CS 6550: Randomized Algorithms

Spring 2019

Lecture 15: Lovász Local Lemma Feb. 28th, 2019

Lecturer: Eric Vigoda Scribes: Yanan Wang & Man Xie

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

15.1 Lovasz Local Lemma

Definition 15.1 For events \mathcal{E} and \mathcal{F} , \mathcal{E} is mutually independent of \mathcal{F} if:

$$\Pr(\mathcal{E}|\mathcal{F}) = \Pr(\mathcal{E}).$$

Moreover, for a set of events $(\mathcal{F}_i) = \{\mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_l\}$, then \mathcal{E} is mutually independent of the set (\mathcal{F}_i) if for all subsets $\mathcal{F} \subset (\mathcal{F}_i) = \{\mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_l\}$,

$$\Pr(\mathcal{E}|\mathcal{F}) = \Pr(\mathcal{E}).$$

Definition 15.2 We denote good event as \mathcal{G} , for example, in k-SAT problem f, \mathcal{G} is event that f is satisfied by random assignment. If $Pr(\mathcal{G}) > 0$, then f is satisfiable.

In k-SAT, $\mathcal{G} = \bigcap_{i=1}^n \mathcal{G}_i$, where $\mathcal{G}_i = \text{clause } i \text{ is satisfied. Given that } \Pr(\mathcal{B}_i) \leq p < 1$, where $\mathcal{B}_i = \overline{\mathcal{G}_i}$, and \mathcal{G}_i 's are independent, we have that

$$\Pr(\mathcal{G}_i) \ge 1 - p$$

15.1.1 Lemma1

Lemma 15.3 For Ek-SAT (=CNF) problem f, where clause has size k. With random assignment $(p = \frac{1}{2}, and \ e(d+1)p \le 1 \ where \ d \ge e)$, if no variable appears in more than $\frac{2^{k-2}}{k}$ clauses, then \mathcal{F} is satisfiable. **Observation**: Let \mathcal{G}_i be the i-th clause being satisfied, and $\mathcal{B}_i = \overline{\mathcal{G}}_i$ be the i-th clause not being satisfied. We

$$\Pr(\mathcal{B}_i) = 2^{-k}$$

and

have

$$d \leq k \times \frac{2^{k-2}}{k} = 2^{k-2}$$

therefore, we have

$$\Pr(\mathcal{B}_i) = 2^{-k} = \frac{1}{4d} \le p \le \frac{1}{e(d+1)}.$$

15.1.2 Lemma2

Lemma 15.4 $\forall S \subset \{1, 2, \dots, n\}, \text{ if } e(d+1)p \leq 1, \text{ then } \Pr(\mathcal{B}_i | \cap_{j \in S} \mathcal{G}_j) \leq \frac{1}{d+1}. \text{ That is, } \Pr(\mathcal{G}_i | \cap_{j \in S} \mathcal{G}_j) \geq 1 - \frac{1}{d+1}.$

Proof: We prove this lemma by using the principle of mathematical induction. The induction here is applied on the size (cardinality) of the set S. Let m = |S|.

Base case m = 0: Obviously, we have that $\Pr(\mathcal{B}_i) \leq p \leq \frac{1}{e(d+1)} \leq \frac{1}{d+1}$.

For m > 0: let $D_i = \{j : \mathcal{B}_i \text{ depends on } \mathcal{B}_j\}$. Then we have $|D_i| \leq d$. Then we partition S into two parts: $S_1 = S \cap D_i$ and $S_2 = S \setminus S_1$. Note that $S_1 \leq d$ since \mathcal{B}_i depends on $\leq d$ other events.

$$\Pr(\mathcal{B}_{i}|\cap_{j\in S}\mathcal{G}_{i}) = \Pr(\mathcal{B}_{i}|(\cap_{j\in S_{1}}\mathcal{G}_{j})\cap(\cap_{l\in S_{2}}\mathcal{G}_{l}))
= \frac{\Pr(\mathcal{B}_{i}\cap(\cap_{j\in S_{1}}\mathcal{G}_{j})|\cap_{l\in S_{2}}\mathcal{G}_{l})}{\Pr(\cap_{j\in S_{1}}\mathcal{G}_{j}|\cap_{l\in S_{2}}\mathcal{G}_{l})}
\leq \frac{\Pr(\mathcal{B}_{i}|\cap_{l\in S_{2}}\mathcal{G}_{l})}{\Pr(\cap_{j\in S_{1}}\mathcal{G}_{j}|\cap_{l\in S_{2}}\mathcal{G}_{l})}
\leq \frac{\Pr(\mathcal{B}_{i})}{\Pr(\cap_{j\in S_{1}}\mathcal{G}_{j}|\cap_{l\in S_{2}}\mathcal{G}_{l})}, \text{ since } \mathcal{B}_{i} \text{ is independent of } S_{2}$$

Now we need to lower bound the denominator $\Pr(\cap_{j \in S_1} \mathcal{G}_j | \cap_{l \in S_2} \mathcal{G}_l)$ and show that $\Pr(\cap_{j \in S_1} \mathcal{G}_j | \cap_{l \in S_2} \mathcal{G}_l) \geq \frac{1}{e}$. Let $S_1 = \{j_1, j_2, \dots, j_r\}$. If r = 0, then $S_1 = \emptyset$. So $\Pr(\emptyset | \cap_{l \in S_2} \mathcal{G}_l) = 1 \geq \frac{1}{e}$. Hence, we can assume that r > 0 and we know that $r \leq d$ since $|S_1| \leq d$ as we just pointed out.

$$\Pr(\bigcap_{j \in S_1} \mathcal{G}_j | \bigcap_{l \in S_2} \mathcal{G}_l) = \Pr(\mathcal{G}_{j_1} | \bigcap_{l \in S_2} \mathcal{G}_l) \times \Pr(\mathcal{G}_{j_2} | \mathcal{G}_{j_1} \cap (\bigcap_{l \in S_2} \mathcal{G}_l)) \times \cdots \times \Pr(\mathcal{G}_{j_k} | (\bigcap_{k' < k} \mathcal{G}_{j_{k'}}) \cap (\bigcap_{l \in S_2} \mathcal{G}_l))$$

$$= \prod_{k=1}^r \Pr(\mathcal{G}_{j_k} | (\bigcap_{k' < k} \mathcal{G}_{j_{k'}}) \cap (\bigcap_{l \in S_2} \mathcal{G}_l))$$

$$\geq (1 - \frac{1}{d+1})^r, \text{ by induction}$$

$$\geq (1 - \frac{1}{d+1})^d$$

$$\geq (1 - \frac{1}{d} + \frac{1}{2d^2})^d, \text{ since } e^{-\frac{1}{d}} \leq 1 - \frac{1}{d} + \frac{1}{2d^2}$$

$$\geq \frac{1}{e}$$

Therefore, we have that

$$\Pr(\mathcal{B}_i | \cap_{j \in S} \mathcal{G}_i) \leq \frac{\Pr(\mathcal{B}_i)}{\Pr(\cap_{j \in S_1} \mathcal{G}_j | \cap_{l \in S_2} \mathcal{G}_l)}$$

$$\leq \frac{\Pr(\mathcal{B}_i)}{\frac{1}{e}}$$

$$= \frac{p}{\frac{1}{e}}$$

$$= ep$$

$$\leq \frac{1}{d+1}$$

15.1.3 Lovasz Local Lemma

Lemma 15.5 (Lovasz Local Lemma): Bad events $\mathcal{B}_1, ..., \mathcal{B}_n$ where: for all i, $\Pr(\mathcal{B}_i) \leq p$, and \mathcal{B}_i is independent of all but less than d other \mathcal{B}_j 's. If $e(d+1)p \leq 1$, then we have

$$\Pr(\mathcal{G}) = \Pr(\cap_{i=1}^n \overline{\mathcal{B}_i}) > 0$$

Proof: By Lemma1 and Lemma2.

$$Pr(\mathcal{G}) = Pr(\bigcap_{i=1}^{n} \mathcal{G}_i)$$

$$= Pr(\mathcal{G}_1) \times Pr(\mathcal{G}_2 | \mathcal{G}_1) \times \dots \times Pr(\mathcal{G}_n | \mathcal{G}_1, \dots, \mathcal{G}_{n-1})$$

$$\geq (1-p) \times (1 - \frac{1}{d+1})^{n-1}$$

$$\geq (1 - \frac{1}{d+1})^n$$

$$> 0$$

15.2 Asymmetric Lovasz Local Lemma

For event \mathcal{B}_i , let $D_i \subseteq \{\mathcal{B}_1, \mathcal{B}_2, \cdots, \mathcal{B}_n\}$ denote the dependencies for \mathcal{B}_i , i.e., \mathcal{B}_i is independent of $\{\mathcal{B}_1, \mathcal{B}_2, \cdots, \mathcal{B}_n\} \setminus D_i$.

Theorem 15.6 If there exists $x_1, x_2, \dots, x_n \in [0,1)$ such that for all i, $\Pr(\mathcal{B}_i) \leq x_i \prod_{j \in D_i} (1-x_j)$, then $\Pr(\mathcal{G}) = \Pr(\bigcap_{i=1}^n \overline{\mathcal{B}_i}) \geq \prod_{i=1}^n (1-x_i) > 0$.

Proof: Same proof as the original one except for in the lemma replace $\frac{1}{d+1}$ in the RHS by x_i . Note, the original form follows from the asymmetric one by setting $x_i = \frac{1}{d+1}$.

References

[1] Erdős, Paul and Lovász, László Problems and results on 3-chromatic hypergraphs and some related questions. In A. Hajnal et al., editor, *Infinite and Finite Sets*, pages 609-628. North-Holland, Amsterdam, 1975.