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16.1 Algorithmic Lovasz Local Lemma

Definition 16.1 Let {x1,x2,...,Z.} be a finite set of mutually independent random variables. Let {B1,Ba,. ..

be a finite set of events determined by these variables. For event B,
vbl(B;) = {z; : B; depends on x;}
D, = {BJ : Bj S {Bl, BQ, - ,Bn}\{BZ} & ’Ubl(B]) N Ubl(B]) 75 @}

If B; occurs, we say B; is violated.

We will analyze the following Moser-Tardos Algorithm.

Algorithm 1: Moser-Tardos Algorithm

1 for z; € {z1,29,...,2,,} do

2 L Choose z; from {0,1} uniformly at random;
3 while 3B; € {B1,Bs,...,B,} is violated do
Pick an arbitrary violated event B;;

for z; € vbl{B;} do

L Choose z; randomly from {0,1} ;

[ JN N

Our goal is to prove the following Algorithmic Lovész Local Lemma related to Moser-Tardos Algorithm.

Theorem 16.2 Let {B1,Bs,...,B,} be a finite set of events. If there exists {f1, B2, ..., Bn} € [0,1), such

that,
Pr(B) <8 [[(1-8) Vi
JjED;

the Moser-Tardos Algorithm terminates in expected time at most Z?Zl 16%

16.2 Witness trees

Definition 16.3 An ezecution of Moser-Tardos Algorithm is a sequence E := E(1), E(2),...,E(T), where
E(t) is the violated event B; resampled at step t of the algorithm. (The execution may be either finite, if the

algorithm terminates, or infinite in length.) For convenience, let DY (E[t]) denote D .
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Definition 16.4 For a tree T, let V(T') denote the set of its vertices. For v € V(T), let d(v) denote the
depth of v (distance from v to the root r of tree T'). For example, d(r) =0, and its children have depth 1.

Given an execution E, now we define a witness tree T'(¢) for each step ¢ of E as follows.

Algorithm 2: Witness Tree

Label the root of tree T'(t) with event E(¢);
for ¢/ «+¢t—1to 1 do
if 3 a vertex in the current tree with label Eli] such that Et'] € DT (E]i]) then
Choose among all such vertices the one which has the maximum depth, and break ties

arbitrarily;
5 Add E(t') as a child of the vertex;

W N R

6 else
7 L Do not add a vertex for E[t'] to tree T'(t);

Claim 16.5 In a witness tree, the labels on all children of any vertex are distinct and independent. Besides,
at each depth, an event B; occurs at most once and all labels are independent.

Proof: When adding B;, if it already occurs at depth d, then we can add B; as a child of that vertex
at depth d or a vertex with higher depth. Thus the labels on all children of any vertex are distinct and an
event B; occurs at most once at each depth.

If there is an event B; at depth d and B; is dependent with B;, then we can add B; as a child of the vertex
at depth d or a vertex with higher depth. Thus the labels on all children of any vertex are independent and
all labels are independent at each level. [ |

We say that a witness tree 7" appears in E if T'= T(t) for some ¢.
Lemma 16.6 Let T be a witness tree and E a random execution of the algorithm. Then

Pr(T appears in E) < H Pr(B,)
veV(T)

where B, denotes the event labeling node v € V(T').

Proof: Fix a witness tree T'.

Define an evaluation for 7. In reverse BFS order, visit v € V(T') and resample their variables vbl(5,)
(independently of previous resamplings).

We say that T was violated, if for all v € V(T), event B, was violated by resampling of B,. Obviously,

Pr(T was violated) = H Pr(B,)
veV(T)

For each variable z;, image an infinite list of independent random resamplings. Then, when z; needs
to be resampled, it takes the next value in this sequence, and thus the Moser-Tardos Algorithm and the
evaluation both take the same value for a given variable if it has been sampled the same number of times in
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both processes.

For a vertex v € V(T), consider the resampling of vbl(8,) in evaluation for T'. Consider z; € vbl(B,).
According to the previous claim, x; does not occur again on the same level of 7. Thus, by reverse BFS
ordering, the number of times x; has been sampled prior to the resampling at v is equal to the number of
vertices that have greater depth than depth(v) and depend on variable x;, and let n;, denote this number.

Then consider the resamplings of B, in the execution E of Moser-Tardos Algorithm. The number of
times x; has been resampled prior to the resampling of B, is n;, + 1, since z; was sampled for the initial
setting and then at all the other times corresponding to vertices that have greater depth than depth(v) in
the tree.

So we define a coupling between the evaluation of 7" and the execution E: for the random choice of
variables {x1,xa,...,Zm}, using them for the tree T evaluation and then the Moser-Tardos Algorithm with
setting immediately prior to its resampling of B, as well so that the first resampling of x; in the tree T'
evaluation gives the initial setting of z; in E.

In this way, if B, is violated in T, in E at the corresponding time the event B, will be violated prior to
this time since otherwise the algorithm would not select B, for resampling.

Therefore,

Pr(T appears in E) < Pr(T was violated) = H Pr(B,)
veV (T)

16.3 Proof of Algorithmic Lovasz Local Lemma

Definition 16.7 For event B;, let N; denote the number of times that B; appears in original algorithm E.
Thus N; is the number of trees with root B; in execution E.

Consider the following Galton-Watson process to build a tree T' randomly:

Algorithm 3: Galton-Watson Process

1 Fix the root to be B;;

2 for B; € DZT" do

3 Add B; as a child of B; with probability 5;;
4 Leave out B; with probability 1 — §;;

5 Repeat if B; is added

Fix a tree with root B; and let Pr = Pr(Galton-Watson process produces T'). We have the following lemma:

Lemma 16.8 5
Pp=_—" !
r=rg 1 2
veV(T)

where

JED,
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Proof: For v € V(T), let w, denote dependencies of B, which are not children of v in T, namely,
wy, = D \Ny (v) where N (v) denotes the children of v in 7. Then

PT:% H Bo H(I—Bj)

veV (T) JEWy

_1_Bl Bv )
B H 1—05, H(l_b’])

veV(T) jED,T

-2 e Tla-6)

veV(T)  jED,

15 y
=3 H B

' vev(T)

Now, we are in a position to bound E[N;].

Lemma 16.9
Bi

B[N < 15

Proof:

E[N;] = ZPr(T appears in F)
T

as the Galton-Watson Process produces 1 tree. [ |

Note the running time of the algorithm is proportional to %" | N;. As E[N;] < 1 8 5, we have proved the
algorithmic version of Lovasz Local Lemma.
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