CS 7535 Markov Chain Monte Carlo Methods		Fall 2017
	Lecture 5: September 5	
Lecturer: Prof. Eric Vigoda	Scribes	s: Alex Mueller (amueller35)

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Markov Chains

Example:

Transition matrix for the above Markov Chain: $P = \begin{bmatrix} 0.5 & 0.5 & 0 & 0\\ 0.2 & 0 & 0.5 & 0\\ 0 & 0.3 & 0.7 & 0\\ 0.7 & 0 & 0 & 0.3 \end{bmatrix}$

Let Ω be the set of all possible states and $X_t \in \Omega$ be a random variable representing the state at discrete time $t \geq 0$. *P* is an $N \times N$ transition matrix representing the Markov Chain. *P* is stochastic, meaning all of the elements in a given row sum to 1.

For a pair of state $i, j \in \Omega$, $Pr(X_{t+1} = j | X_t = i) = P(i, j)$:

$$Pr(X_{t+2} = j | X_t = 1) = \sum_{k \in \Omega} Pr(X_{t+1} = k | X_t = i) Pr(X_{t+2} = j | X_{t+1} = k)$$
(5.1)

$$=\sum_{k}P(i,k)P(k,j)$$
(5.2)

$$=P^2(i,j) \tag{5.3}$$

Furthermore,

$$Pr(X_{t+\ell} = j | X_t = i) = P^{\ell}(i, j)$$
(5.4)

Let μ_t be an N-length vector representing the distribution of the states at time t such that the sum of all element sum to 1. In other words, element i of μ_t is the probability of being at state i at time t.

$$X_0 \sim \mu_0$$
 (distribution at time 0) (5.5)

$$X_1 \sim \mu_1 = \mu_0 * P \tag{5.6}$$

$$X_t \sim \mu_t = \mu_0 * P^t \tag{5.7}$$

As $t \to \infty$,

$$\lim_{t \to \infty} P^t = \begin{bmatrix} -\pi - \\ -\pi - \\ -\pi - \\ -\pi - \\ -\pi - \end{bmatrix}$$
(5.8)

where π is an eigenvector with eigenvalue 1. In other words, no matter what state you started in, each row will end up with the same distribution.

When is there a stationary distribution π ? If the system is ergodic, than there is a unique stationary distribution.

Ergodic means that:

- $\forall i, j \exists t \text{ such that } P^t(i, j) > 0$
- Another way to look at ergodicity is that if we look at a graph for P^t , it will be fully-connected
- Ergodic implies irreducible and aperiodic (and vice versa)
- Irreducible: $\forall i, j \exists t \text{ such that } P^t(i, j) > 0 \text{ (graph defined by P is 1 strongly connected component)}$
- Aperiodic: for state $i \in \Omega$, let $T_i = \{t : P^t(i,i) > 0\}$. Aperiodic means that $\forall i \ gcd(T_i) = 1$, which means there is no periodic structure.

Theorem 5.1 For a finite ergodic Markov chain, \exists a unique stationary distribution on π and $\forall X_0$, $\lim_{t\to\infty} X_t \sim \pi$. For all $i, j \in \Omega$, $\lim_{t\to\infty} P^t(i, j) = \pi(j)$. What is π ? If P is symmetric (i.e. P(i, j) = P(j, i)), then $\pi = Uniform(\Omega)$ and $\pi P = \pi$.

 $(\pi P)(i)=\pi(i)=\frac{1}{N}$ where $N=|\Omega|...$

$$(\pi P)(i) = \sum_{k} \pi(k) P(k, i) = \sum_{k} \frac{1}{N} P(k, i)$$
(5.9)

$$= \frac{1}{N} \sum_{k} P(k,i) = \frac{1}{N} \sum_{k} P(i,k) \quad \text{by symmetry of P}$$
(5.10)

$$=\frac{1}{N}(1) = \frac{1}{N}$$
(5.11)

P is reversible with respect to π if $\forall i, j, \pi(i)P(i, j) = \pi(j)P(j, i)$.

$$\begin{aligned} (\pi P)(i) &= \sum_{k} \pi(k) P(k,i) = \sum_{k} \pi(i) P(i,k) \\ &= \pi(i) \sum_{k} P(i,k) = \pi(i)(1) = \pi(i) \end{aligned}$$

Typically, the only way we can see what π is if P is symmetric or reversible with respect to π .

For a *d*-regular (every node has exactly d neighbors), undirected graph G = (V, E), in a random walk at state *i*, there is a probability of $\frac{1}{2}$ of staying at state *i* and a probability of $\frac{1}{2}$ to move to one of its neighboring *d* states, and for edge $(i, j) \in E$, the probability P(i, j) of moving along this edge is $\frac{1}{d}$ (also, because it is undirected, $P(i, j) = \frac{1}{d} = P(j, i)$). Thus, $\pi = \text{Uniform}(V)$.

For a non-regular graph, $\pi(i) = \frac{deg(i)}{z}$ where $z = \sum_i deg(i) = 2m$. And in this case,

$$\pi(i)P(i,j) = \frac{\deg(i)}{z} \cdot \frac{1}{2} \cdot \frac{1}{\deg(i)} = \frac{1}{2z} = \pi P(j,i)$$

5.2 MCMC: Markov Chain Monte Carlo

Let G = (V, E) be an undirected graph and Ω is the set of all matchings in G. The goal is to sample uniformly from Ω , so we can design a Markov chain model. From $X_t \in \Omega$,

1. Choose an edge $e \in E$ uniformly at random.

2.
$$X' = X_t \oplus e = \begin{cases} X_t \cup e & \text{if } e \notin X_t \\ X_t \setminus e & \text{if } e \in X_t \end{cases}$$

3. If $X' \in \Omega$ with probability $\frac{1}{2}$ set $X_{t+1} = X'$. Else $X_{t+1} = X_t$.

A random walk will eventually lead to a matching.

For $m \in \Omega$, $P(m,m) \ge \frac{1}{2}$, G is aperiodic. $\forall m, m' \in \Omega$, $P^t(m,m') > 0$, G is irreducible. If G is ergodic and symmetric, then $\pi = \text{Uniform}(\Omega)$. How fast does $X_t \to \pi$? We don't need an exact sample from π , but we want a sample from a distribution that is close to π .

5.3 Mixing Time

Recall the definition for mixing time,

$$T_{mix}(\epsilon) = \max_{X_0} \min\{t : d_{TV}(P^t(X_0, \cdot), \pi) \le \epsilon\}$$
(5.12)

For $X_0, \epsilon > 0, T_{mix}^{X_0} = \min\{t : d_{TV}(P^t(X_0, \cdot), \pi) \le \epsilon\}.$

$$T_{mix}(\epsilon) = \max_{X_0} T_{mix}^{X_0}(\epsilon)$$
$$T_{mix}(\epsilon) = T_{mix}(\frac{1}{4})\log(\frac{1}{\epsilon})$$

We will later prove the mixing time for this method is O(mn).

5.4 Ising Model

The Ising Model is used by physicists to model ferromagnetic solids. Let $\Omega = \{+1, -1\}$ where +1 and -1 are possible electron states. For $\sigma \in \Omega$, energy is calculated by using the Hamiltonian $H(\sigma)$ = number of monochromatic edges. For $\beta > 0$, $\beta = \frac{1}{T}$ (where β is the inverse temperature) and $\omega(\sigma) = e^{-\beta H(\sigma)} = e^{\beta * \# \text{monochromatic edges}}$.

The Gibbs distribution is

$$\mu(\sigma) = \frac{\omega(\sigma)}{Z} \tag{5.13}$$

where $Z = \sum_{\sigma \in \Omega} \omega(\sigma)$ is the normalizing factor. We want to design a Markov chain with the above $\mu(\sigma)$ Gibbs distribution.

A Markov chain can also be implemented via a Metropolis chain. To do this, take $X_t \in \Omega$,

- 1. Choose $v \in V$ uniformly at random and $s \in \{+1, -1\}$ uniformly at random.
- 2. Set $X'(w) = X_t(w)$ for $w \neq v$.
- 3. Go to $X_{t+1} = X'$ with probability from the Metropolis filter $\min\{1, \frac{\omega(X')}{\omega(X_t)}\}$, else set $X_{t+1} = X_t$

The Gibbs distribution and Metropoplis chain can be used to sample from and approximate a distribution.

Miscellaneous notes

- Jerrum's book is available online on his website.
- The Levin, Wilmer, Peres book is available on Prof. Vigoda's website.

CS 7535 Markov Chain Monte Carlo Methods	Fall 2017
Lecture 6: September 7	
Lecturer: Prof. Eric Vigoda	Scribes: Tianhang Zhu (tzhu71)

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.5 Coupling:

6.5.1 Definition:

For a finite space Ω , where μ and ν are two distributions on Ω , a coupling is a joint distribution w on $\Omega \times \Omega$, such that $\forall i \sum_{j \in \Omega} w(i, j) = \mu(i)$ and $\forall j \sum_{i \in \Omega} w(i, j) = \nu(j)$.

For distributions $\mu = (\frac{1}{2}, \frac{1}{4}, 0, \frac{1}{4})$ and $\nu = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0)$ Here are two examples of couplings of μ, ν :

$$w_{1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{12} & \frac{1}{12} & 0\\ 0 & \frac{1}{8} & \frac{1}{8} & 0\\ 0 & 0 & 0 & 0\\ 0 & \frac{1}{8} & \frac{1}{8} & 0 \end{bmatrix}$$
$$w_{1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{12} & \frac{1}{12} & 0\\ 0 & \frac{1}{4} & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & \frac{1}{4} & 0 \end{bmatrix}$$

6.5.2 Coupling Lemma:

(a) for any coupling w of μ and ν , $d_{tv}(\mu, \nu) \leq P(\sigma, \tau)$, where σ and τ forms a sample that is drawn from the coupling.

(b) there exists a coupling where $d_{tv}(\mu,\nu) = P(\sigma,\tau)$, which is called the optimal coupling

Proof:

(a)

$$P(\sigma = \tau) = \sum_{\eta \in \sigma} w(\eta, \eta) \tag{6.14}$$

$$\leq \sum_{\eta} \min(\mu(\eta), \nu(\eta)) \tag{6.15}$$

$$P(\sigma \neq \tau) \ge 1 - \sum_{\eta \in \sigma} w(\eta, \eta) \tag{6.16}$$

$$\geq \sum_{\eta} \mu(\eta) - \min(\mu(\eta), \nu(\eta)) \tag{6.17}$$

because for cases where $\mu(\eta) \leq \nu(\eta)$, above equation will be 0

$$=\sum_{\eta:\mu(\eta)>\nu(\eta)}(\mu(\eta)-\nu(\eta))$$
(6.18)

$$= \max_{S \subset \Omega} \mu(S) - \nu(S) \tag{6.19}$$

$$= d_{tv}(\mu, \nu) \tag{6.20}$$

(6.21)

(b)

To obtain equality, we need $w(\eta, \eta) = \min(\mu(\eta), \nu(\eta))$

6.5.3 Coupling to bound MCMC mixing time

Say we want to bound the mixing time of a Markov chain on Ω with P, how we will use coupling to bound the mixing time?

- 1. make two copies of the chain X_t and Y_t
- 2. design their transition probability so that X_t, Y_t form a coupling
- 3. make sure that once they agree they will agree later
- 4. then we can bound the mixing time of the chain by $P(\sigma \neq \tau)$ using the property of the coupling

To form a coupling with X_t and Y_t , we need that: $\forall i, j, k, l \in \Omega$:

$$P(X_{t+1} = k \mid X_t = i, Y_t = j) = P(i, k) \in P$$

$$P(Y_{t+1} = l \mid X_t = i, Y_t = j) = P(j, l) \in P$$

plus if $X_t = Y_t$ then $X_{t+1} = Y_{t+1}$, so once they agree they agree afterwards $\forall i, j \in \Omega$:

$$T_{couple}^{i,j} = \min\{t : P(X_t \neq Y_t \mid X_0 = i, Y_0 = j) \le \frac{1}{4}\}$$

 $T_{couple}^{i,j}$ is the mixing time bound when the chains start at i, j, Let

$$T_{couple} = \max_{i,j} T_{couple}^{i,j}$$

the total mixing time is then bounded by the max of all starting point, i.e., $T_{mix} \leq T_{couple}$

Examples:

Random walk on hypercube:

Vertices are n bit strings. Edges are E(x,y) are two vertices, x and y differ in one coordinate. From $X_t \in V$ (set of all vertices):

1. with probability $\frac{1}{2}$ stay at current state

2. with $\frac{1}{2}$ probability choose a random neighbor, essentially picking a position of current string and flip the bit

Another equivalent way of describing this is:

- 1. pick coordinate $i \in \{1...n\}$ and $b \in \{0, 1\}$ u.a.r
- 2. Set $X_{t+1}(i) = b$ and $X_t(j)$

To form a valid coupling: if $X_t = Y_t$: choose i, b, u.a.r if $X_t \neq Y_t$: choose the same i and same b

$$D_t = \{j : X_t(j) \neq Y_t(j)\}$$

 D_t is the set of disagreeing bits between X_t and Y_t at step t

$$A_t = \{j : X_t(j) = Y_t(j)\}$$

 A_t is the set of agreeing bits between X_t and Y_t at step t

For example: $X_t = 1100110$ and $Y_t = 0101001$

Pick a position i at random,

if $i \in A_t$, then

$$D_{t+1} = D_t$$

if $i \in D_t$, then

$$D_{t+1} = D_t \setminus \{i\}$$
$$E(|D_{t+1}|) = |D_t| * (1 - \frac{1}{n})$$
$$E(|D_t|) = |D_0| * (1 - \frac{1}{n})^t$$
$$\leq n * \exp \frac{-t}{n}$$

 $|D_0|$ is bounded by n

$$P(X_t \neq Y_t) \le E(|D_t|) \le \frac{1}{4} \quad \text{with } t = n * \ln(4 * n)$$

because if $X_t = Y_t$, $P(X_t \neq Y_t) = 0$ and $E(|D_t|) = 0$ and if $X_t \neq Y_t$, $P(X_t \neq Y_t) = 1$ and $E(|D_t|) \ge 1$

Card Shuffling

Top-to-random shuffling: Ω is all permutations of n cards. Each state has n neighbours and transition is:

- 1. take top card
- 2. place in random position

It's aperiodic because it has self loop. It's irreducible because from a state μ you can go to any other state using $O(n^2)$ time. Thus it's ergodic and the stationary distribution π is unique.

P is double-stochastic $\iff \pi$ is uniform.

We study its inverse chain:

- 1. pick a random card
- 2. put it to the top

Let X_t and Y_t be state at time t for two copies of this chain. At each time step, pick the same card to put on t op.

$$T = \text{time to choose any card}$$

$$T_i = \text{time to get the ith card to be identical between } X_t \text{ and } Y_t$$

$$T = \sum_i T_i \quad \text{where } T_i \text{ is Geometric}(p_i) \text{ where}$$

$$p_i = \frac{n - i + 1}{n}$$

$$E(T_i) = \frac{1}{p_i}$$

$$= \frac{n}{n - i + 1}$$

$$E(T) = \sum_{i=1}^{n} E(T_i)$$

$$= \sum_{i=1}^{n} E(T_i)$$

$$= n * (\frac{1}{n - i} + \frac{1}{n - 2} + ...)$$

$$\leq n * (1 + \log n)$$

$$Pr(T > 4E[T]) \leq \frac{1}{4}$$
Hence for $T = 4n(1 + \ln n)$

$$Pr(X_T \neq Y_T) \leq \frac{1}{4}$$

Therefore the mixing time is $T_{mix} = O(n \log n)$