CS 70 Discrete Mathematics for CS
Fall 2004 Rao Lecture 3

This lecture covers further variants of induction, inchglistrong induction and the closely related well-
ordering axiom. We then apply these techniques to provegptieg of simple recursive programs.

Strong induction

Axiom 3.1 (Strong Induction): For any propertyP,
if P(0) andVneN (P(0O)AP(L)A...AP(n) = P(n+1)),
thenvVne N P(n).

This says that if all the following sentences are true:

P(0)

PO = P(1)

PO)AP(1) = P(2)
PO)AP(L)AP(2) = P(3)
PO)AP(L)AP(2)AP() = P(4)

and so on, theR(n) must be true for alh. Intuitively, this seems quite reasonable. If the truthPadll the
way up ton always implies the truth dP(n+ 1), then we immediately obtain the truth Bfall the way up
to n+ 1, which implies the truth oP(n+ 2), and so orad infinitum

If we compare the Strong Induction axiom to the original Iciilbn axiom from Lecture 2, we see that
Strong Induction appears to makedsierto prove things. With simple induction, one must pré&¥{(@-+ 1)
given the inductive hypothesiB(n); with strong induction one gets to assume the inductive thgsis
P(0) AP(1) A...AP(n), which is much stronger.

Consider the following example, which is one half of the Fameéntal Theorem of Arithmetic. (The other
half says that the product is unique.)

Theorem 3.1 Any natural number n- 1 can be written as a product of primes.
To prove this, of course, we need to define prime numbers:

Definition 3.1 (Prime): A natural numben > 1 is prime iff it has exactly two factors (1 amj. 1 itself is
not prime.

Let's see first what happens when we try a simple induction:

Proof: (Attempt 1) The proof is by induction over the natural numsbe> 1.

» Base case: prove(2).
P(2) is the proposition that 2 can be written as a product of pririéss is true, since 2 can be written
as the product of one prime, itself. (Remember that 1 is noted)

* Inductive step: prov®(n) = P(n+1) for all natural numbers > 1.

[EEN

CS 70, Fall 2004, Lecture 3

1. The inductive hypothesis states thatan be written as a product of primes.
2. To prove:n+ 1 can be written as a product of primes.

3. We're stuck: giverP(n), we could easily establigh(2n) or P(7n), butP(n+ 1) is unconnected
to P(n).

|

With a strong induction, we can make the connection betiRéar- 1) and earlier facts in the sequence that
arerelevant. For example, ifi+1=72, thenP(36) andP(24) are useful facts.

Proof: The proof is by strong induction over the natural numbrers1.

 Base case: prove(2), as above.
* Inductive step: prov@®(2) A...AP(n) = P(n+1) for all natural numbers > 1.

1. The inductive hypothesis states that, for all natural loersm from 2 ton, m can be written as
a product of primes.

2. To prove:n+ 1 can be written as a product of primes.
3. Proof by cases:

— n+1lis prime: them—+ 1 can be written as the product of one prime, itself.

— n+1 is not prime: then by the definition of prime numbers, thedistentegersa, b such
that 2< a,b<n+1 andn+1=a-b. By the inductive hypothesis, bothandb can be
written as a product of primes. Henae- 1 can be written as a product of primes.

O
Consider the following example, which is of immense intetepost offices and their customers:
Theorem 3.2 Any integer amount of postage fr@fh upwards can be composed fr@h and5¢ stamps.

With a strong induction, we can make the connection betviRen- 1) and earlier facts in the sequence. In
particular,P(n—2) is relevant because+ 1 can be composed from the solution for 2 plus one 3¢ stamp.
So the inductive step works H(n— 2) is known already. This will not be the case whe 1 is 9 or 10, so
we will need to handle these separately.

Proof: The proof is by strong induction over the natural numbrers8.

 Base case: prove(8).
P(8) is the proposition that 8¢ of postage can be composed frorm8¢5& stamps. This is true,

requiring 1 of each.
* Inductive step: prov®(8) A...AP(n) = P(n+1) for all natural numbers > 8.

1. The inductive hypothesis states that, for all natural lmewsm from 8 ton, m¢ of postage can
be composed from 3¢ and 5¢ stamps.

2. To prove:(n+1)¢ of postage can be composed from 3¢ and 5¢ stamps.

3. The cases where+ 1 is 9 or 10 must be proved separately. 9¢ can be composed firee 3¢
stamps. 10¢ can be composed from two 5¢ stamps.

4. For all natural numbens+ 1 > 10, the inductive hypothesis entails the proposifgn— 2). If
(n—2)¢ can be composed from 3¢ and 5¢ stamps, {nen1)¢ can be composed from 3¢ and
5¢ stamps simply by adding one more 3¢ stamp.

CS 70, Fall 2004, Lecture 3 2

a

Notice that, as with the tiling problem, the inductive préedids directly to a simple recursive algorithm for
selecting a combination of stamps.

Notice also that a strong induction proof may require sévesgecial case” proofs to establish a solid
foundation for the sequence of inductive steps. It is ea®yéolook one or more of these.

Simple induction and strong induction

We have seen that strong induction makes certain proofseasywhen simple induction appears to fail.
A natural question to ask is whether the strong inductiolmxis in factlogically strongerthan the simple
induction axiom; if so, then the theorems that can be prowagustrong induction are a strict superset of
the theorems that can be proved using simple induction.

Let's investigate this question. First, does the strongation entail the simple induction axiom? Intuitively,
this seems to be true. Let's put the two axioms side by sideexadhine their structure (we’ll take the
restriction to the natural numbers as implicit here):

Simple: P(O)A VN P(n) = P(n+1)] = Vn P(n)
Strong: P(O)A[VnP(O)A...AP(n) = P(n+1)] = VnP(n)

We can reduce this to the following basic form (with the olwgalefinitions for propositiond, B, B/, and
C):

Simple: AAB =— C
Strong: AAB — C

Now if P(n) = P(n+1), thenP(0)A...AP(n) = P(n+1). HenceB — B (i.e.,bis stronger than
B'). Hence, ifA A B’ suffice to proveC, then surely the stronger fadtA B also suffices to prov€. (This is
easily checked using truth tables.) Therefore, the stredgdtion axiom entails the simple induction axiom.

Second, does the simple induction entail the strong indoaixiom? One might expect not, but in fact it
does! We can see this by defining, for any propé&ty), the proposition

Q(n) < PO)A...AP(n)

That is,Q(n) is the property P holds from O ton.” The idea is that simple induction usir@ is in fact
identical to strong induction using. The simple induction axiom fa® is

Q) A[vN Q(n) = Q(n+1)] = vnQ(n)
Expanding out the definition @, we obtain
P(O)A VN (P(O)A...AP(N)) = (P(O)A...AP(N)AP(N+1))] = [Vn(P(O)A...AP(N))]

A few moments’ thought [we recommend thinking this thougbunself] reveals that this proposition is
logically equivalent to the proposition

PO)AVNPO)A...AP(n) = P(n+1)] = VnP(n)

which is the strong induction axiom. Therefore we have sh@ather informally perhaps) the following:

CS 70, Fall 2004, Lecture 3 3

Theorem 3.3 The strong induction axiom and the simple induction axioelagically equivalent.

Why have two different forms of induction then? The pointhattstrong induction reminds its user of the
opportunity to usé’(0) A ... A P(n) in the inductive step wheR(n) is defined the “natural” way from the
statement of the theorem to be proved.

The Weu—ordering principle

If one thinks about why induction works, one might ask thestioa “How could the induction axiom
fail to be true?” To violate the induction axiom, we would dee satisfy its antecedent (®{0) is true
andP(n) = P(n+ 1) for all n) while violating its consequent (sén—P(n)). Let us consider the first
n for which P(n) is false. By definition, we know tha&(n— 1) is true; and by assumption we know that
P(n—1) = P(n); therefore we have a straightforward contradiction!

Have weprovedthe induction axiom? Actually, no; we have proved that thdugtion axiom follows from
another axiom, which was used implicitly in defining “the ffinfor which P(n) is false.”

Axiom 3.2 (Well-Ordering): Every nonempty set of natural numbers has a smallest elemen

Duh. Doesn't every nonempty set of orderable elements haneadlest element? No! Evefinite set has a
smallest element, but not evanfinite set. For example, neither the integers nor even the poséti@als
have a smallest element.

The well-ordering principle not only underlies the indocatiaxioms, but also has direct uses in its own right.
A particularly elegant example concerns the existence dkesyin tournaments.

Definition 3.2 (Round-Robin). A round-robin tournament is one in which each plapeyays each other
playerg exactly once and either wing ¢ @) or loses ¢ > p).

Definition 3.3 (Cycle} A cycle in a tournament is a set of play€p, ... p,} such thatp; > p, - ... >
Pk-1 > Pk~ Py

Theorem 3.4 In every round-robin tournament, if there is a cycle, theeré¢his a cycle of length 3.
Proof: The proof is by contradiction.

1. Assume the theorem is false. Consider the set of cyclélemj the tournament. By assumption, this
must be nonempty.

2. By the well-ordering principle, it must have a smallesineéntk. By assumptionk > 3.

3. Letthe first three elements in this cycle e p,, p;, and consider the result of the match betwegn
andps.

4. Case 1.p; = p;. Then we havep; = p; = ... = p_1 = P = Py, i.€., @ cycle of lengthk — 1,
contradicting our assumption that the smallest cycle hagtiek > 3.

5. Case 2:p; = p;. Then we havep, > p, > p; >~ p,;, i.e., a cycle of length 3, contradicting our
assumption that the smallest cycle has lergth3.

6. By the definition of round-robins, eith@; - p; or p; > p,. Therefore, a contradiction exists.

7. Hence, it must be the case that any tournament with a cgslaleycle of length 3.

a

CS 70, Fall 2004, Lecture 3 4

This proof illustrates a common way to use well-ordering borad with proof by contradiction. The well-
ordering principle allows one to focus on a concrete coememple with the property that every smaller
example satisfies some property. For certain proofs, thideaan easier thought process than induction.

Induction and recursion

There is an intimate connection between induction and sémur Essentially every recursive function relies
for its correctness on an inductive proof. Remember thatarsase function applies itself to a “smaller”
argument. The inductive proof says that if the recursivefion works on all smaller arguments it will work
on the current argument.

We'll begin with that old favourite, the factorial functiorLet’s give a recursive definition for a function
f(n) and show it’s identical ta!. For anyne N,

f(n) = 1ifn=0
f(n) = nf(n—1) otherwise

Theorem 3.5 For all natural numbers n,) = nl.
Proof: The proof is by induction over the natural numbers. B@t) be the proposition that(n) = n!.

 Base case: prove(0).
P(0) is the proposition thaf (0) = 0!. By the definition abovef (0) = 1 = 0!, henceP(0) is true.

* Inductive step: prov®(n) — P(n+1) for allneN.
1. The inductive hypothesis ign) = n!.
2. Toprove:f(n+1) = (n+1).
3. By the definition above,
f(n+1) = (n+1)-f(n)becausmmeNso(n+1)#0
= (n+1)-n! by the inductive hypothesis
(n+1)-n-(n—1)---1=(n+1)!

Hence, by the induction principl&neN f(n) =n!. O

Mathematical functions and real programs

The above discussion applies to a purely mathematical defirof f(n). If we wanted to reason about a
real program, first we have to write it in a real language, agBcheme:

(define (factorial n)
(if (=n0)
1
(* n (factorial (- n 1)))))

CS 70, Fall 2004, Lecture 3 5

The statement of correctness for a program is not quite aghbtforward as for a mathematically defined
function:

Theorem 3.6 For all (computer representations of) natural numbers &, tbsult of evaluating the expres-
sion(factorial n) isthe computer representation df n

The proof that the program is correct is very similar to thegbrthat the recursive function has the right
values. Notice the notation: actual syntactic elementh@forogramming language are in typewriter font,
while variables that range over them are in italics.

Proof: The proof is by induction over the natural numbers. Rgt) be the proposition thgtf act ori al
n =n.

 Base case: prove(0).
P(0) is the propositior(f act ori al 0) =0!. By the definition above,

(factorial 0)
= (if (=00) 1 (* 0 (factorial (- 0 1))))
= 1 by evaluation of f

* Inductive step: prov®(n) — P(n+1) for allneN.

1. The inductive hypothesis (§ act ori al n) =nl.
2. Toprove:(factorial (n+1) =(n+1).
3. By the definition above,

(factorial (n+1))
= (if (= (n+1)0) 1 (* (n+1) (factorial (- (n+1) 1))))
= (* (n+1) (factorial (- (n+1) 1))) becaussmeNso(n+1)#0
= (* (n+1) (factorial n))
= (* (n+1) n!) by the inductive hypothesis
= (n+1)!

Hence, by the induction principleneN (factorial n) =n! O

Notes on this proof:

» We appeal implicitly to several aspects of the evaluatibprograms such as the binding of parame-
ters, the definition of f -expressions, and the correspondence between the maiterhatction “—”
and the built-in function*”. These lemmata are an essential part of the definition ghtbgramming

language and can be stated and proved once and for all.

» The theorem as stated is almost certainly falseteél proof of correctness, for a suitably reduced
theorem, must handle the important differences betweehemsdtical entities and the corresponding
entities in the computer. For exampld,is well-defined for any natural number, byt act ori al
n) fails if n is large enough to cause an overflow in integer multiplicatidnother way to say this is
that* is not the same as the mathematical multiplication function

» Asdefined(fact ori al n) causes an error for nonnumeric, noninteger, or negativasng\What
error arises from negative inputs?) A full specification &areally robust system should lay out the
correct responses to all possible inputs.

CS 70, Fall 2004, Lecture 3 6

STRINGS

SYMBOLS
ALPHABET

CONCATENATION

For the most part, we will use mathematical rather than Seheeatinitions because it makes the proofs
typographically cleaner and the theorems true.

Induction over things besides numbers

Persons other than pure mathematicians often write pragthat manipulate objects other than natural
numbers—for example, strings, lists, trees, arrays, tesles, programs, airline schedules, and so on. So
far, the examples of induction we have seen deal with indoativer the natural numbers. How does this
help with these other domains?

One answer is that we can do inductive proofs over naturalbessnthat correspond to theize of the
objects under consideration. Suppose we want to prove/thBts) for the domain oftrings. Then define
a proposition on natural numbers as follows:

Q(n) is the property that every strirgpf lengthn satisfiesP(s).

Then a proof that’n Q(n) by induction onn establishes thats P(s).

Similarly, we can prove things about trees by induction om dlepth of the tree, or about programs by
induction on the number of symbols in the program. Thesedtidins can become quite cumbersome and
unnatural. Let’'s suppose we had never heard of the natunalbers; could we still do anything with strings
and trees and programs? It turns out that we can define vanyah&tduction principles for these sorts of
objects without mentioning numbers at all.

An induction principle for strings

Let's write a recursive algorithm faeversinga string and show that it works correctly.

First, we will need to say what strings are. The elements dfiagsare symbols drawn from a set of
symbols called aalphabet, which is usually denoted. For example, i ={a,b}, then strings can consist
of sequences ds andbs. Z* denotes the set of all possible strings on the alphababd always includes
the empty string, which is denotéd Every symbol o is also a string of length 1. (Note: this property in
particular distinguishes strings from lists; but in gehegasoning about strings is quite similar to reasoning
about lists.)

The basic way to construct strings is bgncatenation If s; ands, are strings, then their concatenation is
also a string and is writteg;s, or s, - s, if punctuation is needed for clarity. Concatenation is dfias
follows:

Axiom 3.3 (Concatenation)

VSeZ*A-S=S-A =S
VacxVs,s,€2" (a-s))-s,=a-(s;-S,)

Just as Peano did for the natural numbers, we now provideraxamncerning what strings are, then we
state an induction principle that allows proofs for allrsgys. Strings satisfy the following axioms:

Axiom 3.4 (Strings).

The empty string is a stringt € X*
Joining any symbol to a string gives a strinqae > vVse 2* a-se &*

CS 70, Fall 2004, Lecture 3 7

STRUCTURAL
INDUCTION

CONSTRUCTOR

Because these axioms do not striadlgfinestrings, we need an induction principle to construct prawsr
all strings:

Axiom 3.5 (String Induction):

For any propertyP,
if P(A) andvacX VseZ* (P(s) = P(a-9)),
thenvse Z* P(s).

This is a simple instance aftructural induction, where a set of axioms defines the way in which objects
in a set are constructed and an induction principle usesahstiction step repeatedly to cover the entire
domain. Here, * is the constructor for the domain of strings, just as “+1” is the constructortfoe natural
numbers.

Notice that numbers appear nowhere in these axioms. We cprodés thinking only about the objects in
question. Let’s define a function that reverses a string aodepthat it works.

Axiom 3.6 (Reverse)

r(A)=A
VacZVseZ'r(a-s)=r(s)-a

We would like to say something like “for every strisgr(s) reverses it.” To make this a precise theorem,
we’ll need some independent, non-recursive way to say wkatean by reversing! There are several ways
to do this, of which the easiest is to take advantage of “dotldtf notation:

Theorem 3.7 VseX*, lets=a,a,...a,; thenr(s)=a,...a,a,
Proof: The proof is by induction over the strings on the alphabet_et P(s) be the proposition that if
S=a,@,...a,, thenr(s)=a,...a,a,.

* Base case: prove(A).
P(A) is the proposition that(A)= A, which is true by definition.
* Inductive step: prov®(s) = P(a-s) for allac X, se>*.
1. Theinductive hypothesis states that, for some arbistiygs, if s=a,a, ... a,, thenr(s) =a,... a,a,.
2. To prove: for every symbal, r(a-s)=a,...a,a;a.
3. By the axiom for reverse,
r(a-s) = r(s)-aby the reverse axiom
= an...a,a,aby the inductive hypothesis

Hence, by the string induction principle, for every strgg(s) reverses it0

We could alternatively have proven this theorem by indurctiwer the length of the input string. It is an
excellent exercise to work out the details of how to do thigl @ompare to the above method.

Induction over]oinary trees

Trees are a fundamental data structure in computer scienderlying efficient implementations in many
areas including databases, graphics, compilers, editpisnization, game-playing, and so on. Trees are

CS 70, Fall 2004, Lecture 3 8

BINARY TREE

ATOMS

DEPTH

also used to represent expressions in formal language® westudy their most basic form: tthénary
tree. Binary trees include lists (as in Lisp and Scheme), whiclelma | as the rightmost leaf.

In the theory of binary trees, we begin wiltoms which are trees with no branches.is the set of atoms,
which may or may not be finite. We construct tre&$ ¢sing thee (cons) operator. (In practice, any object
can be an atom as long as it’s distinguishable as one.)

Axiom 3.7 (Binary Trees).

Every atomis atreevacA [ac T|
Consing any two trees gives a tre#;,t,c T [t; ot, € T]

The induction principle for trees says thatAfholds for all atoms, and if the truth &f for any two trees
implies the truth of for their composition, the® holds for all trees:

Axiom 3.8 (Binary Tree Induction):

For any property,
if vacA P(a)

andvt,t,eT [P(t)) AP(t,) = P(t; ot,)]
thenvteT P(t).

Many useful predicates and functions can be defined on tireggding

* leaf(a,t) is true iff atoma is a leaf of tred.
* t, < t,istrue iff treet, is a proper subtree of trag

* countt) denotes the number of leaves of the tree

deptHht) denotes thelepth of the tree, where any atom has depth 0.

balancedt) is true ifft is a balanced binary tree.

Here we defindeaf, leaving the others as exercises:
Axiom 3.9 (Leaf):

VacAvteT leafit,a) & t=a
Vac AVt t,eT leaf(at, ot,) < leaf(a,t;)Vleaf(a,t,)

It's not easy toprovethat definitions of such basic functions are correct, sihee“specification” of the
function is hard to write in any form that is simpler than thefidition itself. Let’s look at a slightly less
simple function: the functiomaxleaft) returns the largest leaf of the treavhere the atoms are constrained
to be numbers.

Axiom 3.10 (Maxleaf).

Vac A maxleafa) = a
vt,,t, € T maxleaft, ot,) = maxmaxleaft,), maxleaft,))

CS 70, Fall 2004, Lecture 3 9

CARTESIAN PRODUCT
PAIRS

The functionmaxleafis “correct” if it satisfies two properties: firsthaxleaft) has to be greater than or
equal to every leaf of, second (anaften forgottel, maxleaft) has to be a leaf df

Let's prove the second property first:
Theorem 3.8 For every tree, t, maxledf) is a leaf of t.

Proof: The proof is by induction over the binary trees on the atdkns Let P(t) be the proposition
leaf(maxleaft),t).

 Base case: provéacA P(a).
P(a) is the proposition thdeaf(maxleafa),a), which is equivalent by substitution to the proposition
leaf(a, a), which is true by definition.

* Inductive step: prov®(t;) AP(t,) = P(t; et,) forallt;,t,cT.

1. The inductive hypothesis states thesif(maxleaft,),t;) A leaflmaxleaft,),t,).
2. To prove:leaf(maxleaft; ot,),t; ot,).

3. By the definition abovenaxleaft; ot,) = maxmaxleaft,), maxleaft,)).

4

. Sincevx,y [(maxx,y)=X) V (maxXx,y) =Y)], we have
(maxleaft, ot,) =maxleaft,)) vV (maxleaft, ot,) = maxleaft,)).

5. Substituting in the induction hypothesis, we obtain
leaf(maxleaft; ot,),t;) v leaf(maxleaft; ot,),t,).

6. Hence, by the definition déaf,
leaf(maxleaft; ot,),t; ot,).
Hence, by the binary induction principle, for every ttemaxleatft) is a leaf oft. O
The other part of the verification is the following (the pramfeft as an exercise):
Theorem 3.9 For every tree, t, maxledf) is greater than or equal to every leaf of t.

Tree induction seems very natural. Could we do a similarfausimg natural number induction? Certainly
we can prove facts about trees by induction oveidiyethof the tree.P(n) would state that all trees of depth
n satisfy some propert. Unfortunately, the inductive step forsampleinduction would look like this:

Given: all treeg of depthn satisfyQ(t)
Prove: all trees of depthn+ 1 satisfyQ(t)

This is usually impossible: for a tree of depth- 1, one subtree has depthbut not necessarily the other.
Stronginduction over the depth of the treeeswork; in fact it can always be used instead of tree induction.

Induction over pairs of natural numbers

Often we need to prove properties over bartesian product of some given sets. The Cartesian product
of setsA andB is written A x B. It is the set of alpairs (a,b) whereac A andbe B. For example, the set
N x N is the set of all pairs of natural numbers. Such sets aris@wgeprove properties of functions with
two arguments, when we prove facts about all points on a gta,

Let's look at an example: the knight's tour. We will prove ttleaknight starting at (0,0) can visit every
square on the unbounded nonnegative quadrant. Figure Isqjpant of) the infinite board and illustrates
the moves a knight can make.

CS 70, Fall 2004, Lecture 3 10

Figure 1: The knight’s tour, showing the “base case” squahespossible legal moves for a knight, and the
“inductive step.”

To prove this result, we'll need some facts about knight'syeso In particular, we'll need the following:
Axiom 3.11 (Knight's Move):

If square(x+1,y+2) or (x£2,y+1) is reachable by a knight, then squérey) is reachable
by a knight.

We’'ll also need an induction principle for pairs of naturahmbers. The idea for the knight's move proof is

to establish a region that is reachable and then to show tiysgquare adjacent to that region is reachable;
hence the region grows to fill the unbounded quadrant. Therenany ways to define the shape of this

region; we'll use the triangular region shown in Figure 1.

Our induction principle is, informally, that if the truth & for every pair(x,y’) in the region “just below”
(x,y) implies the truth ofP for (x,y), thenP is true for all (x,y). Notice that this is a strong induction
principle.

Axiom 3.12 (Strong Induction (Pairs)).

For any propertyP,
if Yx,yeN

W,y eN X +Y) < (x+y) = PX,Y)] = P(x,y)
thenvx,ye N P(x,y).

But where is the base case? Actually, it's there but hiddeheik, y) = (0,0), the conditionvx,y e N (X +
y) < (x+y) = P(X,y)] is vacuously true because there are no such pairs. H&(ce) is part of the
premise to be proved. More generally, the “base case” is éh@fyx,y) pairs for which the inductive
hypothesis does not suffice to provide a proof.

CS 70, Fall 2004, Lecture 3 11

WELL-FOUNDED

WELL-FOUNDED
INDUCTION

Now we are ready to prove our theorem:
Theorem 3.10 Vx,y€ N, the squargXx,y) is reachable by a knight starting &0, 0).

Proof: The proof is by strong induction over the pairs of naturainbers. LetP(x,y) be the proposition
that squaréx, y) is reachable by a knight starting @ 0).

* Base case: the propositioR$0,0), P(0,1), P(0,2), P(1,0), P(1,1), P(2,0), for whichx+y < 2, must
be established separately. Each of these can be estalitigteggbropriate application of the knight's
move axiom.

* Inductive step: prove that, for alk,y) such thax+y > 2,
(XY EN (X +Y) < (x+Yy) = P(X,Y)] = P(xy).

1. The inductive hypothesis states that, forXaly/ €N such that(X +Yy) < (x+Y), the square
(X,y) is reachable fronf0,0).

2. Allthe squaregx,y)=(x—2,y+1) and(X,y)= (x4 1,y — 2) satisfy the conditior{x + V') <
(X+Y).

3. For anyx,ye N such thatx+y > 2, at least one of these squares is on the board, i.e., satisfie
X,y €N (proof by cases).

4. Hence, by the knight's move axioitx,y) is reachable front0,0).

Hence, by the strong induction principle for pairs, evenyage in the unbounded positive quadrant is reach-
able by a knight fron{0,0). O

The proof could also be done by strong induction on the nhtunabers usingi=x+ y as the induction
variable. Which is more elegant is perhaps a matter of thatehe importaninsightis the use of a suitable
notion of “smaller” on pairs of natural numbers. For someofsp“smaller” can be defined as “at least one
of the pair is smaller and the other is no bigger”, which gikestangular regions that, stepwise, fill up the
quadrant. In the knight’s tour problem, however, some ofréegiired moves violate this ordering.

Well-founded induction

Looking at all the induction principles we have seen so fag ecurring theme stands out: from properties
of “smaller” elements, we prove properties of a “larger’rett. n is smaller tham+ 1; sis smaller than
a-s; t; andt, are smaller than, et,; and so on.

The strong induction principle for pairs, stated in the poéog section, gives a clue as to how to formalize
this idea into a general induction principle. We simply dy@pgeneralized notion of “smaller than” instead
of using<. We denote this relatior, which is assumed to be defined on whateveXset are interested in
(natural numbers, sets, trees, pairs, strings, listsnaidchedules, etc.). For induction to work, we require
that < have the property of well-foundedness:

Definition 3.4 (Well-founded). A relation < on X is well-founded if there can be no infinite decreasing
sequences of elementsXfrelated by<.

Given this, we can state the principle wEll-founded induction, of which all our other principles are
special cases:

Axiom 3.13 (Well-Founded Induction).

CS 70, Fall 2004, Lecture 3 12

For any property?, and any wellfounded relatior on X,
if vxeX [[WyeX y<x = P(y)] = P(X)]
thenvxe X P(x).

As with induction over pairs, the well-founded inductionngiple includes the requirement for establishing
the “base case”—that is, proviR(x) independently for all thosewhere the inductive hypothesis does not
suffice.

The property of well-foundedness is easy to see for all tsexae have covered. There is also a generalized
equivalent of well-ordering:

WELL-ORDERED Definition 3.5 (Well-ordering): A setX iswell-ordered by the relation< iff every nonempty subset of
has at least one minimal element with respeckto

The following very general theorem can be proved:

Theorem 3.11 A relation < on X is well-founded ifiX is well-ordered by<.

Although this seems very abstract and useless, it is in feetl @ll the time by programmers who write
recursive functions that do complex things to their arguimie@onsider the following recursive skeleton:

f(x) = if B(x) thenk elsef(g(x))

This will terminate iffg(x) < x for some well-ordering oKX with minimal element(s) satisfyinB(x). Thus,
the programmer must be sure that repeated applicatigncahnot generate an infinite sequence of values
that do not satisfiB.

Sometimes, “smaller” can be surprisingly nonobvious. @tershe following function on the natural num-
bers:

f(0)=1; f(1)=1
if n> 1is even therf(n) = f(n/2), elsef(n) = f(3n+1).

couarzconecture - TheCollatz conjecture states thatne N f(n) = 1. You may wish to check this out for various valuesof
No proof is known.

CS 70, Fall 2004, Lecture 3 13

