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1 Primality
We are studying the complexity of two very fundamental, and intimately related, computational problems:

PRIMALITY Given an integer x, is it a prime?

FACTORING Given an integer x, what are its prime factors?

Obviously, PRIMALITY cannot be harder than FACTORING, since, if we knew how to factor, we would
definitely know how to test for primality. What is surprising and fundamental —and the basis of modern
cryptography— is that PRIMALITY is easy while FACTORING is hard!

As we know, PRIMALITY can be trivially solved in O(x) time —in fact, we need only test factors up to√
x. But, of course, these are both exponential algorithms —exponential in the number n of bits of x, which

is the more accurate and meaningful measure of the size of the problem (seen this way, the running times
of the algorithms become O(2n) and O(2n/2), respectively). In fact, pursuing this line (testing fewer and
fewer factors) will get us nowhere: Since FACTORING is hard, our only hope for finding a fast PRIMALITY

algorithm is to look for an algorithm that decides whether n is prime without discovering a factor of n in
case the answer is “no.”

We describe such an algorithm next. This algorithm is based on the following fact about exponentiation
modulo a prime:

Theorem 11.1: (Fermat’s Little Theorem.) If p is prime, then for all a 6= 0 mod p we have ap−1 = 1 mod p.

Proof: Consider the set of all nonzero numbers modulo p, Φ = {1,2, . . . , p− 1}. Now if we pick an a in
this set, and multiply all these numbers by a, modulo p, we get another set, Φa = {a ·1,a ·2, . . .a · (p−1)},
all mod p. We claim that all p− 1 numbers in Φa are distinct, and therefore Φa = Φ. In proof, if a · i =
a · j mod p, then, by multiplying both sides by a−1 mod p (since p is prime and a 6= 0 mod p we know that
a has an inverse) we get i = j. Therefore, the products Πx∈Φx and Πx∈Φax are equal, that is,

(a ·1) · (a ·2) · · ·(a · (p−1)) = 1 ·2 · · ·(p−1) mod m.

Now, multiplying both sides of this equation by 1−1 mod p, then 2−1 mod p, and so on, all the way to
(p−1)−1 mod p, we get Theorem 1. 2

Theorem 11.1 suggests a test of primality for p: Take a number a 6= 0 mod p and raise it to the (p− 1)st
power modulo p. If the result is not 1, then we know that p is not prime. But what if ap−1 = 1 mod p? Can
we be sure that p is prime? Not really. There will always be a’s that satisfy this equation (1 and p−1 being
only the most obvious choices). The converse of Theorem 11.1 is not true. All we can prove is this:

Theorem 11.2: If x is not a prime, and if x is not a Carmichael number, then for most a 6= 0 mod x ax−1 6=
1 mod x.

Theorem 11.2 (which it would be a little of a detour to prove now) is a weak converse of Theorem 11.1: It
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says that if x is composite, and if x does not happen to be among a set of extremely rare exceptions called
Carmichael numbers,1 then the primality test suggested by Fermat’s Little Theorem will indeed expose the
fact that x is not a prime with probability at least 50%.

The above discussion suggests the following randomized algorithm for primality:

algorithm prime(x)

repeat K times:

pick an integer a between 1 and x at random

if ax−1 6= 1 mod x then return(‘‘x is not a prime’’) }
return(‘‘with probability at least 1−2−K,

x is either a prime or a Carmichael number’’)

The claimed probability of correctness is easy to prove: If x is neither prime nor a Carmichael number, then
Theorem 11.2 says that each exponentiation will expose this with probability at least 1

2 . Since all these K
trials are independent (that is, we choose our a each time without looking at the a’s we chose before), the
probability that all K failed to expose x is 2−K . Thus, if all exponentiations give 1, the probability that x is
prime or Carmichael is at least 1−2−K . By taking K = 100, (and remembering that Carmichael numbers are
extremely rare), we establish primality to a degree of confidence (.999 . . . up to thirty nines) that surpasses
all other aspects of life and computation. The test takes O(K ·n3) steps, where n is the number of bits of x,
since it consists of K exponentiations.

Incidentally, there is a slightly more elaborate randomized algorithm that also detects Carmichael numbers,
so there is a polynomial randomized algorithm for PRIMALITY. We will not cover this more elaborate
algorithm in this course.

Not only are primes easy to detect, but they are also relatively ambudant:

Theorem 11.3: (The Prime Number Theorem.) The number of prime numbers between 1 and x is “about”
x

lnx . (In other words, if I take a random number with D decimal digits, the chances of it being prime is just
a little less than one in 2D. “One in about twenty social security numbers is a prime.”)

The Prime Number Theorem is one of the most fundamental facts in Mathematics, and very hard to prove.
But, together with the previous algorithm, it enables us to easily find large primes (try a few, and pick one
that tests well), and this is a key ingredient of the RSA algorithm. Another ingredient is the following variant
of Theorem 11.1:

Theorem 11.4: If p and q are primes, then for all a 6= 0 mod p,q we have a(p−1)·(q−1) = 1 mod p ·q.

Theorem 11.4’s proof is exactly the same as Theorem 1’s, except that we consider the set of all numbers
among 1,2, . . . , p ·q−1 that are relatively prime to p ·q. Notice that there are (p−1) · (q−1) such numbers
—check it out, one in every p of the numbers between 0 and p ·q are divisible by p, and one every q by q,
and pq(1− 1

p)(1− 1
q) = (p−1)(q−1).

Example. Let us take p = 3 and q = 5. From among all numbers modulo p ·q = 15, namely {0,1,2, . . . ,14},
one-third are divisible by 3 (namely, {0,3,6,9,12}), and of the remaining 10, one-fifth are divisible by 5
({5,10}). All (p−1) · (q−1) = 8 of the remaining numbers (Φ = {1,2,4,7,8,11,13,14}) are prime to 15,

1A number c is a Carmichael number if it is not a prime, and still for all prime divisors d of c with d > 1 it so happens that d−1
divides c−1. The smallest Carmichael number is 561 = 3 ·11 ·17 (notice how indeed 3−1,11−1, and 17−1 all divide 561−1).
If c is a Carmichael number and a is relatively prime to c, then ac−1 = 1 mod c. Can you prove it?
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and therefore they all have an inverse modulo 15. This enables the proof of Theorem 11.1, by taking a to be
any one among these 8 numbers.
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