
CS 70 Discrete Mathematics for CS
Fall 2004 Rao Lecture 3
This lecture covers further variants of induction, including strong induction and the closely related well-
ordering axiom. We then apply these techniques to prove properties of simple recursive programs.

Strong induction
Axiom 3.1 (Strong Induction): For any propertyP,
if P(0) and∀n∈N (P(0)∧P(1)∧ . . .∧P(n) =⇒ P(n+1)),
then∀n∈N P(n).

This says that if all the following sentences are true:

P(0)

P(0) =⇒ P(1)

P(0)∧P(1) =⇒ P(2)

P(0)∧P(1)∧P(2) =⇒ P(3)

P(0)∧P(1)∧P(2)∧P(3) =⇒ P(4)

and so on, thenP(n) must be true for alln. Intuitively, this seems quite reasonable. If the truth ofP all the
way up ton always implies the truth ofP(n+1), then we immediately obtain the truth ofP all the way up
to n+1, which implies the truth ofP(n+2), and so onad infinitum.

If we compare the Strong Induction axiom to the original Induction axiom from Lecture 2, we see that
Strong Induction appears to make iteasierto prove things. With simple induction, one must proveP(n+1)
given the inductive hypothesisP(n); with strong induction one gets to assume the inductive hypothesis
P(0)∧P(1)∧ . . .∧P(n), which is much stronger.

Consider the following example, which is one half of the Fundamental Theorem of Arithmetic. (The other
half says that the product is unique.)

Theorem 3.1: Any natural number n> 1 can be written as a product of primes.

To prove this, of course, we need to define prime numbers:

Definition 3.1 (Prime): A natural numbern > 1 is prime iff it has exactly two factors (1 andn). 1 itself is
not prime.

Let’s see first what happens when we try a simple induction:

Proof: (Attempt 1) The proof is by induction over the natural numbers n > 1.

• Base case: proveP(2).
P(2) is the proposition that 2 can be written as a product of primes. This is true, since 2 can be written
as the product of one prime, itself. (Remember that 1 is not prime!)

• Inductive step: proveP(n) =⇒ P(n+1) for all natural numbersn > 1.

CS 70, Fall 2004, Lecture 3 1



1. The inductive hypothesis states thatn can be written as a product of primes.

2. To prove:n+1 can be written as a product of primes.

3. We’re stuck: givenP(n), we could easily establishP(2n) or P(7n), butP(n+1) is unconnected
to P(n).

2

With a strong induction, we can make the connection betweenP(n+1) and earlier facts in the sequence that
are relevant. For example, ifn+1=72, thenP(36) andP(24) are useful facts.

Proof: The proof is by strong induction over the natural numbersn > 1.

• Base case: proveP(2), as above.

• Inductive step: proveP(2)∧ . . .∧P(n) =⇒ P(n+1) for all natural numbersn > 1.

1. The inductive hypothesis states that, for all natural numbersm from 2 ton, m can be written as
a product of primes.

2. To prove:n+1 can be written as a product of primes.

3. Proof by cases:

– n+1 is prime: thenn+1 can be written as the product of one prime, itself.
– n+ 1 is not prime: then by the definition of prime numbers, there exist integersa, b such

that 2≤ a,b < n+ 1 andn+ 1=a · b. By the inductive hypothesis, botha andb can be
written as a product of primes. Hencen+1 can be written as a product of primes.

2

Consider the following example, which is of immense interest to post offices and their customers:

Theorem 3.2: Any integer amount of postage from8¢ upwards can be composed from3¢ and5¢ stamps.

With a strong induction, we can make the connection betweenP(n+1) and earlier facts in the sequence. In
particular,P(n−2) is relevant becausen+1 can be composed from the solution forn−2 plus one 3¢ stamp.
So the inductive step works ifP(n−2) is known already. This will not be the case whenn+1 is 9 or 10, so
we will need to handle these separately.

Proof: The proof is by strong induction over the natural numbersn≥ 8.

• Base case: proveP(8).
P(8) is the proposition that 8¢ of postage can be composed from 3¢ and 5¢ stamps. This is true,
requiring 1 of each.

• Inductive step: proveP(8)∧ . . .∧P(n) =⇒ P(n+1) for all natural numbersn≥ 8.

1. The inductive hypothesis states that, for all natural numbersm from 8 ton, m¢ of postage can
be composed from 3¢ and 5¢ stamps.

2. To prove:(n+1)¢ of postage can be composed from 3¢ and 5¢ stamps.

3. The cases wheren+1 is 9 or 10 must be proved separately. 9¢ can be composed from three 3¢
stamps. 10¢ can be composed from two 5¢ stamps.

4. For all natural numbersn+1 > 10, the inductive hypothesis entails the propositionP(n−2). If
(n−2)¢ can be composed from 3¢ and 5¢ stamps, then(n+1)¢ can be composed from 3¢ and
5¢ stamps simply by adding one more 3¢ stamp.

CS 70, Fall 2004, Lecture 3 2



2

Notice that, as with the tiling problem, the inductive proofleads directly to a simple recursive algorithm for
selecting a combination of stamps.

Notice also that a strong induction proof may require several “special case” proofs to establish a solid
foundation for the sequence of inductive steps. It is easy tooverlook one or more of these.

Simple induction and strong induction
We have seen that strong induction makes certain proofs easyeven when simple induction appears to fail.
A natural question to ask is whether the strong induction axiom is in factlogically strongerthan the simple
induction axiom; if so, then the theorems that can be proved using strong induction are a strict superset of
the theorems that can be proved using simple induction.

Let’s investigate this question. First, does the strong induction entail the simple induction axiom? Intuitively,
this seems to be true. Let’s put the two axioms side by side andexamine their structure (we’ll take the
restriction to the natural numbers as implicit here):

Simple: P(0)∧ [∀n P(n) =⇒ P(n+1)] =⇒ ∀n P(n)

Strong: P(0)∧ [∀n P(0)∧ . . .∧P(n) =⇒ P(n+1)] =⇒ ∀n P(n)

We can reduce this to the following basic form (with the obvious definitions for propositionsA, B, B′, and
C):

Simple: A∧B =⇒ C

Strong: A∧B′ =⇒ C

Now if P(n) =⇒ P(n+1), thenP(0)∧ . . .∧P(n) =⇒ P(n+1). Hence,B =⇒ B′ (i.e.,b is stronger than
B′). Hence, ifA∧B′ suffice to proveC, then surely the stronger factA∧B also suffices to proveC. (This is
easily checked using truth tables.) Therefore, the strong induction axiom entails the simple induction axiom.

Second, does the simple induction entail the strong induction axiom? One might expect not, but in fact it
does! We can see this by defining, for any propertyP(n), the proposition

Q(n) ⇔ P(0)∧ . . .∧P(n)

That is,Q(n) is the property “P holds from 0 ton.” The idea is that simple induction usingQ is in fact
identical to strong induction usingP. The simple induction axiom forQ is

Q(0)∧ [∀n Q(n) =⇒ Q(n+1)] =⇒ ∀n Q(n)

Expanding out the definition ofQ, we obtain

P(0)∧ [∀n (P(0)∧ . . .∧P(n)) =⇒ (P(0)∧ . . .∧P(n)∧P(n+1))] =⇒ [∀n (P(0)∧ . . .∧P(n))]

A few moments’ thought [we recommend thinking this thought yourself] reveals that this proposition is
logically equivalent to the proposition

P(0)∧ [∀n P(0)∧ . . .∧P(n) =⇒ P(n+1)] =⇒ ∀n P(n)

which is the strong induction axiom. Therefore we have shown(rather informally perhaps) the following:

CS 70, Fall 2004, Lecture 3 3



Theorem 3.3: The strong induction axiom and the simple induction axiom are logically equivalent.

Why have two different forms of induction then? The point is that strong induction reminds its user of the
opportunity to useP(0)∧ . . .∧P(n) in the inductive step whenP(n) is defined the “natural” way from the
statement of the theorem to be proved.

The well-ordering principle
If one thinks about why induction works, one might ask the question “How could the induction axiom
fail to be true?” To violate the induction axiom, we would need to satisfy its antecedent (soP(0) is true
andP(n) =⇒ P(n+ 1) for all n) while violating its consequent (so∃n¬P(n)). Let us consider the first
n for which P(n) is false. By definition, we know thatP(n− 1) is true; and by assumption we know that
P(n−1) =⇒ P(n); therefore we have a straightforward contradiction!

Have weprovedthe induction axiom? Actually, no; we have proved that the induction axiom follows from
another axiom, which was used implicitly in defining “the first n for which P(n) is false.”

Axiom 3.2 (Well-Ordering): Every nonempty set of natural numbers has a smallest element.

Duh. Doesn’t every nonempty set of orderable elements have asmallest element? No! Everyfinite set has a
smallest element, but not everyinfinite set. For example, neither the integers nor even the positiverationals
have a smallest element.

The well-ordering principle not only underlies the induction axioms, but also has direct uses in its own right.
A particularly elegant example concerns the existence of cycles in tournaments.

Definition 3.2 (Round-Robin): A round-robin tournament is one in which each playerp plays each other
playerq exactly once and either wins (p� q) or loses (q� p).

Definition 3.3 (Cycle): A cycle in a tournament is a set of players{p1 . . . pk} such thatp1 � p2 � . . . �
pk−1 � pk � p1.

Theorem 3.4: In every round-robin tournament, if there is a cycle, then there is a cycle of length 3.

Proof: The proof is by contradiction.

1. Assume the theorem is false. Consider the set of cycle lengths of the tournament. By assumption, this
must be nonempty.

2. By the well-ordering principle, it must have a smallest elementk. By assumption,k > 3.

3. Let the first three elements in this cycle bep1, p2, p3, and consider the result of the match betweenp1
andp3.

4. Case 1: p1 � p3. Then we havep1 � p3 � . . . � pk−1 � pk � p1, i.e., a cycle of lengthk− 1,
contradicting our assumption that the smallest cycle has lengthk > 3.

5. Case 2:p3 � p1. Then we havep1 � p2 � p3 � p1, i.e., a cycle of length 3, contradicting our
assumption that the smallest cycle has lengthk > 3.

6. By the definition of round-robins, eitherp1 � p3 or p3 � p1. Therefore, a contradiction exists.

7. Hence, it must be the case that any tournament with a cycle has a cycle of length 3.

2

CS 70, Fall 2004, Lecture 3 4



This proof illustrates a common way to use well-ordering combined with proof by contradiction. The well-
ordering principle allows one to focus on a concrete counterexample with the property that every smaller
example satisfies some property. For certain proofs, this can be an easier thought process than induction.

Induction and recursion
There is an intimate connection between induction and recursion. Essentially every recursive function relies
for its correctness on an inductive proof. Remember that a recursive function applies itself to a “smaller”
argument. The inductive proof says that if the recursive function works on all smaller arguments it will work
on the current argument.

We’ll begin with that old favourite, the factorial function. Let’s give a recursive definition for a function
f (n) and show it’s identical ton!. For anyn∈N,

f (n) = 1 if n = 0

f (n) = n f(n−1) otherwise

Theorem 3.5: For all natural numbers n, f(n) = n!.

Proof: The proof is by induction over the natural numbers. LetP(n) be the proposition thatf (n) = n!.

• Base case: proveP(0).
P(0) is the proposition thatf (0) = 0!. By the definition above,f (0) = 1 = 0!, henceP(0) is true.

• Inductive step: proveP(n) =⇒ P(n+1) for all n∈N.

1. The inductive hypothesis isf (n) = n!.

2. To prove: f (n+1) = (n+1)!.

3. By the definition above,

f (n+1) = (n+1) · f (n) becausen∈N so(n+1) 6= 0

= (n+1) ·n! by the inductive hypothesis

= (n+1) ·n· (n−1) · · ·1 = (n+1)!

Hence, by the induction principle,∀n∈N f (n) = n!. 2

Mathematical functions and real programs
The above discussion applies to a purely mathematical definition of f (n). If we wanted to reason about a
real program, first we have to write it in a real language, suchas Scheme:

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

CS 70, Fall 2004, Lecture 3 5



The statement of correctness for a program is not quite so straightforward as for a mathematically defined
function:

Theorem 3.6: For all (computer representations of) natural numbers n, the result of evaluating the expres-
sion(factorial n) is the computer representation of n!.

The proof that the program is correct is very similar to the proof that the recursive function has the right
values. Notice the notation: actual syntactic elements of the programming language are in typewriter font,
while variables that range over them are in italics.

Proof: The proof is by induction over the natural numbers. LetP(n) be the proposition that(factorial
n) = n!.

• Base case: proveP(0).
P(0) is the proposition(factorial 0) = 0!. By the definition above,

(factorial 0)

= (if (= 0 0) 1 (* 0 (factorial (- 0 1))))

= 1 by evaluation ofif

• Inductive step: proveP(n) =⇒ P(n+1) for all n∈N.

1. The inductive hypothesis is(factorial n) = n!.

2. To prove:(factorial (n+1)) = (n+1)!.

3. By the definition above,

(factorial (n+1))

= (if (= (n+1) 0) 1 (* (n+1) (factorial (- (n+1) 1))))

= (* (n+1) (factorial (- (n+1) 1))) becausen∈N so(n+1) 6= 0

= (* (n+1) (factorial n))

= (* (n+1) n!) by the inductive hypothesis

= (n+1)!

Hence, by the induction principle,∀n∈N (factorial n) = n! 2

Notes on this proof:

• We appeal implicitly to several aspects of the evaluation of programs such as the binding of parame-
ters, the definition ofif-expressions, and the correspondence between the mathematical function “−”
and the built-in function “-”. These lemmata are an essential part of the definition of theprogramming
language and can be stated and proved once and for all.

• The theorem as stated is almost certainly false! Areal proof of correctness, for a suitably reduced
theorem, must handle the important differences between mathematical entities and the corresponding
entities in the computer. For example,n! is well-defined for any natural number, but(factorial
n) fails if n is large enough to cause an overflow in integer multiplication. Another way to say this is
that* is not the same as the mathematical multiplication function.

• As defined,(factorial n) causes an error for nonnumeric, noninteger, or negative inputs. (What
error arises from negative inputs?) A full specification fora really robust system should lay out the
correct responses to all possible inputs.

CS 70, Fall 2004, Lecture 3 6



For the most part, we will use mathematical rather than Scheme definitions because it makes the proofs
typographically cleaner and the theorems true.

Induction over things besides numbers
Persons other than pure mathematicians often write programs that manipulate objects other than natural
numbers—for example, strings, lists, trees, arrays, hash tables, programs, airline schedules, and so on. So
far, the examples of induction we have seen deal with induction over the natural numbers. How does this
help with these other domains?

One answer is that we can do inductive proofs over natural numbers that correspond to thesizeof the
objects under consideration. Suppose we want to prove that∀s P(s) for the domain ofstrings. Then defineSTRINGS

a proposition on natural numbers as follows:

Q(n) is the property that every strings of lengthn satisfiesP(s).

Then a proof that∀n Q(n) by induction onn establishes that∀s P(s).

Similarly, we can prove things about trees by induction on the depth of the tree, or about programs by
induction on the number of symbols in the program. These inductions can become quite cumbersome and
unnatural. Let’s suppose we had never heard of the natural numbers; could we still do anything with strings
and trees and programs? It turns out that we can define very natural induction principles for these sorts of
objects without mentioning numbers at all.

An induction principle for strings
Let’s write a recursive algorithm forreversinga string and show that it works correctly.

First, we will need to say what strings are. The elements of a string aresymbols drawn from a set ofSYMBOLS

symbols called analphabet, which is usually denotedΣ. For example, ifΣ={a,b}, then strings can consistALPHABET

of sequences ofas andbs. Σ∗ denotes the set of all possible strings on the alphabetΣ, and always includes
the empty string, which is denotedλ . Every symbol ofΣ is also a string of length 1. (Note: this property in
particular distinguishes strings from lists; but in general reasoning about strings is quite similar to reasoning
about lists.)

The basic way to construct strings is byconcatenation. If s1 ands2 are strings, then their concatenation isCONCATENATION

also a string and is writtens1s2 or s1 · s2 if punctuation is needed for clarity. Concatenation is defined as
follows:

Axiom 3.3 (Concatenation):

∀s∈Σ∗ λ ·s= s·λ = s
∀a∈Σ ∀s1,s2∈Σ∗ (a·s1) ·s2 = a· (s1 ·s2)

Just as Peano did for the natural numbers, we now provide axioms concerning what strings are, then we
state an induction principle that allows proofs for all strings. Strings satisfy the following axioms:

Axiom 3.4 (Strings):

The empty string is a string:λ ∈Σ∗

Joining any symbol to a string gives a string:∀a∈Σ ∀s∈Σ∗ a·s∈ Σ∗

CS 70, Fall 2004, Lecture 3 7



Because these axioms do not strictlydefinestrings, we need an induction principle to construct proofsover
all strings:

Axiom 3.5 (String Induction):

For any propertyP,
if P(λ ) and∀a∈Σ ∀s∈Σ∗ (P(s) =⇒ P(a·s)),
then∀s∈Σ∗ P(s).

This is a simple instance ofstructural induction , where a set of axioms defines the way in which objectsSTRUCTURAL
INDUCTION

in a set are constructed and an induction principle uses the construction step repeatedly to cover the entire
domain. Here, “·” is theconstructor for the domain of strings, just as “+1” is the constructor forthe naturalCONSTRUCTOR

numbers.

Notice that numbers appear nowhere in these axioms. We can doproofs thinking only about the objects in
question. Let’s define a function that reverses a string and prove that it works.

Axiom 3.6 (Reverse):

r(λ ) = λ
∀a∈Σ ∀s∈Σ∗r(a·s) = r(s) ·a

We would like to say something like “for every strings, r(s) reverses it.” To make this a precise theorem,
we’ll need some independent, non-recursive way to say what we mean by reversing! There are several ways
to do this, of which the easiest is to take advantage of “dot dot dot” notation:

Theorem 3.7: ∀s∈Σ∗, let s=a1a2 . . .an; then r(s)=an . . .a2a1

Proof: The proof is by induction over the strings on the alphabetΣ. Let P(s) be the proposition that if
s=a1a2 . . .an, thenr(s)=an . . .a2a1.

• Base case: proveP(λ ).
P(λ ) is the proposition thatr(λ )=λ , which is true by definition.

• Inductive step: proveP(s) =⇒ P(a·s) for all a∈Σ, s∈Σ∗.

1. The inductive hypothesis states that, for some arbitrarystrings, if s=a1a2 . . .an, thenr(s)=an . . .a2a1.

2. To prove: for every symbola, r(a·s)=an . . .a2a1a.

3. By the axiom for reverse,

r(a·s) = r(s) ·a by the reverse axiom

= an . . .a2a1a by the inductive hypothesis

Hence, by the string induction principle, for every strings, r(s) reverses it.2

We could alternatively have proven this theorem by induction over the length of the input string. It is an
excellent exercise to work out the details of how to do this, and compare to the above method.

Induction over binary trees
Trees are a fundamental data structure in computer science,underlying efficient implementations in many
areas including databases, graphics, compilers, editors,optimization, game-playing, and so on. Trees are

CS 70, Fall 2004, Lecture 3 8



also used to represent expressions in formal languages. Here we study their most basic form: thebinary
tree. Binary trees include lists (as in Lisp and Scheme), which havenil as the rightmost leaf.BINARY TREE

In the theory of binary trees, we begin withatoms, which are trees with no branches.A is the set of atoms,ATOMS

which may or may not be finite. We construct trees (T) using the• (cons) operator. (In practice, any object
can be an atom as long as it’s distinguishable as one.)

Axiom 3.7 (Binary Trees):

Every atom is a tree:∀a∈A [a∈ T]
Consing any two trees gives a tree:∀t1, t2∈T [t1• t2 ∈ T]

The induction principle for trees says that ifP holds for all atoms, and if the truth ofP for any two trees
implies the truth ofP for their composition, thenP holds for all trees:

Axiom 3.8 (Binary Tree Induction):

For any propertyP,
if ∀a∈A P(a)

and∀t1, t2∈T [P(t1)∧P(t2) =⇒ P(t1• t2)]
then∀t∈T P(t).

Many useful predicates and functions can be defined on trees,including

• leaf(a, t) is true iff atoma is a leaf of treet.

• t1 ≺ t2 is true iff treet1 is a proper subtree of treet2.

• count(t) denotes the number of leaves of the treet.

• depth(t) denotes thedepth of the tree, where any atom has depth 0.DEPTH

• balanced(t) is true iff t is a balanced binary tree.

Here we defineleaf, leaving the others as exercises:

Axiom 3.9 (Leaf):

∀a∈A ∀t∈T leaf(t,a) ⇔ t =a
∀a∈A ∀t1, t2∈T leaf(a, t1 • t2) ⇔ leaf(a, t1)∨ leaf(a, t2)

It’s not easy toprove that definitions of such basic functions are correct, since the “specification” of the
function is hard to write in any form that is simpler than the definition itself. Let’s look at a slightly less
simple function: the functionmaxleaf(t) returns the largest leaf of the treet, where the atoms are constrained
to be numbers.

Axiom 3.10 (Maxleaf):

∀a∈A maxleaf(a) = a
∀t1, t2∈T maxleaf(t1• t2) = max(maxleaf(t1),maxleaf(t2))

CS 70, Fall 2004, Lecture 3 9



The functionmaxleafis “correct” if it satisfies two properties: first,maxleaf(t) has to be greater than or
equal to every leaf oft; second (andoften forgotten), maxleaf(t) has to be a leaf oft!

Let’s prove the second property first:

Theorem 3.8: For every tree, t, maxleaf(t) is a leaf of t.

Proof: The proof is by induction over the binary trees on the atomsA. Let P(t) be the proposition
leaf(maxleaf(t), t).

• Base case: prove∀a∈A P(a).
P(a) is the proposition thatleaf(maxleaf(a),a), which is equivalent by substitution to the proposition
leaf(a,a), which is true by definition.

• Inductive step: proveP(t1)∧P(t2) =⇒ P(t1• t2) for all t1, t2∈T.

1. The inductive hypothesis states thatleaf(maxleaf(t1), t1)∧ leaf(maxleaf(t2), t2).

2. To prove:leaf(maxleaf(t1• t2), t1• t2).

3. By the definition above,maxleaf(t1• t2) = max(maxleaf(t1),maxleaf(t2)).

4. Since∀x,y [(max(x,y)=x)∨ (max(x,y)=y)], we have
(maxleaf(t1 • t2)=maxleaf(t1))∨ (maxleaf(t1• t2)=maxleaf(t2)).

5. Substituting in the induction hypothesis, we obtain
leaf(maxleaf(t1• t2), t1)∨ leaf(maxleaf(t1• t2), t2).

6. Hence, by the definition ofleaf,
leaf(maxleaf(t1• t2), t1 • t2).

Hence, by the binary induction principle, for every treet, maxleaf(t) is a leaf oft. 2

The other part of the verification is the following (the proofis left as an exercise):

Theorem 3.9: For every tree, t, maxleaf(t) is greater than or equal to every leaf of t.

Tree induction seems very natural. Could we do a similar proof using natural number induction? Certainly
we can prove facts about trees by induction over thedepthof the tree.P(n) would state that all trees of depth
n satisfy some propertyQ. Unfortunately, the inductive step for asimpleinduction would look like this:

Given: all treest of depthn satisfyQ(t)
Prove: all treest of depthn+1 satisfyQ(t)

This is usually impossible: for a tree of depthn+ 1, one subtree has depthn, but not necessarily the other.
Stronginduction over the depth of the treedoeswork; in fact it can always be used instead of tree induction.

Induction over pairs of natural numbers
Often we need to prove properties over theCartesian product of some given sets. The Cartesian productCARTESIAN PRODUCT

of setsA andB is writtenA×B. It is the set of allpairs (a,b) wherea∈A andb∈B. For example, the setPAIRS

N×N is the set of all pairs of natural numbers. Such sets arise when we prove properties of functions with
two arguments, when we prove facts about all points on a grid,etc.

Let’s look at an example: the knight’s tour. We will prove that a knight starting at (0,0) can visit every
square on the unbounded nonnegative quadrant. Figure 1 shows (part of) the infinite board and illustrates
the moves a knight can make.

CS 70, Fall 2004, Lecture 3 10



Figure 1: The knight’s tour, showing the “base case” squares, the possible legal moves for a knight, and the
“inductive step.”

To prove this result, we’ll need some facts about knight’s moves. In particular, we’ll need the following:

Axiom 3.11 (Knight’s Move):

If square(x±1,y±2) or (x±2,y±1) is reachable by a knight, then square(x,y) is reachable
by a knight.

We’ll also need an induction principle for pairs of natural numbers. The idea for the knight’s move proof is
to establish a region that is reachable and then to show that any square adjacent to that region is reachable;
hence the region grows to fill the unbounded quadrant. There are many ways to define the shape of this
region; we’ll use the triangular region shown in Figure 1.

Our induction principle is, informally, that if the truth ofP for every pair(x′,y′) in the region “just below”
(x,y) implies the truth ofP for (x,y), thenP is true for all (x,y). Notice that this is a strong induction
principle.

Axiom 3.12 (Strong Induction (Pairs)):

For any propertyP,
if ∀x,y∈N

[∀x′,y′∈N (x′ +y′) < (x+y) =⇒ P(x′,y′)] =⇒ P(x,y)
then∀x,y∈N P(x,y).

But where is the base case? Actually, it’s there but hidden. When(x,y)= (0,0), the condition[∀x′,y′∈N (x′+
y′) < (x+ y) =⇒ P(x′,y′)] is vacuously true because there are no such pairs. HenceP(0,0) is part of the
premise to be proved. More generally, the “base case” is the set of (x,y) pairs for which the inductive
hypothesis does not suffice to provide a proof.

CS 70, Fall 2004, Lecture 3 11



Now we are ready to prove our theorem:

Theorem 3.10: ∀x,y∈N, the square(x,y) is reachable by a knight starting at(0,0).

Proof: The proof is by strong induction over the pairs of natural numbers. LetP(x,y) be the proposition
that square(x,y) is reachable by a knight starting at(0,0).

• Base case: the propositionsP(0,0), P(0,1), P(0,2), P(1,0), P(1,1), P(2,0), for whichx+y≤ 2, must
be established separately. Each of these can be establishedby appropriate application of the knight’s
move axiom.

• Inductive step: prove that, for all(x,y) such thatx+y > 2,
[∀x′,y′∈N (x′ +y′) < (x+y) =⇒ P(x′,y′)] =⇒ P(x,y).

1. The inductive hypothesis states that, for allx′,y′∈N such that(x′ + y′) < (x+ y), the square
(x′,y′) is reachable from(0,0).

2. All the squares(x′,y′)=(x−2,y±1) and(x′,y′)=(x±1,y−2) satisfy the condition(x′ +y′) <
(x+y).

3. For anyx,y∈N such thatx+ y > 2, at least one of these squares is on the board, i.e., satisfies
x′,y′∈N (proof by cases).

4. Hence, by the knight’s move axiom,(x,y) is reachable from(0,0).

Hence, by the strong induction principle for pairs, every square in the unbounded positive quadrant is reach-
able by a knight from(0,0). 2

The proof could also be done by strong induction on the natural numbers usingn=x+ y as the induction
variable. Which is more elegant is perhaps a matter of taste;but the importantinsight is the use of a suitable
notion of “smaller” on pairs of natural numbers. For some proofs, “smaller” can be defined as “at least one
of the pair is smaller and the other is no bigger”, which givesrectangular regions that, stepwise, fill up the
quadrant. In the knight’s tour problem, however, some of therequired moves violate this ordering.

Well-founded induction
Looking at all the induction principles we have seen so far, one recurring theme stands out: from properties
of “smaller” elements, we prove properties of a “larger” element. n is smaller thann+ 1; s is smaller than
a·s; t1 andt2 are smaller thant1• t2; and so on.

The strong induction principle for pairs, stated in the preceding section, gives a clue as to how to formalize
this idea into a general induction principle. We simply supply a generalized notion of “smaller than” instead
of using<. We denote this relation≺, which is assumed to be defined on whatever setX we are interested in
(natural numbers, sets, trees, pairs, strings, lists, airline schedules, etc.). For induction to work, we require
that≺ have the property of well-foundedness:

Definition 3.4 (Well-founded): A relation≺ on X is well-founded if there can be no infinite decreasingWELL­FOUNDED

sequences of elements ofX related by≺.

Given this, we can state the principle ofwell-founded induction, of which all our other principles areWELL­FOUNDED
INDUCTION

special cases:

Axiom 3.13 (Well-Founded Induction):

CS 70, Fall 2004, Lecture 3 12



For any propertyP, and any wellfounded relation≺ on X,
if ∀x∈X [[∀y∈X y≺ x =⇒ P(y)] =⇒ P(x)]
then∀x∈X P(x).

As with induction over pairs, the well-founded induction principle includes the requirement for establishing
the “base case”—that is, provingP(x) independently for all thosex where the inductive hypothesis does not
suffice.

The property of well-foundedness is easy to see for all the cases we have covered. There is also a generalized
equivalent of well-ordering:

Definition 3.5 (Well-ordering): A setX is well-ordered by the relation≺ iff every nonempty subset ofXWELL­ORDERED

has at least one minimal element with respect to≺.

The following very general theorem can be proved:

Theorem 3.11: A relation≺ on X is well-founded iffX is well-ordered by≺.

Although this seems very abstract and useless, it is in fact used all the time by programmers who write
recursive functions that do complex things to their arguments. Consider the following recursive skeleton:

f (x) = if B(x) thenk else f (g(x))

This will terminate iffg(x) ≺ x for some well-ordering ofX with minimal element(s) satisfyingB(x). Thus,
the programmer must be sure that repeated application ofg cannot generate an infinite sequence of values
that do not satisfyB.

Sometimes, “smaller” can be surprisingly nonobvious. Consider the following function on the natural num-
bers:

f (0) = 1; f (1) = 1
if n > 1 is even thenf (n) = f (n/2), else f (n) = f (3n+1).

TheCollatz conjecture states that∀n∈N f (n) = 1. You may wish to check this out for various values ofn.COLLATZ CONJECTURE

No proof is known.

CS 70, Fall 2004, Lecture 3 13


