Fall 2017

Lecture 3: August 29

Scribes: Hunter Oehrtman

Lecturer: Prof. Eric Vigoda

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 Permanent in #P-Complete

- NP: Decision Problems yes/no answers. $\exists witness$
- #P: Counting Problems how many witnesses?

NP-problem: $X = \Sigma^* \times \Sigma^* \to \{0, 1\}$

- 1. X(I, W) can be computed in poly-time
- 2. \exists poly-time p(x) where if X(I, W) = I then $|W| \le p(|I|)$

#P-problem: $f_x(I) = |\{W : X(I, W) = 1\}|$

Definition 3.1 Parsimonious - preserves the number of solutions

 $A \subseteq B$ is parsimonious if $f_A(I) = f_B(g(I))$ note: I for A, g(I) for B

We will cover the following reductions: #SAT is #P-complete $\leq \#3SAT$ is #P-complete $\leq \#Exact-3$ -Cover is #P-complete $\leq \#P$ ermanent is #P-complete

For some $n \times n$ matrix A:

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i \in [n]} A(i, \sigma(i))$$
(3.1)

$$per(A) = \sum_{\sigma \in S_n} \prod_{i \in [n]} A(i, \sigma(i))$$
(3.2)

For some 0-1 matrix A where edges are $edge(r_i, c_j) \leftrightarrow A(i, j) = 1$ i.e. no connections within the same row/column

If we have a 0-1 matrix then the per(A) = # of perfect matching in bipartite G_A

3.2 (0-1)-perm is #P-complete

- (0-1)-perm = #Bi-Perf-Match input: bipartite G output: |P| = # of perfect matchings
- Perm = #Weight-Bi-Perf-Match input: bipartite G with edge weights output:

$$\sum_{p \in \wp} w(P) = \sum_{p \in \wp} \prod_{e \in P} w(e)$$
(3.3)

 $\# W\! eighted\text{-}Bi\text{-}Match$

input: bipartite G w/ weights output:

$$\sum_{M \in \Omega} w(M) = \sum_{M \in \Omega} \prod_{e \in \Omega} w(e)$$
(3.4)

Note: Ω = all matchings in G

#Exact-3-Cover

input: set $X = \{x_1, ..., x_n\}$ & $Y \subseteq {Y \choose 3}$ output: # of $Z \subseteq Y$ where $x \in X$ is covered exactly once.

Moving forward we will show #Exact-3-Cover \leq #Weighted-Bi-Matching \leq #Weight-Bi-Perf-Match \leq #d-Bi-Perf-Match \leq #(d-1)-Bi-Perf-Match.

note: d in the above context means \leq d distinct edge weights \neq 1

We begin by constructing a gadget H

 $\Omega =$ all matchings of H $w(\Omega) = \sum_{M \in \Omega} w(M) = 4(1+x^3)$

take input (x, y) for #Exact-3-Cover for each $i \in X$, create verticies $v_i \& w_i$ and edge $e(v_i, w_i)$ with weight = 1

 $\forall i, j, k \in Y$ add gadget H and identify V_1 with U_i , V_2 with U_j , and V_3 with U_k the total weight of matchings in $G = 4^M S$.

Now Ω = all matchings in G, $\Omega' \subset \Omega$ = matchings with cover all V_i 's.

 $w(\Omega \setminus \Omega') = 0$ Take $M \in \Omega \setminus \Omega'$ and suppose U_i is not covered in M then W_i is not covered $(U_i, W_i) \notin M$ and $M' = MU(U_i, V_i)$ also not that W(M') = W(M).

The outcomes of this are:

- 1. U_i is not covered in M
- 2. W_i is covered in M

 \hat{M} where W_i is covered $\hat{M} = \hat{M} \setminus (U_i, W_i)$

 $\hat{M} \in b, \hat{M'} \in a, M \in a, M \in b$

Take $M \in \Omega'$ and fix matchings on U_i 's, ever U_i has one gadget covering it with x^3 edges

CS 7535 Markov Chain Monte Carlo Methods	Fall 2017
Lecture 4: August 31	
Lecturer: Prof. Eric Vigoda	Scribes: Kristian Eberhardson

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.3 (0,1)-Perm is #P-Complete

Last time, we claimed that (0,1)-perm is #P-Complete and showed:

- 1. Given a 0-1 matrix, per(A) = #Bi-Perf-Match.
- 2. #Exact-3-Cover $\leq \#$ Weighted-Bi-Matching

According to 3.2, we will finish our proof that (0-1)-perm is #P-Complete by showing:

- 1. #Weighted-Bi-Matching \leq #Weight-Bi-Perf-Match and
- 2. #d-Bi-Perf-Match $\leq \#$ (d-1)-Bi-Perf-Match

Our first claim begins with a bipartite graph $G = (L \cup R, E)$, where L denotes G's "left half" and R denotes G's "right half".

Let |L| denote the number of vertices in L, |R| denote the number of vertices in R, and k denote an integer such that: $0 \le k \le min\{|L|, |R|\}$.

Form a graph G' by adding vertices $v_1, v_2, ..., v_{|R|-k}$ connected to each vertex in R and $w_1, w_2, ..., w_{|L|-k}$ connected to each vertex in L.

Each matching of size k in G corresponds to (|L|-k)! (|R|-k)! perfect matchings in G'. Hence, #Weight-Bi-Perf-Match(G') = (#Weighted-Bi-Match(G)) (|L|-k)! (|R|-k)!. This proves #Weighted-Bi-Matching \leq #Weight-Bi-Perf-Match.

To prove our second claim, let A denote the corresponding adjacency matrix for a given graph G; we want Perm(A). Choose an edge weigh in G other than 0 or 1, call it α , to replace in A with a variable x. Perm(A) is now a degree n polynomial in x.

Now, choose an integer k, $0 \le k \le n$, and replace each α weighted edge in A with the F_k gadget pictured below for that k.

Now, Perm(A) is a polynomial in k, and the number of non-1 edge weights in G decreased by one.

By changing the size of the gadget, one can solve $p(\alpha)$ by evaluating p(k) at 0, 1, ..., n.

Fact: A degree n polynomial is uniquely determined at n + 1 points via Gaussian elimination of its matrix form (our adjacency matrix A).

This completes the reduction: $\#d\text{-Bi-Perf-Match} \leq \#(d-1)\text{-Bi-Perf-Match}$. This also completes the proof that (0,1)-Perm is #P-Complete.

FPRAS = Fully Polynomial Randomized Approximation Scheme

Given a graph, some error tolerance ϵ , and the correct output P for an instance of (0,1)-Perm, an FPRAS produces OUT for (0,1)-Perm in time poly(n, $\frac{1}{\epsilon}$) such that:

$$Pr((1-\epsilon)|P| \le OUT \le (1+\epsilon)|P|) \ge \frac{3}{4}$$
(4.5)

Can we do better? Yes. Run FPRAS multiple times and take the median of the results. How many times do we need to run FPRAS to attain a success probability $\geq (1 - \delta)$? Let $X_i = 1$ if $Y_i \in (1 - \epsilon)|P|$ or 0 otherwise. Assume the X_i 's are iid.

$$\hat{X} = \sum_{i=1}^{k} X_i \tag{4.6}$$

And:

$$E[\hat{X}] \ge \frac{3k}{4} \tag{4.7}$$

Then:

$$Pr(OUT \notin (1 \pm \epsilon |P|) \le Pr(X < \frac{k}{2})$$
(4.8)

(if $\geq \frac{1}{2}$ of the trials are "good", then the median is "good", according to Professor Vigoda)

$$\mu = \frac{k\epsilon}{4} \tag{4.9}$$

For some ϵ :

$$\frac{3k}{4} = \frac{k\epsilon}{4} \tag{4.10}$$

Solving for ϵ :

$$\epsilon = \frac{1}{3} \tag{4.11}$$

Use Chernoff Bounds to solve for δ :

$$Pr(|x-\mu| > \epsilon\mu) \le 2e^{\frac{-\mu\epsilon^2}{3}}$$

$$\tag{4.12}$$

Setting $\mu = E[X]$ gives:

$$Pr(OUT \notin (1 \pm \epsilon |P|)) \le Pr(|x - \mu| \ge \frac{k}{4})$$

$$\le 2e^{-(\frac{1}{3}^2)(\frac{3}{4})k(\frac{1}{3})}$$

$$\le 2e^{(\frac{1}{9})(\frac{1}{4})k}$$

$$\le 2e^{\frac{k}{36}}$$
(4.13)

So if we set:

$$k = 36ln(\frac{2}{\delta}) \tag{4.14}$$

We obtain:

$$Pr(OUT \notin (1 \pm \epsilon)|P|) \leq 2e^{\frac{-36\ln(\frac{2}{\delta})}{36}} \qquad (4.15) \leq 2e^{-\ln(\frac{2}{\delta})} \leq 2\frac{\delta}{2} = \delta$$

So to run FPRAS successfully with error $\leq \delta$ takes $O(\log(\frac{1}{\delta}))$ iterations.

FPAUS: Fully Polynomial Almost Uniform Sampler Generate from a graph and some $\delta > 0$ some perfect matching $p \in P$ from a distribution π . Satisfies

$$d_t v(u,\pi) \le \delta \tag{4.16}$$

in time

$$poly(n, log(\frac{1}{\delta}))$$
 (4.17)

where u = uniform(P) and:

$$d_t v = (\frac{1}{2})(\sum_{x \in P} |u(x) - \pi(x)| = \max_{S \subseteq P} (u(s) - \pi(s)))$$
(4.18)

References