ is the largest (or “top”) singular value.
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Proof. For any singular vector v,

(ATA)v = σATu = σ2v.

Thus, v is an eigenvector of ATA with corresponding eigenvalue σ2. Conversely,
an eigenvector of ATA is also a singular vector of A. To see this, let v be an
eigenvector of ATA with corresponding eigenvalue λ. Note that λ is positive,
since

‖Av‖2 = vTATAv = λvT v = λ‖v‖2

and thus

λ =
‖Av‖2
‖v‖2 .

Now if we let σ =
√
λ and u = Av/σ, it is easy to verify that u,v, and σ

satisfy the singular value requirements. The right singular vectors {vi} are thus
eigenvectors of ATA.

Now we can also write

‖Av‖2 = vT (ATA)v.

Viewing this as a function of v, f(v) = vT (ATA)v, its gradient is

∇f(v) = 2(ATA)v.

Thus, any local maximum of this function on the unit sphere must satisfy

∇f(v) = λv

for some λ, i.e., ATAv = λv for some scalar λ. So any local maximum is an
eigenvector of ATA. Since v1 is a global maximum of f , it must also be a local
maximum and therefore an eigenvector of ATA.

More generally, we consider a k-dimensional subspace that best fits the data.
It turns out that this space is specified by the top k singular vectors, as stated
precisely in the following proposition.

Theorem 1.3. Define the k-dimensional subspace Vk as the span of the follow-
ing k vectors:

v1 = arg max
‖v‖=1

‖Av‖

v2 = arg max
‖v‖=1,v·v1=0

‖Av‖

...

vk = arg max
‖v‖=1,v·vi=0 ∀i<k

‖Av‖,
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where ties for any arg max are broken arbitrarily. Then Vk is optimal in the
sense that

Vk = arg min
dim(V )=k

∑
i

d(A(i), V )2.

Further, v1, v2, ..., vn are all singular vectors, with corresponding singular values
σ1, σ2, ..., σn and

σ1 = ‖Av1‖ ≥ σ2 = ‖Av2‖ ≥ ... ≥ σn = ‖Avn‖.

Finally, A =
∑n
i=1 σiuiv

T
i .

Such a decomposition where,

1. The sequence of σi’s is nonincreasing

2. The sets {ui}, {vi} are orthonormal

is called the Singular Value Decomposition (SVD) of A.

Proof. We first prove that Vk are optimal by induction on k. The case k = 1 is
by definition. Assume that Vk−1 is optimal.

Suppose V ′k is an optimal subspace of dimension k. Then we can choose an
orthonormal basis for V ′k, say w1, w2, . . . wk, such that wk is orthogonal to Vk−1.
By the definition of V ′k, we have that

||Aw1||2 + ||Aw2
2||+ . . . ||Awk||2

is maximized (among all sets of k orthonormal vectors.) If we replace wi by vi
for i = 1, 2, . . . , k − 1, we have

‖Aw1‖2 + ‖Aw2
2‖+ . . . ‖Awk‖2 ≤ ‖Av1‖2 + . . .+ ‖Avk−1‖2 + ‖Awk‖2.

Therefore we can assume that V ′k is the span of Vk−1 and wk. It then follows
that ‖Awk‖2 maximizes ‖Ax‖2 over all unit vectors x orthogonal to Vk−1.

Proposition 1.2 can be extended to show that v1, v2, ..., vn are all singular
vectors. The assertion that σ1 ≥ σ2 ≥ .... ≥ σn ≥ 0 follows from the definition
of the vi’s.

We can verify that the decomposition

A =

n∑
i=1

σiuiv
T
i

is accurate. This is because the vectors v1, v2, ..., vn form an orthonormal basis
for Rn, and the action of A on any vi is equivalent to the action of

∑n
i=1 σiuiv

T
i

on vi.

Note that we could actually decompose A into the form
∑n
i=1 σiuiv

T
i by

picking {vi} to be any orthogonal basis of Rn, but the proposition actually
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states something stronger: that we can pick {vi} in such a way that {ui} is also
an orthogonal set.

We state one more classical theorem. We have seen that the span of the
top k singular vectors is the best-fit k-dimensional subspace for the rows of A.
Along the same lines, the partial decomposition of A obtained by using only the
top k singular vectors is the best rank-k matrix approximation to A.

Theorem 1.4. Among all rank k matrices D, the matrix Ak =
∑k
i=1 σiuiv

T
i is

the one which minimizes ‖A−D‖2F =
∑
i,j(Aij −Dij)

2. Further,

‖A−Ak‖2F =

n∑
i=k+1

σ2
i .

Proof. We have

‖A−D‖2F =

m∑
i=1

‖A(i) −D(i)‖2.

Since D is of rank at most k, we can assume that all the D(i) are projections of
A(i) to some rank k subspace and therefore,

m∑
i=1

‖A(i) −D(i)‖2 =

m∑
i=1

‖A(i)‖2 − ‖D(i)‖2

= ‖A‖2F −
m∑
i=1

‖D(i)‖2.

Thus the subspace is exactly the SVD subspace given by the span of the first k
singular vectors of A.

1.2 Algorithms for computing the SVD

Computing the SVD is a major topic of numerical analysis [Str88, GvL96,
Wil88]. Here we describe a basic algorithm called the power method.

Assume that A is symmetric.

1. Let x be a random unit vector.

2. Repeat:

x :=
Ax

‖Ax‖

For a nonsymmetric matrix A, we can simply apply the power iteration to ATA.

Exercise 1.1. Show that with probability at least 1/4, the power iteration applied
k times to a symmetric matrix A finds a vector xk such that

‖Axk‖2 ≥
(

1

4n

)1/k

σ2
1(A).
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[Hint: First show that ‖Axk‖ ≥ (|x · v|)1/kσ1(A) where x is the starting vector
and v is the top eigenvector of A; then show that for a random unit vector x,
the random variable |x.v| is large with some constant probability].

The second part of this book deals with faster, sampling-based algorithms.

1.3 The k-means clustering problem

This section contains a description of a clustering problem which is often called
k-means in the literature and can be solved approximately using SVD. This
illustrates a typical use of SVD and has a provable bound.

We are given m points A = {A(1), A(2), . . . A(m)} in n-dimensional Eu-
clidean space and a positive integer k. The problem is to find k points B =
{B(1), B(2), . . . , B(k)} such that

fA(B) =

m∑
i=1

(dist(A(i),B))2

is minimized. Here dist(A(i),B) is the Euclidean distance of A(i) to its nearest
point in B. Thus, in this problem we wish to minimize the sum of squared
distances to the nearest “cluster center”. This is commonly called the k-means
or k-means clustering problem. It is NP-hard even for k = 2. A popular local
search heuristic for this problem is often called the k-means algorithm.

We first observe that the solution is given by k clusters Sj , j = 1, 2, . . . k.
The cluster center B(j) will be the centroid of the points in Sj , j = 1, 2, . . . , k.
This is seen from the fact that for any set S = {X(1), X(2), . . . , X(r)} and any
point B we have

r∑
i=1

‖X(i) −B‖2 =

r∑
i=1

‖X(i) − X̄‖2 + r‖B − X̄‖2, (1.1)

where X̄ is the centroid (X(1) + X(2) + · · · + X(r))/r of S. The next exercise
makes this clear.

Exercise 1.2. Show that for a set of point X1, . . . , Xk ∈ Rn, the point Y that
minimizes

∑k
i=1 |Xi−Y |2 is their centroid. Give an example when the centroid

is not the optimal choice if we minimize sum of distances rather than squared
distances.

The k-means clustering problem is thus the problem of partitioning a set of
points into clusters so that the sum of the squared distances to the means, i.e.,
the variances of the clusters is minimized.

We define a relaxation of this problem that we may cal the Continuous
Clustering Problem (CCP): find the subspace V of Rn of dimension at most k
that minimizes

gA(V ) =

m∑
i=1

dist(A(i), V )2.
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The reader will recognize that this can be solved using the SVD. It is easy to
see that the optimal value of the k-means clustering problem is an upper bound
for the optimal value of the CCP. Indeed for any set B of k points,

fA(B) ≥ gA(VB) (1.2)

where VB is the subspace generated by the points in B.

We now present a factor 2 approximation algorithm for the k-means cluster-
ing problem using the relaxation to the best-fit subspace. The algorithm has two
parts. First we project to the k-dimensional SVD subspace, solving the CCP.
Then we solve the problem in the low-dimensional space using a brute-force
algorithm with the following guarantee.

Theorem 1.5. The k-means problem can be solved in O(mk2d/2) time when the
input A ⊆ Rd.

We describe the algorithm for the low-dimensional setting. Each set B of
“cluster centers” defines a Voronoi diagram where cell Ci = {X ∈ Rd : |X −
B(i)| ≤ |X −B(j)| for j 6= i} consists of those points whose closest point in B is
B(i). Each cell is a polyhedron and the total number of faces in C1, C2, . . . , Ck
is no more than

(
k
2

)
since each face is the set of points equidistant from two

points of B.

We have seen in (1.1) that it is the partition of A that determines the best
B (via computation of centroids) and so we can move the boundary hyperplanes
of the optimal Voronoi diagram, without any face passing through a point of A,
so that each face contains at least d points of A.

Assume that the points of A are in general position and 0 /∈ A (a simple
perturbation argument deals with the general case). This means that each face
now contains d affinely independent points of A. We ignore the information
about which side of each face to place these points and so we must try all pos-
sibilities for each face. This leads to the following enumerative procedure for
solving the k-means clustering problem:
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Algorithm: Voronoi-k-means

1. Enumerate all sets of t hyperplanes, such that k ≤ t ≤
k(k − 1)/2 hyperplanes, and each hyperplane contains d
affinely independent points of A. The number of sets is

at most
(k
2)∑
t=k

((m
d

)
t

)
= O(mdk2/2).

2. Check that the arrangement defined by these hyperplanes

has exactly k cells.

3. Make one of 2td choices as to which cell to assign each

point of A which lies on a hyperplane

4. This defines a unique partition of A. Find the centroid

of each set in the partition and compute fA.

Now we are ready for the complete algorithm. As remarked previously, CCP can
be solved by Linear Algebra. Indeed, let V be a k-dimensional subspace of Rn

and Ā(1), Ā(2), . . . , Ā(m) be the orthogonal projections of A(1), A(2), . . . , A(m)

onto V . Let Ā be the m×n matrix with rows Ā(1), Ā(2), . . . , Ā(m). Thus Ā has
rank at most k and

‖A− Ā‖2F =

m∑
i=1

|A(i) − Ā(i)|2 =

m∑
i=1

(dist(A(i), V ))2.

Thus to solve CCP, all we have to do is find the first k vectors of the SVD of
A (since by Theorem (1.4), these minimize ‖A− Ā‖2F over all rank k matrices
Ā) and take the space VSV D spanned by the first k singular vectors in the row
space of A.

We now show that combining SVD with the above algorithm gives a 2-
approximation to the k-means problem in arbitrary dimension. Let Ā = {Ā(1), Ā(2), . . . , Ā(m)}
be the projection of A onto the subspace Vk. Let B̄ = {B̄(1), B̄(2), . . . , B̄(k)} be
the optimal solution to k-means problem with input Ā.

Algorithm for the k-means clustering problem

• Compute Vk.

• Solve the k-means clustering problem with input Ā to obtain B̄.

• Output B̄.

It follows from (1.2) that the optimal value ZA of the k-means clustering problem
satisfies

ZA ≥
m∑
i=1

|A(i) − Ā(i)|2. (1.3)
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Note also that if B̂ = {B̂(1), B̂(2), . . . , B̂(k)} is an optimal solution to the k-
means clustering problem and B̃ consists of the projection of the points in B̂
onto V , then

ZA =

m∑
i=1

dist(A(i), B̂)2 ≥
m∑
i=1

dist(Ā(i), B̃)2 ≥
m∑
i=1

dist(Ā(i), B̄)2.

Combining this with (1.3) we get

2ZA ≥
m∑
i=1

(|A(i) − Ā(i)|2 + dist(Ā(i), B̄)2)

=

m∑
i=1

dist(A(i), B̄)2

= fA(B̄)

proving that we do indeed get a 2-approximation.

Theorem 1.6. The above algorithm for the k-means clustering problem finds a
factor 2 approximation for m points in Rn in O(mn2 +mk3/2) time.

1.4 Discussion

In this chapter, we reviewed basic concepts in linear algebra from a geometric
perspective. The k-means problem is a typical example of how SVD is used:
project to the SVD subspace, then solve the original problem. In many ap-
plication areas, the method known as “Principal Component Analysis” (PCA)
uses the projection of a data matrix to the span of the largest singular vectors.
There are several introducing the theory of eigenvalues and eigenvectors as well
as SVD/PCA, e.g., [GvL96, Str88, Bha97].

The application of SVD to the k-means clustering problem is from [DFK+04]
and its hardness is from [ADHP09]. The following complexity questions are
open: (1) Given a matrix A, is it NP-hard to find a rank-k matrix D that
minimizes the error with respect to the L1 norm, i.e.,

∑
i,j |Aij −Dij |? (more

generally for Lp norm for p 6= 2)? (2) Given a set of m points in Rn, is it
NP-hard to find a subspace of dimension at most k that minimizes the sum of
distances of the points to the subspace? It is known that finding a subspace
that minimizes the maximum distance is NP-hard [MT82]; see also [HPV02].
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Chapter 2

Clustering Discrete
Random Models

In this chapter, we study the problem of clustering assuming a model for data.
An important class of models are generative, i.e., they assume that data is
generated according to a probability distribution D in Rn. One major scenario
is when D is a mixture of some special distributions. These may be continuous
or discrete. Prominent and well-studied instances of each are:

• D is a mixture of Gaussians.

• D is choosing the row vectors of the adjacency matrix of a random graph
with certain special properties.

For the first situation, we will see in Chapter 3 that spectral methods are quite
useful. In this chapter, we will concern ourselves with the second situation, and
see how spectral methods help us achieve good solutions.

2.1 Planted cliques in random graphs

Gn,p denotes a family of random graphs, with n being the number of vertices
in the graph and p the probability of an edge existing between any (distinct)
pair of vertices, also called the edge density of the graph. This is equivalent
to filling up the upper triangle of the n× n adjacency matrix A with entries 1
with probabilty p and 0 with probability 1 − p (the diagonal has zero entries,
and the lower triangle is a copy of the upper one as the adjacency matrix is
symmetric). The graphs of most interest is the family Gn,1/2, and we usually
refer to a graph sampled from this family when we talk about a random graph,
without any other qualifiers.

13
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2.1.1 Cliques in random graphs

The maximum clique problem is very well known to be NP-hard in general. In
fact, even the following approximation version of the problem is NP-hard: to
find a clique of size OPT/n1−ε for any ε > 0, where OPT represents the size
of the maximum clique (the clique number) and n is the number of vertices
in the graph, as usual. For a random graph, however, the situation is better
understood. For instance, the following result about the clique number in Gn,1/2
is a standard exercise in the probabilistic method.

Exercise 2.1. Prove that with high probability (1− o(1)), the clique number of
Gn,1/2 is (2 + o(1)) log2 n.

[Hint: Use the first and second moments to prove that the number of cliques
for 2 log2 n− c→∞ for c 6= o(1) and 2 log2 n+ c→ 0 for c 6= o(1).]

The result as stated above is an existential one. The question arises: how
does one find a large clique in such a graph? It makes sense to pick the vertices
with the highest degrees, as these have a high probability of being in the clique.
This strategy leads to the following algorithm.

Algorithm: Greedy-Clique

1. Define S to be the empty set and H = G.

2. While H is nonempty,

• add the vertex with highest degree in H to S, and,

• remove from H all the vertices not adjacent to every

vertex in S.

3. Return S.

Proposition 2.1. For Gn,1/2, the above algorithm finds a clique of size at least
log2 n with high probability.

Exercise 2.2. Prove Prop. 2.1.

Exercise 2.3. Consider the following simpler algorithm: pick a random vertex
v1 of G = Gn, 12 , then pick a random neighbor of v1, and continue picking a
random common neighbor of all vertices picked so far as long as possible. Let
k be the number of vertices picked. Show that E (k) ≥ log2 n and with high
probability k ≥ (1− o(1)) log2 n.

The size of the clique returned by the algorithm is only half of the expected
clique number. It remains an open problem to understand the complexity of
finding a (1 + ε) log2 n (for any ε > 0) sized clique with high probability in
polynomial time.
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(a) Planted clique
(b) Planted dense

subgraph (c) Planted partitions

Figure 2.1: The adjacency matrices of the various generalizations of the planted
clique problem. The figures inside the blocks represent the edge density of that
block. The blocks have been shown to be contiguous for illustration purposes
only.

2.1.2 Planted clique

We now turn to the planted clique problem, which asks us to find an `-vertex
clique that has been “planted” in an otherwise random graph on n vertices,
i.e., we choose some ` vertices among the n vertices of a random graph, and
put in all the edges among those vertices. This generalizes to the planted dense
subgraph problem, in which we have to recover a H ← G`,p that has been
planted in a G ← Gn,q for some p > q. This further generalizes to the planted
partition problem in which the vertex set of G ← Gn,q is partitioned into k
pieces and subgraphs with edge density p > q are planted into those partitions,
with the requirement being to recover the partitions. The adjacency matrices
of problem instances in each of the problem appear in Figure 2.1. A final
generalization of this problem is the planted data model problem, where the
vertex set is partitioned into k pieces and the edge density of the subgraph
between the rth and the sth piece is denoted by prs, and we are required to
recover the partitions and estimate the hidden prs values.

We now analyze the planted clique problem, where we have been provided
with the adjacency matrix of a candidate graph containing a planted clique
S ⊆ [n], |S| = `. Given the adjacency matrix A of such a graph, the degree
of any vertex i can be written as di =

∑n
j=1Aij and it is easy to observe that

E di = (n+`)/2 if i ∈ S and n/2 otherwise. By a simple application of Chernoff
bounds, we get the following:

Pr[di − E di > t] ≤ exp−t2/2n,

Pr[di − E di < −t] ≤ exp−t2/2n.
For t = 2

√
n log n, these probabilites become bounded by 1/n2. In other words,

if i /∈ S, then Pr[di > n/2 + 2
√
n log n] ≤ 1/n2 and the union bound give us

Pr[∃i /∈ S s.t. di > n/2 + 2
√
n log n] ≤ (n− `)/n2 < 1/n.
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Similarly, we also have that

Pr[∃i ∈ S s.t. di < (n+ `)/2− 2
√
n log n] ≤ `/n2 < 1/n.

So, if ` > 8
√
n log n, then the degrees of the vertices in the planted clique and the

other vertices are well separated with high probability, and a greedy algorithm
of picking the highest degree vertices as part of the clique would work. The
question is, can we make this bound on ` smaller? In Section 2.2.1, we use
spectral techinques to get a better bound on `.

2.2 Full Independence and the Basic Spectral
Algorithm

We return to the planted data model problem. Denoting by A the adjacency
matrix of the input graph, the problem can be stated succinctly: given (one
realization of) A, find E A the entry-wise expectation (since E A contains in-
formation on the partition as well as the prs values). To see why this is true,
we recall the planted clique problem, where the adjacency matrix A has a `× `
block of ones, and every other entry is 1 with probability 1/2. In this scenario,
E A has the same `× ` block of ones, and every other entry is exactly 1/2. Each
row of the matrix is fully populated by 1/2, except for the rows corresponding
to the clique, which have ` ones in them, and it is very easy to distinguish the
two cases.

We may view this as a mixture model. Denote by A the adjacency matrix
of the graph. Each row A(i) is a point (with 0-1 coordinates) in Rn generated
from a mixture of k probability distributions, where each component distribution
generates the adjacency vectors of vertices in one part. It is of interest to cluster
when the prs as well as their differences are small, i.e., o(1). However, since
the rows of A are 0-1 vectors, they are very “far” along coordinate directions
(measured in standard deviations, say) from the means of the distributions.
This is quite different from the case of a Gaussian (which has a very narrow
tail). The fat tail is one of the crucial properties that makes the planted graph
problem very different from the Gaussian mixture problem.

The basic tool which has been used to tackle heavy tails is the assumption
of full independence which postulates that the edges of the graph are mutually
independent random variables. This is indeed a natural conceptual off-shoot
of random graphs. Now, under this assumption, the very rough outline of the
spectral clustering algorithm is as follows: we are given A and wish to find
the generative model E A which tells us the probabilities prs (and the parts).
The matrix A− E A has random independent entries each with mean 0. There
is a rich theory of random matrices where the generative model satisfies full
independence and the following celebrated theorem was first stated qualitatively
by the physicist Wigner.

Theorem 2.2. Suppose A is a symmetric random matrix with independent
(above-diagonal) entries each with standard deviation at most ν and bounded
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in absolute value by 1. Then, with high probability, the largest eigenvalue of
A− E A is at most (2 + o(1))ν

√
n.

The strength of this Theorem is seen from the fact that each row of A−E A is
of length O(ν

√
n), so the Theorem asserts that the top eigenvalue amounts only

to the length of a constant number of rows; i.e., there is almost no correlation
among the rows (since the top eigenvalue = max|x|=1 ‖(A − E A)x‖ and hence
the higher the correlation of the rows in some direction x, the higher its value).

Thus one gets with high probability an upper bound on the spectral norm
of A− EA:

‖A− E A‖ ≤ cν√n.1
Now an upper bound on the Frobenius norm ‖A − E A‖F follows from the
following basic lemma.

Lemma 2.3. Suppose A,B are m × n matrices with rank(B) = k. If Â is the
best rank k approximation to A, then

‖Â−B‖2F ≤ 8k‖A−B‖2.
Proof. Since Â−B has rank at most 2k, and Â is the best rank k approximation
of A, we have,

‖Â−B‖2F ≤ 2k‖Â−B‖22
≤ 2k

(
‖Â−A‖2 + ‖A−B2‖

)2

≤ 8k‖A−B‖22.

Exercise 2.4. Improve the bound in Lemma 2.3 from 8k to 5k.

2.2.1 Finding planted cliques

In this Section, we see how to apply Theorem 2.2 to recover the planted clique
with only a Ω(

√
n) lower bound on `. We consider the following simple spectral

algorithm.

Algorithm: Spectral-Clique

1. Let A be the 1/ − 1 adjacency matrix of the input graph

(say 1 for an edge and −1 for a nonedge).

2. Find the top eigenvector v of A.

3. Let S be the subset of ` vertices of largest magnitude in

v.

4. Output all vertices whose degree in S is at least 7`/8.

1We use the convention that c refers to a constant. For example, the statement a ≤ (cp)cp

will mean there exist constants c1, c2 such that a ≤ (c1p)c2p.
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Theorem 2.4. For a planted clique of size ` ≥ 20
√
n, with high probability,

Algorithm Spectral-Clique recovers exactly the planted clique.

Proof. We apply Lemma 2.3 (and the improvement in Exercise 2.4) with k = 1
and B = E A, to get

‖Â− E A‖2F ≤ 5‖A− E A‖22.
From Theorem 2.2, with ν = 1, with high probability this is bounded as

‖Â− E A‖2F ≤ 25n.

So for a random row i,
E ‖Â(i) − E A(i)‖2 ≤ 25.

Therefore, using Markov’s inequality, for all but
√
n/ε rows,

‖Â(i) − E A(i)‖2 ≤ 25ε
√
n. (2.1)

Now each row of E A is either all zeros (for vertices not in the planted clique)
or the indicator vector of the clique (for vertices in the clique). By setting ε, we
get that for all but n − (

√
n/ε) rows, the component in the eigenvector v of a

vertices in the clique will be higher than the component of vertices outside the
planted clique. To achieve this, we need that the squared length of Â(i)−E A(i)

for vertices i outside the clique is smaller than that of vertices in the clique (for
rows satisfying (2.1), i.e.,

`− 25ε
√
n ≥ 25ε

√
n.

So ` > max{50ε
√
n, 8
√
n/ε} suffices, and we can set ε = 2/5 and ` = 20

√
n.

Thus, the algorithm finds

`−
√
n

ε
≥ 7`

8

vertices of the clique in the ` largest magnitude entries. Because of our careful
choice of parameters, if some clique vertices are not found in S, they will be
found in Step 4 of the algorithm. By an application of a Chernoff Bound, we
can bound the probability of the degree of a non-clique vertex i in the clique C
being at least 3`/4:

Pr[degC(i) ≥ `/2+t] ≤ e−t2/2` =⇒ Pr[degC(i) ≥ 3`/4] ≤ e−`/32 ≤ e−10
√

2n/32.

The total probability of a non-clique vertex being included in Step 4 of the
algorithm would be bounded by the union bound of the above probability over all
the non-clique vertices, and thus the failure probability (failure being the event

of a non-clique vertex being included in S) is bounded above by ne−10
√

2n/32,
which is negligibly small. Therefore with this failure probability, the degree of
any non-clique vertex is less than 3l/4 + l/8 = 7l/8 and no such vertex will be
included in the final output. [Note that we cannot directly bound the degree in
the set S since this set is not fixed prior to examining the graph.]
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Exercise 2.5. Suppose a clique of size ` is planted in the random graph Gn,p
where every edge not in the clique is chosen independently with probability p.
Generalize the spectral algorithm for finding the planted clique and derive a
bound on the size of the clique (in terms of p and n) that can be found by the
algorithm whp . [Hint: you might need the result of Exercise 2.8.]

2.3 Proof of the spectral norm bound

Here we prove Wigner’s theorem (Thm. 2.2) for matrices with random ±1
entries. The proof is probabilistic, unlike the proof of the general case for
symmetric distributions. The proof has two main steps. In the first step, we
use a discretization (due to Kahn and Szemerédi) to reduce from all unit vectors
to a finite set of lattice points. The second step is a Chernoff bound working
with fixed vectors belonging to the lattice.

Let L be the lattice
(

1
r
√
n
Z
)n

. The diagonal length of its basic parallelepiped

is diag(L) = 1/r.

Lemma 2.5. Any vector u ∈ Rn with ‖u‖ = 1 can be written as

u = lim
N→∞

N∑
i=0

(
1

2r

)i
ui

where

‖ui‖ ≤ 1 +
1

2r
, ∀ i ≥ 0.

and ui ∈ L, ∀ i ≥ 0.

Proof. Given u ∈ Rn with ‖u‖ = 1, we pick u0 ∈ L to be its nearest lattice
point. Therefore,

‖u0‖ ≤ 1 +
diag(L)

2
= 1 +

1

2r

Now (u−u0) belongs to some basic parallelepiped of L and therefore ‖u−u0‖ ≤
1/2r. Consider the finer lattice L/2r = {x/2r : x ∈ L}, and pick u1/2r to be
the point nearest to (u− u0) in L/2r. Therefore,

‖u1

2r
‖ ≤ ‖u− u0‖+

diag(L/2r)
2

≤ 1

2r
+

1

(2r)2
=⇒ ‖u1‖ ≤ 1 +

1

2r

and

‖u− u0 −
1

2r
u1‖ ≤

1

(2r)2

Continuing in this manner we pick uk/(2r)
k as the point nearest to

(
u−∑k−1

i=0 (1/2r)iui

)
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in the finer lattice L/(2r)k =
{
x/(2r)k : x ∈ L

}
. Therefore, we have

‖ uk
(2r)k

‖ ≤ ‖u−
k−1∑
i=0

(
1

2r

)i
ui‖+

diag(L/(2r)k)

2
≤ 1

(2r)k
+

1

(2r)k+1

=⇒ ‖uk‖ ≤ 1 +
1

2r
=⇒ ‖u−

k∑
i=0

(
1

2r

)i
ui‖ ≤

1

(2r)k+1
−→ 0

That completes the proof.

Now using Lemma 2.5, we will show that it suffices to consider only the
lattice vectors in L∩B(0̄, 1 + 1/2r) instead of all unit vectors in order to bound
λ(A). Indeed, this bound holds for the spectral norm of a tensor.

Proposition 2.6. For any matrix A,

λ(A) ≤
(

2r

2r − 1

)2
(

sup
u,v∈L∩B(0̄,1+ 1

2r )

∣∣uTAv∣∣)

Proof. From Lemma 2.5, we can write any u with ‖u‖ = 1 as

u = lim
N→∞

N∑
i=0

(
1

2r

)i
ui

where ui ∈ L ∩ B(0̄, 1 + 1/2r), ∀ i. We similarly define vj . Since uTAv is a
continuous function, we can write

∣∣uTAv∣∣ = lim
N→∞

∣∣∣∣∣∣
(

N∑
i=0

(
1

2r

)i
ui

)T
A

∞∑
j=0

(
1

2r

)j
vj

∣∣∣∣∣∣
≤
( ∞∑
i=0

(
1

2r

)i)2

sup
u,v∈L∩B(0̄,1+ 1

2r )

∣∣uTAv∣∣
≤
(

2r

2r − 1

)2

sup
u,v∈L∩B(0̄,1+ 1

2r )

∣∣uTAv∣∣
which proves the proposition.

We also show that the number of r vectors u ∈ L ∩ B(0̄, 1 + 1/2r) that we
need to consider is at most (2r)n.

Lemma 2.7. The number of lattice points in L∩B(0̄, 1+1/2r) is at most (2r)n.

Proof. We can consider disjoint hypercubes of size 1/r
√
n centered at each of

these lattice points. Each hypercube has volume (r
√
n)−n, and their union is
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contained in B(0̄, 1 + 2/r). Hence,

|L ∩ B(0̄, 1 + 1/2r)| ≤ Vol (B(0̄, 1 + 2/r))

(r
√
n)−n

≤ 2πn/2(1 + 2
r )nrnnn/2

Γ(n/2)

≤ (2r)n

The following Chernoff bound will be used.

Exercise 2.6. Let X1, X2, . . . , Xm be independent random variables, X =∑m
i=1Xi, where each Xi is ai with probability 1/2 and −ai with probability

1/2. Let σ2 =
∑m
i=1 a

2
i . Then, for t > 0,

Pr (|X| ≥ tσ) ≤ 2e−t
2/2

Now we can prove the spectral norm bound for a matrix with random ±1
entries.

Proof. Consider fixed u, v ∈ L∩B(0̄, 1+1/2r). For I = (i, j), define a two-valued
random variable

XI = Aijuivj .

Thus aI = uivj , X =
∑
I XI = uTAv, and

σ2 =
∑
I

a2
I = ‖u‖2‖v‖2 ≤

(
2r + 1

2r

)4

.

So using t = 4
√
nσ in the Chernoff bound 2.6,

Pr
(∣∣uTAv∣∣ ≥ 4

√
n · σ

)
≤ 2e−8n.

According to Lemma 2.7, there are at most (2r)2n ways of picking u, v ∈ L ∩
B(0̄, 1 + 1/2r). so we can use union bound to get

Pr

(
sup

u,v∈L∩B(0̄,1+ 1
2r )

∣∣uTAv∣∣ ≥ 4
√
nσ

)
≤ (2r)2n(e)−8n ≤ e−5n

for r = 2. And finally using Proposition 2.6 and the facts that for our choice of
r, σ ≤ 25/16 and (2r/2r − 1)2 = 16/9, we have

Pr
(
λ(A) ≥ 11

√
n
)
≤ e−5n.

This completes the proof.

The above bound can be extended in the following ways.
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Exercise 2.7. Let A be an n×n× . . .×n r-dimensional array with real entries.
Its spectral norm λ(A) is defined as

λ(A) = sup
‖u(1)‖=‖u(2)‖=...=‖u(r)‖=1

∣∣∣A(u(1), u(2), . . . , u(r)
)∣∣∣ ,

where A
(
u(1), u(2), . . . , u(r)

)
=
∑
i1,i2,...,ir

A(i1,i2,...,ir) u
(1)
i1
u

(2)
i2
· · ·u(r)

ir
. Suppose

each entry of A is 1 or −1 with equal probability. Show that whp,

λ(A) = O(
√
nr log r). (2.2)

Exercise 2.8. Let each entries of an n×n matrix A be chosen independently to
be 1 with probability p and 0 with probability 1−p. Give a bound on the spectral
norm of A− E A.

.

2.4 Planted partitions

For the general planted partition problem, we use Lemma 2.3 and Theorem 2.2
with B = E A and ν equal to the maximum standard deviation of any row of A
in any direction. We can find the SVD of A to get Â. By the above, we have
that whp,

‖Â− E A‖2F ≤ cν2nk

Let ε be a positive real < 1/(10k). Then for all but a small fraction of the rows,
we find the vectors (E A)(i) within error cν

√
k; i.e., for all but εn of the rows of

A, we have (whp)

|Â(i) − E A(i)| ≤ cν
√
k

ε
.

Let G be the set of rows of A satisfying this condition.
Now, we assume a separation condition between the centers µr, µs of the

component distributions r 6= s (as in the case of Gaussian mixtures):

‖µr − µs‖ ≥ ∆ = 20cν

√
k

ε
.

We note that ∆ depends only on k and not on n (recall that k << n). In general,
a point A(i) may be at distance O(

√
nν) from the center of its distribution which

is much larger than ∆.
It follows that points in G are at distance at most ∆/20 from their correct

centers and at least 10 times this distance from any other center. Thus, each
point in G is at distance at most ∆/10 from every other point in G in its own
part and at distance at least ∆/2 from each point in G in a different part. We
use this to cluster most points correctly as follows:

Pick at random a set of k points from the set of projected rows by picking
each one uniformly at random from among those at distance at least 9cν

√
k/ε
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from the ones already picked. This yields with high probability k good points
one each from each cluster, assuming ε < 1/(10k). We define k clusters, each
consisting of the points at distance at most ∆/5 from each of the k points picked.

After this, all known algorithms resort to a clean-up phase where the
wrongly clustered vertices are reclassified correctly. The clean-up phase is often
technically very involved and forces stricter (and awkward) separation condi-
tions. Here we outline very briefly a possible clean-up procedure.

To correctly cluster a particular i : Let B be the matrix obtained from A
with row i deleted. We will see that this is to avoid any conditioning. As above,
we have with high probability

||B − E B|| ≤ cν√n.

We have to ensure that the failure probability is low enough so that no failure
occurs for any of the n i ’s. Let B̂ be the rank k approximation to B. As above,
except for εn “bad points”, we have

||B̂(j) − E B(j)|| ≤ ∆/20.

We again pick k points from among the rows of B̂ which with high probability
are good points, each from a different cluster. To avoid unnecessary notation,
call these k points B̂(1), B̂(2), . . . B̂(k) and suppose B̂(1) is within distance ∆/10
of the center of the distribution from which A(i) is picked. Now imagine that we
have done all this before picking A(i); we may do so since A(i) is independent
of all this. Now consider the projection of A(i) onto the k dimensional space

spanned by B̂(1), B̂(2), . . . B̂(k). Under reasonable assumptions, we can show

that in this projection A(i) is closer to B̂(1) than to B̂(2), B̂(3), . . . B̂(k). [The
assumptions are to the effect that O(n) coordinates of each center are non-zero.
This is to avoid the situation when a distribution is based only on o(n) or in
the extreme case just O(1) coordinates; such “unbalanced” distributions have
fat tails.] Assuming this, we now can conclude that i is in the same cluster
as 1 (since we know all of B̂(1), . . . B̂(k) and B̂(i). We may repeat the process

of picking k near-centers from B̂ O(1) times to get a number of points which
belong to the same cluster as i. The whole process has to be repeated with each
i and one can complete the clustering by using all the information gathered on
pairs of points in the same cluster.

2.5 Beyond full independence

Motivated by data mining and information retrieval applications, the question
of inferring the generative model from the data has moved from random graphs
to matrices where the rows represent features and the columns represent objects
and the (i, j)’th entry is the value of feature i for object j. Two salient examples
are product-consumer matrices, widely used in recommendation systems, and
term-document matrices. Recent work on recommendation systems uses the
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full independence assumptions, so that the procedures described earlier can be
carried out.

In both these examples, as well as others, it is easy to argue that the full
independence assumption is too strong. While one may reasonably assume that
consumers function independently, a particular consumer might not decide in-
dependently on each product — at the minimum, he/she might have constraints
on the total budget (and perhaps some others) which results in correlations of
the products bought. Similarly, while documents in a collection may be drawn,
say, from a mixture, the terms that occur in each document are clearly not
chosen independently. This points to the following model and problem:

In a generative model where a collection of objects is chosen from a mixture
distribution, infer the model, given the objects. So the columns of the matrix
are independent vector-valued random variables. The entries in a column are
not independent.

The crucial tool we need is a Wigner-type theorem in this situation. Such a
theorem follows from results in functional analysis and probability theory. But
these are not readily accessible, so we will present a self-contained proof of the
following theorem (including the important classical technique of decoupling
used in the proof). The Theorem states that a Wigner-type bound holds with
just the limited independence assumption (that the columns are independent)
if we allow some extra logarithmic factors (see the corollary below).

A definition will be useful: for a vector-valued random variable Y , we define
the variance of Y denoted Var (Y ) as the maximum variance of the real-valued
random variable v · Y , where the maximum is taken over all unit length vectors
v. I.e., it is the maximum variance of Y in any direction. It is easy to see that
it is the maximum eigenvalue of the covariance matrix of Y :

Var (Y ) = ‖E Y Y T ‖.

We first need a well-known fact (see for example, [?], IV.31). Throughout,
X,Xi will represent matrices. They may be rectangular and the entries are
assumed to be real numbers.

Proposition 2.8. For p > 0, ||X||p = (Tr(XXT )p/2)1/p = (Tr(XTX)p/2)1/p

is a norm2 (called a Schatten p−norm). Hence it is a convex function of the
entries of the matrix X.

Exercise 2.9. Show that ||X||p ≤ ||X||q for p ≥ q.

Recall that the trace of a matrix is the sum of its eigenvalues and ||X||∞
(also denoted ||X||) is the spectral norm.

Theorem 2.9. Suppose A is an m × n matrix with independent vector-valued
random variables as its columns. Suppose the variance of A(i) is ν2

i . Then for

2Since XXT is positive semi-definite, (XXT )p/2 is well-defined. Namely if XXT =∑
i λiu

(i)u(i)
T

is the spectral decomposition, then (XXT )p/2 =
∑

i λ
p/2
i u(i)u(i)

T
.
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any p which is a power of 2, we have

E ||A− E A||pp ≤ (cp)cp

(
nE max

i
|A(i) − E A(i)|p + n(p/2)+1

∑
i

νpi

)
.

Corollary 2.10. Suppose with probability at least 1 − δ, we have ‖A(i) −
E A(i)‖ ≤M for all i, then for all t > 0,

Pr
(
‖A− E A‖ ≥ (c log n)ct(M +

√
nmax

i
νi)
)
≤ δ +

1

nlog t/10
.

Proof. We have that, for all i,

‖A(i) − E A(i)‖ ≤M.

Apply the Theorem with p = 2 log n+ 1.

In the full independent case, we can take M = ν
√
n log n and δ very small.

So, we get Wigner-type result in that case, but with additional log factors.

2.5.1 Sums of matrix-valued random variables

Throughout this section, X1, X2, . . . Xn, X
′
1, X

′
2, . . . X

′
n are independent matrix-

valued random variables with X ′i having the same distribution as Xi and E Xi =
0 for i = 1, 2, . . . n. Let p be a positive even integer.

Note that
‖X‖22 = TrXXT = ‖X‖2F .

We need the following well-known generalization of Hölder’s inequality to ma-
trices.

Proposition 2.11. Suppose A1, A2, . . . Am are matrices (of dimensions so that
their product is well-defined). We have for any positive reals r1, r2, . . . rm with∑m
i=1

1
ri

= 1:

‖A1A2 . . . Am‖p ≤ ‖A1‖pr1‖A2‖pr2 . . . ‖Am‖prm .

Theorem 2.12. [Square-Form Theorem] Suppose Xi are as above and p is a
power of 2. Then,

E ‖
n∑
i=1

Xi‖pp ≤ p7p10p

(
E ‖

n∑
i=1

XiX
T
i ‖p/2p/2 + E ‖

n∑
i=1

XT
i Xi‖p/2p/2

)
.

Proof. By induction on p. For p = 2, we have

E ||
∑
i

Xi||22 = E Tr
∑
i,j

XiX
T
j = TrE

∑
i,j

XiX
T
j = E Tr

∑
i

XiX
T
i ,

since
E XiX

T
j = E XiE X

T
j = 0
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for i 6= j. Now since
∑
iXiX

T
i is p.s.d., all its eigenvalues are non-negative and

so,

Tr
∑
i

XiX
T
i = ‖

∑
i

XiX
T
i ‖11

proving the case of p = 2.
Now for general p,

E ‖
n∑
i=1

Xi‖pp ≤ E ‖
∑
i

Xi

∑
j

XT
j ‖p/2p/22p/2E ‖

∑
i

XiX
T
i ‖p/2p/2 + 8p/2E ‖

∑
i

XiY
T ‖p/2p/2.

where Y =
∑
j X
′
j and we have used decoupling as in Lemma 2.13 below. Note

that
E XiY

T = E XiE Y
T = 0

since Xi, Y are independent. We now use induction (with the notation that
[X1|X2| . . . Xn] denotes the matrix with X1, X2, . . . Xn written in that order)and
D is the matrix with n diagonal blocks, each equal to Y T .

E ||
∑
i

XiY
T ||p/2p/2

≤ 10p/2(p/2)3.5p

(
E ||

∑
i

(Y XT
i XiY

T )||p/4p/4 + E ||
∑
i

(XiY
TY XT

i )||p/4p/4

)

= 10p/2(p/2)3.5p

(
E ||Y

(∑
i

(XT
i Xi)

)
Y T ||p/4p/4 + E ||[X1|X2| . . . |Xn]DTD[X1|X2| . . . Xn]T )||p/4p/4

)

≤ 10p/2(p/2)3.5p

(
E ||Y ||p/2p ||

∑
i

XT
i Xi||p/4p/2 + E ||Y ||p/2p ||[X1|X2| . . . Xn]||p/2p

)
using Prop. 2.11

≤ 10p/2(p/2)3.5pE ||Y ||p/2p

(
||
∑
i

XT
i Xi||p/4p/2 + ||

∑
i

XiX
T
i ||p/4p/2

)

≤ 2 · 10p/2(p/2)3.5p

(
E ||

∑
i

Xi||pp

)1/2(
E ||

∑
i

XiX
T
i ||p/2p/2 + E ||

∑
i

XT
i Xi||p/2p/2

)1/2

where the fourth line is a bit tricky: if Xi are m × q and m0 = min(m, q), we
use

‖[X1|X2| . . . |Xn]DTD[X1|X2| . . . Xn]T )‖p/4p/4

=

m0∑
t=1

σ
p/2
t ([X1|X2| . . . |Xn]DT )

≤ (

m0∑
t=1

σpt [X1|X2| . . . |Xn])1/2(

m0∑
t=1

σt(D)p)1/2

≤ ‖Y ‖p/2p ‖[X1|X2| . . . |Xn]‖p/2p .
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the last using Jensen’s inequality and the fact that Y,
∑
iXi have same distri-

bution. Letting

x =

√
E ||

∑
i

Xi||pp and b = E ||
∑
i

XiX
T
i ||p/2p/2 + E ||

∑
i

XT
i Xi||p/2p/2,

this yields the following quadratic inequality for x:

x2 ≤ 2p/2b+ 2 · 8p/210p/2(p/2)3.5p
√
b x

which implies that
x2 ≤ 10pp7pb,

completing the inductive proof.

2.5.2 Decoupling

We now introduce a beautiful technique developed by probabilists and functional
analysts called decoupling which helps get rid of some dependencies between
random variables, making the analysis easier in many contexts. (See for example
[?]). Decoupling looks like sleight of hand, but it is quite useful. It has been
extensively applied in similar contexts.

Suppose f is any convex function from the set of matrices to non-negative
reals with f(A) = f(−A) and satisfying the condition that there is some p > 0
such that

f(A+B) ≤ 2p(f(A) + f(B)).

Typical examples of f will be p’th powers of norms.

Lemma 2.13. Let X1, X2, . . . Xn, X
′
1, X

′
2, . . . X

′
n be independent matrix-valued

random variables with X ′i having the same distribution as Xi and E Xi = 0 for
i = 1, 2, . . . n. Then, for any even convex function f ,

E f

∑
i

Xi

∑
j

XT
j

 ≤ 8pE f

∑
i

Xi

∑
j

X ′Tj

+ 2pE f

(∑
i

XiX
T
i

)
.

The point of the Lemma is that the first term on the RHS is easier to handle
than the LHS, since now X ′i, Xi are independent.

Proof. We let Yi = {Xi, X
′
i} (the set (without order) of the two elements Xi, X

′
i)

and Y = (Y1, Y2, . . . Yn). We define random variables Z1, Z2, . . . Zn, Z
′
1, Z

′
2, . . . Z

′
n

as follows : for each i, independently, with probability 1/2 each, we let (Zi, Z
′
i) =

(Xi, X
′
i) or (Zi, Z

′
i) = (X ′i, Xi). Then, we clearly have

E (ZiZ
′T
j |Yi) =

1

4
(XiX

T
j +X ′iX

T
j +XiX

′T
j +X ′iX

′T
j )for i 6= j

E (ZiZ
′T
i |Yi) =

1

2
(XiX

′T
i +X ′iX

T
i ).
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E f

∑
i

Xi

∑
j

XT
j


≤ 2pE f(

∑
i

XiX
T
i ) + 2pE f(

∑
i 6=j

XiX
T
j )

≤ 2pE f(
∑
i

XiX
T
i ) +

2pE f

∑
i 6=j

(
XiX

T
j + E XiX

′T
j + E X ′iX

T
j + E X ′iX

′T
j

)
+ 2

∑
i

(E XiX
′T
i + E X ′iX

T
i )


≤ 2pE f(

∑
i

XiX
T
i ) +

2pE f

∑
i 6=j

(
XiX

T
j +XiX

′T
j +X ′iX

T
j +X ′iX

′T
j

)
+ 2

∑
i

(XiX
′T
i +X ′iX

T
i )


using Jensen and convexity of f , so f(E X) ≤ E f(X)

≤ 2pE f(
∑
i

XiX
T
i ) + 8pE f((

∑
i

Zi
∑
j

Z ′Tj )|Y )

≤ 2pE f(
∑
i

XiX
T
i ) + 8pE f(

∑
i

Zi
∑
j

Z ′Tj ) using Jensen again .

Now, the Lemma follows noting that {(Zi, Z ′j) : i = 1, 2, . . . n}, and {(Xi, X
′
j) :

i = 1, 2, . . . n} have the same joint distributions.

2.5.3 Proof of the spectral bound with limited indepen-
dence

We need another standard and useful trick:

Lemma 2.14. Suppose X1, X2, . . . Xn are independent matrix-valued random
variables with EXi = 0. Let ζ = (ζ1, ζ2, . . . ζn), be a set of independent variables
taking on values ±1 with probability 1/2 each 3, which are also independent of
X = (X1, X2, . . . Xn). We have

EX ||
∑
i

Xi||pp ≤ 2p+1EX,ζ ||
∑
i

ζiXi||.

Proof. Let X ′ = (X ′1, X
′
2, . . . X

′
n) be a set of independent r.v. (independent of

3These are referred to as Rademacher random variables in the literature
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Xi, ζi).

E X ||
∑
i

Xi||pp

= E X ||
∑
i

(Xi − E X′X
′
i)||pp

≤ E X,X′ ||
∑
i

(Xi −X ′i)||pp Jensen

= E X,X′,ζ ||
∑
i

ζi(Xi −X ′i)||pp since Xi −X ′i is a symmetric random variable

≤ 2pE ||
∑
i

ζiXi||pp + 2pE ||
∑
i

ζiX
′
i||pp = 2p+1E ||

∑
i

ζiXi||pp,

as claimed.

We would like to use the square-form theorem to prove Theorem 2.9. But
this cannot be done so directly. For example, if we let Xi to be the matrix
with A(i) − EA(i) in the i’th column and 0 elsewhere, then the Xi satisfy the
hypothesis of the Square Form Theorem, but unfortunately, we only get

E ||A− E A||pp ≤ some terms + (∗ ∗ ∗)E ||
∑
i

XiX
T
i ||p/2p/2,

which is useless since

||
∑
i

XiX
T
i ||p/2p/2 = ||(A− E A)(AT − E AT )||p/2p/2 = ||A− E A||pp.

We will actually apply the Square Form theorem with

Xi = (A(i) − E A(i))(A(i)T − E A(i)T )−Di,

where,

Di = E
(

(A(i) − E A(i))(A(i)T − E A(i)T )
)
.

Then, we have

||A− E A||pp = ||
∑
i

(A(i) − E A(i))(A(i)T − E A(i)T )||p/2p/2

≤ 2p/2||
∑
i

Xi||p/2p/2 + 2p/2||
∑
i

Di||p/2p/2.

Clearly,

||
∑
i

Di||p/2p/2 ≤ np/2
∑
i

||Di||p/2p/2 ≤ n(p/2)+1
∑
i

νpi

(since Di is a rank 1 matrix with singular value at most ν2) which matches the
second term on the right hand side of the claimed bound in the Theorem. Now,
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we bound E ||∑iXi||p/2p/2. Let ζ = (ζ1, ζ2, . . . ζn) be independent ±1 random

variables also independent of Xi. Then by Lemma (2.14), we have (with B(i) =
A(i) − E A(i) for notational convenience)

E ||
∑
i

Xi||p/2p/2 ≤ 2(p/2)+1E ||
∑
i

ζiXi||p/2p/2

≤ 2p+1E ||
∑
i

ζiB
(i)B(i)T ||p/2p/2 + 2p+1E ||

∑
i

ζiDi||p/2p/2.

The term 2p+1E ||∑i ζiDi||p/2p/2 is easy to bound as above. Now applying the

square form theorem to the first term, we get

E ||
∑
i

ζiB
(i)B(i)T ||p/2p/2 ≤ (cp)cpE ||

∑
i

B(i)B(i)TB(i)B(i)T ||p/4p/4

= (cp)cpE ||
∑
i

|B(i)|2B(i)B(i)T ||p/4p/4

≤ (cp)cpE max
i
|B(i)|p/2||

∑
i

B(i)B(i)T ||p/4p/4 since all B(i)B(i)T are p.s.d

≤ (cp)cp
(
E max

i
|B(i)|p

)1/2
(
E ||

∑
i

B(i)B(i)T ||p/2p/4

)1/2

Jensen

≤ (cp)cp
√
n
(
E max

i
|B(i)|p

)1/2 (
E ||A− E A||pp

)1/2
since

(λ
p/4
1 + λ

p/4
2 + . . . λp/4n )2 ≤ n(λ

p/2
1 + λ

p/2
2 + . . . λp/2n ).

Putting this all together, and letting

a = (E ||A− E A||pp)1/2, b = (cp)cp
√
n
(
E max

i
|A(i) − E A(i)|p

)1/2

and
c0 = (cp)cpn(p/2)+1

∑
i

ν
p/2
i

we get the following quadratic inequality on a

a2 ≤ ab+ c0,

which now implies that a2 ≤ b2 + 2c0 finishing the proof of Theorem 2.9.

2.6 Discussion

The bounds on eigenvalues of symmetric random matrices, formulated by Wigner,
were proved by Füredi and Komlos [FK81] and tightened by Vu [Vu05]. Un-
like the concentration based proof given here, these papers use combinatorial
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methods and derive sharper bounds. Spectral methods were used for planted
problems by Boppana [Bop87] and Alon et al [AKS98]. Subsequently, McSh-
erry gave a simpler algorithm for finding planted partitions [McS01], and this
was refined and generalized by Coga-Oghlan [?]. More recently, Feige and Ron
[?] gave a combinatorial algorithm for recovering planted cliques with similar
bounds. It is an open problem to give a simple, optimal clean-up algorithm for
spectral clustering.

A body of work that we have not covered here deals with limited indepen-
dence, i.e., only the rows are i.i.d. but the entries of a row could be correlated.
A. Dasgupta, Hopcroft, Kannan and Mitra [DHKM07] give bounds for spec-
tral norms of such matrices based on the functional analysis work of Rudelson
[Rud99] and Lust-Picard [LP86]. Specifically, the Square form Theorem and its
proof are essentially in a rather terse paper by Lust-Picard [LP86]. Here we
have put in all the details. The application of the Square Form Theorem to
prove an analog of Theorem (2.9) is from Rudelson’s work [?]. He deals with
the case when the A(i) are i.i.d. and uses a different version of the Square Form
Theorem (with better dependence on p) which he obtains by using some more
recent methods from functional analysis. A further reference for decoupling is
[?].

Spectral projection was also used in random topic models by Papadimitriou
et al [PRTV98] and extended by Azar et al [AFKM01]. We will discuss these
topics in a later chapter.
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Chapter 3

Unraveling Mixtures
Models

In this chapter, we study a classical generative model where the input is a set of
points in Rn drawn randomly from a mixture of probability distributions. The
sample points are unlabeled and the basic problem is to correctly classify them
according the component distribution which generated them. The special case
when the component distributions are Gaussians is a classical problem and has
been widely studied. In later chapters, we will revisit mixture models in other
guises (e.g., random planted partitions).

Let F be a probability distribution in Rn with the property that it is a
convex combination of distributions of known type, i.e., we can decompose F as

F = w1F1 + w2F2 + · · ·+ wkFk

where each Fi is a probability distribution with mixing weight wi ≥ 0, and∑
i wi = 1. A random point from F is drawn from distribution Fi with proba-

bility wi.
Given a sample of points from F , we consider the following problems:

1. Classify the sample according to the component distributions.

2. Learn parameters of the component distributions (e.g., estimate their
means, covariances and mixing weights).

For most of this chapter, we deal with the classical setting: each Fi is a
Gaussian in Rn. In fact, we begin with the special case of spherical Gaussians
whose density functions (i) depend only on the distance of a point from the mean
and (ii) can be written as the product of density functions on each coordinate.
The density function of a spherical Gaussian in Rn is

p(x) =
1

(
√

2πσ)n
e−‖x−µ‖

2/2σ2

where µ is its mean and σ is the standard deviation along any direction.

33
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3.1 The challenge of high dimensionality

Intuitively, if the component distributions are far apart, so that a pair of points
from the same component distribution are closer to each other than any pair
from different components, then classification is straightforward. If the com-
ponent distributions have a large overlap, then it is not possible to correctly
classify all or most of the points, since points from the overlap could belong to
more than one component. To illustrate this, consider a mixture of two one-
dimensional Gaussians with means µ1, µ2 and variances σ1, σ2. For the overlap
of the distributions to be smaller than ε, we need the means to be separated as

|µ1 − µ2| ≥ C
√

log(1/ε) maxσ1, σ2.

If the distance were smaller than this by a constant factor, then the total vari-
ation (or L1) distance between the two distributions would be less than 1 − ε
and we could not correctly classify with high probability a 1− ε fraction of the
mixture. On the other hand, if the means were separated as above, for a suffi-
ciently large C, then at least 1− ε of the sample can be correctly classified with
high probability; if we replace

√
log(1/ε) with

√
logm where m is the size of the

sample, then with high probability, every pair of points from different compo-
nents would be farther apart than any pair of points from the same component,
and classification is easy. For example, we can use the following distance-based
classification algorithm (sometimes called single linkage):

1. Sort all pairwise distances in increasing order.

2. Choose edges in this order till the edges chosen form exactly two connected
components.

3. Declare points in each connected component to be from the same compo-
nent distribution of the mixture.

Now consider a mixture of two spherical Gaussians, but in Rn. We claim
that the same separation as above with distance between the means measured
as Euclidean length, suffices to ensure that the components are probabilistically
separated. Indeed, this is easy to see by considering the projection of the mixture
to the line joining the two original means. The projection is a mixture of two one-
dimensional Gaussians satisfying the required separation condition above. Will
the above classification algorithm work with this separation? The answer turns
out to be no. This is because in high dimension, the distances between pairs from
difference components, although higher in expectation compared to distances
from the same component, can deviate from their expectation by factors that
depend both on the variance and the ambient dimension, and so, the separation
required for such distance-based methods to work grows as a function of the
dimension. We will discuss this difficulty and how to get around in more detail
presently.

The classification problem is inherently tied to the mixture being separable.
However, the learning problem, in principle, does not require separable mixtures.
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In other words, one could formulate the problem of estimating the parameters of
the mixture without assuming any separation between the components. For this
learning problem with no separation, even for mixtures of Gaussians, there is an
exponential lower bound in k, the number of components. Most of this chapter is
about polynomial algorithms for the classification and learning problems under
suitable assumptions.

3.2 Classifying separable mixtures

In order to correctly identify sample points, we require the overlap of distribu-
tions to be small . How can we quantify the distance between distributions? One
way, if we only have two distributions, is to take the total variation distance,

dTV (f1, f2) =
1

2

∫
Rn
|f1(x)− f2(x)| dx.

We can require this to be large for two well-separated distributions, i.e.,
dTV (f1, f2) ≥ 1 − ε, if we tolerate ε error. We can incorporate mixing weights
in this condition, allowing for two components to overlap more if the mixing
weight of one of them is small:

dTV (f1, f2) =

∫
Rn
|w1f1(x)− w2f2(x)| dx ≥ 1− ε.

This can be generalized in two ways to k > 2 components. First, we could
require the above condition holds for every pair of components, i.e., pairwise
probabilistic separation. Or we could have the following single condition.

∫
Rn

(
2 max

i
wifi(x)−

k∑
i=1

wifi(x)

)+

dx ≥ 1− ε. (3.1)

The quantity inside the integral is simply the maximum wifi at x, minus the
sum of the rest of the wifi’s. If the supports of the components are essentially
disjoint, the integral will be 1.

For k > 2, it is not known how to efficiently classify mixtures when we are
given one of these probabilistic separations. In what follows, we use stronger
assumptions. Strengthening probabilistic separation to geometric separation
turns out to be quite effective. We consider that next.

Geometric separation. For two distributions, we require ‖µ1−µ2‖ to be
large compared to max{σ1, σ2}. Note this is a stronger assumption than that of
small overlap. In fact, two distributions can have the same mean, yet still have
small overlap, e.g., two spherical Gaussians with different variances.

Given a separation between the means, we expect that sample points orig-
inating from the same component distribution will have smaller pairwise dis-
tances than points originating from different distributions. Let X and Y be two
independent samples drawn from the same Fi.
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E
(
‖X − Y ‖2

)
= E

(
‖(X − µi)− (Y − µi)‖2

)
= 2E

(
‖X − µi‖2

)
− 2E ((X − µi)(Y − µi))

= 2E
(
‖X − µi‖2

)
= 2E

 n∑
j=1

|xj − µji |2


= 2nσ2
i

Next let X be a sample drawn from Fi and Y a sample from Fj .

E
(
‖X − Y ‖2

)
= E

(
‖(X − µi)− (Y − µj) + (µi − µj)‖2

)
= E

(
‖X − µi‖2

)
+ E

(
‖Y − µj‖2

)
+ ‖µi − µj‖2

= nσ2
i + nσ2

j + ‖µi − µj‖2

Note how this value compares to the previous one. If ‖µi − µj‖2 were large
enough, points in the component with smallest variance would all be closer to
each other than to any point from the other components. This suggests that
we can compute pairwise distances in our sample and use them to identify the
subsample from the smallest component.

We consider separation of the form

‖µi − µj‖ ≥ βmax{σi, σj}, (3.2)

between every pair of means µi, µj . For β large enough, the distance between
points from different components will be larger in expectation than that between
points from the same component. This suggests the following classification al-
gorithm: we compute the distances between every pair of points, and connect
those points whose distance is less than some threshold. The threshold is chosen
to split the graph into two (or k) cliques. Alternatively, we can compute a min-
imum spanning tree of the graph (with edge weights equal to distances between
points), and drop the heaviest edge (k− 1 edges) so that the graph has two (k)
connected components and each corresponds to a component distribution.

Both algorithms use only the pairwise distances. In order for any algorithm
of this form to work, we need to turn the above arguments about expected
distance between sample points into high probability bounds. For Gaussians,
we can use the following concentration bound.

Lemma 3.1. Let X be drawn from a spherical Gaussian in Rn with mean µ
and variance σ2 along any direction. Then for any α > 1,

Pr
(
|‖X − µ‖2 − σ2n| > ασ2

√
n
)
≤ 2e−α

2/8.
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Using this lemma with α = 4
√

ln(m/δ), to a random point X from compo-
nent i, we have

Pr(|‖X − µi‖2 − nσ2
i | > 4

√
n ln(m/δ)σ2) ≤ 2

δ2

m2
≤ δ

m

for m > 2. Thus the inequality

|‖X − µi‖2 − nσ2
i | ≤ 4

√
n ln(m/δ)σ2

holds for all m sample points with probability at least 1−δ. From this it follows
that with probability at least 1 − δ, for X,Y from the i’th and j’th Gaussians
respectively, with i 6= j,

‖X − µi‖ ≤
√
σ2
i n+ α2σ2

i

√
n ≤ σi

√
n+ α2σi

‖Y − µj‖ ≤ σj
√
n+ α2σj

‖µi − µj‖ − ‖X − µi‖ − ‖Y − µj‖ ≤ ‖X − Y ‖ ≤ ‖X − µi‖+ ‖Y − µj‖+ ‖µi − µj‖
‖µi − µj‖ − (σi + σj)(α

2 +
√
n) ≤ ‖X − Y ‖ ≤ ‖µi − µj‖+ (σi + σj)(α

2 +
√
n)

Thus it suffices for β in the separation bound (3.2) to grow as Ω(
√
n) for

either of the above algorithms (clique or MST). One can be more careful and
get a bound that grows only as Ω(n1/4) by identifying components in the order
of increasing σi. We do not describe this here.

The problem with these approaches is that the separation needed grows
rapidly with n, the dimension, which in general is much higher than k, the
number of components. On the other hand, for classification to be achievable
with high probability, the separation does not need a dependence on n. In par-
ticular, it suffices for the means to be separated by a small number of standard
deviations. If such a separation holds, the projection of the mixture to the span
of the means would still give a well-separate mixture and now the dimension is
at most k. Of course, this is not an algorithm since the means are unknown.

One way to reduce the dimension and therefore the dependence on n is to
project to a lower-dimensional subspace. A natural idea is random projection.
Consider a projection from Rn → R` so that the image of a point u is u′. Then
it can be shown that

E
(
‖u′‖2

)
=
`

n
‖u‖2

In other words, the expected squared length of a vector shrinks by a factor
of `

n . Further, the squared length is concentrated around its expectation.

Pr(|‖u′‖2 − `

n
‖u‖2| > ε`

n
‖u‖2) ≤ 2e−ε

2`/4

The problem with random projection is that the squared distance between
the means, ‖µi−µj‖2, is also likely to shrink by the same `

n factor, and therefore
random projection acts only as a scaling and provides no benefit.
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3.2.1 Spectral projection

Next we consider projecting to the best-fit subspace given by the top k singular
vectors of the mixture. This is a general methodology — use principal compo-
nent analysis (PCA) as a preprocessing step. In this case, it will be provably of
great value.

Algorithm: Classify-Mixture

1. Compute the singular value decomposition of the sample

matrix.

2. Project the samples to the rank k subspace spanned by the

top k right singular vectors.

3. Perform a distance-based classification in the

k-dimensional space.

We will see that by doing this, a separation given by

‖µi − µj‖ ≥ c(k logm)
1
4 max{σi, σj},

where c is an absolute constant, is sufficient for classifying m points.
The best-fit vector for a distribution is one that minimizes the expected

squared distance of a random point to the vector. Using this definition, it is
intuitive that the best fit vector for a single Gaussian is simply the vector that
passes through the Gaussian’s mean. We state this formally below.

Lemma 3.2. The best-fit 1-dimensional subspace for a spherical Gaussian with
mean µ is given by the vector passing through µ.

Proof. For a randomly chosen x, we have for any unit vector v,

E
(
(x · v)2

)
= E

(
((x− µ) · v + µ · v)2

)
= E

(
((x− µ) · v)2

)
+ E

(
(µ · v)2

)
+ E (2((x− µ) · v)(µ · v))

= σ2 + (µ · v)2 + 0

= σ2 + (µ · v)2

which is maximized when v = µ/‖µ‖.

Further, due to the symmetry of the sphere, the best subspace of dimension
2 or more is any subspace containing the mean.

Lemma 3.3. Any k-dimensional subspace containing µ is an optimal SVD
subspace for a spherical Gaussian.



3.2. CLASSIFYING SEPARABLE MIXTURES 39

A simple consequence of this lemma is the following theorem, which states
that the best k-dimensional subspace for a mixture F involving k spherical
Gaussians is the space which contains the means of the Gaussians.

Theorem 3.4. The k-dim SVD subspace for a mixture of k Gaussians F con-
tains the span of {µ1, µ2, ..., µk}.

Now let F be a mixture of two Gaussians. Consider what happens when
we project from Rn onto the best two-dimensional subspace R2. The expected
squared distance (after projection) of two points drawn from the same distribu-
tion goes from 2nσ2

i to 4σ2
i . And, crucially, since we are projecting onto the best

two-dimensional subspace which contains the two means, the expected value of
‖µ1 − µ2‖2 does not change!

What property of spherical Gaussians did we use in this analysis? A spherical
Gaussian projected onto the best SVD subspace is still a spherical Gaussian.
In fact, this only required that the variance in every direction is equal. But
many other distributions, e.g., uniform over a cube, also have this property. We
address the following questions in the rest of this chapter.

1. What distributions does Theorem 3.4 extend to?

2. What about more general distributions?

3. What is the sample complexity?

3.2.2 Weakly isotropic mixtures

Next we study how our characterization of the SVD subspace can be extended.

Definition 3.5. Random variable X ∈ Rn has a weakly isotropic distribution
with mean µ and variance σ2 if

E ((w · (X − µ))2) = σ2, ∀w ∈ Rn, ‖w‖ = 1.

A spherical Gaussian is clearly weakly isotropic. The uniform distribution
in a cube is also weakly isotropic.

Exercise 3.1. 1. Show that the uniform distribution in a cube is weakly
isotropic.

2. Show that a distribution is weakly isotropic iff its covariance matrix is a
multiple of the identity.

Exercise 3.2. The k-dimensional SVD subspace for a mixture F with compo-
nent means µ1, . . . , µk contains span{µ1, . . . , µk} if each Fi is weakly isotropic.

The statement of Exercise 3.2 does not hold for arbitrary distributions, even
for k = 1. Consider a non-spherical Gaussian random vector X ∈ R2, whose
mean is (0, 1) and whose variance along the x-axis is much larger than that
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along the y-axis. Clearly the optimal 1-dimensional subspace for X (that max-
imizes the squared projection in expectation) is not the one passes through its
mean µ; it is orthogonal to the mean. SVD applied after centering the mixture
at the origin works for one Gaussian but breaks down for k > 1, even with
(nonspherical) Gaussian components.

In order to demonstrate the effectiveness of this algorithm for non-Gaussian
mixtures we formulate an exercise for mixtures of isotropic convex bodies.

Exercise 3.3. Let F be a mixture of k distributions where each component is
a uniform distribution over an isotropic convex body, i.e., each Fi is uniform
over a convex body Ki, and satisfies

E Fi

(
(x− µi)(x− µi)T

)
= I.

It is known that for any isotropic convex body, a random point X satisfies the
following tail inequality (Lemma 3.7 later in this chapter):

Pr(‖X − µi‖ > t
√
n) ≤ e−t+1.

Using this fact, derive a bound on the pairwise separation of the means of
the components of F that would guarantee that spectral projection followed by
distance-based classification succeeds with high probability.

3.2.3 Mixtures of general distributions

For a mixture of general distributions, the subspace that maximizes the squared
projections is not the best subspace for our classification purpose any more.
Consider two components that resemble “parallel pancakes”, i.e., two Gaussians
that are narrow and separated along one direction and spherical (and identical)
in all other directions. They are separable by a hyperplane orthogonal to the line
joining their means. However, the 2-dimensional subspace that maximizes the
sum of squared projections (and hence minimizes the sum of squared distances)
is parallel to the two pancakes. Hence after projection to this subspace, the two
means collapse and we can not separate the two distributions anymore.

The next theorem provides an extension of the analysis of spherical Gaus-
sians by showing when the SVD subspace is “close” to the subspace spanned by
the component means.

Theorem 3.6. Let F be a mixture of arbitrary distributions F1, . . . , Fk. Let wi
be the mixing weight of Fi, µi be its mean and σ2

i,W be the maximum variance
of Fi along directions in W , the k-dimensional SVD-subspace of F . Then

k∑
i=1

wid(µi,W )2 ≤ k
k∑
i=1

wiσ
2
i,W

where d(., .) is the orthogonal distance.
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Theorem 3.6 says that for a mixture of general distributions, the means
do not move too much after projection to the SVD subspace. Note that the
theorem does not solve the case of parallel pancakes, as it requires that the
pancakes be separated by a factor proportional to their “radius” rather than
their “thickness”.

Proof. Let M be the span of µ1, µ2, . . . , µk. For x ∈ Rn, we write πM (x) for
the projection of x to the subspace M and πW (x) for the projection of x to W .

We first lower bound the expected squared length of the projection to the
mean subpspace M .

E
(
‖πM (x)‖2

)
=

k∑
i=1

wiE Fi

(
‖πM (x)‖2

)
=

k∑
i=1

wi
(
E Fi

(
‖πM (x)− µi‖2

)
+ ‖µi‖2

)
≥

k∑
i=1

wi‖µi‖2

=

k∑
i=1

wi‖πW (µi)‖2 +

k∑
i=1

wid(µi,W )2.

We next upper bound the expected squared length of the projection to the
SVD subspace W . Let ~e1, ..., ~ek be an orthonormal basis for W .

E
(
‖πW (x)‖2

)
=

k∑
i=1

wi
(
E Fi

(
‖πW (x− µi)‖2

)
+ ‖πW (µi)‖2

)
≤

k∑
i=1

wi

k∑
j=1

E Fi

(
(πW (x− µi) · ~ej)2

)
+

k∑
i=1

wi‖πW (µi)‖2

≤ k

k∑
i=1

wiσ
2
i,W +

k∑
i=1

wi‖πW (µi)‖2.

The SVD subspace maximizes the sum of squared projections among all sub-
spaces of rank at most k (Theorem 1.3). Therefore,

E
(
‖πM (x)‖2

)
≤ E

(
‖πW (x)‖2

)
and the theorem follows from the previous two inequalities.

The next exercise gives a refinement of this theorem.

Exercise 3.4. Let S be a matrix whose rows are a sample of m points from a
mixture of k distributions with mi points from the i’th distribution. Let µ̄i be the
mean of the subsample from the i’th distribution and σ̄2

i be its largest directional
variance. Let W be the k-dimensional SVD subspace of S.
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1. Prove that

‖µ̄i − πW (µ̄i)‖ ≤
‖S − πW (S)‖√

mi

where the norm on the RHS is the 2-norm (largest singular value).

2. Let S̄ denote the matrix where each row of S is replaced by the correspond-
ing µ̄i. Show that (again with 2-norm),

‖S − S̄‖2 ≤
k∑
i=1

miσ̄
2
i .

3. From the above, derive that for each component,

‖µ̄i − πW (µ̄i)‖2 ≤
∑k
j=1 wj σ̄

2
j

wi

where wi = mi/m.

3.2.4 Spectral projection with samples

So far we have shown that the SVD subspace of a mixture can be quite useful
for classification. In reality, we only have samples from the mixture. This
section is devoted to establishing bounds on sample complexity to achieve similar
guarantees as we would for the full mixture. The main tool will be distance
concentration of samples. In general, we are interested in inequalities such as
the following for a random point X from a component Fi of the mixture. Let
R2 = E (‖X − µi‖2).

Pr (‖X − µi‖ > tR) ≤ e−ct.
This is useful for two reasons:

1. To ensure that the SVD subspace the sample matrix is not far from the
SVD subspace for the full mixture. Since our analysis shows that the SVD
subspace is near the subspace spanned by the means and the distance, all
we need to show is that the sample means and sample variances converge
to the component means and covariances.

2. To be able to apply simple clustering algorithms such as forming cliques
or connected components, we need distances between points of the same
component to be not much higher than their expectations.

An interesting general class of distributions with such concentration proper-
ties are those whose probability density functions are logconcave. A function f
is logconcave if ∀x, y, ∀λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ



3.3. LEARNING MIXTURES OF SPHERICAL DISTRIBUTIONS 43

or equivalently,

log f(λx+ (1− λ)y) ≥ λ log f(x) + (1− λ) log f(y).

Many well-known distributions are log-concave. In fact, any distribution with
a density function f(x) = eg(x) for some concave function g(x), e.g. e−c‖x‖ or
ec(x·v) is logconcave. Also, the uniform distribution in a convex body is logcon-
cave. The following concentration inequality [LV07] holds for any logconcave
density.

Lemma 3.7. Let X be a random point from a logconcave density in Rn with
µ = E (X) and R2 = E (‖X − µ‖2). Then,

Pr(‖X − µ‖ ≥ tR) ≤ e−t+1.

Putting this all together, we conclude that Algorithm Classify-Mixture, which
projects samples to the SVD subspace and then clusters, works well for mixtures
of well-separated distributions with logconcave densities, where the separation
required between every pair of means is proportional to the largest standard
deviation.

Theorem 3.8. Algorithm Classify-Mixture correctly classifies a sample of m
points from a mixture of k arbitrary logconcave densities F1, . . . , Fk, with prob-
ability at least 1− δ, provided for each pair i, j we have

‖µi − µj‖ ≥ Ckc log(m/δ) max{σi, σj},

µi is the mean of component Fi, σ
2
i is its largest variance and c, C are fixed

constants.

This is essentially the best possible guarantee for the algorithm. However,
it is a bit unsatisfactory since an affine transformation, which does not affect
probabilistic separation, could easily turn a well-separated mixture into one that
is not well-separated.

3.3 Learning mixtures of spherical distributions

So far our efforts have been to partition the observed sample points. The other
interesting problem proposed in the introduction of this chapter was to identify
the values µi, σi and wi. In this section, we will see that this is possible in
polynomial time provided the means µi are linearly independent. We let Y
denote a sample from the mixture F . Thus,

E (Y ) =
∑
i

wiE Fi
(X) =

∑
i

wiµi

E (Y ⊗ Y )jk = E (YjYk)
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Before we go on, let us clarify some notation. The operator ⊗ is the tensor
product; for vectors u, v, we have u ⊗ v = uvT . Note how u and v are vectors
but uvT is a matrix. For a tensor product between a matrix and a vector, say
A ⊗ u, the result is a tensor with three dimensions. In general, the resulting
dimensionality is the sum of the argument dimensions.

Next we derive an expression for the second moment tensor. For X ∼
N (µ, σ2I),

E (X ⊗X) = E ((X − µ+ µ)⊗ (X − µ+ µ))

= E ((X − µ)⊗ (X − µ)) + µ⊗ µ
= σ2I + µ⊗ µ.

Therefore,

E (Y ⊗ Y ) =
∑
i

wiE i(X ⊗X)

= (
∑
i

wiσ
2
i )I +

∑
i

wi(µi ⊗ µi)

where E i(.) = E Fi
(.).

Let us now see what happens if we take the inner product of Y and some
vector v.

E ((Y · v)2) = vTE (Y ⊗ Y )v =
∑
i

wiσ
2
i +

∑
i

wi(µ
T
i v)2.

One observation is that if v were orthogonal to span{µ1 . . . µk}, then we would
have:

E ((Y · v)2) =
∑
i

wiσ
2
i

Therefore we can compute

M = E (Y ⊗ Y )− E ((Y · v)2)I =

k∑
i=1

wiµi ⊗ µi.

We do not know the µi’s, so finding a v orthogonal to them is not straight-
forward. However, if we compute the SVD of the m× n matrix containing our
m samples, the top k singular vectors would be the best fit k-dimensional sub-
space (see theorem 1.4), and assuming the means are linearly independent, this
is exactly span{µ1 . . . µk}.

Exercise 3.5. Show that for any j > k, the j’th singular value σj is equal to∑
i wiσ

2
i and the corresponding right singular vector is orthogonal to span{µ1, . . . , µk}.

Exercise 3.6. Show that it is possible for two mixtures with distinct sets of
means to have exactly the same second moment tensor.



3.3. LEARNING MIXTURES OF SPHERICAL DISTRIBUTIONS 45

From the exercises above, it should now be clear that the calculations for
the second moments are not enought to retrieve the distribution parameters.
It might be worth experimenting with the third moment, so let us calculate
E (Y ⊗ Y ⊗ Y ).

For X ∼ N (µ, σ2I),

E (X ⊗X ⊗X)

= E ((X − µ+ µ)⊗ (X − µ+ µ)⊗ (X − µ+ µ))

= E ((X − µ)⊗ (X − µ)⊗ (X − µ))

+ E (µ⊗ (X − µ)⊗ (X − µ) + (X − µ)⊗ µ⊗ (X − µ) + (X − µ)⊗ (X − µ)⊗ µ)

+ E ((X − µ)⊗ µ⊗ µ+ µ⊗ (X − µ)⊗ µ+ µ⊗ µ⊗ (X − µ))

+ E (µ⊗ µ⊗ µ)

(here we have used the fact that the odd powers of (X − µ) have mean zero)

= E (µ⊗ (X − µ)⊗ (X − µ)) + E ((X − µ)⊗ µ⊗ (X − µ))

+ E ((X − µ)⊗ (X − µ)⊗ µ) + E (µ⊗ µ⊗ µ)

= µ⊗ σ2I + σ2
n∑
j

ej ⊗ µ⊗ ej + σ2I ⊗ µ+ µ⊗ µ⊗ µ

= σ2
n∑
j

µ⊗ ej ⊗ ej + ej ⊗ µ⊗ ej + ej ⊗ ej ⊗ µ+ µ⊗ µ⊗ µ.

Then the third moment for Y can be expressed as

E (Y ⊗ Y ⊗ Y ) =

k∑
i

wiσ
2
i

 n∑
j

µi ⊗ ej ⊗ ej + ej ⊗ µi ⊗ ej + ej ⊗ ej ⊗ µi


+

k∑
i

wiµi ⊗ µi ⊗ µi

However, we must not forget that we haven’t really made any progress unless
our subexpressions are estimable using sample points. When we were doing
calculations for the second moment, we could in the end estimate

∑
i wiµi ⊗ µi

from E (Y ⊗Y ) and
∑
i wiσ

2
i using the SVD, see Exercise 3.5. Similarly, we are

now going to show that we’ll be able to estimate
∑k
i wiσ

2
∑n
j µi⊗ej⊗ej +ej⊗

µi ⊗ ej + ej ⊗ ej ⊗ µi and hence also
∑
i wiµi ⊗ µi ⊗ µi. We will use the same

idea of having a vector v orthogonal to the span of the means.
First, for any unit vector v and X ∼ N (µ, σ2I),

E (X((X − µ) · v)2) = E ((X − µ+ µ)((X − µ) · v)2)

= E ((X − µ)((X − µ) · v)2) + E (µ((X − µ) · v)2)

= 0 + E (µ((X − µ) · v)2)

= E (((X − µ) · v)2)µ

= σ2µ
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Before going to the Y case, lets introduce a convenient notation of treat-
ing tensors as functions, say for a third-order tensor T , we define these three
functions on it

T (x, y, z) = Txyz =
∑
jkl

Tjklxjykzl

In particular we note that for vectors a and b, (a⊗a⊗a)(b, b)) =
(
a(a · b)2

)
.

With this in mind we continue to explore the third moment.

E (Y ((Y − µY ) · v)2) = E (Y ⊗ (Y − µY )⊗ (Y − µY ))(v, v)

= E (Y ⊗ Y ⊗ Y )(v, v) + E (Y ⊗ Y ⊗−µY )(v, v)

+ E (Y ⊗−µY ⊗ (Y − µY ))(v, v)

Now assume that v is perpendicular to the means. Therefore µY is also perpen-
dicular to v because it must be in span{µ1 . . . µk}.

E (Y ((Y − µY ) · v)2)

= E (Y ⊗ Y ⊗ Y )(v, v) + E (Y ⊗ Y ⊗−µY )(v, v)

+ E (Y ⊗−µY ⊗ (Y − µY ))(v, v)

= E (Y ⊗ Y ⊗ Y )(v, v)

=

k∑
i

wiσ
2
i

 n∑
j

µi ⊗ ej ⊗ ej + ej ⊗ µi ⊗ ej + ej ⊗ ej ⊗ µi

 (v, v)

+

k∑
i

wiµi ⊗ µi ⊗ µi(v, v)

=

k∑
i

wiσ
2
i

 n∑
j

µi ⊗ v ⊗ v


=

k∑
i

wiσ
2
i µi

Now, let’s form the expression u = E (Y ((Y − µY ) · v)2) where µY is the mean
of Y . Note that u is a estimable vector and also parametrized over v. And since
u is estimable, so is

∑
j(u⊗ ej ⊗ ej + ej ⊗ u⊗ ej + ej ⊗ ej ⊗ u).

T = E (Y ⊗ Y ⊗ Y )−
∑
j

(u⊗ ej ⊗ ej + ej ⊗ u⊗ ej + ej ⊗ ej ⊗ u)

=
∑
i

wi(µi ⊗ µi ⊗ µi).

So far we have seen how to compute M =
∑
i wiµi ⊗ µi and T above from

samples. We are now ready to state the algorithm. For a set of samples S and
any function on Rn, let ES(f(x)) denote the average of f over points in S.
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Algorithm: Learning the parameters

1. Compute M = ES(Y ⊗ Y ) and its top k eigenvectors

v1, . . . vk. Let σ̄ = σk+1(M).

2. Decompose (M − σ̄I) = WWT , using the SVD, and compute

S̃ = W−1S.

3. Find a vector v̄ orthogonal to span{W−1v1, . . .W
−1vk} and

compute

ū = ES̃(Y ((Y − µY )v̄)2)

and

T = ES̃(Y ⊗ Y ⊗ Y )−
∑
j

(ū⊗ ej ⊗ ej + ej ⊗ ū⊗ ej + ej ⊗ ej ⊗ ū).

4. Iteratively apply the tensor power method on T. That is

repeteadly apply

x :=
T (., x, x)

‖T (., x, x)‖
until convergence. Then set µ̃1 = T (x, x, x)x and w1 =
1/|µ̃1|2 and repeat with

T := T − wiµ̃i ⊗ µ̃i ⊗ µ̃i

to recoverl µ̃2 . . . µ̃k. Let A be the matrix whose columns

are the µ̃i.

5. Compute the SVD: A = UDV T and the pseudoinverse A+ =
V D−1UT and using this,

σ2
i =

(A+ū)(i)

wi
.

The algorithm’s performance is analyzed in the following theorem.

Theorem 3.9. Given M and T as above, if all the means µ1 . . . µk are linearly
independent, we can estimate all parameters of each distribution in polynomial
time.

Make M isotropic by decomposing it into M = WWT . Let µ̃i = W−1µi.
From this definition we have
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∑
i

wi(µ̃i ⊗ µ̃i) =
∑
i

wi(W
−1µi)(W

−1µi)
T

= W−1(
∑
i

wiµiµ
T
i )W−1T

= W−1B2W
−1T

= I

Exercise 3.7. Show that the
√
wiµ̃i are orthonormal.

Now for the third-order tensor

T =
∑
i

wi(µ̃i ⊗ µ̃i ⊗ µ̃i)

we have,

T (x, x, x) =
∑
jkl

Tjklxjxkxl

=
∑
jkl

(
∑
i

wi(µ̃i ⊗ µ̃i ⊗ µ̃i))xjxkxl

=
∑
i

wi(µ̃i · x)3

Now we apply Theorem ?? to conclude that when started at a random x,
with high probability, the tensor power method converges to one of the m̃ui.

3.4 An affine-invariant algorithm

We now return to the general mixtures problem, seeking a better condition
on separation than that we derived using spectral projection. The algorithm
described here is an application of isotropic PCA, an algorithm discussed in
Chapter ??. Unlike the methods we have seen so far, the algorithm is affine-
invariant. For k = 2 components it has nearly the best possible guarantees for
clustering Gaussian mixtures. For k > 2, it requires that there be a (k − 1)-
dimensional subspace where the overlap of the components is small in every
direction. This condition can be stated in terms of the Fisher discriminant, a
quantity commonly used in the field of Pattern Recognition with labeled data.
The affine invariance makes it possible to unravel a much larger set of Gaussian
mixtures than had been possible previously. Here we only describe the case of
two components in detail, which contains the key ideas.

The first step of the algorithm is to place the mixture in isotropic position via
an affine transformation. This has the effect of making the (k − 1)-dimensional
Fisher subspace, i.e., the one that minimizes the Fisher discriminant (the frac-
tion of the variance of the mixture taken up the intra-component term; see
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Section 3.4.2 for a formal definition), the same as the subspace spanned by the
means of the components (they only coincide in general in isotropic position),
for any mixture. The rest of the algorithm identifies directions close to this
subspace and uses them to cluster, without access to labels. Intuitively this is
hard since after isotropy, standard PCA/SVD reveals no additional information.
Before presenting the ideas and guarantees in more detail, we describe relevant
related work.

As before, we assume we are given a lower bound w on the minimum mixing
weight and k, the number of components. With high probability, Algorithm
Unravel returns a hyperplane so that each halfspace encloses almost all of the
probability mass of a single component and almost none of the other component.

The algorithm has three major components: an initial affine transformation,
a reweighting step, and identification of a direction close to the Fisher direc-
tion. The key insight is that the reweighting technique will either cause the
mean of the mixture to shift in the intermean subspace, or cause the top prin-
cipal component of the second moment matrix to approximate the intermean
direction. In either case, we obtain a direction along which we can partition the
components.

We first find an affine transformation W which when applied to F results in
an isotropic distribution. That is, we move the mean to the origin and apply
a linear transformation to make the covariance matrix the identity. We apply
this transformation to a new set of m1 points {xi} from F and then reweight
according to a spherically symmetric Gaussian exp(−‖x‖2/α) for α = Θ(n/w).
We then compute the mean û and second moment matrix M̂ of the resulting
set. After the reweighting, the algorithm chooses either the new mean or the
direction of maximum second moment and projects the data onto this direction
h.
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Algorithm Unravel
Input: Scalar w > 0.
Initialization: P = Rn.

1. (Rescale) Use samples to compute an affine transformation

W that makes the distribution nearly isotropic (mean

zero, identity covariance matrix).

2. (Reweight) For each of m1 samples, compute a weight

e−‖x‖
2/α.

3. (Find Separating Direction) Find the mean of the

reweighted data µ̂. If ‖µ̂‖ >
√
w/(32α) (where α > n/w),

let h = µ̂. Otherwise, find the covariance matrix M̂
of the reweighted points and let h be its top principal

component.

4. (Classify) Project m2 sample points to h and classify

the projection based on distances.

3.4.1 Parallel Pancakes

We now discuss the case of parallel pancakes in detail. Suppose F is a mixture
of two spherical Gaussians that are well-separated, i.e. the intermean distance
is large compared to the standard deviation along any direction. We consider
two cases, one where the mixing weights are equal and another where they are
imbalanced.

After isotropy is enforced, each component will become thin in the intermean
direction, giving the density the appearance of two parallel pancakes. When the
mixing weights are equal, the means of the components will be equally spaced
at a distance of 1 − φ on opposite sides of the origin. For imbalanced weights,
the origin will still lie on the intermean direction but will be much closer to the
heavier component, while the lighter component will be much further away. In
both cases, this transformation makes the variance of the mixture 1 in every
direction, so the principal components give us no insight into the inter-mean
direction.

Consider next the effect of the reweighting on the mean of the mixture.
For the case of equal mixing weights, symmetry assures that the mean does not
shift at all. For imbalanced weights, however, the heavier component, which lies
closer to the origin will become heavier still. Thus, the reweighted mean shifts
toward the mean of the heavier component, allowing us to detect the intermean
direction.

Finally, consider the effect of reweighting on the second moments of the
mixture with equal mixing weights. Because points closer to the origin are
weighted more, the second moment in every direction is reduced. However, in
the intermean direction, where part of the moment is due to the displacement
of the component means from the origin, it shrinks less. Thus, the direction of
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maximum second moment is the intermean direction.

3.4.2 Analysis

The algorithm has the following guarantee for a two-Gaussian mixture.

Theorem 3.10. Let w1, µ1,Σ1 and w2, µ2,Σ2 define a mixture of two Gaussians
and w = minw1, w2. There is an absolute constant C such that, if there exists
a direction v such that

|πv(µ1 − µ2)| ≥ C
(√

vTΣ1v +
√
vTΣ2v

)
w−2 log1/2

(
1

wδ
+

1

η

)
,

then with probability 1−δ algorithm Unravel returns two complementary half-
spaces that have error at most η using time and a number of samples that is
polynomial in n,w−1, log(1/δ).

So the separation required between the means is comparable to the stan-
dard deviation in some direction. This separation condition of Theorem 3.10
is affine-invariant and much weaker than conditions of the form ‖µ1 − µ2‖ &
max{σ1,max, σ2,max} that came up earlier in the chapter. We note that the
separating direction need not be the intermean direction.

It will be insightful to state this result in terms of the Fisher discriminant,
a standard notion from Pattern Recognition [DHS01, Fuk90] that is used with
labeled data. In words, the Fisher discriminant along direction p is

J(p) =
the intra-component variance in direction p

the total variance in direction p

Mathematically, this is expressed as

J(p) =
E
[
‖πp(x− µ`(x))‖2

]
E [‖πp(x)‖2]

=
pT (w1Σ1 + w2Σ2)p

pT (w1(Σ1 + µ1µT1 ) + w2(Σ2 + µ2µT2 ))p

for x distributed according to a mixture distribution with means µi and covari-
ance matrices Σi. We use `(x) to indicate the component from which x was
drawn.

Theorem 3.11. There is an absolute constant C for which the following holds.
Suppose that F is a mixture of two Gaussians such that there exists a direction
p for which

J(p) ≤ Cw3 log−1

(
1

δw
+

1

η

)
.

With probability 1 − δ, algorithm Unravel returns a halfspace with error at
most η using time and sample complexity polynomial in n,w−1, log(1/δ).

In words, the algorithm successfully unravels arbitrary Gaussians provided
there exists a line along which the expected squared distance of a point to its
component mean is smaller than the expected squared distance to the overall
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mean by roughly a 1/w3 factor. There is no dependence on the largest variances
of the individual components, and the dependence on the ambient dimension is
logarithmic. Thus the addition of extra dimensions, even with large variance,
has little impact on the success of the algorithm. The algorithm and its analysis
in terms of the Fisher discriminant have been generalized to k > 2 [BV08].

3.5 Discussion

Mixture models are a classical topic in statistics. Traditional methods such
as EM or other local search heuristics can get stuck in local optima or take
a long time to converge. Starting with Dasgupta’s paper [Das99] in 1999,
there has been much progress on efficient algorithms with rigorous guarantees
[AK05, DS00], with Arora and Kannan [AK05] addressing the case of general
Gaussians using distance concentration methods. PCA was analyzed in this
context by Vempala and Wang [VW04] giving nearly optimal guarantees for
mixtures of spherical Gaussians (and weakly isotropic distributions). This was
extended to general Gaussians and logconcave densities [KSV08, AM05] (Ex-
ercise 3.4 is based on [AM05]), although the bounds obtained were far from
optimal in that the separation required grows with the largest variance of the
components or with the dimension of the underlying space. In 2008, Brubaker
and Vempala [BV08] presented an affine-invariant algorithm that only needs
hyperplane separability for two Gaussians and a generalization of this condition
for k > 2; in particular, it suffices for each component to be separable from the
rest of the mixture by a hyperplane.

A related line of work considers learning symmetric product distributions,
where the coordinates are independent. Feldman et al [FSO06] have shown that
mixtures of axis-aligned Gaussians can be approximated without any separation
assumption at all in time exponential in k. Chaudhuri and Rao [CR08a] have
given a polynomial-time algorithm for clustering mixtures of product distribu-
tions (axis-aligned Gaussians) under mild separation conditions. A. Dasgupta
et al [DHKS05] and later Chaudhuri and Rao [CR08b] gave algorithms for clus-
tering mixtures of heavy-tailed distributions.

For learning all parameters of a mixture of two Gaussians, Kalai, Moitra
and Valiant [?] gave a polynomial-time algorithm with no separation require-
ment. This was lated extended to a mixture of k Gaussians with sample and

time complexity npoly(k) by Moitra and Valiant [?]. For arbitrary k-Gaussian
mixtures, they also show a lower bound of 2Ω(k) on the sample complexity.

In 2012, Hsu and Kakade [?] found the method described here for learn-
ing parameters of a mixture of spherical Gaussians assuming only that their
means are linearly independent. It is an open problem to extend their approach
to a mixture of general Gaussians under suitable nondegeneracy assumptions
(perhaps the same).

A more general question is “agnostic” learning of Gaussians, where we are
given samples from an arbitrary distribution and would like to find the best-
fit mixture of k Gaussians. This problem naturally accounts for noise and
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appears to be much more realistic. Brubaker [Bru09] gave an algorithm that
makes progress towards this goal, by allowing a mixture to be corrupted by an
ε fraction of noisy points with ε < wmin, and with nearly the same separation
requirements as in Section 3.2.3.
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Chapter 4

Independent Component
Analysis

Suppose that s ∈ Rn, s = (s1, s2, . . . , sn), is a vector of independent signals (or
components) that we cannot directly measure. However, we are able to gather
a set of samples, x = (x1, x2, . . . , xk), where

x = As,

i.e., the xi’s are a sampling (k ≤ n) of the linearly transformed signals. Given
x = As, where x ∈ Rn, A is full rank, and s1, s2, . . . , sn are independent. We
want to identify or estimate A from the samples x. The goal of Independent
Component Analysis (ICA) is to recover the unknown linear transformation A.

A

si ∈ [−1, 1]
x

A simple example application of ICA is shown in Fig. 4. Suppose that the
signals si are points in some space (e.g., a three-dimensional cube) and we want
to find the linear transformation A that produces the points x in some other
transformed space. We can only recover A by sampling points in the transformed
space, since we cannot directly measure points in the original space.

Another example of an application of ICA is the cocktail party problem,
where several microphones are placed throughout a room in which a party is
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held. Each microphone is able to record the conversations nearby and the prob-
lem is to recover the words that are spoken by each person in the room from
the overlapping conversations that are recorded.

4.1 The fourth moment and uniqueness

We want to know whether it is possible to uniquely recover A. It is indeed
possible to recover A uniquely so long as the condition described in the following
theorem holds.

Theorem 4.1. If the distributions of the signals si are different in the fourth
moment from a Gaussian distribution, then A is uniquely identifiable.

Proof. As was the case when learning mixture or topic models, we will inspect
the higher moments. We assume without loss of generality that the independent
signals have the following properties: E (s) = 0, E (ssT ) = I, and

E (si, sj) =

{
0 if i 6= j

E (s2
i ) otherwise

We are justified in assuming these properties without a loss of generality,
because

1. even if E (s) 6= 0, we can center the observed samples xi by subtracting
the sample mean, such that assuming E (s) = 0 becomes valid.

2. Since the signals cannot be directly observed, we cannot determine the
magnitude of the variances in the signals. Therefore, without a loss of
generality we can assume E(ssT ) = I.

The first moment is E (x) = AE (s) = 0. The second moment is,

E (xxT ) = E (As(As)T )

= AE (ssT )AT

= AAT =

n∑
i=1

A(i) ⊗A(i)

The third moment, E (x⊗ x⊗ x) is could be zero, so we examine the fourth
moment.

E (x⊗ x⊗ x⊗ x)i,j,k,l = E (xixjxkxl)

= E ((As)i(As)j(As)k(As)l)

= E
(
(A(i) · s)i . . . (A(l) · s)l

)
= E

 ∑
i′,j′,k′,l′

Aii′si′ . . . All′sl′


=

∑
i′,j′,k′,l′

Aii′ . . . All′E (si′ . . . sl′)
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Based on our initial assumptions about the signals,

E (si′ . . . sl′) =


E (s4

i′) if si′ = . . . = sl′

1 if si′ = sj′ 6= sk′ = sl′

0 otherwise,

which we can plug back into the previous equation.

E (x⊗ x⊗ x⊗ x)i,j,k,l =
∑
i′,j′

(
A(i′) ⊗A(i′) ⊗A(j′) ⊗A(j′)

)
E (s2

i′s
2
j′)

+
∑
i′,j′

(
A(i′) ⊗A(j′) ⊗A(j′) ⊗A(i′)

)
E (s2

i′s
2
j′)

+
∑
i′,j′

(
A(i′) ⊗A(j′) ⊗A(i′) ⊗A(j′)

)
E (s2

i′s
2
j′).

Now, if we apply

E (s2
i′s

2
j′) =

{
1 if i′ 6= j′

E (s4
i′) otherwise.

we can define

M1 =
∑
i′,j′

(
A(i′) ⊗A(i′) ⊗A(j′) ⊗A(j′)

)
+

(
A(i′) ⊗A(j′) ⊗A(j′) ⊗A(i′)

)
+

(
A(i′) ⊗A(j′) ⊗A(i′) ⊗A(j′)

)
,

and

M = M1 +
∑
i′

(E (s′4i )− 3)A(i′) ⊗A(i′) ⊗A(i′) ⊗A(i′).

Since M = E (x⊗ x⊗ x⊗ x) and

(M1)i,j,k,l = E (xixj)E (xkxl) + E (xixk)E (xjxl) + E (xixl)E (xjxk),

We can compute the difference M −M1, because we can estimate M and
M1 from the samples. So if the distribution of the signals si is different from
the Gaussian distribution in the fourth moment, we can recover A with

M −M1 =
∑
i′

(E (s′4i )− 3)A(i′) ⊗A(i′) ⊗A(i′) ⊗A(i′).

Exercise 4.1. Show that A is not uniquely identifiable if the distributions of two
or more signals si are Gaussian. Show that if only one component is Gaussian,
then A can still be recovered.
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4.2 Computational complexity of ICA

We have shown that we can use ICA to uniquely recover A if the distribution
of no more than one of the signals is Gaussian, but what is the computational
complexity of ICA? A major problem is that the fourth moment tensor has size
n4. However, we can avoid constructing the tensor in the following way:

Let

M1 =
∑
i

Ai ⊗Ai = AAT .

Pick a random vector u, then

M(u, u)i,j =
∑
k,l

Mi,j,k,luluk.

M2 = (M −M1)(u, u) =
∑
i

(E (s4
i )− 3)A(i) ⊗A(i)(A(i) · u)2

=
∑
i

(E (s4
i )− 3)(A(i) · u)2A(i) ⊗A(i)

= A

E (s4
i )(A

(1) · u)2 0
. . .

0 (E (s4
i )− 3)(A(n) · u)2

AT
= ADAT

If D is not the identity matrix and does not have any entries repeated on the
diagonal, then Di,i is an eigenvalue of M2 and the columns of A are the eigen-
vectors of M2.

4.3 ICA with noise

What if the samples x1, x2, . . . , xk are noisy? Let us consider the case that we
want to apply ICA to a system with noise:

x = As+ η,

where η ∼ N(µ,Σ) is a Gaussian noise with unknown mean µ and unknown
covariance Σ.



4.3. ICA WITH NOISE 59

Algorithm: Noisy ICA

1. Pick vector u ∈ Rn.

2. Compute weight α(x) = eu
T x.

3. Compute the covariance of the weighted sample.

µ̃ =
E (eu

T xx)

E (euT x)
, Mu =

E (eu
T x(x− µ̃)(x− µ̃)T )

E (euT x)

4. Output eigenvalues and eigenvectors of Mu.

Theorem 4.2. The algorithm defined above will allow us to recover A even if
the samples of the signals are perturbed by Gaussian noise.

Proof. We begin by computing the (i, j)-th entries of Mu,

(Mu)i,j =
E (eu

T x(xi − µ̃i)(xi − µ̃i)T )

E (euT x)

=
E (eu

T x(xixj − µ̃ixj − xiµ̃j + µ̃iµ̃j)

E (euT x)

=
E (eu

T x(xixj))− µ̃iµ̃jE (eu
T x)

E (euT x)

Next, we may rewrite µ̃ in terms of A and s̄,

µ̃i =
E (eu

T xxi)

E (euT x)

µ̃ = As̄,

such that we can substitute for µ̃ in Mu,

Mu =
E (eu

T x(xxT )))

E (euT x)
− µ̃µ̃T

=
AE (eu

T x(ssT ))AT

E (euTAs)
− µ̃µ̃T

=
AE (eu

T x(s− s̄)(s− s̄)T )AT

E (euTAs)

= A

D1 0
. . .

0 Dn

AT
= ADAT ,
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where the diagonal entries of the matrix D are defined as,

Di =
E (eu

T x(s− s̄)(s− s̄)T )

E (euTAs)
.

As before, if D is not the identity matrix and does not have any entries
repeated on the diagonal, then Di,i is an eigenvalue of Mu−Mv and the columns
of A are the eigenvectors of Mu.

Exercise 4.2. Show that cov(eu
T xx) = cov(x) = Σ, such that x ∼ N(µ,Σ).

4.4 Discussion
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Chapter 7

Cut decompositions

In this chapter, we study the existence and algorithms for decomposing matrices
(and higher-dimensional arrays or tensors) into sums of a smaller number of
particularly simple matrices called cut matrices. A matrix B is called a cut
matrix if there exist subsets R,C of rows and columns respectively and a real
number b s.t.

Bij =

{
b if i ∈ R, j ∈ C
0 otherwise.

Alternatively,
B = b(1R ⊗ 1C)

where 1R is the indicator vector for the set R, defined as 1R(i) = 1 iff i ∈ R.
Thus, cut matrices are rank-1 matrices with all nonzero entries being equal .
A decomposition into a sum of cut matrices is called a cut decomposition. Cut
decompositions have the following properties:

• Any matrix has an “approximate” cut decomposition with a “small” num-
ber of cut matrices.

• The decomposition can be found efficiently, in fact in constant time (im-
plicitly) with a uniform random sample of O(1) entries from the matrix.

• The decomposition allows one to solve constraint satisfaction problems
up to additive error. This application, and classes of instances for which
this approximation also implies a multiplicative (1 + ε) approximation, is
discussed in the chapter on optimization using low-rank approximation.

• While the classical Singular Value Decomposition has no analog for ten-
sors, cut decompositions and their approximation properties extend nat-
urally to r-dimensional arrays.

In the rest of this chapter, A,B will denote m × n real matrices; S and T
will be subsets of rows and columns respectively. We let

A(S, T ) =
∑

i∈S,j∈T
Aij .

67



68 CHAPTER 7. CUT DECOMPOSITIONS

The cut norm of a matrix A is defined as

‖A‖� = max
S,T
|A(S, T )|.

Intuitively, if two matrices are close w.r.t. the cut norm, i.e., ‖A−B‖� is small,
then on every cut the sum of their entries is approximately equal. In Chapter
??, we study applications of cut decompositions to combinatorial optimization.

7.1 Existence of small cut decompositions

We begin with a proof of existence of a good cut decomposition for any matrix.

Lemma 7.1. Let A ∈ Rm×n. For any ε > 0, there exist t ≤ 1/ε2 cut matrices
B1, . . . , Bt whose sum B =

∑t
i=1Bt satisfies

‖A−B‖� ≤ ε
√
mn‖A‖F .

We note that if |Aij | ≤ 1 for all i, j, then the upper bound is εmn. Moreover,
the inequality above is tight with the cut norm on the LHS and the Frobenius
norm on the RHS (i.e., we cannot get the same norm on both sides).

Exercise 7.1. Let a1, a2, . . . , an be real numbers and ā be their average. Define
bi = ai − ā. Show that

n∑
i=1

b2i ≤
n∑
i=1

a2
i .

Proof. (of Lemma 7.1). If ‖A‖� ≤ ε
√
mn‖A‖F , we take B = 0. Otherwise, for

some S, T such that

|A(S, T )| > ε
√
mn‖A‖F .

Define B1 to be the cut matrix defined by these subsets S, T with

(B1)ij =
A(S, T )

|S||T |

for all (i, j) ∈ S × T and zero elsewhere. Now consider the Frobenius norm of
A−B1

‖A−B1‖2F = ‖A‖2F − ‖B1‖2F
≤ ‖A‖2F − ε2

mn

|S||T | ‖A‖
2
F

≤ ‖A‖2F − ε2‖A‖2F .

We recurse on the matrix A − B1 using the same condition on the cut norm.
Since each step reduces the squared Frobenius norm by ε2 times the initial value,
it must terminate in at most 1/ε2 steps.
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7.2 Cut decomposition algorithm

How quickly can one find a cut decomposition of a given matrix with the approx-
imation property asserted in Lemma 7.1? In principle, this is a combinatorial
problem with exponentially many candidates. From the proof of the Lemma
(7.1), we see that it suffices to determine if the cut norm of A is at most εmn
and if not, to find an S, T with |A(S, T )| ≥ εmn. Computing the cut norm is
NP-hard. However, to recover the cut decomposition guarantee, an approximate
version suffices: find the maximum value of |A(S, T )| to within additive error
(ε/2)mn. This reduces to two problems: maxA(S, T ) and max−A(S, T ). We
describe now an efficient algorithm for computing maxA(S, T ); we call this the
Maximum submatrix problem.

For a subset of rows S, we observe that a subset of columns T that maximizes
A(S, T ) is easy to compute, namely,

T = {j : A(S, j) > 0}.

We will make use of this simple observation in the algorithm.

Algorithm: Max-Submatrix

1. Pick a subset W of s rows uniformly at random.

2. For every subset W̃ of W, find the set of columns T̃
whose sum in the W̃ rows is positive.

3. For each candidate T̃, let S̃ be the rows with positive

sum in the T̃ columns.

4. Among all candidate S̃, T̃ enumerated above, output the

subsets that achieve maxA(S̃, T̃ ).

The idea behind the algorithm is the following: we guess a small random
subset of the optimal subset of rows S, then use this small subset to approxi-
mately identify the columns with positive sums. A small random subset should
suffice since this will suffice to identify columns with significant sums, and the
ones with sums close to zero are relatively unimportant. We guess such a subset
by first picking a random subset of rows W of the full matrix and enumerating
all possibilities for S ∩W , i.e., all subsets of W . In the estimating column sums
step, if we had the correct S ∩ W , (which will happen at some point in the
enumeration) the only columns on which we could be wrong about the sign of
the column sum in the S rows are ones where the column sum is close to zero,
and these do not contribute significantly to A(S, T ). So, one of our candidates
T̃ is approximately the best one in the sense that A(S, T̃ ) is high for the optimal
row subset S.

Now we turn to a rigorous analysis of the algorithm. It is easy to see that the
running time of the algorithm is O(mn2s). Setting s = 16/ε2, the next theorem
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recovers the additive guarantee of the existence lemma in time O(mn2s) =

O(mn216/ε2). In the next section, we will see how the running time can be
further improved.

Theorem 7.2. With probability at least 1− δ, the subsets S, T found by Algo-
rithm Max-Submatrix we satisfy

A(S′, T ′) ≥ A(S∗, T ∗)− 1

δ

√
mn

s
‖A‖F

where S∗, T ∗ is an optimal solution.

The proof of this theorem relies on the following lemma.

Lemma 7.3. Suppose A is an m× n matrix. Fix a subset S of rows of A. Let
T be the set of columns with positive sum in the S rows. Let W be a uniform
random subset of rows of cardinality s and T̃ be the set of columns with positive
sum in the W ∩ S rows. Then,

E W (A(S, T̃ )) ≥ A(S, T )−
√
mn

s
‖A‖F . (7.1)

The following lemma will be useful in the proof.

Lemma 7.4. Let X1, . . . , Xn be i.i.d. random variables from some distribu-
tion and Y1, . . . , Yn be random variables from the same distribution but without
replacement, i.e., Yj is drawn from the original distribution restricted to the
complement of Y1, . . . , Yj−1. Then for any convex function φ : R→ R,

E (φ(

n∑
i=1

Yi)) ≤ E (φ(

n∑
i=1

Xi)).

Proof. (of Lemma 7.3). We write

A(S, T̃ ) = A(S, T )−A(S,B1) +A(S,B2), (7.2)

where

B1 = {j : A(S, j) > 0 and A(S ∩W, j) ≤ 0},
B2 = {j : A(S, j) ≤ 0 and A(S ∩W, j) > 0}.

Let a(j) =
∑
i∈S A

2
ij ,

Xj = A(S ∩W, j) =
∑
i∈S

Aij1
W (i)

where 1W is the indicator vector of the subset W . Therefore,

E (Xj) =
s

m
A(S, j).
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To bound the variance we will use Lemma 7.4 with the convex function φ(x) =
x2.

Var (Xj) ≤ E ((
∑
i∈S

Aij1
W (i))2) ≤ s

m
a(j).

Hence, for any t ≥ 0, using Chebychev’s inequality,

Pr
(∣∣∣Xj −

s

m
A(S, j)

∣∣∣ ≥ t) ≤ sa(j)

mt2
(7.3)

If j ∈ B1 then

Xj −
s

m
A(S, j) ≤ − s

m
A(S, j)

and so applying (7.3) with

t =
s

m
A(S, j),

we get that for each fixed j,

Pr(j ∈ B1) ≤ ma(j)

sA(S, j)2
.

Thus,

E

∑
j∈B1

A(S, j)

 ≤
∑

{j: A(S,j)>0}

min

{
A(S, j),

ma(j)

sA(S, j)

}

≤
∑

{j: A(S,j)>0}

√
ma(j)

s
(7.4)

By an identical argument we obtain

E

∑
j∈B2

A(S, j)

 ≥ − ∑
{j: A(S,j)<0}

√
ma(j)

s
.

Hence, using Cauchy-Schwartz,

E (A(S, T̃ )) ≥ A(S, T )−
∑
j

√
ma(j)

s
≥ A(S, T )−

√
mn

s
‖A‖F .

We conclude this section with a proof of the main guarantee for the algo-
rithm.

Proof. (of Theorem 7.2.) Let S∗, T ∗ = arg maxA(S, T ) where the maximum is
over all choices of subsets S, T . Let S̃, T̃ be the subsets found by the algorithm.
Applying Lemma 7.3 to S∗, T ∗, we have

E (A(S̃, T̃ )) ≥ A(S∗, T ∗)−
√
mn

s
‖A‖F .
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Alternatively,

E (A(S∗, T ∗)−A(S̃, T̃ )) ≤
√
mn

s
‖A‖F .

Applying Markov’s inequality, for any 0 ≤ δ ≤ 1,

Pr(A(S∗, T ∗)−A(S̃, T̃ ) ≥ 1

δ

√
mn

s
‖A‖F ) ≤ δ.

In other words, with probability at least 1− δ,

A(S̃, T̃ ) ≥ A(S∗, T ∗)− 1

δ

√
mn

s
‖A‖F .

7.3 A constant-time algorithm

In this section, we extend Algorithm Max-Submatrix so that in constant time,
it finds an implicit representation of S, T that approximately maximize A(S, T ).
By constant time we mean a time bound that depends only on ε and not on
m,n.

The idea is simple: Pick uniform random subsets Ŝ of ŝ = O(1/ε4) rows and
T̂ of ŝ columns at the outset. Instead of A, we use this sampled submatrix for
all row and column sum estimates, i.e., we estimate A(S̃, T̃ ) by

mn

ŝ2
A(S̃ ∩ Ŝ, T̃ ∩ T̂ ),

for which we only need to know the entries of A in Ŝ × T̂ . One can show using
the Höffding-Azuma inequality that the estimate is within additive error at most
O(εmn) with high probability.

Theorem 7.5. For A with |Aij | ≤ 1, for any fixed ε > 0, Algorithm Max-
Submatrix executed with s = O(1/ε2) on a random submatrix of A induced by ŝ
random rows and ŝ random columns of A finds S̃, T̃ such that with probability
at least 3/4,

|maxA(S, T )− mn

ŝ2
A(S̃, T̃ )| ≤ 16mn√

s
.

Moreover, the running time to find S̃, T̃ , from which the approximately optimal
S, T can be found is 2s. A full cut-decomposition B with the guarantees of
Lemma 7.1 can be implicitly computed in time O(s32s).

Thus, the value of maxA(S, T ) can be estimated in constant time indepen-
dent of m,n.
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Exercise 7.2. Prove Theorem 7.5 for ŝ = O(1/ε4), by showing that with prob-
ability at least 7/8, for every T̃ ⊂ T ,

|A(S̃, T̃ )− mn

ŝ2
A(S̃ ∩ Ŝ, T̃ ∩ T̂ )| ≤ εmn.

[Hint: use the Höeffding-Azuma inequality for any candidate T̃ and apply a
union bound. The inequality says that given random variables X1, . . . , Xn with
|Xi| ≤ 1 and E (Xi|X1, . . . , Xi−1) = 0 for all i ∈ [n], their sum X satisfies

Pr(|X − E (X)| ≥ t) ≤ 2e−
t2

2n .]

7.4 Cut decompositions for tensors

We next consider r-dimensional tensors, i.e., A ∈ Rn1×n2×...×nr . For subsets
S1 ⊆ [n1], . . . , Sr ⊆ [nr] of the indices, we can define A(S1, . . . , Sr) as the sum
of all entries in the induced subtensor. The cut norm generalizes as follows:

‖A‖� = max |A(S1, . . . , Sr)|.
A cut tensor is tensor defined by a subsets of indices S1, . . . , Sr, with Ai1,...,ir
being a constant if (i1, . . . , ir) ∈ S1 × . . .× Sr and zero otherwise. A cut tensor
is thus a rank-one tensor obtained as the outer product of r vectors with entries
from {0, 1}. The existence of cut decompositions is captured in the next exercise.

Exercise 7.3. Show that Lemma 7.1 extends to r-dimensional tensors for any
r, i.e., if A ∈ Rn1×n2×...×nr , for any ε > 0, there exist t ≤ 1/ε2 cut tensors
B1, . . . , Bt s.t. their sum B =

∑t
i=1Bi satisfies

‖A−B‖� ≤ ε
√
n1n2 . . . nr‖A‖F .

The idea for solving the maximum subtensor problem to within additive
error is the following. First we observe that given subsets S1, . . . , Sr−1, we can
find the optimal subset Sr ⊆ [nr] as the subset of indices with positive sums,
i.e., i s.t. A(S1, . . . , Sr−1, i) is positive. Using this,

1. We fix random subsets W1,W2, . . . ,Wr−1 each of size s.

2. We enumerate all possible subsets W̃t ⊆Wt as candidates for St∩Wt. For
each such candidate W̃1, . . . , W̃r−1, we find the best subset S̃r.

3. For each S̃r, we form the (r − 1)-tensor Ã as

Ãi1i2...ir−1
=
∑
i∈Sr

Ai1i2...ir−1i

and recursively solve the maximum subtensor problem for this r−1 tensor.

4. Among all the candidates enumerated, choose the best S̃r.

Exercise 7.4. Show that in order to achieve the guarantee of Exercise 7.3 with
high probability, it suffices to set s = poly(r, 1/ε).
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7.5 A weak regularity lemma

In this section, we study a variant of the regularity lemma from graph theory.
We first briefly recall Szemerédi’s original lemma.

Let G be an undirected graph on n vertices. For a pair of subset of vertices
A,B, let e(A,B) be the number of edges between A and B (A and B could
intersect). The density of a pair A,B is

d(A,B) =
e(A,B)

|A||B| .

A pair of subsets V1, V2 ⊆ V is said to be ε-regular if for any two subsets
A ⊆ V1, B ⊆ V2,

|d(A,B)− d(V1, V2)| ≤ ε.

A partition of V into k subsets is called an ε-regular partition if all but εk2 pairs
of subsets are ε-regular.

Theorem 7.6 (Regularity). For any ε > 0, there exists k = k(ε), such that for
any graph G there is an ε-regular partition with at most k parts.

The theorem can be further strengthened by noting that no part is too large
and the part sizes are comparable. This powerful theorem has many applications
in combinatorics, analysis and computer science. Unfortunately, the function
k(ε) is a tower function of height 1/ε and such a dependence is unavoidable in
general.

The weak regularity lemma, which we state next, follows from cut decom-
positions and has a much smaller bound on the size of a partition, albeit with
a weaker guarantee.

Theorem 7.7 (Weak Regularity). For any ε > 0, and any graph G, there exists

a partition of the vertices of G into k ≤ 22/ε2 parts such that for any two subset
S, T ⊆ V , ∣∣∣∣∣∣e(S, T )−

k∑
i,j=1

d(Vi, Vj)|S ∩ Vi||T ∩ Vj |)|

∣∣∣∣∣∣ ≤ εn2.

Such a parition is called an ε-pseudo-regular partition of the graph.

Proof. Let B1, . . . , Bs be a cut decomposition of the adjacency matrix of G.
Consider the partition induced by the subsets R1, . . . , Rs, T1, . . . , Ts of size k ≤
22s. The matrix B = B1 + . . . + Bs can be partitioned into a sum of k cut
matrices with disjoint support so that B is their sum. Moreoever the value of
each cut matrix is simply its density in the original graph. This completes the
proof.
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7.6 Discussion

Szemerédi
Nesterov, Alon-Naor Grothendieck approximations
Cut decompositions were introduced by Frieze and Kannan [FK99].
Graph limits
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Chapter 8

Matrix approximation by
Random Sampling

In this chapter, we study randomized algorithms for matrix multiplication and
low-rank matrix and tensor approximation. The main motivation is to obtain
efficient approximations using only randomly sampled subsets of given matrices.
We remind the reader that for a vector-valued random variable X, we write
Var (X) = E (‖X−E (X)‖2) and similarly for a matrix-valued random variable,
with the norm denoting the Frobenius norm in the latter case.

8.1 Matrix-vector product

In many numerical algorithms, a basic operation is the matrix-vector product.
If A is a m × n matrix and v is an n vector, we have (A(j) denotes the j’th
column of A):

Av =

n∑
j=1

A(j)vj .

The right-hand side is the sum of n vectors and can be estimated by using a
sample of the n vectors. The error is measured by the variance of the estimate.
It is easy to see that a uniform random sample could have high variance —
consider the example when only one column is nonzero.

This leads to the question: what distribution should the sample columns be
chosen from? Let p1, p2, . . . pn be nonnegative reals adding up to 1. Pick j ∈
{1, 2, . . . n} with probability pj and consider the vector-valued random variable

X =
A(j)vj
pj

.

77
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Clearly E X = Av, so X is an unbiased estimator of Av. We also get

Var (X) = E ‖X‖2 − ‖E X‖2 =

n∑
j=1

‖A(j)‖2v2
j

pj
− ‖Av‖2. (8.1)

Now we introduce an important probability distribution on the columns of a
matrix A, namely the length-squared (LS) distribution, where a column is
picked with probability proportional to its squared length. We will say

j is drawn from LScol(A) if pj = ‖A(j)‖2/‖A‖2F .
This distribution has useful properties. An approximate version of this distri-
bution - LScol(A, c), where we only require that

pj ≥ c‖A(j)‖2/‖A‖2F
for some c ∈ (0, 1) also shares interesting properties. If j is from LScol(A, c),
then note that the expression (8.1) simplifies to yield

Var X ≤ 1

c
‖A‖2F ‖v‖2.

Taking the average of s i.i.d. trials decreases the variance by a factor of s. So,
if we take s independent samples j1, j2, . . . js (i.i.d., each picked according to
LScol(A, c)), then with

Y =
1

s

s∑
t=1

A(jt)vjt
pjt

,

we have
E Y = Av

and

Var Y =
1

s

∑
j

‖A(j)‖2v2
j

pj
− 1

s
‖Av‖2 ≤ 1

cs
‖A‖2F ‖v‖2. (8.2)

Such an approximation for matrix vector products is useful only when ‖Av‖
is comparable to ‖A‖F ‖v‖. It is greater value for matrix multiplication.

In certain contexts, it may be easier to sample according to LS(A, c) than
the exact length squared distribution. We have used the subscript col to denote
that we sample columns of A; it will be sometimes useful to sample rows, again
with probabilities proportional to the length squared (of the row, now). In that
case, we use the subscript row.

8.2 Matrix Multiplication

The next basic problem is that of multiplying two matrices, A,B, where A is
m× n and B is n× p. From the definition of matrix multiplication, we have

AB =
(
AB(1), AB(2), . . . AB(p)

)
.
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Applying (8.2) p times and adding, we get the next theorem (recall the notation
that B(j) denotes row j of B).

Theorem 8.1. Let p1, p2, . . . pn be non-negative reals summing to 1 and let
j1, j2, . . . js be i.i.d. random variables, where jt is picked to be one of {1, 2, . . . n}
with probabilities p1, p2, . . . pn respectively. Then with

Y =
1

s

s∑
t=1

A(jt)B(jt)

pjt
,

E Y = AB and Var Y =
1

s

n∑
j=1

‖A(j)‖2‖B(j)‖2
pj

− ‖AB‖2F .(8.3)

If jt are distributed according to LScol(A, c), then

Var Y ≤ 1

cs
‖A‖2F ‖B‖2F .

A special case of matrix multiplication which is both theoretically and prac-
tically useful is the product AAT .

The singular values of AAT are just the squares of the singular values of A.
So it can be shown that if B ≈ AAT , then the eigenvalues of B will approximate
the squared singular values of A. Later, we will want to approximate A itself
well. For this, we will need in a sense a good approximation to not only the
singular values, but also the singular vectors of A. This is a more difficult
problem. However, approximating the singular values well via AAT will be a
crucial starting point for the more difficult problem.

For the matrix product AAT , the expression for Var Y (in (8.3)) simplifies
to

Var Y =
1

s

∑
j

‖A(j)‖4
pj

− ‖AAT ‖2F .

The second term on the right-hand side is independent of pj . The first term is
minimized when the pj conform to the length-squared distribution.

8.3 Low-rank approximation

When B = AT , we may rewrite the expression (8.3) as

Y = CCT , where, C =
1√
s

(
A(j1)

√
pj1

,
A(j2)

√
pj2

, . . .
A(js)

√
pjs

)
and the next theorem follows.

Theorem 8.2. Let A be an m×n matrix and j1, j2, . . . js be i.i.d. samples from
{1, 2, . . . n}, each picked according to probabilities p1, p2, . . . pn. Define

C =
1√
s

(
A(j1)

√
pj1

,
A(j2)

√
pj2

, . . .
A(js)

√
pjs

)
.
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Then,

E CCT = AAT and E ‖CCT −AAT ‖2F =
1

s

n∑
j=1

|A(j)|4
pj

− 1

s
‖AAT ‖2F .

If the pj’s conform to the approximate length squared distribution LScol(A, c),
then

E ‖CCT −AAT ‖2F ≤
1

cs
‖A‖4F .

The fact that ‖CCT −AAT ‖F is small implies that the singular values of A
are close to the singular values of C. Indeed the Hoffman-Wielandt inequality
asserts that ∑

t

(
σt(CC

T )− σt(AAT )
)2 ≤ ‖CCT −AAT ‖2F . (8.4)

(Exercise 8.3 asks for a proof of this inequality.)
To obtain a good low-rank approximation of A, we will also need a handle

on the singular vectors of A. A natural question is whether the columns of C
already contain a good low-rank approximation to A. To this end, first observe
that if u(1), u(2), . . . u(k) are orthonormal vectors in Rm, then

k∑
t=1

u(t)u(t)TA

is the projection of A into the space H spanned by u(1), u(2), . . . u(k), namely

(i) For any u ∈ H, uTA = uT
∑k
t=1 u

(t)u(t)TA and

(ii) For any u ∈ H⊥, uT
∑k
t=1 u

(t)u(t)TA = 0.

This motivates the following algorithm for low-rank approximation.

Algorithm: Fast-SVD

1. Sample s columns of A from the squared length

distribution to form a matrix C.

2. Find u(1), . . . , u(k), the top k left singular vectors of C.

3. Output
∑k
t=1 u

(t)u(t)TA as a rank-k approximation to A.

The running time of the algorithm (if it uses s samples) is O(ms2).
We now state and prove the main lemma of this section. Recall that Ak

stands for the best rank-k approximation to A (in Frobenius norm and 2-norm)
and is given by the first k terms of the SVD.
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Lemma 8.3. Suppose A,C are m × n and m × s matrices respectively with
s ≤ n and U is the m× k matrix consisting of the top k singular vectors of C.
Then,

‖A− UUTA‖2F ≤ ‖A−Ak‖2F + 2
√
k‖AAT − CCT ‖F

‖A− UUTA‖22 ≤ ‖A−Ak‖22 + ‖CCT −AAT ‖2 + ‖CCT −AAT ‖F .
Proof. We have

‖A−
k∑
t=1

u(t)u(t)TA‖2F = ‖A‖2F − ‖UTA‖2F

and
‖Ck‖2F = ‖UTC‖2F .

Using these equations,

‖A−
k∑
t=1

u(t)u(t)TA‖2F − ‖A−Ak‖2F

= ‖A‖2F − ‖UTA‖2F − (‖A‖2F − ‖Ak‖2F )

=
(
‖Ak‖2F − ‖Ck‖2F

)
+ ‖UTC‖2F − ‖UTA‖2F

=

k∑
t=1

(
σt(A)2 − σt(C)2

)
+

k∑
t=1

(
σt(C)2 − ‖u(t)TA‖2

)

≤

√√√√k

k∑
t=1

(σt(A)2 − σt(C)2)
2

+

√√√√k

k∑
t=1

(
σt(C)2 − ‖u(t)TA‖2

)2

=

√√√√k

k∑
t=1

(σt(AAT )− σt(CCT ))
2

+

√√√√k

k∑
t=1

(
u(t)T (CCT −AAT )u(t)

)2

≤ 2
√
k‖AAT − CCT ‖F .

Here we first used the Cauchy-Schwarz inequality on both summations and then
the Hoffman-Wielandt inequality 8.4.

The proof of the second statement also uses the Hoffman-Wielandt inequal-
ity.

Exercise 8.1. Prove the 2-norm bound in the statement of Lemma 8.3.

We can now combine Theorem 8.2 and Lemma 8.3 to obtain the main the-
orem of this section.

Theorem 8.4. Algorithm Fast-SVD finds a rank-k matrix Ã such that

E
(
‖A− Ã‖2F

)
≤ ‖A−Ak‖2F + 2

√
k

s
‖A‖2F

E
(
‖A− Ã‖22

)
≤ ‖A−Ak‖2 +

2√
s
‖A‖2F .
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Exercise 8.2. Using the fact that ‖A‖2F = Tr(AAT ) show that:

1. For any two matrices P,Q, we have |TrPQ| ≤ ‖P‖F ‖Q‖F .

2. For any matrix Y and any symmetric matrix X, |TrXYX| ≤ ‖X‖2F ‖Y ‖F .

Exercise 8.3. Prove the Hoffman-Wielandt inequality for symmetric matrices:
for any two n× n symmetric matrices A and B,

n∑
t=1

(σt(A)− σt(B))
2 ≤ ‖A−B‖2F .

(Hint: consider the SVD of both matrices and note that any doubly stochastic
matrix is a convex combination of permutation matrices).

Exercise 8.4. (Sampling on the fly) Suppose you are reading a list of real
numbers a1, a2, . . . an in a streaming fashion, i.e., you only have O(1) memory
and the input data comes in arbitrary order in a stream. Your goal is to output
a number X between 1 and n such that:

Pr(X = i) =
a2
i∑n

j=1 a
2
j

.

How would you do this? How would you pick values for X1, X2, . . . Xs (s ∈ O(1))
where the Xi are i.i.d.?

In this section, we considered projection to the span of a set of orthogonal
vectors (when the u(t) form the top k left singular vectors of C). In the next
section, we will need to deal also with the case when the u(t) are not orthonormal.
A prime example we will deal with is the following scenario: suppose C is an
m× s matrix, for example obtained by sampling s columns of A as above. Now
suppose v(1), v(2), . . . v(k) are indeed an orthonormal set of vectors for which

C ≈ C∑k
t=1 v

(t)v(t)T ; i.e.,
∑k
t=1 v

(t)v(t)T is a “good right projection” space for
C. Then suppose the u(t) are defined by u(t) = Cv(t)/|Cv(t)|. We will see later

that C ≈ ∑k
t=1 u

(t)u(t)TC; i.e., that
∑k
t=1 u

(t)u(t)T is a good left projection
space for C. The following lemma which generalizes some of the arguments we
have used here will be useful in this regard.

Lemma 8.5. Suppose u(1), u(2), . . . u(k) are any k vectors in Rm. Suppose
A,C are any two matrices, each with m rows (and possibly different numbers of
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columns.) Then, we have

‖A−
k∑
t=1

u(t)u(t)TA‖2F − ‖C −
k∑
t=1

u(t)u(t)TC‖2F

≤ ‖A‖2F − ‖C‖2F

+ ‖AAT − CCT ‖F ‖
k∑
t=1

u(t)u(t)T ‖F
(

2 + ‖
k∑
t=1

u(t)u(t)T ‖F
)

(8.5)

‖A−
k∑
t=1

u(t)u(t)TA‖22 − ‖C −
k∑
t=1

u(t)u(t)TC‖22

≤ ‖AAT − CCT ‖2
(
‖

k∑
t=1

u(t)u(t)T ‖2 + 1

)2

. (8.6)

Proof.

‖A−
k∑
t=1

u(t)u(t)TA‖2F

= Tr

(
(A−

k∑
t=1

u(t)u(t)TA)(AT −AT
k∑
t=1

u(t)u(t)T )

)

= TrAAT + Tr

k∑
t=1

u(t)u(t)TAAT
k∑
t=1

u(t)u(t)T − 2Tr

k∑
t=1

u(t)u(t)TAAT ,

where we have used the fact that square matrices commute under trace. We do
the same expansion for C to get

‖A−
k∑
t=1

u(t)u(t)TA‖2F − ‖C −
k∑
t=1

u(t)u(t)TC‖2F −
(
‖A‖2F − ‖C‖2F

)
= Tr

k∑
t=1

u(t)u(t)T (AAT − CCT )

k∑
t=1

u(t)u(t)T − 2Tr

k∑
t=1

u(t)u(t)T (AAT − CCT )

≤ ‖
k∑
t=1

u(t)u(t)T ‖2F ‖AAT − CCT ‖F + 2‖
k∑
t=1

u(t)u(t)T ‖F ‖AAT − CCT ‖F ,

where we have used two standard inequalities: |TrPQ| ≤ ‖P‖F ‖Q‖F for any
matrices P,Q and |TrXYX| ≤ ‖X‖2F ‖Y ‖F for any Y and a symmetric matrix
X (see Exercise 8.2). This gives us (8.5).

For (8.6), suppose v is the unit length vector achieving

‖vT (A−
k∑
t=1

u(t)u(t)TA)‖ = ‖A−
k∑
t=1

u(t)u(t)TA‖2.
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Then we expand

‖vT (A−
k∑
t=1

u(t)u(t)TA)‖2

= vT (A−
k∑
t=1

u(t)u(t)TA)(AT −AT
k∑
t=1

u(t)u(t)T )v

= vTAAT v − 2vTAAT
k∑
t=1

u(t)u(t)T v + vT
k∑
t=1

u(t)u(t)TAAT
k∑
t=1

u(t)u(t)T v,

and the corresponding terms for C. Now, (8.6) follows by a somewhat tedious
but routine calculation.

8.3.1 A sharper existence theorem

In this section, we establish the existence of a rank k approximation of any
matrix A in the span of a small sample of columns from LScol(A). The bound
will be better than the one achieved in the algorithm above, namely for additive
error ε‖A‖2F , one needs only O(k/ε) columns rather than O(k/ε2) columns. We
will see later that this bound is asymptotically optimal.

Theorem 8.6. Let S be an i.i.d. sample of s columns from LScol(A). There
exists a matrix Ã of rank at most k, with columns in the span of S s.t.,

E (‖A− Ã‖2F ) ≤ ‖A−Ak‖2F +
k

s
‖A‖2F

E (‖A− Ã‖22) ≤ ‖A−Ak‖22 +
1

s
‖A‖2F

where Ak is the best rank-k approximation of A as given by its SVD.

Proof. Let

A =

n∑
i=1

σiu
(i)v(i)T

be the SVD of A. We consider the vector-valued random variable X(i), which is

set to A(j)v
(i)
j /pj with probability pj = ‖A(j)‖2/‖A‖2F , and w(i), set to be the

average of X(i) over s randomly chosen columns from LScol(A). Then,

E (w(i)) = E (X(i)) = Av(i) = σiui

and

E (‖w(i) −Av(i)‖2) ≤ 1

s
‖A‖2F .
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Next let ỹ(i) = wi/σi, with V = span{ỹ(1), . . . , ỹ(k)} and y(1), . . . , y(n) be an
orthonormal basis of Rn with span{y(1), . . . , y(l)} = V for some l ≤ k. Define

Ã =

l∑
i=1

y(i)y(i)TA and B =

k∑
i=1

u(i)(ỹ(i))TA.

Now, noting that ỹ(i) is orthogonal to y(j) for i ≤ k, j > l,

‖A− Ã‖2F =

n∑
i=l+1

‖(y(i))TA‖2

≤
n∑

i=l+1

‖(ỹ(i))T (A−B)‖2

≤ ‖A−B‖2F

=

n∑
i=1

‖(A−B)v(i)‖2

=

k∑
i=1

‖σiu(i) − w(i)‖2 +

n∑
i=k+1

σ2
i .

Thus, taking expectations and noting that ‖A−Ak‖2F =
∑n
i=k+1 σ

2
i ,

E (‖A− Ã‖2F ) ≤ ‖A−Ak‖2F +
k

s
‖A‖2F

as claimed.

8.4 Invariant subspaces

The classical SVD has associated with it the decomposition of space into the
sum of invariant subspaces.

Theorem 8.7. Let A be a m× n matrix and v(1), v(2), . . . v(n) an orthonormal
basis for Rn. Suppose for k, 1 ≤ k ≤ rank(A) we have

|Av(t)|2 = σ2
t (A), for t = 1, 2, , . . . k.

Then

u(t) =
Av(t)

|Av(t)| , for t = 1, 2, . . . k
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form an orthonormal family of vectors. The following hold:

k∑
t=1

|u(t)TA|2 =

k∑
t=1

σ2
t

‖A−A
k∑
t=1

v(t)v(t)T ‖2F = ‖A−
k∑
t=1

u(t)u(t)TA‖2F

=

n∑
t=k+1

σ2
t (A)

‖A−A
k∑
t=1

v(t)v(t)T ‖2 = ‖A−
k∑
t=1

u(t)u(t)TA‖2 = σk+1(A).

Given the right singular vectors v(t), a family of left singular vectors u(t)

may be found by just applying A to them and scaling to length 1. The orthog-
onality of the u(t) is automatically ensured. So we get that given the optimal

k dimensional “right projection” A
∑k
t=1 v

(t)v(t)T , we also can get the optimal
“left projection”

k∑
t=1

u(t)u(t)TA.

Counting dimensions, it also follows that for any vector w orthogonal to such
a set of v(1), v(2), . . . v(k), we have that Aw is orthogonal to u(1), u(2), . . . u(k).
This yields the standard decomposition into the direct sum of subspaces.

Exercise 8.5. Prove Theorem 8.7.

We now extend the previous theorem to approximate invariance, i.e., even if
the hypothesis of the previous theorem |Av(t)|2 = σ2

t (A) is only approximately
satisfied, an approximate conclusion follows. We give below a fairly clean state-
ment and proof formalizing this intuition. It will be useful to define the error
measure

∆(A, v(1), v(2), . . . v(k)) = Max1≤t≤k

t∑
i=1

(σ2
i (A)− |Av(i)|2). (8.7)

Theorem 8.8. Let A be a matrix of rank r and v(1), v(2), . . . v(r) be an or-
thonormal set of vectors spanning the row space of A (so that {Av(t)} span the
column space of A). Then, for t, 1 ≤ t ≤ r, we have

r∑
s=t+1

(
v(t)TATAv(s)

)2

≤ |Av(t)|2
(
σ2

1(A) + σ2
2(A) + . . . σ2

t (A)− |Av(1)|2 − |Av(2)|2 − . . . |Av(t)|2
)
.
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Note that v(t)TATAv(s) is the (t, s) th entry of the matrix ATA when written

with respect to the basis {v(t)}. So, the quantity
∑r
s=t+1

(
v(t)TATAv(s)

)2

is

the sum of squares of the above diagonal entries of the t th row of this matrix.
Theorem (8.8) implies the classical Theorem (8.7) : σt(A) = |Av(t)| implies that

the right hand side of the inequality above is zero. Thus, v(t)TATA is colinear

with v(t)T and so |v(t)TATA| = |Av(t)|2 and so on.

Proof. First consider the case when t = 1. We have
r∑
s=2

(v(1)TATAv(s))2 = |v(1)TATA|2 − (v(1)TATAv(1))2

≤ |Av(1)|2σ1(A)2 − |Av(1)|4
≤ |Av(1)|2(σ1(A)2 − |Av(1)|2). (8.8)

The proof of the theorem will be by induction on the rank of A. If r = 1, there
is nothing to prove. Assume r ≥ 2. Now, Let

A′ = A−Av(1)v(1)T .

A′ is of rank r− 1. If w(1), w(2), . . . are the right singular vectors of A′, they are
clearly orthogonal to v(1). So we have for any s, 1 ≤ s ≤ r − 1,

σ2
1(A′) + σ2

2(A′) + . . . σ2
s(A′) =

s∑
t=1

|A′w(t)|2 =

s∑
t=1

|Aw(t)|2

= |Av(1)|2 +

s∑
t=1

|Aw(t)|2 − |Av(1)|2

≤ max
u(1),u(2)...u(s+1) orthonormal

s+1∑
t=1

|Au(t)|2 − |Av(1)|2

= σ1(A)2 + σ2(A)2 + . . . σs+1(A)2 − |Av(1)|2, (8.9)

where we have applied the fact that for any k, the k-dimensional SVD subspace
maximizes the sum of squared projections among all subspaces of dimension at
most k.

Now, we use the inductive assumption on A′ with the orthonormal basis
v(2), v(3), . . . v(r). This yields for t, 2 ≤ t ≤ r,

r∑
s=t+1

(v(t)TA′TA′v(s))2

≤ |A′v(t)|2(σ2
1(A′) + σ2

2(A′) + . . . σ2
t−1(A′)− |A′v(2)|2 − |A′v(3)|2 − . . . |A′v(t)|2)

Note that for t ≥ 2, we have A′v(t) = Av(t). So, we get using (8.9)

r∑
s=t+1

(v(t)TATAv(s))2

≤ |Av(t)|2(σ2
1(A) + σ2

2(A) + . . . σ2
t (A)− |Av(1)|2 − |Av(2)|2 − . . . |Av(t)|2).
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This together with (8.8) finishes the proof of the Theorem.

We will use Theorem (8.8) to prove Theorem (8.9) below. Theorem (8.9)
says that we can get good “left projections” from “good right projections”. One
important difference from the exact case is that now we have to be more careful
of “near singularities”, i.e. the upper bounds in the Theorem (8.9) will depend
on a term

k∑
t=1

1

|Av(t)|2 .

If some of the |Av(t)| are close to zero, this term is large and the bounds can
become useless. This is not just a technical problem. In defining u(t) in Theorem
(8.7) as Av(t)/|Av(t)|, the hypotheses exclude t for which the denominator is
zero. Now since we are dealing with approximations, it is not only the zero
denominators that bother us, but also small denominators. We will have to
exclude these too (as in Corollary (8.10) below) to get a reasonable bound.

Theorem 8.9. Suppose A is a matrix and v(1), . . . v(k) are orthonormal and let
∆ = ∆(A, v(1), v(2), . . . v(k)) be as in (8.7). Let

u(t) =
Av(t)

|Av(t)| for t = 1, 2, . . . k.

Then

‖
k∑
t=1

u(t)u(t)TA−A‖2F ≤ ‖A−
k∑
t=1

Av(t)v(t)T ‖2F

+

(
k∑
t=1

2

|Av(t)|2

)(
k∑
t=1

|Av(t)|2
)

∆

‖
k∑
t=1

u(t)u(t)TA−A‖22 ≤ ‖A−
k∑
t=1

Av(t)v(t)T ‖22

+

(
k∑
t=1

2

|Av(t)|2

)(
k∑
t=1

|Av(t)|2
)

∆.

Proof. Complete {v(1), v(2), . . . v(k)} to an orthonormal set {v(1), v(2), . . . v(r)}
such that {Av(t) : t = 1, 2, . . . r} span the range of A. Let

w(t)T = v(t)TATA− |Av(t)|2v(t)T

be the component of v(t)TATA orthogonal to v(t)T . We have

u(t)u(t)TA =
Av(t)v(t)TATA

|Av(t)|2 = Av(t)v(t)T +Av(t)w(t)T .
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Using ||X + Y ||2F = Tr((XT + Y T )(X + Y )) = ||X||2F + ||Y ||2F + 2TrXTY and
the convention that t runs over 1, 2, . . . k, we have

||
∑
t

u(t)u(t)TA−A||2F =

∣∣∣∣∣
∣∣∣∣∣∑
t

Av(t)v(t)T +
∑
t

Av(t)w(t)T

|Av(t)|2 −A
∣∣∣∣∣
∣∣∣∣∣
2

F

= ||A−
∑
t

Av(t)v(t)T ||2F +

(∑
t

∣∣∣∣ Av(t)

|Av(t)|2
∣∣∣∣ ∣∣∣w(t)

∣∣∣)2

−2

r∑
s=1

∑
t

(v(s)Tw(t))
v(t)TAT

|Av(t)|2 (A−
∑
t

Av(t)v(t)T )v(s)

≤ ||A−
∑
t

Av(t)v(t)T ||2F +

(∑
t

|w(t)|2
)(∑

t

1

|Av(t)|2

)
− 2

r∑
s=k+1

∑
t

(v(t)TATAv(s))2

|Av(t)|2

since (A−∑tAv
(t)v(t)T )v(s) = 0 for s ≤ k and v(s)Tw(t) = v(s)TATAv(t)

≤ ||A−
∑
t

Av(t)v(t)T ||2F +

(∑
t

1

|Av(t)|2

)(
2
∑
t

r∑
s=t+1

(v(t)TATAv(s))2

)

≤ |A−
∑
t

Av(t)v(t)T ||2F +

(∑
t

2

|Av(t)|2

)(∑
t

|Av(t)|2
)

∆,

using Theorem (8.8).
For the 2-norm, the argument is similar. Suppose a vector p achieves

‖
∑
t

u(t)u(t)TA−A‖2 = |(
∑
t

u(t)u(t)TA−A)p|.

We now use

|(X + Y )p|2 = pTXTXp+ pTY TY p+ 2pTXTY p

to get

||
∑
t

u(t)u(t)TA−A||22 ≤ ||A−
∑
t

Av(t)v(t)T ||22

+

(∑
t

|w(t)|2
)(∑

t

1

|Av(t)|2

)
− 2

∑
t

(pTw(t))
v(t)TAT

|Av(t)|2 (A−
∑
t

Av(t)v(t)T )p.

If now we write p = p(1) + p(2), where p(1) is the component of p in the span of
v(1), v(2), . . . v(k), then we have

∑
t

(pTw(t))
v(t)TAT

|Av(t)|2 (A−
∑
t

Av(t)v(t)T )p =
∑
t

(p(2)Tw(t))
v(t)TAT

|Av(t)|2 Ap
(2)

=

∑
t(v

(t)TATAp(2))2

|Av(t)|2 ,
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where we have used the fact that p(2) is orthogonal to v(t) to get p(2)Tw(t) =

v(t)TATAp(2).

We will apply the Theorem as follows. As remarked earlier, we have to be
careful about near singularities. Thus while we seek a good approximation of
rank k or less, we cannot automatically take all of the k terms. Indeed, we only
take terms for which |Av(t)| is at least a certain threshold.

Corollary 8.10. Suppose A is a matrix, δ a positive real and v(1), . . . v(k) are
orthonormal vectors produced by a randomized algorithm and suppose

E

 t∑
j=1

(
σ2
j (A)− |Av(j)|2

) ≤ δ||A||2F t = 1, 2, . . . k.

Let

u(t) =
Av(t)

|Av(t)| for t = 1, 2, . . . k.

Define l to be the largest integer in {1, 2, . . . k} such that |Av(l)|2 ≥
√
δ||A||2F .

Then,

E ||A−
l∑
t=1

u(t)u(t)TA||2F ≤ E ||A−A
k∑
t=1

v(t)v(t)T ||2F + 3k
√
δ||A||2F .

E ||A−
l∑
t=1

u(t)u(t)TA||22 ≤ E ||A−A
k∑
t=1

v(t)v(t)T ||22 + 3k
√
δ||A||2F

Proof. We apply the Theorem with k replaced by l and taking expectations of
both sides (which are now random variables) to get

E ||A−
l∑
t=1

u(t)u(t)T ||2F ≤ E ||A−A
l∑
t=1

v(t)v(t)T ||2F +

+
2k√
δ
E

(
l∑
t=1

(
σ2
t (A)− |Av(t)|2

))

≤ E ||A−A
k∑
t=1

v(t)v(t)T ||2F +

k∑
t=l+1

|Av(t)|2 + 2k
√
δ||A||2F ,

where, we have used the fact that from the minimax principle and |Av(1)| ≥
|Av(2)| ≥ . . . |Av(k)| > 0, we get that σt(A) ≥ |Av(t)| for t = 1, 2, . . . k. Now
first assertion in the Corollary follows. For the 2-norm bound, the proof is
similar. Now we use the fact that

||A−A
l∑
t=1

v(t)v(t)T ||22 ≤ ||A−A
k∑
t=1

v(t)v(t)T ||22 +

k∑
t=l+1

|Av(t)|2.
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To see this, if p is the top left singular vector of A−A∑l
t=1 v

(t)v(t)T , then

|pT (A−A
l∑
t=1

v(t)v(t)T )|2 = pTAAT p− pTA
l∑
t=1

v(t)v(t)TAT p

≤ ||A−A
k∑
t=1

v(t)v(t)T ||22 +

k∑
t=l+1

|pTAv(t)|2.

8.5 SVD by sampling rows and columns

Suppose A is an m × n matrix and ε > 0 and c a real number in [0, 1]. In this
section, we will use several constants which we denote c1, c2 . . . which we do not
specify.

We pick a sample of

s =
c1k

5

cε4

columns of A according to LScol(A, c) and scale to form an m × s matrix C.
Then we sample a set of s rows of C according to a LSrow(C, c) distribution to
form a s× s matrix W . By Theorem 8.2, we have

E ||CTC −WTW ||F ≤
1√
cs

E ||C||2F =
c2ε

2

k2.5
||A||2F , (8.10)

where we have used Hölder’s inequality (E X ≤ (E X2)1/2) and the fact that
E ||C||2F = E Tr(CCT ) = Tr(AAT ).

We now find the SVD of WTW , (an s× s matrix!) say

WTW =
∑
t

σ2
t (W )v(t)v(t)T .

We first wish to claim that
∑k
t=1 v

(t)v(t)T forms a “good right projection”
for C. This follows from Lemma (8.3) with C replacing A and W replacing C
in that Lemma and right projections instead of left projections. Hence we get
(using (8.10))

E ||C − C
k∑
t=1

v(t)v(t)T ||2F ≤ E ||C||2F − E
k∑
t=1

σ2
t (C) +

c3ε
2

k2
||A||2F (8.11)

E ||C − C
k∑
t=1

v(t)v(t)T ||22 ≤ E σk+1(C)2 + (2 + 4k)O(
ε2

k3
)E ||C||2F(8.12)

≤ σ2
k+1(A) +

c4ε
2

k2
||A||2F . (8.13)
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Since ||C − C∑k
t=1 v

(t)v(t)T ||2F = ||C||2F −
∑k
t=1 |Cv(t)|2, we get from (8.13)

E
k∑
t=1

(
σ2
t (C)− |Cv(t)|2

)
≤ c5ε

2

k2
||A||2F . (8.14)

(8.13) also yields

E ||C − C
k∑
t=1

v(t)v(t)T ||2F ≤ ||A||2F −
k∑
t=1

σ2
t (A) + ||A||2F

c6ε
2

k2

Thus, E ||C − C
k∑
t=1

v(t)v(t)T ||2F ≤
n∑

t=k+1

σ2
t (A) +

c6ε
2

k2
||A||2F . (8.15)

Now we wish to use Corollary (8.10) to derive a good left projection for C
from the right projection above. To this end, we define

u(t) =
Cv(T )

|Cv(t)| for t = 1, 2, . . . k.

Define l to be the largest integer in {1, 2, . . . k} such that |Cv(l)|2 ≥
√
c5ε
k ||A||2F .

Then from the Corollary, we get

E ||C −
l∑
t=1

u(t)u(t)TC||2F ≤ E ||C − C
k∑
t=1

v(t)v(t)T ||2F +O(ε)||A||2F

≤
n∑

t=k+1

σ2
t (A) +O(ε)||A||2F . (8.16)

E ||C −
l∑
t=1

u(t)u(t)TC||22 ≤ σ2
k+1(A) +O(ε)||A||2F . (8.17)

Finally,we use Lemma (8.5) to argue that
∑l
t=1 u

(t)u(t)T is a good left projection

for A. To do so, we first note that ||∑l
t=1 u

(t)u(t)T ||F ≤
∑l
t=1 |u(t)|2 ≤ k. So,

E ||A−
l∑
t=1

u(t)u(t)TA||2F ≤ E ||C −
l∑
t=1

u(t)u(t)TC||2F +
1√
cs
||A||2F k(2 + k)

≤
n∑

t=k+1

σ2
t (A) +O(ε)||A||2F

E ||A−
l∑
t=1

u(t)u(t)TA||22 ≤ σ2
k+1(A) +O(ε)||A||2F .

Thus, we get the following lemma:
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Lemma 8.11. Suppose we are given an m × n matrix A, a positive integer
k ≤ m,n and a real ε > 0. Then for the u(1), u(2), . . . u(l) produced by the
constant-time-SVD algorithm, we have the following two bounds:

E ||A−
l∑
t=1

u(t)u(t)TA||2F ≤
n∑

t=k+1

σ2
t (A) + ε||A||2F

E ||A−
l∑
t=1

u(t)u(t)TA||22 ≤ σ2
k+1(A) + ε||A||2F .

The proof is already given.

Algorithm: Constant-time SVD

1. Pick a sample of

s =
c8k

5

cε4

columns of A according to LScol(A, c) and scale to form an

m× s matrix C.

2. Sample a set of s rows of C according to a LSrow(C, c)
distribution and scale to form a s× s matrix W.

3. Find the SVD of WTW:

WTW =
∑
t

σ2
t (W )v(t)v(t)T .

4. Compute

u(t) =
Cv(t)

|Cv(t)| for t = 1, 2, . . . k.

Let l to be the largest integer in {1, 2, . . . k} such that

|Cv(l)|2 ≥ c9ε||C||2F /k.

5. Return
l∑
t=1

u(t)u(t)TA

as the approximation to A.
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8.6 CUR: An interpolative low-rank approxima-
tion

In this section, we wish to describe an algorithm to get an approximation of any
matrix A given just a sample of rows and a sample of columns of A. Clearly if
the sample is picked according to the uniform distribution, this attempt would
fail in general. We will see that again the length squared distribution comes
to our rescue; indeed, we will show that if the samples are picked according to
the length squared or approximate length squared distributions, we can get an
approximation for A. Again, this will hold for an arbitrary matrix A.

First suppose A is a m × n matrix and R (R for rows) is a s × n matrix
construced by picking s rows of A in i.i.d. samples, each according to LSrow(A,c)

and scaled. Similarly, let C (for columns) be a m × s matrix consisting of
columns picked according to LScol(A,c) and scaled. The motivating question for

this section is: Can we get an approximation to A given just C,R?
Intuitively, this should be possible since we know that CCT ≈ AAT and

RTR ≈ ATA. Now it is easy to see that if we are given both AAT and ATA
and A is in “general position”, i.e., say all its singular values are distinct, then
A can be found: indeed, if the SVD of A is

A =
∑
t

σt(A)u(t)v(t)T ,

then
AAT =

∑
t

σ2
t (A)u(t)u(t)T ATA =

∑
t

σ2
t (A)v(t)v(t)T ,

and so from the SVD’s of AAT , ATA, the SVD of A can be read off if the σt(A)
are all distinct. [This is not the case if the σt are not distinct; for example, for
any square A with orthonormal columns, AAT = ATA = I.] The above idea
leads intuitively to the guess that at least in general position, C,R are sufficient
to produce some approximation to A.

The approximation ofA by the product CUR is reminiscent of the usual PCA
approximation based on taking the leading k terms of the SVD decomposition.
There, instead of C,R, we would have orthonormal matrices consisting of the
leading singular vectors and instead of U , the diagonal matrix of singular values.
The PCA decomposition of course gives the best rank-k approximation, whereas
what we will show below for CUR is only that its error is bounded in terms
of the best error we can achieve. There are two main advantages of CUR over
PCA:

1. CUR can be computed much faster from A and also we only need to make
two passes over A which can be assumed to be stored on external memory.

2. CUR preserves the sparsity of A - namely C,R are columns and rows of
A itself. (U is a small matrix since typically s is much smaller than m,n).
So any further matrix vector products Ax can be approximately computed
as C(U(Rx)) quickly.
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The main theorem of this section is the following.

Theorem 8.12. Suppose A is any m×n matrix, C is any m×s matrix of rank
at least k. Suppose i1, i2, . . . is are obtained from s i.i.d. trials each according
to probabilities {p1, p2, . . . pm} conforming to LSrows(A,c) and let R be the s×n
matrix with t th row equal to Ait/

√
spit . Then, from C,R, {it}, we can find an

s× s matrix U such that

E (‖CUR−A‖F ) ≤ ‖A−Ak‖F +

√
k

cs
||A||F +

√
2k

1
4 ||AAT − CCT ||1/2F

E (‖CUR−A‖2) ≤ ‖A−Ak‖2 +

√
k

cs
||A||F +

√
2||AAT − CCT ||1/2F

Proof. The selection of rows and scaling used to obtain R from A can be repre-
sented by as

R = DA,

where D has only one non-zero entry per row. Let the SVD of C be

C =

r∑
t=1

σt(C)x(t)y(t)T .

By assumption σk(C) > 0. Then the SVD of CTC is

CTC =

r∑
t=1

σ2
t (C)y(t)y(t)T .

Then, we prove the theorem with U defined by

U =

k∑
t=1

1

σ2
t (C)

y(t)y(t)TCTDT .

Then, using the orthonormality of {x(t)}, {y(t)},

CUR =

r∑
t=1

σt(C)x(t)y(t)T
k∑
s=1

1

σ2
s(C)

y(s)y(s)T
r∑
p=1

σp(C)y(p)x(p)TDTDA

=

k∑
t=1

x(t)x(t)TDTDA

Consider the matrix multiplication(
k∑
t=1

x(t)x(t)T

)
(A) .

DTD above can be viewed precisely as selecting some rows of the matrix A

and the corresponding columns of
∑
t x

(t)x(t)T with suitable scaling. Applying
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Theorem 8.1 directly, we thus get using ||∑k
t=1 x

(t)x(t)T ||2F = k. In the theorem,
one is selecting columns of the first matrix according to LScol of that matrix;
here symmetrically, we are selecting rows of the second matrix according to
LSrow of that matrix.

E

∣∣∣∣∣
∣∣∣∣∣
k∑
t=1

x(t)x(t)TDTDA−
k∑
t=1

x(t)x(t)TA

∣∣∣∣∣
∣∣∣∣∣
2

F

≤ k

cs
||A||2F .

Thus,

E ||CUR−
k∑
t=1

x(t)x(t)TA||2F ≤
k

cs
||A||2F .

Next, from Lemma 8.3 it follows that

‖
k∑
t=1

x(t)x(t)TA−A‖2F ≤ ‖A−Ak‖2F + 2
√
k‖AAT − CCT ‖F

‖
k∑
t=1

x(t)x(t)TA−A‖22 ≤ ‖A−Ak‖2 + 2‖AAT − CCT ‖F .

Now the theorem follows using the triangle inequality on the norms.

As a corollary, we have the following:

Corollary 8.13. Suppose we are given C, a set of independently chosen columns
of A from LScol(A,c) and R, a set of s independently chosen rows of A from
LSrows(A,c). Then, in time O((m + n)s2), we can find an s × s matrix U such
that for any k,

E (‖A− CUR‖F ) ≤ ‖A−Ak‖F +

(
k

s

)1/2

‖A‖F +

(
4k

s

)1/4

‖A‖F

The following open problem, if answered affirmatively, would generalize the
theorem.

Problem Suppose A is any m×n matrix and C,R are any m× s and s×n
(respectively) matrices with

||AAT − CCT ||F , ||ATA−RTR||F ≤ δ||A||2F .

Then, from just C,R, can we find a s× s matrix U such that

||A− CUR||F ≤ poly(
δ

s
)||A||F ?

So we do not assume that R is a random sample as in the theorem.
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8.7 Discussion

Sampling from the length square distribution was introduced in a paper by
Frieze, Kannan and Vempala [FKV98, FKV04] in the context of a constant-
time algorithm for low-rank approximation. It has been used many times sub-
sequently. There are several advantages of sampling-based algorithms for matrix
approximation. The first is efficiency. The second is the nature of the approxi-
mation, namely it is often interpolative, i.e., uses rows/columns of the original
matrix. Finally, the methods can be used in the streaming model where memory
is limited and entries of the matrix arrive in arbitrary order.

The analysis for matrix multiplication is originally due to Drineas and Kan-
nan [DK01]. The linear-time low-rank approximation was given by Drineas et
al. [DFK+04]. The CUR decomposition first appeared in [DK03]. The best-
know sample complexity for the constant-time algorithm is O(k2/ε4) and other
refinements are given in [DKM06a, DKM06b, DKM06c]. An alternative sam-
pling method which sparsifies a given matrix and uses a low-rank approximation
of the sparse matrix was given in [AM07].

We conclude this section with a description of some typical applications. A
recommendation system is a marketing tool with wide use. Central to this is
the consumer-product matrix A where Aij is the “utility” or “preference” of
consumer i for product j. If the entire matrix were available, the task of the
system is simple - whenever a user comes up, it just recommends to the user the
product(s) of maximum utility to the user. But this assumption is unrealistic;
market surveys are costly, especially if one wants to ask each consumer. So,
the essential problem in Recommendation Systems is Matrix Reconstruction -
given only a sampled part of A, reconstruct (implicitly, because writing down
the whole of A requires too much space) an approximation A′ to A and make
recommendations based on A′. A natural assumption is to say that we have
a set of sampled rows (we know the utilities of some consumers- at least their
top choices) and a set of sampled columns (we know the top buyers of some
products). This model very directly suggests the use of the CUR decomposi-
tion below which says that for any matrix A given a set of sampled rows and
columns, we can construct an approximation A′ to A from them. Some well-
known recommendation systems in practical use relate to on-line book sellers,
movie renters etc.

In the first mathematical model for Recommendation Systems Azar et al.
[AFKM01] assumed a generative model where there were k types of consumers
and each is a draw from a probability distribution (a mixture model). It is easy
to see then that A is close to a low-rank matrix. The CUR type model and
analysis using CUR decomposition was by [DKR02].

We note an important philosophical difference in the use of sampling here
from previous topics discussed. Earlier, we assumed that there was a huge
matrix A explicitly written down somewhere and since it was too expensive to
compute with all of it, one used sampling to extract a part of it and computed
with this. Here, the point is that it is expensive to get the whole of A, so we
have to do with a sample from which we “reconstruct” implicitly the whole.
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