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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
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Topics for the next couple weeks:

• Introduction to Conductance

• Spectral Gap

7.1 Coloring

We will continue our discussion of coupling and mixing time from last week, this time using the (slightly
more complicated) example of coloring.

Given k different colors and an undirected graph G = (V,E) whose maximum-degree vertex has degree
4, a valid coloring is defined as the assignment of a color to each vertex such that no adjacent vertices have
the same colors. Formally, we can define a coloring as:

σ : V 7→ {1, ..., k}, where ∀(v, w) ∈ E, σ(v) 6= σ(w).

If we define Ω as the set of all valid k-colorings, figuring out |Ω| is a #P -complete problem. We can, however,
design a Markov Chain and a coupling scheme to get a rapid mixing time, thus allowing us to sample u.a.r.
from Ω. We will show that rapid mixing can be obtained if k > 24. We will do this in two stages: (1) use
identity coupling to show rapid mixing time when k > 34, then (2) use path coupling to accomplish the
same when k > 24.

7.2 Markov Chain

As always, we will start by designing an ergodic Markov Chain whose distribution is uniform over Ω. The
transition matrix P will adhere to the following scheme:

From any valid state Xt ∈ Ω,

1. Choose v ∈ V u.a.r. and a color c ∈ {1, ..., k} u.a.r.

2. For all w ∈ V \ v, set Xt+1(w) = Xt(w).

3. Xt+1(v) =

{
c if c /∈ Xt(N(v)), where N(v) = set of all neighboring vertices to v

Xt(v) otherwise.

7-1

https://www.cc.gatech.edu/~vigoda/7535


7-2 Lecture 7: September 14

The chain is aperiodic (since P (σ, σ) > 0, as outlined above) and irreducible when k ≥ 4+2. (To see why we
cannot establish irreducibility when k = 4+1, consider a complete graph such as K3 with k = 3, and notice
that it is impossible to transition from one state to another.) When k ≥ 4 + 2, we can show irreducibility
in the following way. Let X,Y ∈ Ω be any two valid states (i.e. two valid colorings). We can transition
(eventually) from X to Y by arbitrarily ordering the vertices v1, ..., vn, and then sequentially re-coloring the
vertices in X one by one to match the corresponding vertices in Y . If there is any conflict along the way
for a vertex vi in X such that coloring vi to match the corresponding vertex in Y would cause X’s coloring
to be invalid, then it must be because vi is somehow ”blocked” by at least one neighboring vertex vj in X
where j > i. But since k ≥ 4+ 2, it is always possible to temporarily re-color vj with some other valid color
so as to allow vi to be colored as needed, and then continue on to vi+1. (Note that it is never necessary to
re-color some other neighboring vertex vl where l < i to resolve the conflict for vi, because the coloring for
v1, ..., vi in X is valid by virtue of the fact that Y is a valid coloring.)

Since the chain is aperiodic and irreducible, it is ergodic. Additionally, for any pair of states (i, j) ∈ Ω,
P (i, j) = P (j, i) = 1

nk if it is possible to transition from i to j in a single time step, and 0 otherwise. Thus,
π is unique and has a uniform distribution. We will now proceed with identity coupling to show that when
k > 34, Tmix = O(n log n).

7.3 Identity Coupling

Let Xt, Yt be a pair of colorings at time t. Choose, u.a.r, the same vertex v and same color c for both Xt

and Yt, and for each state re-color v with c only if doing so would be legal. It should be clear that this
coupling scheme will sometimes result in a ”bad” outcome, i.e. one in which the number of disagreeing
vertices increases after a time step. Let’s make this more concrete by defining the concept of ”agreeing” and
”disagreeing” vertices at time t:

At = {v : Xt(v) = Yt(v)}
Dt = {v : Xt(v) 6= Yt(v)}

Let us now compute the probability of such a ”bad” outcome. The only way this outcome can occur is if
Xt(v) = Yt(v) and the color c is legal for exactly one of the two states. There are a total of |At| vertices
that agree at time t, and assuming that v ∈ At, there are at most 2δt(v) colors that would cause the ”bad”
outcome, where δt(v) = |Dt ∩N(v)|. In other words, the number of ”bad” colors is bounded from above by
twice the number of disagreeing neighbors of v at time t. As an illustrative example, Fig. 7.1 below shows
that there are a total of 4 disagreeing neighbors of vertex v between the two states, and 2(4) = 8 bad colors
to choose from. It should be clear that in this example, the number of bad colors cannot exceed 8 no matter
how the neighboring vertices were colored.
Therefore, in general the total number of ”bad” outcomes from one time step to the next is

∑
v∈At

2δt(v),
and thus

Pr(|Dt+1|= |Dt|+1) =
1

nk

∑
v∈At

2δt(v)

where the normalizing factor 1
nk reflects the fact that we have a total of n vertices and k colors to choose

from.

Let us now compute the probability of a ”good” outcome, where |Dt+1|= |Dt|−1. A good outcome occurs
when v ∈ Dt and c is legal for both states (i.e. no neighboring vertex in either Xt or Yt contains color c).
The number of such good outcomes given v ∈ Dt is bounded from below by:

∑
v∈Dt

(k− 24+ at(v)), where
at(v) = |At ∩N(v)|. To convince yourself this lower bound is correct, consider Fig. 7.2 and note that there
are a total of k − 2(4) + 2 valid colors to choose from (as Y,B,M,R,O, and C are the only ”bad” colors),
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Figure 7.1: An example of Xt and Yt, with vertex v as shown and the capital letters indicating the color associated
with each vertex.

and that this lower bound would remain the same if we were to change the color of a neighboring vertex
from its current color M to R, such that in each state two neighboring vertices now have R as their color,
and the number of ”bad” colors has shrunk from 6 to 5 (Y,B,R,O, and C).

Figure 7.2: Another example of Xt and Yt, with slightly different coloring.

Hence, we can compute the probability of a ”good” outcome:

Pr(|Dt+1|= |Dt|−1) ≥ 1

nk

∑
v∈Dt

k − 24+ at(v)

We are now ready to compute an upper bound on the expected value of |Dt+1|:

E[|Dt+1] ≤ |Dt|+
1

nk

∑
v∈At

2δt(v)− 1

nk

∑
v∈Dt

(k − 24+ at(v))

≤ |Dt|+
1

nk

[∑
v∈At

2δt(v)−
∑
v∈Dt

2at(v)−
∑
v∈Dt

(k − 34)

]
since 24− at(v) ≤ 34− 2at(v)

≤ |Dt|+
1

nk
(0− |Dt|) since

∑
v∈At

2δt(v) =
∑
v∈Dt

2at(v), and k − 34 ≥ 1

= |Dt|
(

1− 1

nk

)
.
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Now recall that Pr(Xt 6= Yt) ≤ E[|Dt|], and that by induction E[|Dt|] ≤ |D0|
(
1− 1

nk

)t
. Therefore,

Pr(Xt 6= Yt) ≤ E[|Dt|] ≤ |D0|
(

1− 1

nk

)t
≤ ne

−t
nk ≤ 1

4
for t ≥ nk log (4n).

We have thus achieved a coupling time Tcouple with high confidence ≥ 3
4 , and by extension shown that Tmix

is bounded asymptotically by O(nk log n) in the event where k > 34. As a reminder, what we have shown
is related to mixing time simply by assuming that Y0 is sampled from the stationary distribution π (which
is allowed since Y0 can be any arbitrary starting state), and we are assured with a high probability that
Xt = Yt, meaning the total variation distance between Xt, Yt is ≤ 1

4 .

Next, we will improve upon our result by letting k > 24 and showing via a different coupling scheme
the same upper bound for Tmix.

7.4 Path Coupling

We will assume the same Markov Chain as before. Recall that |Dt|=the total number of disagreeing vertices
between states Xt, Yt at time t. We can equivalently think of this as the Hamming Distance H(Xt, Yt). It
turns out that if we can devise an improved coupling scheme for the situation where H(Xt, Yt) = 1, then we
can use this to derive a better coupling for any arbitrary pair of states.

Let us consider a pair of states Xt, Yt where H(Xt, Yt) = 1 and z is the sole disagreeing vertex. As be-
fore, we stipulate that a vertex v and color c are each chosen uniformly at random. We will analyze three
possible cases:

1. v /∈ z ∪N(z). In this case, we know v ∈ At and that v ∈ At+1 since the chosen color c will be either
legal for both states or illegal for both states. Therefore, H(Xt+1, Yt+1) = 1. This is neither a ”bad”
nor a ”good” outcome.

2. v = z. In this case a ”bad” outcome isn’t possible, and there are at least k −4 ”good” color choices
which would cause Xt+1 = Yt+1.

3. v ∈ N(z). In this case a ”good” outcome isn’t possible, and there are at most 2 ”bad” color choices
which would cause H(Xt+1, Yt+1) = H(Xt, Yt) + 1.

In general, then, the probability of ”good” and ”bad” outcomes provided that H(Xt, Yt) = 1 is as follows:

Pr(|Dt+1|= 0 | H(Xt, Yt) = 1) ≥ k −4
nk

Pr(|Dt+1|= 2 | H(Xt, Yt) = 1) ≤ 24
nk

Thus, if we make no changes to our previous identity coupling scheme and maintain the constraint of k > 34,
we can verify the conditional expectation E[|Dt+1| | |Dt|= 1] ≤ |Dt|−k−4nk + 24

nk = 1− 1
nk (k−34) ≤ 1− 1

nk .
But now we can let k > 24 by improving our coupling for case 3 above: Assume that v ∈ N(z) and
the two ”bad” colors are {R,B}. If the randomly chosen color c ∈ {R,B}, then let Xt+1(v) = c and
Yt+1(v) ∈ {R,B} \ {c} provided the coloring is legal, otherwise let Xt+1(v) = Xt(v) and Yt+1(v) = Yt(v).
Notice that with this new coloring scheme, we still preserve the marginal randomness for the individual states
(when looked at isolation, Xt and Yt are each a faithful copy of the original Markov Chain that adheres to
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the transition matrix P ), but now there is only one ”bad” color choice when v ∈ N(z). This means that the
conditional expected value is now:

E[|Dt+1| | |Dt|= 1] ≤ |Dt|−
k −4
nk

+
4
nk

= 1− 1

nk
(k − 24) ≤ 1− 1

nk

where k > 24.

The good news is that we can use the above result to devise a coupling for other pairs of states with
Hamming Distances greater than 1. Suppose we have a pair of states (X,Y ) ∈ Ω2 where H(X,Y ) = l, l > 1.
We can define a sequence W0,W1, ...,Wl ∈ Ω where:

(a) ∀i,H(Wi−1,Wi) = 1.

(b) W0 = X,Wl = Y .

Essentially, we have constructed a ”shortest path” from X to Y where all of the intermediate states Wi are
such that adjacent states are apart by one Hamming Distance. Recall the coupling scheme we previously
devised and notice that it can simply be thought of as a function: given a set of colors to be assigned to state
Xt, we can figure out the set of colors to be assigned to state Yt. Now it is clear that for every i ≤ l, there is
a coupling for (Wi−1,Wi). We can thus compose couplings (similar to how we can compose functions) along
the path W0,W1, ...,Wl, as follows:

• Map (W0 = X,W1) to (W ′0 = X ′,W ′1) according to the coupling, where W0 → W ′0 is a random
transition, and the same is true for W1 →W ′1.

• For each i ≥ 1, map (Wi,Wi+1) to (W ′i ,W
′
i+1) in accordance to the coupling, conditional on W ′i already

having been chosen.

Continue this process all the way to Wl = Y and W ′l = Y ′. Then we have constructed a coupling for
(X,Y ) → (X ′, Y ′) via composition. It remains to be proven how good this coupling is in terms of the
expected change in Hamming Distance:

E[H(X ′, Y ′)] ≤ E

[
l∑
i=1

H(W ′i−1,W
′
i )

]

=

l∑
i=1

E[H(W ′i−1,W
′
i )]

≤
l∑
i=1

(
1− 1

nk

)
for k > 24

= l

(
1− 1

nk

)
= H(X,Y )

(
1− 1

nk

)

In other words, we have just shown that with the above path coupling, E[|Dt+1|] = |Dt|
(
1− 1

nk

)
, and by

extension E[|Dt|] ≤ n
(
1− 1

nk

)t
, meaning that once again we have

Pr(Xt 6= Yt) ≤ n
(

1− 1

nk

)t
≤ 1

4
for t ≥ nk ln (4n), k > 24.
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We finish by stating the Path Coupling Theorem (Bubley, Dyer ’97):

Theorem 7.1 For a finite ergodic Markov chain ∈ Ω, let S ⊆ Ω × Ω such that (Ω, S) is connected. For
(X,Y ) ∈ Ω×Ω, let dist(X,Y ) = length of shortest path between X and Y in (Ω, S). If there exists β < 1 such
that ∀(Xt, Yt) ∈ S, there exists a coupling (Xt, Yt)→ (Xt+1, Yt+1) where E[dist(Xt+1, Yt+1)] ≤ βdist(Xt, Yt),

then Tmix(ε) ≤ log(Dmax/ε)
1−β , where Dmax = max

(X,Y )∈Ω2
(dist(X,Y )).
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