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@ MARKOV CHAIN BASICS



What is a Markov chain?

Example: Life in CS 6210, discrete timet=0,1,2,...:




What is a Markov chain?

Example: Life in CS 6210, discrete timet=0,1,2,...:

Each vertex is a state of the Markov chain.
Directed graph, possibly with self-loops.

Edge weights represent probability of a transition, so:
non-negative and sum of weights of outgoing edges = 1.



Transition matrix

In general: N states Q = {1,2,...,N}.

N x N transition matrix P where:
P(i,j) = weight of edge i — j = Pr(going from i to j)
For earlier example:

SRS
O W O
o uino
w O w O

P is a stochastic matrix = rows sum to 1.



One-step transitions

Time:r=0,1,2,....
Let X, denote the state at time 1.
X; is a random variable.
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One-step transitions

Time:r=0,1,2,....

Let X, denote the state at time 1.

X; is a random variable.

For states k and j, Pr (X; = | Xo = k) = P(k,)).

In general, for r > 1, given:
in state ky attime 0, in k; attime 1, ..., ink_; attime r— 1,
what’s the probability of being in state j at time 7?

Pl‘(Xt :J ’ X() = ko,Xl = kl, Ce. aXt—l = k,_l)
= Pr (Xt =J | X1 = kt—l)
= P(ktflaj)‘

Process is memoryless —
only current state matters, previous states do not matter.
Known as Markov property, hence the term Markov chain.



2-step transitions

What'’s probability Listen at time 2 given Email at time 07
Try all possibilities for state at time 1.



2-step transitions

What'’s probability Listen at time 2 given Email at time 07
Try all possibilities for state at time 1.

Pr (X, = Listen | Xo = Email)
= Pr (X, = Listen | X; = Listen) x Pr (X, = Listen | Xo = Email)
+Pr (X, = Listen | X, = Email) x Pr (X, = Email | Xo = Email)
+Pr (X = Listen | X, = StarCraft) x Pr (X, = StarCraft | Xo = Email)
+Pr (X, = Listen | X; = Sleep) x Pr (X, = Sleep | Xo = Email)



2-step transitions

What'’s probability Listen at time 2 given Email at time 07
Try all possibilities for state at time 1.

Pr (X, = Listen | Xo = Email)
= Pr (X, = Listen | X; = Listen) x Pr (X, = Listen | Xo = Email)
+Pr (X, = Listen | X, = Email) x Pr (X, = Email | Xo = Email)
+Pr (X = Listen | X, = StarCraft) x Pr (X, = StarCraft | Xo = Email)
+Pr (X, = Listen | X; = Sleep) x Pr (X, = Sleep | Xo = Email)
= (5)(2)+0+04(.7)(.3) = .31

35 25 25 15
31 .25 35 .09
.06 21 .64 .09
S56 35 0 .09

States: 1=Listen, 2=Email, 3=StarCraft, 4=Sleep.

P2 =

=N SR
O L D n
(= INGIY f)
W O w o



k-step transitions

2-step transition probabilities: use P?.
In general, for states i and j:

Pr (X, =j| X, =1i)

N
= ZPr Xipo =j | Xew1 = k) x Pr(Xop) =k | X, = i)

= ZP]{] ZPlk (k,j) = P*(i,))



k-step transitions

2-step transition probabilities: use P?.
In general, for states i and j:

Pr (X, =j| X, =1i)

N
= ZPr (Xi2 =J | Xex1 = k) x Pr Xy =k | X, = i)

= ZP]{] ZPlk (k,j) = P*(i,j)

(-step transition probabilities: use P*.
For states i and j and integer £ > 1,

Pr(Xop=j|X;=i)= Pg(ivj)7



Random Initial State

Suppose the state at time 0 is not fixed
but is chosen from a probability distribution 1.
Notation: Xy ~ pg.

What is the distribution for X;?
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Random Initial State

Suppose the state at time 0 is not fixed
but is chosen from a probability distribution 1.
Notation: Xy ~ pg.

What is the distribution for X;?
For state j,

N
Pr(X;=j) = ZPr (Xo=1) x Pr(X; = | Xo =)

Z po(D)P(i,j) = (1oP)())

So X; ~ pu; where iy = poP.
And X; ~ u, where p, = poP’.



Back to CS 6210 example: big ?

Let’s look again at our CS 6210 example:
S5 5 0

P=

€99 P
S LW O
S 9 W\
w O W o



Back to CS 6210 example: big ?

Let’s look again at our CS 6210 example:

P=

GO

S5 0 0

S w O

=RV

W W

P2 =

.35
31
.06
.56

25
25
21
.35

25
.35
.64
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.09
.09



Back to CS 6210 example: big ?

Let’s look again at our CS 6210 example:

P=

5

2
0
7

S L O W

0

5
i
0

0

W W

247770
245167
.239532
251635

P2 =

244781
.244349
243413
245423

35 .25
31 .25
06 .21
56 .35

402267
405688
413093
.397189

25 .15
35 .09
.64 .09
0 .09

.105181
104796
.103963
105754



Back to CS 6210 example: big ?

Let’s look again at our CS 6210 example:

S5 05

20
b= 0 3
7 0

plo _

p20 _

S gQwn O

0

3
0
3

247770
245167
.239532
251635

.244190
244187
244181
244195

P2 =

244781
.244349
243413
245423

244187
244186
244185
244188

35 .25
31 .25
06 .21
56 .35

402267
405688
413093
.397189

406971
406975
406984
406966

105181 ]
104796
103963
105754 |

104652 ]
104651
104650
104652 |

25 .15
35 .09
.64 .09
0 .09




Back to CS 6210 example: big ?

Let’s look again at our CS 6210 example:

S5 05 0

P= Pz =

S gQwn O

20 3
0 3 0
7 0 3
247770 244781
245167 .244349

239532 243413
251635 .245423

plo _

244190 .244187
244187 244186
244181 .244185
244195 244188

p20 _

Columns are converging to
T = [ 244186, 244186

35 .25
31 .25
06 .21
56 .35

402267
405688
413093
.397189

406971
406975
406984
406966

406977,

105181 ]
104796
103963
105754 |

104652 ]
104651
104650
104652 |

25 .15
35 .09
.64 .09
0 .09

.104651].



Limiting Distribution

For big ¢,

Pt

~
~
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Limiting Distribution

For big ¢,

.244186
244186
.244186
244186

P ~

244186
244186
244186
244186

406977
406977
406977
406977

Regardless of where it starts X, for big #:

Pr(X,=1)
Pr(X; =2)
Pr (X, =3)

Pr(X, =4)
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Limiting Distribution

For big ¢,

244186 .244186 .406977 .104651
244186 244186 .406977 .104651
244186 .244186 .406977 .104651
244186 244186 .406977 .104651

P ~

Regardless of where it starts X, for big #:

Pr(X,=1) = .244186
Pr(X,=2) = .244186
Pr(X,=3) = .406977
Pr(X,=4) = .104651

Let 7 = [ 244186, .244186, .406977, .104651].
In other words, for big ¢, X; ~ .

w is called a stationary distribution.
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Limiting Distribution

Let m = [ 244186, .244186, .406977, .104651].
w is called a stationary distribution.

Once we reach & we stay in 7 if X; ~ 7 then X, .| ~ 7,
in other words, 7P = 7.

Any distribution = where 7P = = is called a stationary distribution
of the Markov chain.



Stationary Distributions

Key questions:
e When is there a stationary distribution?

e If there is at least one, is it unique or more than one?
e Assuming there’s a unique stationary distribution:

e Do we always reach it?
o What is it?
e Mixing time = Time to reach unique stationary distribution

Algorithmic Goal:
e If we have a distribution 7 that we want to sample from, can
we design a Markov chain that has:

e Unique stationary distribution ,
e From every X, we always reach m,
e Fast mixing time.



© ErGoDICITY



Irreducibility

Want a unique stationary distribution 7 and that
get to it from every starting state Xj.
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But if multiple strongly connected components (SCCs) then can’t
go from one to the other:

Starting at 1 gets to different distribution than starting at 5.



Irreducibility

Want a unique stationary distribution 7 and that

get to it from every starting state Xj.
But if multiple strongly connected components (SCCs) then can’t
go from one to the other:

Starting at 1 gets to different distribution than starting at 5.

State i communicates with state j if starting at i can reach j:
there exists ¢, P'(i,j) > 0.

Markov chain is irreducible if all pairs of states communicate..



Periodicity

Example of bipartite Markov chain:

Starting at 1 gets to different distribution than starting at 3.



Periodicity

Example of bipartite Markov chain:

Starting at 1 gets to different distribution than starting at 3.
Need that no periodicity.



Aperiodic

Return times for state i are times R; = {z : P'(i,i) > 0}.
Above example: R; = {3,5,6,8,9,...}.

Let r = gcd(R;) be the period for state i.



Aperiodic

Return times for state i are times R; = {z : P'(i,i) > 0}.
Above example: R; = {3,5,6,8,9,...}.

Let r = gcd(R;) be the period for state i.

If P is irreducible then all states have the same period.
If » = 2 then the Markov chain is bipartite.
A Markov chain is aperiodic if r = 1.



Ergodic: Unique Stationary Distribution

Ergodic = Irreducible and aperiodic.



Ergodic: Unique Stationary Distribution

Ergodic = Irreducible and aperiodic.

Fundamental Theorem for Markov Chains:
Ergodic Markov chain has a unique stationary distribution .
And for all initial Xy ~ o then:

llm t — T.
—00 H

In other words, for big enough ¢, all rows of P’ are .



Ergodic: Unique Stationary Distribution

Ergodic = Irreducible and aperiodic.

Fundamental Theorem for Markov Chains:
Ergodic Markov chain has a unique stationary distribution .
And for all initial Xy ~ o then:

llm My = T

t—00

In other words, for big enough ¢, all rows of P’ are .

How big does 7 need to be?

What is 7?



e WHAT IS THE STATIONARY DISTRIBUTION?



Determining 7: Symmetric Markov Chain

Symmetric if for all pairs i,j: P(i,j) = P(j, ).
Then = is uniformly distributed over all of the states {1,...,N}:

1
w(j) = N for all states j.
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Determining 7: Symmetric Markov Chain

Symmetric if for all pairs i,j: P(i,j) = P(j, ).

Then = is uniformly distributed over all of the states {1, ..

1
w(j) = N for all states j.

Proof: We’'ll verify that 7P = = for this .
Need to check that for all states j: (7P)(j) = 7 ().

N

(wP)(j) = m(§)P(i,J)

12

1
N
1 ..
= <> P(ij)
i=1

Z|

.,N}:



Determining 7: Symmetric Markov Chain

Symmetric if for all pairs i,j: P(i,j) = P(j, ).

Then = is uniformly distributed over all of the states {1, ...

1
w(j) = N for all states j.

Proof: We’'ll verify that 7P = = for this .
Need to check that for all states j: (7P)(j) = 7 ().

(7P)() = > w(i)P(i.)
- N
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Symmetric if for all pairs i,j: P(i,j) = P(j, ).
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1
w(j) = N for all states j.

Proof: We’'ll verify that 7P = = for this .
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Determining 7: Symmetric Markov Chain

Symmetric if for all pairs i,j: P(i,j) = P(j, ).

Then = is uniformly distributed over all of the states {1, ...

1
w(j) = N for all states j.

Proof: We’'ll verify that 7P = = for this .
Need to check that for all states j: (7P)(j) = 7 ().

(*P)() = > w(i)P(ij)

i=1

(i,J)

2 \

j,i) since P is symmetric

i

since rows of P always sum to 1

= ()

Z|~ 2\

7N}:
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Reversible with respect to « if for all pairs i, ;:
m(0)P(i,j) = w(j)P(j, ).

If can find such a 7 then it is the stationary distribution.
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Reversible with respect to « if for all pairs i, ;:
m(0)P(i,j) = w(j)P(j, ).
If can find such a 7 then it is the stationary distribution.

Proof: Similar to the symmetric case.
Need to check that for all states j: (7P)(j) = = (j).
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Determining =: Reversible Markov Chain

Reversible with respect to « if for all pairs i, ;:
m(0)P(i,j) = w(j)P(j, ).

If can find such a 7 then it is the stationary distribution.

Proof: Similar to the symmetric case.
Need to check that for all states j: (7P)(j) = = (j).

N
2w
i=1

N

(7P)(j)

5]

)
)

(i)P(i
> w(j)P(. i

i=1

since P is reversible



Determining =: Reversible Markov Chain

Reversible with respect to « if for all pairs i, ;:
m(0)P(i,j) = w(j)P(j, ).
If can find such a 7 then it is the stationary distribution.

Proof: Similar to the symmetric case.
Need to check that for all states j: (7P)(j) = = (j).

(wP)G) = > m()P(i.))
= iw(j)P(j, i) since P is reversible

1

= () ZP(L i)

i



Determining =: Reversible Markov Chain

Reversible with respect to « if for all pairs i, ;:
m(0)P(i,j) = w(j)P(j, ).
If can find such a 7 then it is the stationary distribution.

Proof: Similar to the symmetric case.
Need to check that for all states j: (7P)(j) = = (j).

N
2w
i=1

N

(7P)(j) ]

()P(i.j)
= > 7()P(ii)

1

since P is reversible

= =) 3o PG)
= ()
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Random walk on a d-regular, connected undirected graph G:
What is 7?
Symmetric: for edge (i, /), P(i,j) = P(j,i) = 1/d.
So 7 is uniform: = (i) = 1/n.

Random walk on a general connected undirected graph G:
What is 7?
Consider 7 (i) = d(i)/Z where
d(i) = degree of vertex i and
Z=73 icvd(j)- (Note, Z = 2m = 2|E|.)
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Random walk on a d-regular, connected undirected graph G:
What is 7?
Symmetric: for edge (i, /), P(i,j) = P(j,i) = 1/d.
So 7 is uniform: = (i) = 1/n.

Random walk on a general connected undirected graph G:
What is 7?
Consider 7 (i) = d(i)/Z where
d(i) = degree of vertex i and
Z=73 icvd(j)- (Note, Z = 2m = 2|E|.)

Check it's reversible: 7(i)P(i.j) = 9L ;s = 7 = 7())P(;, i)

What if G is a directed graph?



Some Examples

Random walk on a d-regular, connected undirected graph G:
What is 7?
Symmetric: for edge (i, /), P(i,j) = P(j,i) = 1/d.
So 7 is uniform: = (i) = 1/n.

Random walk on a general connected undirected graph G:
What is 7?
Consider 7 (i) = d(i)/Z where
d(i) = degree of vertex i and
Z=73 icvd(j)- (Note, Z = 2m = 2|E|.)

Check it's reversible: 7(i)P(i.j) = 9L ;s = 7 = 7())P(;, i)

What if G is a directed graph?
Then it may not be reversible, and if it’s not reversible:

then usually we can’t figure out the stationary distribution
since typically N is HUGE.
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Let 7(x) = “rank” of page x.
We are trying to define 7(x) in a sensible way.



PageRank

PageRank is an algorithm devised by Brin and Page 1998:
determine the “importance” of webpages.

Webgraph:
V = webpages
E = directed edges for hyperlinks
Notation:
For page x € V, let:
Out(x) = {y:x—ye€ E} =outgoing edges from x
In(x) = {w:w— xe€ E}=incoming edges to x

Let 7(x) = “rank” of page x.
We are trying to define 7(x) in a sensible way.



First Ranking Idea

First idea for ranking pages: like academic papers
use citation counts
Here, citation = link to a page.

So set 7(x) = |In(x)| = number of links to x.



Refining the Ranking Idea

What if:
a webpage has 500 links and one is to Eric’s page.
another webpage has only 5 links and one is to Santosh’s

page.
Which link is more valuable?
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What if:
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page.
Which link is more valuable?

Academic papers: If a paper cites 50 other papers, then each
reference gets 1/50 of a citation.



Refining the Ranking Idea

What if:
a webpage has 500 links and one is to Eric’s page.
another webpage has only 5 links and one is to Santosh’s

page.
Which link is more valuable?

Academic papers: If a paper cites 50 other papers, then each
reference gets 1/50 of a citation.

Webpages: If a page y has |Out(y)| outgoing links, then:
each linked page gets 1/|Out(y)|.

= 2 o)

y€In(x)

New solution:



Further Refining the Ranking Idea

Previous:
y€lIn(x) |

But if Eric’s children’s webpage has a link to a Eric’s page and
CNN has a link to Santosh’s page, which is more important?



Further Refining the Ranking Idea

Previous:

y€In(x) |
But if Eric’s children’s webpage has a link to a Eric’s page and
CNN has a link to Santosh’s page, which is more important?

Solution: define 7 (x) recursively.
Page y has importance = (y).
A link from y gets 7 (y)/|Out(y)| of a citation.

(y)
W= 2 Out(y)|

y€In(x)




Importance of page x:

W(X): Z ‘71'()7)

y€In(x) OUt(y)l




Random Walk

Importance of page x:

B m(y)
)= 2 oup)

y€ln(x)

Recursive definition of 7, how do we find it?



Random Walk

Importance of page x:

B m(y)
)= 2 oup)

y€ln(x)

Recursive definition of 7, how do we find it?

Look at the random walk on the webgraph G = (V, E).
From a page y € V, choose a random link and follow it.
This is a Markov chain.

Fory — x € E then:

o
~ [Out(y)|

P(y,x)

What is the stationary distribution of this Markov chain?



Random Walk

Random walk on the webgraph G = (V, E).
For y — x € E then:

o
~ [Out(y)|

What is the stationary distribution of this Markov chain?

P(y,x)



Random Walk

Random walk on the webgraph G = (V, E).
For y — x € E then:

o
~ [Out(y)|

P(y,x)

What is the stationary distribution of this Markov chain?
Need to find = where m = 7P.

Thus, o)
= T X) = i .
n(x) =Y T(P,x) = Y Ouily)

yev y€In(x)

This is identical to the definition of the importance vector .

Summary: the stationary distribution of the random walk on the
webgraph gives the importance 7 (x) of a page x.
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Random walk on the webgraph G = (V,E).

Is 7 the only stationary distribution?
In other words, is the Markov chain ergodic?
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In other words, is the Markov chain ergodic?

Need that G is strongly connected — it probably is not.
And some pages have no outgoing links...
then hit the “random” button!



Random Walk on the Webgraph

Random walk on the webgraph G = (V,E).

Is 7 the only stationary distribution?
In other words, is the Markov chain ergodic?

Need that G is strongly connected — it probably is not.
And some pages have no outgoing links...
then hit the “random” button!

Solution to make it ergodic:
Introduce “damping factor” a where 0 < o < 1.
(in practice apparently use o ~ .85)

From page v,
with prob. « follow a random outgoing link from page y.
with prob. 1 — a go to a completely random page
(uniformly chosen from all pages V).



Random Surfer

Let N = |V| denote number of webpages.
Transition matrix of new Random Surfer chain:

I—a i
P(y’x):{lya N ':y—>x¢§
N trouey MY TEE

This new Random Surfer Markov chain is ergodic.
Thus, unique stationary distribution is the desired .



Random Surfer

Let N = |V| denote number of webpages.
Transition matrix of new Random Surfer chain:

I—a i
P(y’x):{lya N ::y—>x¢§
N trouey MY TEE

This new Random Surfer Markov chain is ergodic.
Thus, unique stationary distribution is the desired .
How to find 77

Take last week’s 7, and compute 7P’ for big 7.
What'’s a big enough ¢?



© MIXING TIME



Mixing Time

How fast does an ergodic MC reach its unique stationary =7
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How fast does an ergodic MC reach its unique stationary =7
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Mixing Time

How fast does an ergodic MC reach its unique stationary =7

Need to measure distance from =, use total variation distance.
For distributions 1 and v on set Q:

dry(p, v Z |[(x) = v(x)].

er

Example: Q = {1,2,3,4}.
wis uniform: (1) = pu(2) = u(3) = p(4) = .25.
And v has: v(1) = .5,v(2) = .1,v(3) = .15,v(4) = .25.

1
drv(p,v) = (.25 +15+.1+0) = 25
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Consider ergodic MC with states €, transition matrix P, and
unique stationary distribution .
For state x € Q, time to mix from x:

T(x) = min{z : dpy(P'(x,-),7) < 1/4.

Then, mixing time Ty,ix = max, T(x).

Summarizing in words:
mixing time is time to get within distance < 1/4 of 7 from
the worst initial state Xj.

Choice of constant 1/4 is somewhat arbitrary.
Can get within distance < ¢ in time O(Tnix log(1/¢)).
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Mixing Time of Random Surfer

Coupling proof:
Consider 2 copies of the Random Surfer chain (X;) and (Y;).

Choose Y, from . Thus, ¥; ~ = for all z.
And X, is arbitrary.

If X, = Y,_ then they choose the same transition at time r.
If X;_1 # Y,_1 then with prob. 1 — « choose the same random
page z for both chains.

Therefore,
Pr(X; #Y,) <d.

Setting: t > —2/log(«) we have Pr (X, # Y;) < 1/4.
Therefore, mixing time:

2
Thix < —— ~ 8.5 for a = .85.
log
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