
Lecture Notes on an FPRAS for Network Unreliability.
Eric Vigoda

Georgia Institute of Technology
Last updated for 7530 - Randomized Algorithms, Spring 2010. 1

In this lecture, we will consider the problem of calculating the probability that a given network fails, and
give a FPRAS (Fully Polynomial Randomized Approximation Scheme) for the same. The work on reliability
is due to Karger [2], and the earlier work on #DNF is due to Karp and Luby [4], which was later improved
by Karp, Luby and Madras [5].

1 Problem Statement

Fix an undirected graph G and 0 ≤ p ≤ 1. Let H be a graph obtained by deleting edges of G, independently
with probability p. Let FAILG(p) denote the probability that the graph H obtained as above is disconnected.
The network reliability problem is to calculate FAILG(p) given inputs G and p.

2 Overview

For an undirected graph H, let MINCUT(H) denote its min-cut. First observe that a graph H is disconnected
iff MINCUT(H) = 0. If G is an undirected graph and H is obtained by deleting some edges of G, then H
is disconnected iff the deleted edges contain some cut of G (not necessarily a min-cut). Hence, we have that

FAILG(p) = Pr (E(G) \ E(H) contains a cut of G) (1)

where E(G) denotes the edge set of G.

Since, calculating the exact value of FAILG(p) is #P-complete, we will try to develop an FPRAS for the
same, i.e. there is an algorithm A 3 ∀ε > 0,∀δ > 0 and all inputs (G, p), we have

(1− ε)FAILG(p) ≤ A(G, p) ≤ (1 + ε)FAILG(p),with probability ≥ 1− δ

and the running time of A is polynomial in the input size, 1/ε and log(1/δ). Here the input size is O(|G|+
log(1/p)).

One simple way to solve this problem is to keep generating random H’s, and observe how many of them
turn out to be disconnected. For this to work, we need to generate at least 1/FAILG(p) random H’s, and
then some if we want to keep the error down. Since FAILG(p) can be exponentially small, this algorithm
will not cut it.

If FAILG(p) is “polynomially small”, we do as suggested above. In the alternate case, we show that if in
equation (1), we keep only the terms corresponding to “small cuts”, then the right hand side, is a good
enough approximation to FAILG(p).

In the rest of this lecture, we make the terms “polynomially small” and “small cuts” more precise and show
that the algorithm does indeed work as advertised. For the rest of this lecture (G, p) denotes a fixed input

1 Based on scribe notes first prepared by Murali Krishnan Ganapathy at the University of Chicago in the winter quarter,
2003.

1

to our algorithm. Similarly, we fix some ε > 0 and δ > 0. Let C := MINCUT(G). This is calculated by
using Karger’s algorithm discussed in the previous lecture. Finally put q := FAILG(p) and observe that

q = FAILG(p) ≥ Pr(E(G) \ E(H) contains a specific cut) ≥ pC .

Now we consider two cases depending on whether pC is greater or smaller than n−4. This defines “polyno-
mially small”.

3 pC ≥ n−4

In this case, we show that the Monte Carlo method discussed before actually works. Put ` = 3n4

ε2 log(2/δ).
All in all, we do ` trials, and in each trial we create a random H by tossing coins of bias p, once for each
edge of G, and then check if the H generated is connected. Finally, we output the fraction of the H’s which
were connected.

For i = 1, . . . , `, set Xi equal to 1 if the i’th trial resulted in a disconnected graph and 0 otherwise, and put
X =

∑
i Xi. Since Pr(Xi = 1) = FAILG(p) = q, E(X) = q`. Since the Xi’s are independent, by Chernoff’s

bound we have,

Pr (|X − E(X)| ≥ εE(X)) ≤ 2 exp(−ε2q`/3)

≤ 2 exp(−ε2n−4 n4

ε2
log(2/δ))

= 2 exp(− log(2/δ))
= δ.

Each trial involves generating the random H, and testing it for connectedness. Checking connectedness takes
time O(|G|). Generating the random H requires time O(|G| log(1/p)), assuming that we only have access
to unbiased coins. So, total time is O(`|G| log(1/p)), which is polynomial in the size of the input, 1/ε and
log(1/δ).

4 Enumerating small cuts

In this section we consider the problem of enumerating the “small cuts”. This will be used as a subroutine
to solve the main problem at hand. The algorithm is a variation of Karger’s min-cut algorithm [1] to find a
cut of size ≤ αC, where α > 1 is a parameter:

1. Pick a random edge and contract it (eliminating self loops and keeping multiple edges).

2. Repeat step 1, till there are k := d2αe meta-vertices left.

3. Choose a random subset T of these k-vertices.

4. If the cut defined by T and its complement, has size ≤ αC, output it.

2

Fix a cut S of size ≤ αC. For the above algorithm to output S, it must not choose any edge in S during
step 1, and in step 3, the random subset T should correspond to one side of the cut defined by S. Since
every vertex (of every intermediate graph) has degree ≥ C (since C = MINCUT(G)),

Pr(S survives till step 3) ≥
n−k−1∏

t=0

(
1− αC

(n− t)C/2

)

=

(
n−2α

k

)(
n
k

) (2)

≥ 1(
n
k

) (3)

Hence,

Pr(output = S) ≥ 1(
n
k

)2−k+1

≥ 2
(

k

2en

)k

≥ n−k assuming α > 2
= n−d2αe

Since S was an arbitrary cut of size ≤ αC, we have that the number of cuts of size ≤ αC is ≤ nd2αe. This
bound can be easily improved to n−2α if we replace the right hand side of equation (2) with

(
k
2α

)
/
(

n
2α

)
, whose

definition would involve Γ functions.

In order to enumerate all “small cuts” with high probability, we repeat the above algorithm r := θ log(θ/δ)
times, where θ = nd2αe. For a specific cut S,Pr(S was not the result of the i’th trial) ≤ 1 − 1/θ. Hence
the probability that S was not the result any of the r-trials is bounded above by (1 − 1/θ)r. This implies
that the probability that some “small cut” did not appear in any of the r-trials, is bounded above by
θ(1− θ−1)θ log(θ/δ) ≤ δ.

This gives us an algorithm which for any α > 1, δ > 0, enumerates all cuts of a graph of size ≤ αC with
probability 1− δ and running time O(rn2).

5 A FPRAS for #DNF

In this section, we consider the problem of estimating the number of satisfying assignments of a DNF formula,
and its weighted version.

Let Φ be a DNF formula with M clauses θ1, . . . , θM . Let ri be the number of literals appearing in θi. Let
N denote the total number of distinct variables in Φ. Without loss of generality assume Φ is satisfiable
(checking this can be done in time O(

∑
ri). Let 0 ≤ p ≤ 1, be given. Consider a random assignment with

bias p. We wish to calculate the probability, f(Φ), of the random assignment satisfying Φ. In case p = 1/2,
it reduces to the problem of counting the number of satisfying assignments.

The obvious trick of choosing a random assignment (with required bias) and checking if it satisfies Φ is out
of question, since f(Φ) can be exponentially small. Let wi denote the probability that a random assignment
satisfies the i’th clause. If pi and ni denote the number of positive and negative literals appearing in θi, then
wi = ppi(1− p)ni . Finally, put Z =

∑
i wi. Consider the following algorithm:

3

1. Choose a random clause θi, with probability of selecting θi equal to wi/Z.

2. Choose a random assignment σ satisfying θi.

3. Calculate S = Z/N(σ), where N(σ) is the number of clauses satisfied by σ.

4. Repeat steps 1-3 t := (4M/ε2) times, and output the observed mean.

First we show that E(S) = f(Φ). For any assignment σ, let w(σ) denote the probability that a random
assignment equals σ, i.e. w(σ) = pa(1 − p)b, where a is the # of variables set to 1 and b = N − a is the #
of variables set to 0.

Pr(choosing σ in step 2 |θi in step 1) = w(σ)/wi

=⇒ E(S|θi in step 1) =
∑

σ:σ|=θi

Z

N(σ)
w(σ)
wi

This gives

E(S) =
∑

i

wi

Z

∑
σ|=θi

Z

N(σ)
w(σ)
wi

=
∑

i

∑
σ|=θi

w(σ)/N(σ)

=
∑
σ|=Φ

∑
i:σ|=θi

w(σ)/N(σ)

=
∑
σ|=Φ

w(σ)/N(σ)
∑

i:σ|=θi

1

=
∑
σ|=Φ

w(σ)

= f(Φ)

Similarly

E(S2) =
∑

i

wi

Z

∑
σ|=θi

Z2

N(σ)2
w(σ)
wi

=
∑

i

∑
σ|=θi

Z

N(σ)2
w(σ)

=
∑
σ|=Φ

Z

N(σ)
w(σ)

≤ Zf(Φ)

the last inequality following from the fact that N(σ) ≥ 1 if σ |= Φ. Now V ar(S) = E(S2) − E(S)2 ≤
(Z/f(Φ) − 1)f(Φ)2 ≤ (M − 1)f(Φ)2. To see that Z ≤ Mf(Φ), define Ai to be the event that a random σ
satisfies θi and note that Z =

∑
i wi =

∑
i Pr(Ai) ≤ M Pr(∪iAi) = Mf(Φ).

4

Now let S1, . . . , St denote the observed values during the run of the algorithm, and let Ŝ be the observed
mean, i.e. Ŝ = (

∑
i Si)/t. Clearly, E(Ŝ) = E(S) = f(Φ) and V ar(Ŝ) = V ar(S)/t ≤ (M − 1)f(Φ)2/t. Now

applying Chebychev’s inequality, we have

Pr
(
|Ŝ − f(Φ)| ≥ εf(Φ)

)
≤ Pr(

(
|Ŝ − f(Φ)| ≥ ε

√
t√

M − 1

√
V ar(Ŝ)

)
≤ M − 1

ε2t
≤ 1/4

To reduce the error probability to less then δ, we repeat the above procedure log(1/δ) times and output the
median of all the observed means.

6 pC ≤ n−4

Now back to the original network reliability problem. In the case when q = FAILG(p) is small, we use
equation 1, and consider only the terms on the right hand side corresponding to “small cuts”. We now show
that that one can choose α > 1, so that if we restrict ourselves to only those terms which correspond to cuts
of size ≤ αC, then the error we introduce is small. Then we enumerate all small cuts and approximate the
probability using the FPRAS for #DNF.

Choose ζ ≥ 2 such that pC = n−(2+ζ). Let H be a random graph obtained from G by removing some edges
(in the prescribed manner). Then

Pr(some cut of size ≥ αC fails in H) ≤
∫

β≥α

n2βpβCdβ

≤
∫

β≥α

n−ζβdβ

= O(1) ∗ n−ζα

Setting α = 2− ln(ε/O(1))/ζ lnn, we see that Pr(large cut failing in H) ≤ εn−2ζ ≤ εpC ≤ εq. Therefore, by
ignoring all “large cuts” (i.e. those of size > αC), we calculate FAILG(p) to within a multiplicative factor
of 1± ε.

Now, we enumerate all the “small cuts”, using the algorithm from Section 4. Let C1, . . . , Cr be the “small
cuts”. Define a DNF formula Φ over the variables {xe}e∈E(G) as follows. For each cut Ci, define the clause
θi = ∧e∈Ci

x̄e. Set xe to true if the edge appears in H, and false otherwise. Then θi evaluates to true exactly
when the cut Ci fails in H. Hence Φ evaluates to true iff some “small cut” fails in H. So, we are left with
the problem of evaluating the probability that a random assignment of truth values to xe (true with prob
p) satisfies Φ. This is solved using the FPRAS of section 5.

7 Putting it all together

Combining all the previous discussion the final algorithm is:

1. C = MINCUT(G)

2. If pC > n−4 goto step 3, else goto step 4

5

3. (Monte Carlo) Using ` := 3n4

ε2 log(2/δ) trials, estimate FAILG(p) to within 1 ± ε with probability
1− δ and end program.

4. Calculate α = 2− ln(ε/O(1))/ζ lnn, where ζ satisfies pC = n−2−ζ .

5. Using the extension of Karger’s min-cut algorithm described in Section 4, enumerate all cuts of size
≤ αC, with probability 1− δ.

6. Construct the DNF Φ as described in Section 6.

7. Using FPRAS of section 5 evaluate f(Φ) to within a multiplicative error of 1+ ε with probability 1−δ.

8. Output f(Φ)

This algorithm calculates FAILG(p) to within a multiplicative error of (1 ± ε) with probability (1 − δ)2.
Each step takes polynomial time with respect to its input,1/ε and log(1/δ). Composing all this we get an
algorithm whose running time is polynomial in |G|, | log p|, 1/ε and | log δ|, and the cumulative multiplicative
error is bounded by (1± ε) with error probability bounded by 1− (1− δ)2.

8 Open problems

An interesting open problem is to devise a deterministic approximation algorithm for FAILG(p). Karger
[3] showed that his approach can be efficiently derandomized when FAILG(p) ≤ 1/n4. However it is open
how to derandomize the case FAILG(p) > 1/n4, which was the somewhat trivial case for the randomized
algorithm. The high-level idea for the deterministic algorithm for small failure probabilities is the following.
There is an efficient deterministic algorithm to list all small cuts via max-flow computations. Then FAILG(p)
can be estimated via inclusion-exclusion where only the first few terms are needed for a sufficient estimate.

References

[1] D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, TX, 1993),
pages 21–30, New York, 1993. ACM.

[2] D. R. Karger. A randomized fully polynomial time approximation scheme for the all-terminal network
reliability problem. SIAM J. Comput., 29(2):492–514, 1999.

[3] D. R. Karger. A randomized fully polynomial time approximation scheme for the all-terminal network
reliability problem. SIAM Rev., 43(3):499–522, 2001. Reprint of SIAM J. Comput. 29 (1999), no. 2,
492–514.

[4] R. M. Karp and M. Luby. Monte Carlo algorithms for the planar multiterminal network reliability
problem. J. Complexity, 1(1):45–64, 1985.

[5] R. M. Karp, M. Luby, and N. Madras. Monte Carlo approximation algorithms for enumeration problems.
J. Algorithms, 10(3):429–448, 1989.

6

	Problem Statement
	Overview
	pC n-4
	Enumerating small cuts
	A FPRAS for #DNF
	pC n-4
	Putting it all together
	Open problems

