INTRODUCTION TO MCMC AND PAGERANK

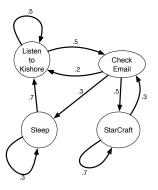
Eric Vigoda Georgia Tech

Lecture for CS 6505

- MARKOV CHAIN BASICS
- 2 ERGODICITY
- 3 WHAT IS THE STATIONARY DISTRIBUTION?
- 4 PAGERANK
- MIXING TIME
- **6** Preview of Further Topics

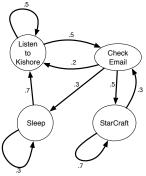
What is a Markov chain?

Example: Life in CS 6210, discrete time t = 0, 1, 2, ...:



What is a Markov chain?

Example: Life in CS 6210, discrete time t = 0, 1, 2, ...:



Each vertex is a state of the Markov chain.

Directed graph, possibly with self-loops.

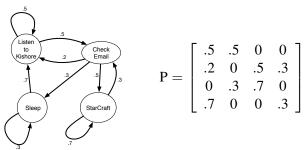
Edge weights represent probability of a transition, so: non-negative and sum of weights of outgoing edges = 1.

Transition matrix

In general: N states $\Omega = \{1, 2, \dots, N\}$.

 $N \times N$ transition matrix P where:

 $P(i,j) = \text{ weight of edge } i \rightarrow j = \mathbf{Pr} \text{ (going from } i \text{ to } j)$ For earlier example:



P is a stochastic matrix = rows sum to 1.

Time: t = 0, 1, 2, ...Let X_t denote the state at time t. X_t is a random variable.

Time: t = 0, 1, 2, ...

Let X_t denote the state at time t.

 X_t is a random variable.

For states k and j, $\Pr(X_1 = j \mid X_0 = k) = \Pr(k, j)$.

```
Time: t = 0, 1, 2, \ldots

Let X_t denote the state at time t.

X_t is a random variable.

For states k and j, \Pr(X_1 = j \mid X_0 = k) = \Pr(k, j).

In general, for t \ge 1, given:

in state k_0 at time 0, in k_1 at time 1, ..., in k_{t-1} at time t-1, what's the probability of being in state j at time t?
```

Time: $t = 0, 1, 2, \dots$

Let X_t denote the state at time t.

 X_t is a random variable.

For states k and j, $\Pr(X_1 = j \mid X_0 = k) = \Pr(k, j)$.

In general, for $t \ge 1$, given:

in state k_0 at time 0, in k_1 at time 1, ..., in k_{t-1} at time t-1, what's the probability of being in state j at time t?

$$\mathbf{Pr}(X_{t} = j \mid X_{0} = k_{0}, X_{1} = k_{1}, \dots, X_{t-1} = k_{t-1})$$

$$= \mathbf{Pr}(X_{t} = j \mid X_{t-1} = k_{t-1})$$

$$= \mathbf{P}(k_{t-1}, j).$$

Time: $t = 0, 1, 2, \dots$

Let X_t denote the state at time t.

 X_t is a random variable.

For states *k* and *j*, $\Pr(X_1 = j \mid X_0 = k) = \Pr(k, j)$.

In general, for $t \ge 1$, given:

in state k_0 at time 0, in k_1 at time 1, ..., in k_{t-1} at time t-1, what's the probability of being in state j at time t?

$$\mathbf{Pr}(X_{t} = j \mid X_{0} = k_{0}, X_{1} = k_{1}, \dots, X_{t-1} = k_{t-1})$$

$$= \mathbf{Pr}(X_{t} = j \mid X_{t-1} = k_{t-1})$$

$$= \mathbf{P}(k_{t-1}, j).$$

Process is memoryless -

only current state matters, previous states do not matter. Known as **Markov property**, hence the term Markov chain.

What's probability *Listen* at time 2 given *Email* at time 0? Try all possibilities for state at time 1.

What's probability *Listen* at time 2 given *Email* at time 0? Try all possibilities for state at time 1.

$$\begin{aligned} \mathbf{Pr} \left(X_2 = Listen \mid X_0 = Email \right) \\ &= \mathbf{Pr} \left(X_2 = Listen \mid X_1 = Listen \right) \times \mathbf{Pr} \left(X_1 = Listen \mid X_0 = Email \right) \\ &+ \mathbf{Pr} \left(X_2 = Listen \mid X_1 = Email \right) \times \mathbf{Pr} \left(X_1 = Email \mid X_0 = Email \right) \\ &+ \mathbf{Pr} \left(X_2 = Listen \mid X_1 = StarCraft \right) \times \mathbf{Pr} \left(X_1 = StarCraft \mid X_0 = Email \right) \\ &+ \mathbf{Pr} \left(X_2 = Listen \mid X_1 = Sleep \right) \times \mathbf{Pr} \left(X_1 = Sleep \mid X_0 = Email \right) \end{aligned}$$

What's probability *Listen* at time 2 given *Email* at time 0? Try all possibilities for state at time 1.

$$\begin{aligned} \mathbf{Pr}\left(X_{2} = Listen \mid X_{0} = Email\right) \\ &= \mathbf{Pr}\left(X_{2} = Listen \mid X_{1} = Listen\right) \times \mathbf{Pr}\left(X_{1} = Listen \mid X_{0} = Email\right) \\ &+ \mathbf{Pr}\left(X_{2} = Listen \mid X_{1} = Email\right) \times \mathbf{Pr}\left(X_{1} = Email \mid X_{0} = Email\right) \\ &+ \mathbf{Pr}\left(X_{2} = Listen \mid X_{1} = StarCraft\right) \times \mathbf{Pr}\left(X_{1} = StarCraft \mid X_{0} = Email\right) \\ &+ \mathbf{Pr}\left(X_{2} = Listen \mid X_{1} = Sleep\right) \times \mathbf{Pr}\left(X_{1} = Sleep \mid X_{0} = Email\right) \\ &= (.5)(.2) + 0 + 0 + (.7)(.3) = .31 \end{aligned}$$

$$P = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix} \qquad P^2 = \begin{bmatrix} .35 & .25 & .25 & .15 \\ .31 & .25 & .35 & .09 \\ .06 & .21 & .64 & .09 \\ .56 & .35 & 0 & .09 \end{bmatrix}$$

States: 1=Listen, 2=Email, 3=StarCraft, 4=Sleep.

k-step transitions

2-step transition probabilities: use P^2 . In general, for states i and j:

$$\mathbf{Pr}(X_{t+2} = j \mid X_t = i)
= \sum_{k=1}^{N} \mathbf{Pr}(X_{t+2} = j \mid X_{t+1} = k) \times \mathbf{Pr}(X_{t+1} = k \mid X_t = i)
= \sum_{k=1}^{N} P(k,j)P(i,k) = \sum_{k=1}^{N} P(i,k)P(k,j) = P^2(i,j)$$

k-step transitions

2-step transition probabilities: use P^2 . In general, for states i and j:

$$\mathbf{Pr}(X_{t+2} = j \mid X_t = i)
= \sum_{k=1}^{N} \mathbf{Pr}(X_{t+2} = j \mid X_{t+1} = k) \times \mathbf{Pr}(X_{t+1} = k \mid X_t = i)
= \sum_{k=1}^{N} P(k,j)P(i,k) = \sum_{k=1}^{N} P(i,k)P(k,j) = P^2(i,j)$$

 ℓ -step transition probabilities: use P^{ℓ} .

For states i and j and integer $\ell \geq 1$,

$$\mathbf{Pr}\left(X_{t+\ell}=j\mid X_t=i\right)=\mathrm{P}^{\ell}(i,j),$$

Random Initial State

Suppose the state at time 0 is not fixed but is chosen from a probability distribution μ_0 . Notation: $X_0 \sim \mu_0$.

What is the distribution for X_1 ?

Random Initial State

Suppose the state at time 0 is not fixed but is chosen from a probability distribution μ_0 .

Notation: $X_0 \sim \mu_0$.

What is the distribution for X_1 ? For state j,

$$\mathbf{Pr}(X_{1} = j) = \sum_{i=1}^{N} \mathbf{Pr}(X_{0} = i) \times \mathbf{Pr}(X_{1} = j \mid X_{0} = i)$$
$$= \sum_{i} \mu_{0}(i) \mathbf{P}(i, j) = (\mu_{0} \mathbf{P})(j)$$

So $X_1 \sim \mu_1$ where $\mu_1 = \mu_0 P$.

Random Initial State

Suppose the state at time 0 is not fixed but is chosen from a probability distribution μ_0 .

Notation: $X_0 \sim \mu_0$.

What is the distribution for X_1 ? For state j,

$$\mathbf{Pr}(X_{1} = j) = \sum_{i=1}^{N} \mathbf{Pr}(X_{0} = i) \times \mathbf{Pr}(X_{1} = j \mid X_{0} = i)$$
$$= \sum_{i} \mu_{0}(i) \mathbf{P}(i, j) = (\mu_{0} \mathbf{P})(j)$$

So $X_1 \sim \mu_1$ where $\mu_1 = \mu_0 P$.

And $X_t \sim \mu_t$ where $\mu_t = \mu_0 P^t$.

$$P = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix}$$

$$P = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix} \qquad P^2 = \begin{bmatrix} .35 & .25 & .25 & .15 \\ .31 & .25 & .35 & .09 \\ .06 & .21 & .64 & .09 \\ .56 & .35 & 0 & .09 \end{bmatrix}$$

$$P = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix} \qquad P^2 = \begin{bmatrix} .35 & .25 & .25 & .15 \\ .31 & .25 & .35 & .09 \\ .06 & .21 & .64 & .09 \\ .56 & .35 & 0 & .09 \end{bmatrix}$$

$$P^{10} = \begin{bmatrix} .247770 & .244781 & .402267 & .105181 \\ .245167 & .244349 & .405688 & .104796 \\ .239532 & .243413 & .413093 & .103963 \\ .251635 & .245423 & .397189 & .105754 \end{bmatrix}$$

$$P = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix} \qquad P^2 = \begin{bmatrix} .35 & .25 & .25 & .15 \\ .31 & .25 & .35 & .09 \\ .06 & .21 & .64 & .09 \\ .56 & .35 & 0 & .09 \end{bmatrix}$$

$$P^{10} = \left[\begin{array}{cccc} .247770 & .244781 & .402267 & .105181 \\ .245167 & .244349 & .405688 & .104796 \\ .239532 & .243413 & .413093 & .103963 \\ .251635 & .245423 & .397189 & .105754 \end{array} \right]$$

$$P^{20} = \left[\begin{array}{ccccc} .244190 & .244187 & .406971 & .104652 \\ .244187 & .244186 & .406975 & .104651 \\ .244181 & .244185 & .406984 & .104650 \\ .244195 & .244188 & .406966 & .104652 \end{array} \right]$$

Let's look again at our CS 6210 example:

$$P = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix} \qquad P^2 = \begin{bmatrix} .35 & .25 & .25 & .15 \\ .31 & .25 & .35 & .09 \\ .06 & .21 & .64 & .09 \\ .56 & .35 & 0 & .09 \end{bmatrix}$$

$$P^{10} = \left[\begin{array}{ccccc} .247770 & .244781 & .402267 & .105181 \\ .245167 & .244349 & .405688 & .104796 \\ .239532 & .243413 & .413093 & .103963 \\ .251635 & .245423 & .397189 & .105754 \end{array} \right]$$

$$P^{20} = \left[\begin{array}{cccc} .244190 & .244187 & .406971 & .104652 \\ .244187 & .244186 & .406975 & .104651 \\ .244181 & .244185 & .406984 & .104650 \\ .244195 & .244188 & .406966 & .104652 \end{array} \right]$$

Columns are converging to

$$\pi = [.244186, .244186, .406977, .104651].$$

For big t,

$$\mathbf{P}^{t} \approx \begin{bmatrix} .244186 & .244186 & .406977 & .104651 \\ .244186 & .244186 & .406977 & .104651 \\ .244186 & .244186 & .406977 & .104651 \\ .244186 & .244186 & .406977 & .104651 \end{bmatrix}$$

For big t,

$$\mathbf{P}^{t} \approx \begin{bmatrix} .244186 & .244186 & .406977 & .104651 \\ .244186 & .244186 & .406977 & .104651 \\ .244186 & .244186 & .406977 & .104651 \\ .244186 & .244186 & .406977 & .104651 \end{bmatrix}$$

Regardless of where it starts X_0 , for big t:

$$\mathbf{Pr}(X_t = 1) = .244186$$

 $\mathbf{Pr}(X_t = 2) = .244186$
 $\mathbf{Pr}(X_t = 3) = .406977$
 $\mathbf{Pr}(X_t = 4) = .104651$

For big t,

$$\mathbf{P}^{t} \approx \begin{bmatrix} .244186 & .244186 & .406977 & .104651 \\ .244186 & .244186 & .406977 & .104651 \\ .244186 & .244186 & .406977 & .104651 \\ .244186 & .244186 & .406977 & .104651 \end{bmatrix}$$

Regardless of where it starts X_0 , for big t:

$$\mathbf{Pr}(X_t = 1) = .244186$$

 $\mathbf{Pr}(X_t = 2) = .244186$
 $\mathbf{Pr}(X_t = 3) = .406977$
 $\mathbf{Pr}(X_t = 4) = .104651$

Let $\pi = [.244186, .244186, .406977, .104651]$. In other words, for big $t, X_t \sim \pi$.

 π is called a *stationary distribution*.

```
Let \pi = [ .244186, .244186, .406977, .104651]. \pi is called a stationary distribution.
```

```
Let \pi = [.244186, .244186, .406977, .104651]. \pi is called a stationary distribution.
```

Once we reach π we stay in π : if $X_t \sim \pi$ then $X_{t+1} \sim \pi$, in other words, $\pi P = \pi$.

```
Let \pi = [.244186, .244186, .406977, .104651]. \pi is called a stationary distribution.
```

Once we reach π we stay in π : if $X_t \sim \pi$ then $X_{t+1} \sim \pi$, in other words, $\pi P = \pi$.

Any distribution π where $\pi P = \pi$ is called a stationary distribution of the Markov chain.

Stationary Distributions

Key questions:

- When is there a stationary distribution?
- If there is at least one, is it unique or more than one?
- Assuming there's a unique stationary distribution:
 - Do we always reach it?
 - What is it?
 - Mixing time = Time to reach unique stationary distribution

Algorithmic Goal:

- If we have a distribution π that we want to sample from, can we design a Markov chain that has:
 - Unique stationary distribution π ,
 - From every X_0 we always reach π ,
 - Fast mixing time.

- MARKOV CHAIN BASICS
- **2** ERGODICITY
- 3 WHAT IS THE STATIONARY DISTRIBUTION?
- 4 PAGERANK
- **MIXING TIME**
- **6** Preview of Further Topics

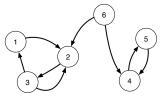
Irreducibility

Want a unique stationary distribution π and that get to it from every starting state X_0 .

Irreducibility

Want a unique stationary distribution π and that get to it from every starting state X_0 .

But if multiple strongly connected components (SCCs) then can't go from one to the other:

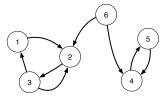


Starting at 1 gets to different distribution than starting at 5.

Irreducibility

Want a unique stationary distribution π and that get to it from every starting state X_0 .

But if multiple strongly connected components (SCCs) then can't go from one to the other:



Starting at 1 gets to different distribution than starting at 5.

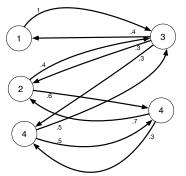
State i communicates with state j if starting at i can reach j:

there exists
$$t$$
, $P^t(i,j) > 0$.

Markov chain is irreducible if all pairs of states communicate...

Periodicity

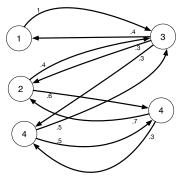
Example of bipartite Markov chain:



Starting at 1 gets to different distribution than starting at 3.

Periodicity

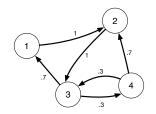
Example of bipartite Markov chain:



Starting at 1 gets to different distribution than starting at 3.

Need that no periodicity.

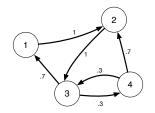
Aperiodic



Return times for state i are times $R_i = \{t : P^t(i, i) > 0\}$. Above example: $R_1 = \{3, 5, 6, 8, 9, \dots\}$.

Let $r = \gcd(R_i)$ be the period for state i.

Aperiodic



Return times for state i are times $R_i = \{t : P^t(i, i) > 0\}$. Above example: $R_1 = \{3, 5, 6, 8, 9, \dots\}$.

Let $r = \gcd(R_i)$ be the period for state i.

If P is irreducible then all states have the same period. If r = 2 then the Markov chain is bipartite.

A Markov chain is aperiodic if r = 1.

Ergodic: Unique Stationary Distribution

Ergodic = Irreducible and aperiodic.

Ergodic: Unique Stationary Distribution

Ergodic = Irreducible and aperiodic.

Fundamental Theorem for Markov Chains:

Ergodic Markov chain has a unique stationary distribution π .

And for all initial $X_0 \sim \mu_0$ then:

$$\lim_{t\to\infty}\mu_t=\pi.$$

In other words, for big enough t, all rows of P^t are π .

Ergodic: Unique Stationary Distribution

Ergodic = Irreducible and aperiodic.

Fundamental Theorem for Markov Chains:

Ergodic Markov chain has a unique stationary distribution π .

And for all initial $X_0 \sim \mu_0$ then:

$$\lim_{t\to\infty}\mu_t=\pi.$$

In other words, for big enough t, all rows of P^t are π .

How big does *t* need to be?

What is π ?

- 1 MARKOV CHAIN BASICS
- **2** ERGODICITY
- **3** What is the Stationary Distribution?
- 4 PAGERANK
- **MIXING TIME**
- **6** Preview of Further Topics

Symmetric if for all pairs i,j: P(i,j) = P(j,i).

Then π is uniformly distributed over all of the states $\{1, \dots, N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states j .

Symmetric if for all pairs i, j: P(i, j) = P(j, i).

Then π is uniformly distributed over all of the states $\{1,\ldots,N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states j .

Symmetric if for all pairs i, j: P(i, j) = P(j, i).

Then π is uniformly distributed over all of the states $\{1, \dots, N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states j .

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i,j)$$

Symmetric if for all pairs i, j: P(i, j) = P(j, i).

Then π is uniformly distributed over all of the states $\{1,\ldots,N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states j .

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i,j)$$
$$= \frac{1}{N} \sum_{i=1}^{N} P(i,j)$$

Symmetric if for all pairs i, j: P(i, j) = P(j, i).

Then π is uniformly distributed over all of the states $\{1,\ldots,N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states j .

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i,j)$$

$$= \frac{1}{N} \sum_{i=1}^{N} P(i,j)$$

$$= \frac{1}{N} \sum_{i=1}^{N} P(j,i) \text{ since P is symmetric}$$

Symmetric if for all pairs i,j: P(i,j) = P(j,i).

Then π is uniformly distributed over all of the states $\{1,\ldots,N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states j .

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i,j)$$

$$= \frac{1}{N} \sum_{i=1}^{N} P(i,j)$$

$$= \frac{1}{N} \sum_{i=1}^{N} P(j,i) \text{ since P is symmetric}$$

$$= \frac{1}{N} \text{ since rows of P always sum to 1}$$

Symmetric if for all pairs i, j: P(i, j) = P(j, i).

Then π is uniformly distributed over all of the states $\{1, \dots, N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states j .

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i,j)$$

$$= \frac{1}{N} \sum_{i=1}^{N} P(i,j)$$

$$= \frac{1}{N} \sum_{i=1}^{N} P(j,i) \text{ since P is symmetric}$$

$$= \frac{1}{N} \text{ since rows of P always sum to 1}$$

$$= \pi(j)$$

Reversible with respect to π if for all pairs i, j:

$$\pi(i)P(i,j) = \pi(j)P(j,i).$$

If can find such a π then it is the stationary distribution.

Reversible with respect to π if for all pairs i, j:

$$\pi(i)P(i,j) = \pi(j)P(j,i).$$

If can find such a π then it is the stationary distribution.

Proof: Similar to the symmetric case.

Need to check that for all states j: $(\pi P)(j) = \pi(j)$.

Reversible with respect to π if for all pairs i, j:

$$\pi(i)P(i,j) = \pi(j)P(j,i).$$

If can find such a π then it is the stationary distribution.

Proof: Similar to the symmetric case. Need to check that for all states $j: (\pi P)(j) = \pi(j)$.

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i,j)$$

Reversible with respect to π if for all pairs i,j:

$$\pi(i)P(i,j) = \pi(j)P(j,i).$$

If can find such a π then it is the stationary distribution.

Proof: Similar to the symmetric case.

Need to check that for all states j: $(\pi P)(j) = \pi(j)$.

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i)P(i,j)$$

= $\sum_{i=1}^{N} \pi(j)P(j,i)$ since P is reversible

Reversible with respect to π if for all pairs i,j:

$$\pi(i)P(i,j) = \pi(j)P(j,i).$$

If can find such a π then it is the stationary distribution.

Proof: Similar to the symmetric case. Need to check that for all states $j: (\pi P)(j) = \pi(j)$.

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i,j)$$

$$= \sum_{i=1}^{N} \pi(j) P(j,i) \text{ since P is reversible}$$

$$= \pi(j) \sum_{i=1}^{N} P(j,i)$$

Reversible with respect to π if for all pairs i,j:

$$\pi(i)P(i,j) = \pi(j)P(j,i).$$

If can find such a π then it is the stationary distribution.

Proof: Similar to the symmetric case. Need to check that for all states $j: (\pi P)(j) = \pi(j)$.

$$(\pi P)(j)$$
 = $\sum_{i=1}^{N} \pi(i)P(i,j)$
= $\sum_{i=1}^{N} \pi(j)P(j,i)$ since P is reversible
= $\pi(j)\sum_{i=1}^{N} P(j,i)$
= $\pi(j)$

Random walk on a d-regular, connected undirected graph G: What is π ?

Random walk on a d-regular, connected undirected graph G:

What is π ?

Symmetric: for edge (i,j), P(i,j) = P(j,i) = 1/d.

So π is uniform: $\pi(i) = 1/n$.

Random walk on a *d*-regular, connected undirected graph *G*:

What is π ?

Symmetric: for edge (i,j), P(i,j) = P(j,i) = 1/d.

So π is uniform: $\pi(i) = 1/n$.

Random walk on a general connected undirected graph G: What is π ?

Random walk on a *d*-regular, connected undirected graph *G*:

What is π ?

Symmetric: for edge (i,j), P(i,j) = P(j,i) = 1/d.

So π is uniform: $\pi(i) = 1/n$.

Random walk on a general connected undirected graph G:

What is π ?

Consider $\pi(i) = d(i)/Z$ where

d(i) =degree of vertex i and

$$Z = \sum_{j \in V} d(j)$$
. (Note, $Z = 2m = 2|E|$.)

Check it's reversible: $\pi(i)P(i,j) = \frac{d(i)}{Z}\frac{1}{d(i)} = \frac{1}{Z} = \pi(j)P(j,i)$.

Random walk on a *d*-regular, connected undirected graph *G*:

What is π ?

Symmetric: for edge (i,j), P(i,j) = P(j,i) = 1/d.

So π is uniform: $\pi(i) = 1/n$.

Random walk on a general connected undirected graph G:

What is π ?

Consider $\pi(i) = d(i)/Z$ where

d(i) =degree of vertex i and

$$Z = \sum_{j \in V} d(j)$$
. (Note, $Z = 2m = 2|E|$.)

Check it's reversible: $\pi(i)P(i,j) = \frac{d(i)}{Z}\frac{1}{d(i)} = \frac{1}{Z} = \pi(j)P(j,i)$.

What if *G* is a directed graph?

Random walk on a *d*-regular, connected undirected graph *G*:

What is π ?

Symmetric: for edge (i,j), P(i,j) = P(j,i) = 1/d.

So π is uniform: $\pi(i) = 1/n$.

Random walk on a general connected undirected graph G:

What is π ?

Consider $\pi(i) = d(i)/Z$ where

d(i) =degree of vertex i and

 $Z = \sum_{j \in V} d(j)$. (Note, Z = 2m = 2|E|.)

Check it's reversible: $\pi(i)P(i,j) = \frac{d(i)}{Z}\frac{1}{d(i)} = \frac{1}{Z} = \pi(j)P(j,i)$.

What if *G* is a directed graph?

Then it may not be reversible, and if it's not reversible:

then usually we can't figure out the stationary distribution since typically N is HUGE.

- MARKOV CHAIN BASICS
- 2 ERGODICITY
- 3 WHAT IS THE STATIONARY DISTRIBUTION?
- 4 PAGERANK
- **MIXING TIME**
- **6** Preview of Further Topics

PageRank

PageRank is an algorithm devised by Brin and Page 1998: determine the "importance" of webpages.

PageRank

PageRank is an algorithm devised by Brin and Page 1998: determine the "importance" of webpages.

Webgraph:

V = webpages

E = directed edges for hyperlinks

Let $\pi(x) = \text{"rank" of page } x$.

We are trying to define $\pi(x)$ in a sensible way.

PageRank

PageRank is an algorithm devised by Brin and Page 1998: determine the "importance" of webpages.

Webgraph:

V = webpages

E = directed edges for hyperlinks

Notation:

For page $x \in V$, let:

Out(x) =
$$\{y : x \to y \in E\}$$
 = outgoing edges from x
In(x) = $\{w : w \to x \in E\}$ = incoming edges to x

Let $\pi(x) =$ "rank" of page x.

We are trying to define $\pi(x)$ in a sensible way.

First Ranking Idea

First idea for ranking pages: like academic papers use citation counts

Here, citation = link to a page.

So set $\pi(x) = |In(x)| = number of links to x.$

Refining the Ranking Idea

What if:

a webpage has 500 links and one is to Eric's page. another webpage has only 5 links and one is to Santosh's page.

Which link is more valuable?

Refining the Ranking Idea

What if:

a webpage has 500 links and one is to Eric's page. another webpage has only 5 links and one is to Santosh's page.

Which link is more valuable?

Academic papers: If a paper cites 50 other papers, then each reference gets 1/50 of a citation.

Refining the Ranking Idea

What if:

a webpage has 500 links and one is to Eric's page.

another webpage has only 5 links and one is to Santosh's page.

Which link is more valuable?

Academic papers: If a paper cites 50 other papers, then each reference gets 1/50 of a citation.

Webpages: If a page y has |Out(y)| outgoing links, then: each linked page gets 1/|Out(y)|.

New solution:

$$\pi(x) = \sum_{y \in \text{In}(x)} \frac{1}{|\text{Out}(y)|}.$$

Further Refining the Ranking Idea

Previous:

$$\pi(x) = \sum_{y \in \text{In}(x)} \frac{1}{|\text{Out}(y)|}.$$

But if *Eric's children's webpage* has a link to a Eric's page and *CNN* has a link to Santosh's page, which is more important?

Further Refining the Ranking Idea

Previous:

$$\pi(x) = \sum_{y \in \text{In}(x)} \frac{1}{|\text{Out}(y)|}.$$

But if *Eric's children's webpage* has a link to a Eric's page and *CNN* has a link to Santosh's page, which is more important?

Solution: define $\pi(x)$ recursively.

Page y has importance $\pi(y)$.

A link from y gets $\pi(y)/|\mathrm{Out}(y)|$ of a citation.

$$\pi(x) = \sum_{y \in \text{In}(x)} \frac{\pi(y)}{|\text{Out}(y)|}.$$

Random Walk

Importance of page x:

$$\pi(x) = \sum_{y \in \text{In}(x)} \frac{\pi(y)}{|\text{Out}(y)|}.$$

Importance of page *x*:

$$\pi(x) = \sum_{y \in \text{In}(x)} \frac{\pi(y)}{|\text{Out}(y)|}.$$

Recursive definition of π , how do we find it?

Importance of page *x*:

$$\pi(x) = \sum_{y \in \text{In}(x)} \frac{\pi(y)}{|\text{Out}(y)|}.$$

Recursive definition of π , how do we find it?

Look at the random walk on the webgraph G=(V,E). From a page $y\in V$, choose a random link and follow it. This is a Markov chain.

For $y \to x \in E$ then:

$$P(y,x) = \frac{1}{|Out(y)|}$$

What is the stationary distribution of this Markov chain?

Random walk on the webgraph G = (V, E). For $y \to x \in E$ then:

$$P(y,x) = \frac{1}{|Out(y)|}$$

What is the stationary distribution of this Markov chain?

Random walk on the webgraph G = (V, E). For $y \to x \in E$ then:

$$P(y,x) = \frac{1}{|Out(y)|}$$

What is the stationary distribution of this Markov chain? Need to find π where $\pi = \pi P$. Thus,

$$\pi(x) = \sum_{y \in V} \pi(y) P(y, x) = \sum_{y \in \operatorname{In}(x)} \frac{\pi(y)}{|\operatorname{Out}(y)|}.$$

This is identical to the definition of the importance vector π .

Summary: the stationary distribution of the random walk on the webgraph gives the importance $\pi(x)$ of a page x.

Random Walk on the Webgraph

Random walk on the webgraph G = (V, E).

Is π the only stationary distribution? In other words, is the Markov chain ergodic?

Random Walk on the Webgraph

Random walk on the webgraph G = (V, E).

Is π the only stationary distribution? In other words, is the Markov chain ergodic?

Need that G is strongly connected — it probably is not. And some pages have no outgoing links... then hit the "random" button!

Random Walk on the Webgraph

Random walk on the webgraph G = (V, E).

Is π the only stationary distribution? In other words, is the Markov chain ergodic?

Need that *G* is strongly connected – it probably is not. And some pages have no outgoing links... then hit the "random" button!

Solution to make it ergodic: Introduce "damping factor" α where $0 < \alpha \le 1$. (in practice apparently use $\alpha \approx .85$)

From page y, with prob. α follow a random outgoing link from page y. with prob. $1-\alpha$ go to a completely random page (uniformly chosen from all pages V).

Random Surfer

Let N = |V| denote number of webpages. Transition matrix of new Random Surfer chain:

$$P(y,x) = \begin{cases} \frac{1-\alpha}{N} & \text{if } y \to x \notin E\\ \frac{1-\alpha}{N} + \frac{\alpha}{|\operatorname{Out}(y)|} & \text{if } y \to x \in E \end{cases}$$

This new Random Surfer Markov chain is ergodic. Thus, unique stationary distribution is the desired π .

Random Surfer

Let N = |V| denote number of webpages. Transition matrix of new Random Surfer chain:

$$P(y,x) = \begin{cases} \frac{1-\alpha}{N} & \text{if } y \to x \not\in E \\ \frac{1-\alpha}{N} + \frac{\alpha}{|\operatorname{Out}(y)|} & \text{if } y \to x \in E \end{cases}$$

This new Random Surfer Markov chain is ergodic. Thus, unique stationary distribution is the desired π .

How to find π ?

Take last week's π , and compute πP^t for big t. What's a big enough t?

- MARKOV CHAIN BASICS
- 2 ERGODICITY
- 3 WHAT IS THE STATIONARY DISTRIBUTION?
- 4 PAGERANK
- **MIXING TIME**
- **6** Preview of Further Topics

How fast does an ergodic MC reach its unique stationary π ?

How fast does an ergodic MC reach its unique stationary π ?

Need to measure distance from π , use total variation distance. For distributions μ and ν on set Ω :

$$d_{\text{TV}}(\mu,\nu) = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

How fast does an ergodic MC reach its unique stationary π ?

Need to measure distance from π , use total variation distance. For distributions μ and ν on set Ω :

$$d_{TV}(\mu, \nu) = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

Example:
$$\Omega = \{1, 2, 3, 4\}.$$

 μ is uniform: $\mu(1) = \mu(2) = \mu(3) = \mu(4) = .25.$
And ν has: $\nu(1) = .5, \nu(2) = .1, \nu(3) = .15, \nu(4) = .25.$

$$d_{TV}(\mu, \nu) = \frac{1}{2}(.25 + .15 + .1 + 0) = .25$$

Consider ergodic MC with states Ω , transition matrix P, and unique stationary distribution π .

For state $x \in \Omega$, time to mix from x:

$$T(x) = \min\{t : d_{TV}(P^t(x, \cdot), \pi) \le 1/4.$$

Consider ergodic MC with states Ω , transition matrix P, and unique stationary distribution π .

For state $x \in \Omega$, time to mix from x:

$$T(x) = \min\{t : d_{\mathrm{TV}}(\mathrm{P}^t(x,\cdot),\pi) \le 1/4.$$

Then, mixing time $T_{mix} = \max_{x} T(x)$.

Summarizing in words:

mixing time is time to get within distance $\leq 1/4$ of π from the worst initial state X_0 .

Consider ergodic MC with states Ω , transition matrix P, and unique stationary distribution π .

For state $x \in \Omega$, time to mix from x:

$$T(x) = \min\{t : d_{\mathrm{TV}}(\mathrm{P}^t(x,\cdot),\pi) \le 1/4.$$

Then, mixing time $T_{mix} = \max_{x} T(x)$.

Summarizing in words:

mixing time is time to get within distance $\leq 1/4$ of π from the worst initial state X_0 .

Choice of constant 1/4 is somewhat arbitrary. Can get within distance $\leq \epsilon$ in time $O(T_{mix} \log(1/\epsilon))$.

Mixing Time of Random Surfer

Coupling proof:

Consider 2 copies of the Random Surfer chain (X_t) and (Y_t) .

Choose Y_0 from π . Thus, $Y_t \sim \pi$ for all t. And X_0 is arbitrary.

Mixing Time of Random Surfer

Coupling proof:

Consider 2 copies of the Random Surfer chain (X_t) and (Y_t) .

Choose Y_0 from π . Thus, $Y_t \sim \pi$ for all t.

And X_0 is arbitrary.

If $X_{t-1} = Y_{t-1}$ then they choose the same transition at time t. If $X_{t-1} \neq Y_{t-1}$ then with prob. $1 - \alpha$ choose the same random page z for both chains.

Therefore,

$$\mathbf{Pr}\left(X_t\neq Y_t\right)\leq \alpha^t.$$

Mixing Time of Random Surfer

Coupling proof:

Consider 2 copies of the Random Surfer chain (X_t) and (Y_t) .

Choose Y_0 from π . Thus, $Y_t \sim \pi$ for all t.

And X_0 is arbitrary.

If $X_{t-1} = Y_{t-1}$ then they choose the same transition at time t. If $X_{t-1} \neq Y_{t-1}$ then with prob. $1 - \alpha$ choose the same random page z for both chains.

Therefore,

$$\mathbf{Pr}\left(X_t\neq Y_t\right)\leq \alpha^t.$$

Setting: $t \ge -2/\log(\alpha)$ we have $\Pr(X_t \ne Y_t) \le 1/4$. Therefore, mixing time:

$$T_{\text{mix}} \leq \frac{-2}{\log \alpha} \approx 8.5 \text{ for } \alpha = .85.$$