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5.1 Markov Chains

Example:
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Transition matrix for the above Markov Chain: P =


0.5 0.5 0 0
0.2 0 0.5 0
0 0.3 0.7 0

0.7 0 0 0.3


Let Ω be the set of all possible states and Xt ∈ Ω be a random variable representing the state at discrete
time t ≥ 0. P is an N ×N transition matrix representing the Markov Chain. P is stochastic, meaning all
of the elements in a given row sum to 1.

For a pair of state i, j ∈ Ω, Pr(Xt+1 = j|Xt = i) = P (i, j):

Pr(Xt+2 = j|Xt = 1) =
∑
k∈Ω

Pr(Xt+1 = k|Xt = i)Pr(Xt+2 = j|Xt+1 = k) (5.1)

=
∑
k

P (i, k)P (k, j) (5.2)

= P 2(i, j) (5.3)

5-1

https://www.cc.gatech.edu/~vigoda/7535


5-2 Lecture 5: September 5

Furthermore,

Pr(Xt+` = j|Xt = i) = P `(i, j) (5.4)

Let µt be an N -length vector representing the distribution of the states at time t such that the sum of all
element sum to 1. In other words, element i of µt is the probability of being at state i at time t.

X0 ∼ µ0 (distribution at time 0) (5.5)

X1 ∼ µ1 = µ0 ∗ P (5.6)

Xt ∼ µt = µ0 ∗ P t (5.7)

As t→∞,

lim
t→∞

P t =


−π−
−π−
−π−
−π−

 (5.8)

where π is an eigenvector with eigenvalue 1. In other words, no matter what state you started in, each row
will end up with the same distribution.

When is there a stationary distribution π? If the system is ergodic, than there is a unique stationary
distribution.

Ergodic means that:

• ∀ i, j ∃ t such that P t(i, j) > 0

• Another way to look at ergodicity is that if we look at a graph for P t, it will be fully-connected

• Ergodic implies irreducible and aperiodic (and vice versa)

• Irreducible: ∀ i, j ∃ t such that P t(i, j) > 0 (graph defined by P is 1 strongly connected component)

• Aperiodic: for state i ∈ Ω, let Ti = {t : P t(i, i) > 0}. Aperiodic means that ∀ i gcd(Ti) = 1, which
means there is no periodic structure.

Theorem 5.1 For a finite ergodic Markov chain, ∃ a unique stationary distribution on π and ∀ X0,
limt→∞Xt ∼ π. For all i, j ∈ Ω, limt→∞ P t(i, j) = π(j). What is π? If P is symmetric (i.e. P (i, j) =
P (j, i)), then π = Uniform(Ω) and πP = π.

(πP )(i) = π(i) = 1
N where N = |Ω|...

(πP )(i) =
∑
k

π(k)P (k, i) =
∑
k

1

N
P (k, i) (5.9)

=
1

N

∑
k

P (k, i) =
1

N

∑
k

P (i, k) by symmetry of P (5.10)

=
1

N
(1) =

1

N
(5.11)
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P is reversible with respect to π if ∀i, j, π(i)P (i, j) = π(j)P (j, i).

(πP )(i) =
∑
k

π(k)P (k, i) =
∑
k

π(i)P (i, k)

= π(i)
∑
k

P (i, k) = π(i)(1) = π(i)

Typically, the only way we can see what π is if P is symmetric or reversible with respect to π.

For a d-regular (every node has exactly d neighbors), undirected graph G = (V,E), in a random walk at
state i, there is a probability of 1

2 of staying at state i and a probability of 1
2 to move to one of its neighboring

d states, and for edge (i, j) ∈ E, the probability P (i, j) of moving along this edge is 1
d (also, because it is

undirected, P (i, j) = 1
d = P (j, i)). Thus, π = Uniform(V ).

For a non-regular graph, π(i) = deg(i)
z where z =

∑
i deg(i) = 2m. And in this case,

π(i)P (i, j) =
deg(i)

z
· 1

2
· 1

deg(i)
=

1

2z
= πP (j, i)

5.2 MCMC: Markov Chain Monte Carlo

Let G = (V,E) be an undirected graph and Ω is the set of all matchings in G. The goal is to sample uniformly
from Ω, so we can design a Markov chain model.
From Xt ∈ Ω,

1. Choose an edge e ∈ E uniformly at random.

2. X ′ = Xt ⊕ e =

{
Xt ∪ e if e /∈ Xt

Xt \ e if e ∈ Xt

3. If X ′ ∈ Ω with probability 1
2 set Xt+1 = X ′. Else Xt+1 = Xt.

A random walk will eventually lead to a matching.

For m ∈ Ω, P (m,m) ≥ 1
2 , G is aperiodic. ∀m,m′ ∈ Ω, P t(m,m′) > 0, G is irreducible. If G is ergodic and

symmetric, then π = Uniform(Ω). How fast does Xt → π? We don’t need an exact sample from π, but we
want a sample from a distribution that is close to π.

5.3 Mixing Time

Recall the definition for mixing time,

Tmix(ε) = max
X0

min{t : dTV (P t(X0, ·), π) ≤ ε} (5.12)

For X0, ε > 0, TX0
mix = min{t : dTV (P t(X0, ·), π) ≤ ε}.

Tmix(ε) = max
X0

TX0
mix(ε)

Tmix(ε) = Tmix(
1

4
) log(

1

ε
)



We will later prove the mixing time for this method is O(mn).

5.4 Ising Model

The Ising Model is used by physicists to model ferromagnetic solids. Let Ω = {+1,−1} where +1 and −1
are possible electron states. For σ ∈ Ω, energy is calculated by using the Hamiltonian H(σ) = number
of monochromatic edges. For β > 0, β = 1

T (where β is the inverse temperature) and ω(σ) = e−βH(σ) =
eβ∗#monochromatic edges.

The Gibbs distribution is

µ(σ) =
ω(σ)

Z
(5.13)

where Z =
∑
σ∈Ω ω(σ) is the normalizing factor. We want to design a Markov chain with the above µ(σ)

Gibbs distribution.

A Markov chain can also be implemented via a Metropolis chain. To do this, take Xt ∈ Ω,

1. Choose v ∈ V uniformly at random and s ∈ {+1,−1} uniformly at random.

2. Set X ′(w) = Xt(w) for w 6= v.

3. Go to Xt+1 = X ′ with probability from the Metropolis filter min{1, ω(X′)
ω(Xt)

}, else set Xt+1 = Xt

The Gibbs distribution and Metropoplis chain can be used to sample from and approximate a distribution.

Miscellaneous notes

• Jerrum’s book is available online on his website.

• The Levin, Wilmer, Peres book is available on Prof. Vigoda’s website.
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6.5 Coupling:

6.5.1 Definition:

For a finite space Ω, where µ and ν are two distributions on Ω, a coupling is a joint distribution w on Ω×Ω,
such that ∀i

∑
j∈Ω w(i, j) = µ(i) and ∀j

∑
i∈Ω w(i, j) = ν(j).

For distributions µ = ( 1
2 ,

1
4 , 0,

1
4 ) and ν = ( 1

3 ,
1
3 ,

1
3 , 0) Here are two examples of couplings of µ, ν:

w1 =


1
3

1
12

1
12 0

0 1
8

1
8 0

0 0 0 0
0 1

8
1
8 0



w1 =


1
3

1
12

1
12 0

0 1
4 0 0

0 0 0 0
0 0 1

4 0



6.5.2 Coupling Lemma:

(a) for any coupling w of µ and ν, dtv(µ, ν) ≤ P (σ, τ), where σ and τ forms a sample that is drawn from the
coupling.

(b) there exists a coupling where dtv(µ, ν) = P (σ, τ), which is called the optimal coupling

Proof:

(a)

P (σ = τ) =
∑
η∈σ

w(η, η) (6.14)

≤
∑
η

min(µ(η), ν(η)) (6.15)
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P (σ 6= τ) ≥ 1−
∑
η∈σ

w(η, η) (6.16)

≥
∑
η

µ(η)−min(µ(η), ν(η)) (6.17)

because for cases where µ(η) ≤ ν(η), above equation will be 0

=
∑

η:µ(η)>ν(η)

(µ(η)− ν(η)) (6.18)

= max
S⊂Ω

µ(S)− ν(S) (6.19)

= dtv(µ, ν) (6.20)

(6.21)

(b)

To obtain equality, we need w(η, η) = min(µ(η), ν(η))

6.5.3 Coupling to bound MCMC mixing time

Say we want to bound the mixing time of a Markov chain on Ω with P, how we will use coupling to bound
the mixing time?

1. make two copies of the chain Xt and Yt

2. design their transition probability so that Xt, Yt form a coupling

3. make sure that once they agree they will agree later

4. then we can bound the mixing time of the chain by P (σ 6= τ) using the property of the coupling

To form a coupling with Xt and Yt, we need that:

∀i, j, k, l ∈ Ω:

P (Xt+1 = k | Xt = i, Yt = j) = P (i, k) ∈ P
P (Yt+1 = l | Xt = i, Yt = j) = P (j, l) ∈ P

plus if Xt = Yt then Xt+1 = Yt+1, so once they agree they agree afterwards

∀i, j ∈ Ω:

T i,jcouple = min{t : P (Xt 6= Yt | X0 = i, Y0 = j) ≤ 1

4
}

T i,jcouple is the mixing time bound when the chains start at i, j, Let

Tcouple = max
i,j

T i,jcouple

the total mixing time is then bounded by the max of all starting point, i.e., Tmix ≤ Tcouple
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Examples:

Random walk on hypercube:

Vertices are n bit strings. Edges are E(x,y) are two vertices, x and y differ in one coordinate. From
Xt ∈ V (set of all vertices):

1. with probability 1
2 stay at current state

2. with 1
2 probability choose a random neighbor, essentially picking a position of current string and flip the

bit

Another equivalent way of describing this is:

1. pick coordinate i ∈ {1...n} and b ∈ {0, 1} u.a.r

2. Set Xt+1(i) = b and Xt(j)

To form a valid coupling: if Xt = Yt: choose i, b, u.a.r if Xt 6= Yt: choose the same i and same b

Dt = {j : Xt(j) 6= Yt(j)}

Dt is the set of disagreeing bits between Xt and Yt at step t

At = {j : Xt(j) = Yt(j)}

At is the set of agreeing bits between Xt and Yt at step t

For example: Xt = 1100110 and Yt = 0101001

Pick a position i at random,

if i ∈ At, then

Dt+1 = Dt

if i ∈ Dt, then

Dt+1 = Dt \ {i}

E(|Dt+1|) = |Dt|∗(1−
1

n
)

E(|Dt|) = |D0| ∗(1−
1

n
)t

≤ n ∗ exp
−t
n

|D0| is bounded by n

P (Xt 6= Yt) ≤ E(|Dt|) ≤
1

4
with t = n ∗ ln(4 ∗ n)

because if Xt = Yt, P (Xt 6= Yt) = 0 and E(|Dt|) = 0 and if Xt 6= Yt, P (Xt 6= Yt) = 1 and E(|Dt|) ≥ 1
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Card Shuffling

Top-to-random shuffling: Ω is all permutations of n cards. Each state has n neighbours and transition is:

1. take top card

2. place in random position

It’s aperiodic because it has self loop. It’s irreducible because from a state µ you can go to any other state
using O(n2) time. Thus it’s ergodic and the stationary distribution π is unique.

P is double-stochastic ⇐⇒ π is uniform.

We study its inverse chain:

1. pick a random card

2. put it to the top

Let Xt and Yt be state at time t for two copies of this chain. At each time step, pick the same card to put
on t op.

T = time to choose any card

Ti = time to get the ith card to be identical between Xt and Yt

T =
∑
i

Ti where Ti is Geometric(pi) where

pi =
n− i+ 1

n

E(Ti) =
1

pi

=
n

n− i+ 1

E(T ) =

n∑
i=1

E(Ti)

=
∑ n

n− i+ 1

= n ∗ (
1

n− 1
+

1

n− 2
+ ...)

≤ n ∗ (1 + log n)

Pr(T > 4E[T ]) ≤ 1

4
Hence for T = 4n(1 + lnn)

Pr(XT 6= YT ) ≤ 1

4

Therefore the mixing time is Tmix = O(n log n)
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