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21.1 2-SAT

We can solve a 2-SAT problem in a polynomial time by reducing it to finding strongly connected components
of a directed graph. Alternatively, we can solve it via a randomized algorithm. Here is a simple algorithm
that solves 2-SAT.

21.1.1 A randomized algorithm

This randomized algorithm finds a satisfying assignment of a 2-SAT problem and outputs it.

Algorithm 1: Algorithm

input : 2-SAT problem with clauses C4,...,C,
output: a satisfying assignment o, if exists

1 start with an arbitrary assignment oy;
2 for i < 1to k-n? do
3 take an unsatisfied clause C' of o;_1;
choose a random literal in C' and satisfy it;
call the new assignment o;;
if o; satisfies the problem then

L output o;

N O ok

21.1.2 Analysis

Fix a satisfying assignment, and call it 7. Let o, be the assignment of the algorithm at the ¢-th iteration.
Let X; = # of variables that agree between o; and 7. If X; = n, then the algorithm found a satisfying
assignment. Also, X; is a random walk in {0,...,n}.

Claim 21.1 Pr(X;1 =i+1|X,=1) > 1

Proof: Consider the unsatisfied clause C that is updated in Xy — X;41. We know that 7 satisfies C. Hence,
one or more of the 2 variables in C' have opposite assignments between 7 and ;. Then, one or less of the 2
variables agree between o; and 7. |
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Consider an unbiased walk y; such that Pr(ys1 =i+ 1|ys =) = Pr(yep1 =t — Ly = 1) = % Couple with
X} so that

o If y; = n, then X; = n or o; is a satisfying assignment.
o Ifyyy1 =y + 1, then Xy = X + 1.
Let’s define
e T; = time to reach X; = n starting from Xo = j.
e h; =E[T}].
Claim 21.2 hy < n?

Proof: We have the following recurrence relation
1 1
hj =1 + ithrl + ih]’,1
It follows that

1 1
hj =1+ 5hj+1 + §hj71

<~ 2hj =2+ hj+1 + hj,1
< hj — hj+1 = hj—l — hj

Given the base case hg — h1 = 1, h; — hj41 = 25 + 1. Then,

ho = (hg —h1)+ (h1 —h2) + -+ (hp_1 — hy)
n

= Z(hi — hit1)

=0
n—1
= (2i+1)
i=0
n—1
=2() i)+n
=0
2 -1
_ n(n2 ) "
=n*—n+n
= ’[’L2
|
Consequentially,
he O(n?), biased
0 O(nlogn), unbiased

21.2 Markov Chain

21.2.1 Definitions

Definition 21.3 Pr(X;y1|Xe =i, Xe—1 = tt—1, -+ , Xo = o) = Pr(Xe41 = j| Xt = it) is called the Markov
property.
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Definition 21.4 If a sequence of random variables X1, Xo, ..., X, satisfies the Markov property, X; is called
a Markov chain on {0,1,...,n}.

Definition 21.5 Let X; be a Markov chain on a state space Q = {1,2,..., N}. Then, the transition matrizc
P e RNXN s defined by
P(i,j) = Pr(Xi41 = j|X¢ = i)

Also, it follows that
P'(i,j) = Pr(X, = j|Xo = 1)

Definition 21.6 A Markov chain is called irreducible if Vi, j € Q, 3t such that P'(i,j) > 0. In other words,
the graph on P! is one strongly connected component.

Definition 21.7 A Markov chain is called aperiodic if Vi € §Q, its period = 1. The period of a state i is
defined by gcd(t : pt(i,i) > 0).

Definition 21.8 A Markov chain is ergodic if and only if it is both irreducible and aperiodic.

Definition 21.9 A stationary distribution 7 of a Markov chain is a distribution of state probabilities satis-

fying TP = .
Example:
05 05 0 O
p_ 02 0 05 03
0 03 07 O
0.7 0 0 03
Then,
0.244190 0.244187 0.406971 0.104652 0.2442
p20 _ 0.244187 0.244186 0.406975 0.104651 and 7 = lim P!~ 0.2442
0.244181 0.244185 0.406984 0.104650 t—ro0 0.4070
0.244195 0.244188 0.406966 0.104652 0.10465

21.2.2 Properties

Theorem 21.10 An ergonic, finite Markov chain has a unique stationary distribution w. Also, for all
xo € Q,7 € Qlimy—soo Pr(X¢| Xo) = 7(y).

In order to find a stationary distribution 7, we need Gaussian Elimination. However, || is usually very big.
Claim 21.11 If P is symmetric, then m = uniform(fQ).

Proof: Let’s verify that for 7(i) = &, 7P = .

keQ
1
=+ 2 Pk.i)
keQ
1
=% Z P(i, k) (P is symmetric)
keQ
1
=¥ (P is stochastic)
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Claim 21.12 P is reversible with respect to 7 if
Vi, j € Q,m(i)P(i,j) = n(§)P(j, 7).
In the equation above, T is a stationary distribution.

Proof:
(mP)(i) = Z m(k)P(k,1)

keQ

=Y w(i)P(i,k)

ke

=7(i) Z

ke

=7(i)
Example: Consider a random walk on a d-regular undirected graph G. For edge(i, j),

P(i.j) = P(ji) = 5.

So, it is symmetric and

1
i) = — for n=|V]|.
7(i) = = for n= V]
Now, consider a random walk on a non-regular undirected graph G. Then,

where d(i) = degree of i, and 2 = >, d(j) = 2m. It follows that

w(i)P(i,j) = @ : ﬁ = % =7(j)P(J, ).

21.3 PageRank

PageRank is a method to assign ”importance” to webpages.

21.3.1 Problem Statement

Consider a graph G, where V = webpages and F = directed edges corresponding to hyperlinks.

e Idea 1: A link is a citation, so count the number of in-edges.
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e Idea 2: Weight outgoing links by the number of hyperlinks on t. So, if page x has d outgoing links,

then each gets % of a citation. Hence, it is like a random walk

W= Y o=

~

e Idea 3: Weight a page by its m(x), hence:
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This corresponds to the stationary distribution of the random walk on the web graph. The stationary
distribution 7 is not necessarily unique because the graph may not be ergodic. In order to make it ergodic,

1. Choose 0 < o < 1.
2. From page x € V,

e with prob a, choose a random out-edge.

e with prob 1 — a, choose a random vertex in the whole graph.

Then, G is clearly ergodic and has a unique stationary distribution 7. Also, 7 is the PageRank vector.
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