
CS 6550: Randomized Algorithms Spring 2019

Lecture 14

Primal Dual Method: Approximate Algorithm for Steiner Forest

February 26, 2019
Lecturer: Vivek Madan Scribes: Ivan Dario Jimenez

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications.

14.1 Generic Primal-Dual Algorithm

Algorithm 1: Generic Primal-Dual Algorithm

1 Formulate problem as an integer program. Relax it to get a linear program (LP) and its
dual(DLP).

2 Generate an infeasible solution x0 to the LP and feasible solution y0 to the DLP.
3 while xi is not feasible do
4 yi+1 ← update yi s.t. at least one more dual constraint is tight.
5 xi+1 ← set corresponding primal variable in xi to be 1

6 return xend

Remark: Primal-dual algorithm does not solve primal or dual programs.

14.2 2
(
1− 1

k

)
- approximation algorithm for steiner tree prob-

lem

14.2.1 Steiner Tree Problem

Given:

1. An undirected graph G = (V,E)

2. A cost function ω : E → Q+ 1

3. A set of terminal vertices T ⊆ V

Solve2:

H∗ = (V ∗H , E
∗
H) = arg min

H=(VH ,EH)

∑
e∈EH

ω(e)

s.t. VH ⊆ V
EH ⊆ E
H connects all t ∈ T

1This is equivalent to assigning a non-negative weight to each edge.
2The minimum cost subgraph that connects all terminal nodes in the graph.

14-1

Lecture 14: Primal Dual Method: 14-2

Theorem 14.1 There exists a primal-dual algorithm for the Steiner tree problem with approxima-
tion ratio 2

(
1− 1

k

)
Remark: There exists an algorithm with improved approximation ratio for steiner tree; however,
it is not discussed here.

In order to prove theorem 14.1, we will need two useful concepts: separation and δ of a separa-
tion.

Definition 14.2 S separates T means S ∩ T 6= ∅ ∧ S ∩ T 6= T ∧ S ⊆ V

Definition 14.2 shows when a set S separates T which is useful for thinking about a set of vertices
in between some of the terminal nodes. It may be confusing at first glance why a S contains elements
of T if it is meant to separate it. Note that if S contains some but not all elements of T then at
least some of the elements of S must be added to a steiner tree for T .

Definition 14.3 δ(S) = {e = (v1, v2)|e ∈ E ∧ v1 ∈ S ∧ v2 /∈ S} 3

Meanwhile, δ(S) can be understood as the set of edges at the boundary of a set of vertices S.

14.2.2 Primal

min
∑
e∈E

ω(e)xe

s.t.
∑
e∈δ(S)

xe ≥ 1 ∀S⊆V S separate T (14.1)

xe ≥ 0

The primal shown in equation 14.1 is the linear relaxation of the straight forward integer pro-
gramming formulation of the Steiner Tree problem. The integer programming formulation restricts
xe ∈ {0, 1}. The primal variables xi represent which edges are selected in the tree. When multiplied
with ω(e) the cost computes the sum of the costs of the edges corresponding to the steiner tree.
The constraint can be thought of as ensuring that there exists a path connecting all terminals in
terms of sets S that separate T . This makes sense when considering that a S = t s.t t ∈ T separates
T . Notice that the minimal subgraph connecting all t ∈ T must be a tree since you could drop an
edge in a cycle and keep all components connected.

14.2.3 Dual

max
∑

S:SseparatesT

ys

s.t
∑
e∈δ(S)

ys ≤ ω(e) ∀e ∈ E (14.2)

ys ≥ 0

The dual variable ys corresponds to the value of a cut S that separates T . With this we can see
that the constraint could be interpreted as ensuring that every edge must pay for the cuts that it
traverses by having a greater or equal cost. Notice that is ce = 1 ∀e ∈ E then we can understand
the dual as finding the largest collection of edge-disjoint cuts.

3The set of all edges with one end point in S and one end point not in S.

Lecture 14: Primal Dual Method: 14-3

14.3 Algorithm

We will use the following in the algorithm:

• The set of components: Ψ = {{x} : x ∈ T}

• For each component c ∈ Ψ, xc is the tree on C found in the algorithm:

x{x} = {({x}, φ) : x ∈ T}.

• Steiner forest initialized to a forest on vertex set T and no edges. At the end F will be a
steiner tree.

F = (T, φ)

• During the algorithm, we would grow components by adding edges and vertices. However,
not all the edges added to these components are part of the steiner tree F we return at the
end. We only add edges to F when two components merge:

(xc, c ∈ Ψ) 6= F

Algorithm 2: Algorithm to solve Steiner Tree Problem:

input : G,T, ω
output: F

1 Ψ = {{x} : x ∈ T}
2 x{x} = {({x}, ∅) : x ∈ T}
3 F = (T, ∅)
4 ys = 0 ∀S ⊆ V : S separates T
5 t = 0
6 M{x} = {{x}}
7 while |Ψ| > 1 do
8 while

∑
s:sseparatesT,e∈δ(S) ys ≤ xe is not tight for some new e = (u, v) ∈ E do

9 ∀c ∈ Ψ increase yc ← yc + ∆t

10 if ∃Ci,Cj∈Ψ u ∈ Ci ∧ v ∈ Cj then
11 Add Ci ∪ Cj to Ψ
12 Delete Ci, Cj from Ψ
13 xCi∪Cj

= xCi
∪ xCj

+ e
14 Let p be a path connecting F ∩ Ci and F ∩ Cj in XCi∪Cj

15 F = F ∪ p (add edges and vertices of p to F
16 Mci∪cj = Mci ∪Mci ∪ {Ci ∪ Cj}
17 if u ∈ Ci for some Ci ∈ Ψ, v /∈ Cj for any Cj ∈ Ψ then
18 add ci + v to Ψ
19 delete ci from Ψ
20 xci+v = xci + e (add vertex v and edge e to ci)
21 Mci = Mci ∪ {ci + v}
22 if Neither then
23 t← t+ ∆t

24 return F

Algorithm 2 is divided into three parts after initialization. Notice that in the algorithm we
initialize a moat variable M and a time variable t that are useful for analysis but not necessary for

Lecture 14: Primal Dual Method: 14-4

the computation of a Steiner Tree. After initializing we start a while loop that will end when |Ψ|,
the number of active separating sets, is reduced to one. The while loop in lines 8 to 10 increases
the dual variables by ∆t until a new constraint is tight. When the constraint becomes tight, it will
be tight for some edge e which we will keep track of for the remaining two parts. Next we handle
two cases for e: either e is between two existing active cuts in Ψ or it is a new edge. If the edge is
between two cuts in Ψ, we merge them with the necessary bookkeeping. Otherwise we simply add
the edge to the component Ci it connects to and do the necessary bookkeeping. Notice that when
we merge two sets, part of the bookkeeping ensure that F contains an updated steiner forest.

14.4 Analysis

Lemma 14.4 At any time t, for any C ∈ Ψ, xc is a tree.

Lemma 14.5 At the end of the algorithm, F is a steiner tree.

Lemma 14.6 At any time t, {ys : S separates T} is a feasible dual solution.

Lemmas 14.4, 14.5 and 14.6 can be proved by induction.

Lemma 14.7 At time t ≥ 0, for C ∈ Ψ, let Fc be the edges of F (at time t) with both end points
in C.

Z(C) =
∑
s∈Mc

ys

Cost(C) =
∑
e∈Fc

we

Then, Cost(c) ≤ 2 (Z(C)− t)

Proof: At time t = 0, F = (T, φ), Ψ = {{x} : x ∈ T} , ys = 0, ∀S : S separates T Hence,
Cost(C) = 0, Z(C) = 0 ∀C ∈ Ψ → Cost(C) ≤ 2(Z(C)− t)at t = 0

• For ease of exposition, we divide the events into three cases:

1. t increases by ∆t and no change in the set of components.

2. A vertex v is added to some component Ci at time t.

3. Two components Ci, Cj merge at time t.

Case 1: Set of components Ψ does not change. By induction, Cost(C) ≥ 2(Z(C) − t) at time t. yc
increases ∆t for each C ∈ Ψ. Z(C) =

∑
S∈MC

ys increases by ∆t since C ∈MC . F does not
change. Hence, Cost(C) does not change. Therefore Cost(C) ≤ 2(Z(C)− t) at time t+ ∆t.

Case 2: A vertex v is added to Ci (t does not change) Ci + v is added to Ψ and Ci is deleted. By
induction, Cost(Ci) ≤ 2(Z(Ci)− t).
Cost(Ci + v) = Cost(Ci) since, no edges are added to F and FCi+v = FCi

Z(Ci + v) =
∑
S∈MCi+v

yS =
∑
s∈MCi

yS + yCi+v

when v is added to Ci, yCi+v = 0. Hence, ZCi+v = ZCi
, Cost(Ci + v) = Cost(Ci).

→ Cost(Ci + v) ≤ 2(Z(Ci + v)− t)

Lecture 14: Primal Dual Method: 14-5

Case 3: Two components Ci, Cj ∈ Ψ merge (t does not change).

Ci ∪ Cj is added to Ψ, Ci, Cj are deleted from Ψ. By induction,

Cost old(Ci) ≤ 2(Z(Ci)− t)
Cost old(Cj) ≤ 2(Z(Cj)− t)
Where old denotes before merging.

Cost new(Ci ∪ Cj) ≤ Cost old(Ci) + Cost old(cj) + 2t ≤ 2(Z(Ci) + Z(Cj)− t)
Z(Ci ∪ Cj) =

∑
s∈MCi∪Cj

ys =
∑
s∈Mci

ys +
∑
s∈Mcj

ys + yci∪cj

Since, Ci ∪ Cj is just added to MCi∪Cj
, yCi∪Cj

= 0.

Hence,

ZCi∪Cj
= Z(Ci) + Z(Cj)

→ Cost new(Ci ∪ Cj) ≤ 2(Z(Ci ∪ Cj)− t) end of Lemma 4s proof.

Theorem 14.8 Optimal Steiner-tree Cost:∑
e∈E(F)

we ≤ 2(1− 1

|T |
)

Proof: At the end of the algorithm (t = end) let the component in Ψ be C∗.
Then, at t = tend,

Cost(C∗) =
∑
e∈FC∗

we =
∑

e∈E(F)

we

Z(c∗) =
∑

s∈MC∗

ys =
∑

s:s separate T

ys

Hence, by lemma 4,

∑
e∈E(F)

we ≤ 2

 ∑
s:s separates T

ys − tend


At any given time t, the number of components in Ψ is at most |T |. Hence, when t increases by

∆t,
∑
s: separates T increases by at most |T |∆T

→
∑
s:s separates T ys ≤ |T |tend or tend ≥

∑
s:s separates T y−s

|T | substituting in 1.

→
∑
e∈E(F) we ≤ 2(1− 1

|T |
∑
S:S separates T ys)

Since {yS : SseparatesT} is a feasible dual solution,
∑
s:sseparatesT ys ≤ optimal-dual-value.

By strong duality, optimal-dual-value = optimal-primal-value. Since, primal is a relaxation of
the steiner tree probllem, optimal-primal-value ≤ optimal-steiner-tree-cost. Combining, all four
inequalities, we get

∑
e∈E(F) we ≤ 2(1− 1

|T |)optimal-steiner-tree-cost.

Therefore, we get a 2(1− 1
|T |) approximation algorithm for the steiner tree problem.

References

[1] Ravi, R. ”A primal-dual approximation algorithm for the Steiner forest problem.” Information
processing letters 50.4 (1994): 185-189.

	Generic Primal-Dual Algorithm
	2(1 - 1k) - approximation algorithm for steiner tree problem
	Steiner Tree Problem
	Primal
	Dual

	Algorithm
	Analysis

