
CS 6550: Randomized Algorithms Spring 2019

Lecture 8: Method of Conditional Expectations & Randomized Rounding

February 5, 2019
Lecturer: Eric Vigoda Scribes: Osman Dai & Alex Forney

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

8.1 Maximum Satisfiability (MAX-SAT)

8.1.1 Problem Statement

Let x1, x2, · · · , xn ∈ {TRUE,FALSE} be Boolean random variables and f be a Boolean formula in clausal
normal form (CNF), i.e. it is decomposed into clauses as f = C1 ∧C2 ∧ · · · ∧Cm where each clause is an OR
disjunction of independent literals. (Or simply, it is written as an ‘AND of ORs’.)

Example 8.1 The following Boolean formula is written in CNF:

f = C1 ∧ C2 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4 ∨ x5)

We want to find an assignment of the Boolean variables that satisfies as many of the clauses C1, · · · , Cm.

8.1.2 Random Assignment

Consider a random assignment of the variables, such that Pr[Xi = TRUE] = Pr[Xi = FALSE] = 1/2 for
each i ∈ {1, 2, · · · , n}, independently of all others. Define Y1, Y2, · · · , Ym ∈ {0, 1} such that

Yi =

{
1, if Ci = TRUE

0, otherwise

Then Yi = 0 if and only if every Boolean variable in Ci has the ‘bad’ assignment. E.g. in example 8.1
Y1 = 0 ⇐⇒ (X1, X2, X3) = (FALSE,TRUE,FALSE). Thus for any clause Ci consisting of k literals, the
probability of not being satisfied is given as Pr[Yi = 0] = Pr[Ci = FALSE] = (1/2)k. Then Pr[Yi = 1] =
1− 2−k.

Lemma 8.2 Let f be some Boolean formula in CNF , m the number of clauses and k the minimum number
of literals inn any clause. Then there exists some assignment that satisfies at least m(1−2−k) of the clauses.

Proof: Let Y =
∑
Yi denote the number of satisfied clauses. Let ki denote the number of literals in clause

Ci. Then E[Y] =
∑

E[Yi] =
∑

Pr[Yi = 1] =
∑

(1− 2−k) ≥ m(1− 2−k).

By the fact that every clause has at least 1 literal, i.e. k ≥ 1, we have m(1− 2−k) ≥ m/2 which gives us
the following corollary.

Corollary 8.3 Let f be some Boolean formula in CNF , m the number of clauses. There exists some
assignment that satisfies at least m/2 of the clauses.

8-1

Lecture 8: Method of Conditional Expectations & Randomized Rounding 8-2

Algorithm 1: Derandomized 0.5-MAX-SAT

input : Clauses C1, C2, · · · , Cm.
output: Boolean variable assignments x1, x2, · · · , xn

1 for i← 1 to n do
2 Compute E[Y |(X1, X2, · · · , Xi−1, Xi) = (x1, x2, · · · , xi−1,TRUE)] and

E[Y |(X1, X2, · · · , Xi−1, Xi) = (x1, x2, · · · , xi−1,FALSE)];
3 Pick the largest one and assign xi accordingly.

8.1.3 Derandomization

We can derandomize this algorithm to achieve the same guarantee on the number of satisfied clauses using
a deterministic assignment.

Lemma 8.4 Let k be the mininum number of literals any clause has. Then Algorithm 1 returns an assign-
ment that satisfies at least (1− 2−k)m clauses.

Proof: E[Y] = 1
2E[Y |X1 = TRUE] + 1

2E[Y |X1 = FALSE]. Thus both E[Y |X1 = TRUE] and E[Y |X1 =
FALSE] cannot be smaller than E[Y] and the largest must satisfy EY |X1 = x1 ≥ E[Y].

We can continue to apply this conditioning recursively, always getting some expectation that is at least as
large as the expectation in the previous step. This finally gives us E[Y |(X1, X2, · · · , Xn) = (x1, x2, · · · , xn)] ≥
(1− 2−k)m, where the value of Y is no longer random as it is conditioned on the assignment of all literals.

Finally, by the proof of Lemma 8.2, we have E[Y] ≥ (1 − 2−k)m. Then this final value cannot be less
than (1− 2−k)m.

8.1.4 Randomized Rounding

8.1.4.1 Integer (Linear) Programming

Recall that a linear program is an optimization problem where our goal is to maximize some linear objective
function subject to linear constraints. An integer linear program additionally requires that some or all of
the decision variables take integer values.

Given c ∈ Rn, A ∈ Rm×n, and b ∈ Rm, the integer linear programming (ILP) problem can be written in
canonical form as

max cTx

s.t. Ax ≤ b
x ≥ 0

x ∈ Zn

8.1.4.2 Reduction

We will now show that ILP is NP-hard via a reduction from SAT.
Before we proceed with the reduction, however, we shall introduce some notation. For a clause Cj in an

instance of SAT, let C+
j denote the variables appearing in positive form in Cj and C−j denote the variables

appearing in negative form in Cj . Consider the following example:

Example 8.5 Suppose we have a clause

C1 = x5 ∨ x3 ∨ x7.

Then, C+
1 = {x5, x7} and C−1 = {x3}.

Lecture 8: Method of Conditional Expectations & Randomized Rounding 8-3

Suppose we are given a SAT instance given by a formula f with n variables x1, . . . , xn and m clauses
C1, . . . , Cm. We reduce SAT to ILP in the following way:

• For each SAT variable xi, create an ILP variable yi. Additionally, add the constraint that yi ∈ [0, 1].
Along with the integrality constraint, this will force yi ∈ {0, 1}. We will choose additional constraints
so that, When we solve the ILP, yi = 1 corresponds to the assignment xi = T and yi = 0 corresponds
to the assignment xi = F .

• For each SAT clause Cj , create an ILP variable zj . As above, add the constraint zj ∈ [0, 1] so that we
have a similar correspondence between zj = 1 and the clause Cj being satisfied and zj = 0 and the
clause Cj being unsatisfied.

• For each SAT clause Cj , add the constraint∑
i∈C+

j

yi +
∑
i∈C−

j

(1− yi) ≥ zj .

To see the necessity of the third set of constraints, we return to Example 8.5. In order to satisfy clause
C1, we must have at least one of x5 = T , x3 = F , or x7 = T . Using the variables y5, y3, and y7 defined in
the reduction, this is equivalent to having at least one of y5 = 1, y3 = 0, or y7 = 1. Additionally, Cj being
satisfied corresponds to z1 = 1. The third set of constraints gives us the inequality

y5 + (1− y3) + y7 ≥ z1,

so C1 is satisfied if and only if y5 = 1, y3 = 0, or y7 = 1. Otherwise, it is not.
We have reduced SAT to ILP, which shows that ILP is NP-hard. To apply our ILP to MAX-SAT, we will

attempt to maximize the value of z1 + · · · + zm, which corresponds to maximizing the number of satisfied
clauses in f . Thus, we have the integer linear program

max

m∑
j=1

zj

s.t.
∑
i∈C+

j

yi +
∑
i∈C−

j

(1− yi) ≥ zj ∀j ∈ {1, . . . ,m}

yi ∈ [0, 1] ∀i ∈ {1, . . . , n}
zj ∈ [0, 1] ∀j ∈ {1, . . . ,m}
yi ∈ Z ∀i ∈ {1, . . . , n}
zj ∈ Z ∀j ∈ {1, . . . ,m}

Solving this integer linear program is equivalent to solving MAX-SAT, so MAX-SAT reduces to ILP.

8.1.4.3 Algorithm

We can drop the integrality constraints in the above integer program in order to obtain a linear program.
This linear program is the LP relaxation of our problem.

Unlike the integer program, we can solve the LP relaxation in polynomial time, so we would like to use
the LP solution to find a solution to the ILP (which, in turn, gives us a valid assignment for MAX-SAT). Let
ŷ∗i , ẑ

∗
j denote the optimal solutions to the LP, which we can find, and let y∗i , z

∗
i denote the optimal solutions

to the ILP, which we don’t know. Notice that the y∗i , z
∗
i are feasible solutions to the LP relaxation, which

implies that
m∑
j=1

z∗j ≤
m∑
j=1

z∗j . (8.1)

Lecture 8: Method of Conditional Expectations & Randomized Rounding 8-4

Algorithm 2: Randomized Rounding

input : MAX-SAT instance f with n variables x1, . . . , xn and m clauses C1, . . . , Cm

output: T/F assignment for each xi

1 Formulate the ILP corresponding to f as above;
2 Solve the LP relaxation to obtain an optimal solution ŷ∗i , ẑ

∗
i ;

3 for i = 1, . . . , n do
4 Set xi = T with probability ŷ∗i and xi = F with probability 1− ŷ∗i ;

5 Output x1, . . . , xn;

That is, the ILP optimum is at most the LP optimum. This is why we say that the LP is a relaxation of the
ILP. With this, we have the following algorithm:

Notice that this algorithm indeed gives a feasible solution to the ILP because our choice of each xi is
equivalent to setting each ILP variable

yi =

{
1, with probability ŷ∗i
0, with probability 1− ŷ∗i ,

which is valid because 0 ≤ ŷ∗i ≤ 1.

Theorem 8.6 Algorithm 2 is a (1− 1/e)-approximation for MAX-SAT.

Before we prove Theorem 8.6, we introduce additional notation. Let W denote the number of satisfied
clauses by the assignment output by the algorithm. For each j ∈ {1, . . . ,m}, let

Wj =

{
1, if clause Cj is satisfied

0, if clause Cj is not satisfied.

Notice that W =
∑m

j=1Wj . We also prove the following preliminary results.

Claim 8.7 Let k ≥ 1 be an integer. For each α ∈ [0, 1],

1−
(

1− α

k

)k
≥ 1−

(
1− 1

k

)k

α.

Proof of Claim 8.7: Define f : R→ R by

f(α) = 1−
(

1− α

k

)k
.

Notice that

f ′′(α) =
−(k − 1)

k

(
1− α

k

)k−2
≤ 0

if α ∈ [0, 1], so f is concave on [0, 1]. Moreover,

f(0) = 1−
(

1− 0

k

)k

= 0 = 1−
(

1− 1

k

)k

α

and

f(1) = 1−
(

1− 1

k

)k

= 1−
(

1− 1

k

)k

α.

Lecture 8: Method of Conditional Expectations & Randomized Rounding 8-5

Since 1−
(
1− 1

k

)k
α is linear on [0, 1], and equals f on the endpoints, it follows that

f(α) = 1−
(

1− α

k

)k
≥ 1−

(
1− 1

k

)k

α

if α ∈ [0, 1].

Lemma 8.8 Let Cj be a clause, and let k denote the number of literals in Cj. Then,

E[Wj] ≥ βkẑ∗j ,

where

βk = 1−
(

1− 1

k

)k

.

Proof of Lemma 8.8: Consider the LP relaxation and its solution ŷ∗i , ẑ
∗
j . By feasibility, we have 0 ≤ ẑ∗j ≤ 1

and ∑
i∈C+

j

ŷ∗i +
∑
i∈C−

j

(1− ŷ∗i) ≥ ẑ∗j .

By the AMGM inequality, ∏
i∈C+

j

(1− ŷ∗i)
∏

i∈C−
j

ŷ∗i


1/k

≤ 1

k

∑
i∈C+

j

(1− ŷ∗i) +
∑
i∈C−

j

ŷ∗i

 = 1− 1

k

∑
i∈C+

j

ŷ∗i +
∑
i∈C−

j

(1− ŷ∗i)

 ≤ 1−
ẑ∗j
k
.

Hence, ∏
i∈C+

j

(1− ŷ∗i)
∏

i∈C−
j

ŷ∗i ≤
(

1−
ẑ∗j
k

)k

.

Thus,

E[Wj] = Pr(Wj = 1)

= 1−
∏

i∈C+
j

(1− ŷ∗i)
∏

i∈C−
j

ŷ∗i

≥ 1−
(

1−
ẑ∗j
k

)k

(By the AM-GM inequality)

≥ 1−
(

1− 1

k

)k

ẑ∗j (By Claim 8.7)

= βkẑ
∗
j .

Proof of Theorem 8.6: For each integer k ≥ 1, recall that 1− 1
k ≤ e

−1/k and so(
1− 1

k

)k

≤ 1

e
.

Hence,

βk = 1−
(

1− 1

k

)k

≥ 1− 1

e
.

Lecture 8: Method of Conditional Expectations & Randomized Rounding 8-6

For each j ∈ {1, . . . ,m}, let kj denote the number of literals in clause Cj . Applying the above observation
to each kj , the expected number of satisfied clauses is given by

E[W] = E

 m∑
j=1

Wj

 =

m∑
j=1

E[Wj] ≥
m∑
j=1

βkj
ẑ∗j ≥

(
1− 1

e

) m∑
j=1

ẑ∗j ≥
(

1− 1

e

) m∑
j=1

z∗j ,

where we have used Equation 8.1 to obtain the final inequality. However,
∑m

j=1 z
∗
j is the maximum number

of satisfied clauses in the MAX-SAT instance. This implies that Algorithm 2 is a (1 − 1/e)-approximation
for MAX-SAT.

8.1.5 A Third Algorithm

We have presented two algorithms for approximating MAX-SAT. On classes of size k, Algorithm 1 gives a

(1 − 2−k)-approximation, while Algorithm 2 yields a βk = 1 −
(
1− 1

k

)k
-approximation. Thus, we have the

following approximation factors for MAX-kSAT:

k Simple LP max avg
1 1/2 1 1 3/4
2 3/4 3/4 3/4 3/4
3 7/8 19/27 7/8 > 3/4
≥ 4 1− 2−k

To obtain the best results, we may as well choose the best of the two algorithms. This idea was proposed
by Goemans and Williamson [1].

Algorithm 3: Best of Two

input : MAX-SAT instance f with n variables x1, . . . , xn and m clauses C1, . . . , Cm

output: T/F assignment for each xi

1 Run Algorithm 1 to get assignments x11, . . . , x
1
n;

2 Run Algorithm 2 to get assignments x21. . . . , x
2
n;

3 Output the assignment that maximizes the number of satisfied clauses;

Theorem 8.9 Algorithm 3 is a 3/4-approximation algorithm for MAX-SAT.

Proof: Let m1 denote the expected number of satisfied clauses by Algorithm 1, m2 denote the expected
number of satisfied clauses by Algorithm 2, and m∗ denote the optimal number of satisfied clauses. Also,
let ŷ∗i , ẑ

∗
j denote the optimal solution to the LP relaxation, and, for each integer k ≥ 1, let Sk be the set of

clauses with exactly k literals.
Since 0 ≤ ẑ∗j ≤ 1,

m1 =

∞∑
k=1

∑
Cj∈Sk

(1− 2−k) ≥
∞∑
k=1

∑
Cj∈Sk

(1− 2−k)ẑ∗j

and

m2 ≥
∞∑
k=1

∑
Cj∈Sk

(
1−

(
1− 1

k

)k
)
ẑ∗j .

Notice that (
1− 2−1

)
+

(
1−

(
1− 1

1

)1
)

=
(
1− 2−2

)
+

(
1−

(
1− 1

2

)2
)

=
3

2

Lecture 8: Method of Conditional Expectations & Randomized Rounding 8-7

and, for each integer k ≥ 3,

(
1− 2−k

)
+

(
1−

(
1− 1

k

)k
)
≥ 7

8
+ 1− 1

e
≥ 3

2
.

Hence, for each integer k ≥ 1, we have

(
1− 2−k

)
+

(
1−

(
1− 1

k

)k
)
≥ 3

2
.

Thus,

max{m1,m2} ≥
m1 +m2

2
≥
∞∑
k=1

∑
Cj∈Sk

(
1− 2−k

)
+
(

1−
(
1− 1

k

)k)
2

ẑ∗j ≥
∞∑
k=1

∑
Cj∈Sk

3

4
ẑ∗j ≥

3

4

m∑
j=1

ẑ∗j ≥
3

4
m∗,

which shows that Algorithm 3 is a 3/4-approximation algorithm for MAX-SAT.

References

[1] Goemans, Michel X. and Williamson, David P. New 3/4-Approximation Algorithms for the Maximum
Satisfiability Problem. SIAM Journal on Discrete Mathematics, 7(4):656-666, Nov 1994.

	Maximum Satisfiability (MAX-SAT)
	Problem Statement
	Random Assignment
	Derandomization
	Randomized Rounding
	Integer (Linear) Programming
	Reduction
	Algorithm

	A Third Algorithm

