CS 6550: Randomized Algorithms

Spring 2019

Lecture 16: Algorithmic Lovász Local Lemma

March 5, 2019

Lecturer: Eric Vigoda Scribes: Congshi Zou & Feng Feng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

16.1 Algorithmic Lovász Local Lemma

Definition 16.1 Let $\{x_1, x_2, \ldots, x_m\}$ be a finite set of mutually independent random variables. Let $\{\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_n\}$ be a finite set of events determined by these variables. For event \mathcal{B}_i ,

$$vbl(\mathcal{B}_i) := \{x_j : \mathcal{B}_i \text{ depends on } x_j\}$$

$$D_i := \{ \mathcal{B}_j : \mathcal{B}_j \in \{ \mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_n \} \setminus \{ \mathcal{B}_i \} \& vbl(\mathcal{B}_j) \cap vbl(\mathcal{B}_j) \neq \emptyset \}$$
$$D_i^+ := D_i \cup \{ \mathcal{B}_i \}$$

If \mathcal{B}_i occurs, we say \mathcal{B}_i is violated.

We will analyze the following Moser-Tardos Algorithm.

Algorithm 1: Moser-Tardos Algorithm

- 1 for $x_j \in \{x_1, x_2, \dots, x_m\}$ do
- **2** Choose x_j from $\{0,1\}$ uniformly at random;
- з while $\exists \mathcal{B}_i \in \{\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_n\}$ is violated do
- 4 | Pick an arbitrary violated event \mathcal{B}_i ;
- $for x_i \in vbl\{\mathcal{B}_i\} do$
- **6** Choose x_j randomly from $\{0,1\}$;

Our goal is to prove the following Algorithmic Lovász Local Lemma related to Moser-Tardos Algorithm.

Theorem 16.2 Let $\{\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_n\}$ be a finite set of events. If there exists $\{\beta_1, \beta_2, \dots, \beta_n\} \in [0, 1)$, such that,

$$\Pr(\mathcal{B}_i) \le \beta_i \prod_{j \in D_i} (1 - \beta_j) \quad \forall i$$

the Moser-Tardos Algorithm terminates in expected time at most $\sum_{i=1}^{n} \frac{\beta_i}{1-\beta_i}$.

16.2 Witness trees

Definition 16.3 An execution of Moser-Tardos Algorithm is a sequence $E := E(1), E(2), \ldots, E(T)$, where E(t) is the violated event \mathcal{B}_i resampled at step t of the algorithm. (The execution may be either finite, if the algorithm terminates, or infinite in length.) For convenience, let $D^+(E[t])$ denote D_i^+ .

Definition 16.4 For a tree T, let V(T) denote the set of its vertices. For $v \in V(T)$, let d(v) denote the depth of v (distance from v to the root r of tree T). For example, d(r) = 0, and its children have depth 1.

Given an execution E, now we define a witness tree T(t) for each step t of E as follows.

```
Algorithm 2: Witness Tree
1 Label the root of tree T(t) with event E(t);
2 for t' \leftarrow t - 1 to 1 do
     if \exists a vertex in the current tree with label E[i] such that E[t'] \in D^+(E[i]) then
         Choose among all such vertices the one which has the maximum depth, and break ties
4
          arbitrarily:
         Add E(t') as a child of the vertex;
```

6

5

Do not add a vertex for E[t'] to tree T(t);

Claim 16.5 In a witness tree, the labels on all children of any vertex are distinct and independent. Besides, at each depth, an event \mathcal{B}_i occurs at most once and all labels are independent.

Proof: When adding \mathcal{B}_i , if it already occurs at depth d, then we can add \mathcal{B}_i as a child of that vertex at depth d or a vertex with higher depth. Thus the labels on all children of any vertex are distinct and an event \mathcal{B}_i occurs at most once at each depth.

If there is an event \mathcal{B}_i at depth d and \mathcal{B}_i is dependent with \mathcal{B}_i , then we can add \mathcal{B}_i as a child of the vertex at depth d or a vertex with higher depth. Thus the labels on all children of any vertex are independent and all labels are independent at each level.

We say that a witness tree T appears in E if T = T(t) for some t.

Lemma 16.6 Let T be a witness tree and E a random execution of the algorithm. Then

$$\Pr(T \text{ appears in } E) \leq \prod_{v \in V(T)} \Pr(\mathcal{B}_v)$$

where \mathcal{B}_v denotes the event labeling node $v \in V(T)$.

Proof: Fix a witness tree T.

Define an evaluation for T. In reverse BFS order, visit $v \in V(T)$ and resample their variables $vbl(\mathcal{B}_n)$ (independently of previous resamplings).

We say that T was violated, if for all $v \in V(T)$, event \mathcal{B}_v was violated by resampling of \mathcal{B}_v . Obviously,

$$\Pr(T \text{ was violated}) = \prod_{v \in V(T)} \Pr(\mathcal{B}_v)$$

For each variable x_i , image an infinite list of independent random resamplings. Then, when x_i needs to be resampled, it takes the next value in this sequence, and thus the Moser-Tardos Algorithm and the evaluation both take the same value for a given variable if it has been sampled the same number of times in both processes.

For a vertex $v \in V(T)$, consider the resampling of $vbl(\mathcal{B}_v)$ in evaluation for T. Consider $x_j \in vbl(\mathcal{B}_v)$. According to the previous claim, x_j does not occur again on the same level of T. Thus, by reverse BFS ordering, the number of times x_j has been sampled prior to the resampling at v is equal to the number of vertices that have greater depth than depth(v) and depend on variable x_j , and let $n_{j,v}$ denote this number.

Then consider the resamplings of \mathcal{B}_v in the execution E of Moser-Tardos Algorithm. The number of times x_j has been resampled prior to the resampling of \mathcal{B}_v is $n_{j,v} + 1$, since x_j was sampled for the initial setting and then at all the other times corresponding to vertices that have greater depth than depth(v) in the tree.

So we define a coupling between the evaluation of T and the execution E: for the random choice of variables $\{x_1, x_2, \ldots, x_m\}$, using them for the tree T evaluation and then the Moser-Tardos Algorithm with setting immediately prior to its resampling of \mathcal{B}_v as well so that the first resampling of x_j in the tree T evaluation gives the initial setting of x_j in E.

In this way, if \mathcal{B}_v is violated in T, in E at the corresponding time the event \mathcal{B}_v will be violated prior to this time since otherwise the algorithm would not select \mathcal{B}_v for resampling.

Therefore,

$$\Pr(T \text{ appears in } E) \leq \Pr(T \text{ was violated}) = \prod_{v \in V(T)} \Pr(\mathcal{B}_v)$$

16.3 Proof of Algorithmic Lovász Local Lemma

Definition 16.7 For event \mathcal{B}_i , let N_i denote the number of times that \mathcal{B}_i appears in original algorithm E. Thus N_i is the number of trees with root \mathcal{B}_i in execution E.

Consider the following Galton-Watson process to build a tree T randomly:

Algorithm 3: Galton-Watson Process

- 1 Fix the root to be \mathcal{B}_i ;
- 2 for $\mathcal{B}_j \in D_i^+$ do
- **3** Add \mathcal{B}_j as a child of \mathcal{B}_i with probability β_j ;
- 4 Leave out \mathcal{B}_j with probability $1 \beta_j$;
- 5 Repeat if \mathcal{B}_i is added

Fix a tree with root \mathcal{B}_i and let $P_T = \Pr(\text{Galton-Watson process produces } T)$. We have the following lemma:

Lemma 16.8

$$P_T = \frac{\beta_i}{1 - \beta_i} \prod_{v \in V(T)} \beta_v'$$

where

$$\beta_v' = \beta_v \prod_{j \in D_v} (1 - \beta_j)$$

Proof: For $v \in V(T)$, let w_v denote dependencies of \mathcal{B}_v which are not children of v in T, namely, $w_v = D_v^+ \backslash N_T^-(v)$ where $N_T^-(v)$ denotes the children of v in T. Then

$$P_T = \frac{1}{\beta_i} \prod_{v \in V(T)} \beta_v \prod_{j \in w_v} (1 - \beta_j)$$

$$= \frac{1 - \beta_i}{\beta_i} \prod_{v \in V(T)} \frac{\beta_v}{1 - \beta_v} \prod_{j \in D_v^+} (1 - \beta_j)$$

$$= \frac{1 - \beta_i}{\beta_i} \prod_{v \in V(T)} \beta_v \prod_{j \in D_v} (1 - \beta_j)$$

$$= \frac{1 - \beta_i}{\beta_i} \prod_{v \in V(T)} \beta_v'$$

Now, we are in a position to bound $\mathbb{E}[N_i]$.

Lemma 16.9

$$\mathbb{E}[N_i] \le \frac{\beta_i}{1 - \beta_i}$$

Proof:

$$\mathbb{E}[N_i] = \sum_{T} \Pr(T \text{ appears in } E)$$

$$\leq \sum_{T} \prod_{v \in V(T)} \Pr(\mathcal{B}_v)$$

$$\leq \sum_{T} \prod_{v \in V(T)} \beta_v \prod_{j \in D_v} (1 - \beta_j)$$

$$\leq \sum_{T} \prod_{v \in V(T)} \beta'_v$$

$$= \frac{\beta_i}{1 - \beta_i} \sum_{T} P_T$$

$$= \frac{\beta_i}{1 - \beta_i}$$

as the Galton-Watson Process produces 1 tree.

Note the running time of the algorithm is proportional to $\sum_{i=1}^{n} N_i$. As $\mathbb{E}[N_i] \leq \frac{\beta_i}{1-\beta_i}$, we have proved the algorithmic version of Lovász Local Lemma.

References

- [1] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász Local Lemma. *Computing Research Repository (CoRR)*, abs/0903.0544, 2009.
- [2] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. *Infinite and Finite Sets*, 10(2):609–627, 1975.