
CS 6550: Randomized Algorithms Spring 2019

Lecture 6: Data Streaming

January 24, 2019
Lecturer: Eric Vigoda Scribes: Caitlin Beecham, Qiaomei Li

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

6.1 Data Streaming

General idea: We want to count d, the number of distinct values that appear in our stream S. However,
storing the desired frequency vector might take a lot of space. So instead of storing it, we hash the values,
k, that appear in the stream one by one (Side note: hashing these values takes the arbitrary distribution
of values which appears in S and makes the hashed output roughly uniform over the set {0, 1, . . . , p − 1}).
Then, one by one we add (h(k), zeros(h(k))) = (h(k),[the number of trailing zeros in h(k)] when written in
binary]) to a set (NOT a multiset) B. The idea is that if we know the number of times we have a hashed
value h(k) with more than some number of zeros, this number gives us an estimate on the number of distinct
values that appear in the stream. In particular, say we have a hashed value h(k) written in binary. Since
the hashed distribution is uniform, we know that the probability that h(k) has at least l trailing zeros is
= 1

2l
. So, the probability that an element of B has ≥ l zeros is about d

2l
(I say about because there could

be hash collisions). Now, as this algorithm goes on, we actually make sure to only keep elements of B in B
for which the number of trailing zeros is above this threshold. So, at the end of the algorithm, B consists
of only the elements with enough trailing zeros. The expected number of these is E[|B|] = d

2l
. Thus, our

algorithm outputting |B|2l should be a reasonably good estimate of d.
Note: the answer to the question asked during class about whether we could just store zeros(h(k)) instead
of (h(k), zeros(h(k))) is that we can’t. The crux of what makes this algorithm works is that we are storing
the elements of B as a set and not a multiset, which is what gives us some kind of relation to the number
of distinct elements d (because we’re not keeping elements with multiplicity). So, in particular, what allows
us to know that we are only keeping one copy of each value (well, really we’re keeping the hashed value,
but distinct values give distinct hash values) is that we actually know that value h(k) because it is stored.
If we only stored zeros(h(k)), we would end up counting many distinct hash values as one thing because
they have the same number of trailing zeros. So, basically the whole reason we have a connection between
d and |B| is that we are storing all hash values that appear and storing them exactly once (until they get
thrown out). If we only kept track of zeros(h(k)) instead of (h(k), zeros(h(k))) we would lose that connection.

Let the list S = {S1, ..., Sm} s.t. m is huge and f = (f1, ..., fn), where fi = |{j : 1 ≤ j ≤ m, sj = i}|.
Our goal is to compute d = F0 − |{i : fi > 0}|=the number of distinct items. From last class we found d̂

where Pr(d̂3 ≥ d ≥ 3d̂) ≥ 0.04. Next, we want to boost it to be ≥ 1 − δ by finding the median of O(log(1
δ)

trials.
We show ∀ε > 0, δ > 0, Pr(d̂(1− ε) ≥ d ≥ d̂(1 + ε)) ≥ 1− ε. Given h : [n]→ [n], Pr(zeros(h(k)) ≥ l) = 2−l.
Recall from last class, the algorithm that finds max{l : zeros(h(k)), k ∈ S} outputs 2l+1/2. Consider the
problem of finding the number of k such that zeros(h(k)) ≥ l, we expect d

2l
= |B|, and the corresponding

algorithm outputs |B|2l.

6-1

Lecture 6: Data Streaming 6-2

1 choose a random pairwise independent hash function h : {[1, ..., n} → {[1, ..., n};
2 find prime p s.t. n ≤ p ≤ 2n; choose a,b independently and uniformly from {0, 1, ..., p− 1} and define

the hash function h(i) = a+ bi mod p;
3 set the counter z = 0, and B = ∅;
4 goes through data stream S, at k: hash it, look at zeros(h(k))
5 if zeros(h(k))≥ z then
6 B = B ∪ (h(k), zeros(h(k)));
7 while |B| > 100/ε2 do
8 z = z + 1;
9 remove all (α, β) from B where β < z

10 output |B|2Z

6.1.1 The algorithm

For k ∈ {1, ..., n} and integer l ≥ 1,

Xl,k =

{
1, if zeros(h(k)) ≥ l
0, otherwise

(6.1)

Let Yl =
∑
k:fk>0Xl,k, output d̂ = Yz2

z.

E[Yl] =
∑
k:k>0

E[Xl,k] =
d

2l
(6.2)

V ar(Yl) = V ar(
∑
k:k>0

Xl,k) (6.3)

=
∑
k:k>0

V ar(Xl,k) (6.4)

≤
∑
k:k>0

E[X2
l,k] (6.5)

=
∑
k:k>0

E[Xl,k] =
d

2l
(6.6)

We want (1− ε)d̂ ≤ d ≤ (1 + ε)d̂

Our algorithm fails if |d̂ − d| > εd. Note that |d̂ − d| = |yz2z − d| > εd if and only if |yz − d
2z | >

εd
2z .

Intuitively, we break this into two cases: if z < [some threshold] we bound using Chebyshev and if z ≥ [that
threshold] we use Markov’s Inequality to say that having such a large z is unlikely to happen.

Now, Pr(|Yz − E[Yz]| > εd
2z) ≤ Var(Yz)

(εd2z)
2 ≤ 1

ε2(d2z)
.

So, Pr(FAILURE) = Pr(|Yz − E[Yz]| > εd
2z) =

∑log(n)
r=0 Pr(|Yr − E[Yr]| > εd

2r AND (z = r)). We break
this summand into two sums. Note that we use the following fact: Pr(A AND B) ≤ Pr(A) and also

Lecture 6: Data Streaming 6-3

Pr(A AND B) ≤ Pr(B).

log(n)∑
r=0

Pr(|Yr − E[Yr]| >
εd

2r
AND (z = r)) =

s−1∑
r=0

Pr(|Yr − E[Yr]| >
εd

2r
AND (z = r))+ (6.7)

log(n)∑
r=s

Pr(|Yr − E[Yr]| >
εd

2r
AND (z = r)) (6.8)

≤
s−1∑
r=0

Pr(|Yr − E[Yr]| >
εd

2r
)+ (6.9)

log(n)∑
r=s

Pr(z = r) (6.10)

=

s−1∑
r=0

2r

ε2d
+ Pr(z ≥ s) (6.11)

=
1

ε2d
(

s−1∑
r=0

2r) + Pr(Ys−1 >
1000

ε2
) (6.12)

≤ 2s

ε2d
+
ε2E[Ys−1]

1000
(6.13)

=
2s

ε2d
+

dε2

1000 ∗ 2s−1
(6.14)

Choose s = max{n ∈ N| d2s <
24
ε2 } ≤

2s

ε2d + 2ε2

1000
24
ε2 = 2s

ε2d + 48
1000 ≤

2s

ε2d + 1
12 ≤

1
12 + 1

12 = 1
6 . Now, 12

ε2 ≤
d
2s

implies that 2s ≤ dε2

12 so that s = O(log2(c′dε2)). What space does this algorithm use? Well, each h(k) uses
O(log(n)) bits. Also, zeros(h(k)) uses O(log(n)) bits. So, overall, this algorithm uses O(log(n)) ∗O(1

ε2) bits
to store B and also O(log(log(n))) bits to store z and finally O(log(n)) bits to store a and b. In total, it uses
O(log(n)) ∗O(1

ε2) +O(log(log(n))) +O(log(n)) = O(log(n)) ∗O(1
ε2) bits. So, what if we want to do better

than 1
ε2 ? Really, we should take O(log(1

ε2)) to remember each item in B, which means that we should make
another hash function. We still use the original hash function h : [n]→ [n], as well as a new hash function,

g : [n]→ [10
6

ε2] with some constant probability collisions.

	Data Streaming
	The algorithm

