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3.1 Permanent in #P-Complete

• NP: Decision Problems - yes/no answers. 9witness

• #P: Counting Problems - how many witnesses?

NP-problem: X = ⌃⇤ ⇥ ⌃⇤ ! {0, 1}

1. X(I,W ) can be computed in poly-time

2. 9 poly-time p(x) where if X(I,W ) = I then |W | p(|I|)

#P-problem: f
x

(I) = |{W : X(I,W ) = 1}|

Definition 3.1 Parsimonious - preserves the number of solutions

A ✓ B is parsimonious if f
A

(I) = f
B

(g(I))
note: I for A, g(I) for B

We will cover the following reductions: #SAT is #P-complete  #3SAT is #P-complete
 #Exact-3-Cover is #P-complete  #Permanent is #P-complete

For some n⇥ n matrix A:

(3.1)det(A) =
X

�2Sn

sgn(�)
Y

i2[n]

A(i,�(i))

(3.2)per(A) =
X

�2Sn

Y

i2[n]

A(i,�(i))

For some 0-1 matrix A where edges are edge(r
i

, c
j

) $ A(i, j) = 1
i.e. no connections within the same row/column

If we have a 0-1 matrix then the per(A) = # of perfect matching in bipartite G
A
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3.2 (0-1)-perm is #P-complete

(0-1)-perm = #Bi-Perf-Match
input: bipartite G
output: |P |= # of perfect matchings

Perm = #Weight-Bi-Perf-Match
input: bipartite G with edge weights
output:

(3.3)
X

p 2}

w(P ) =
X

p2}

Y

e2P

w(e)

#Weighted-Bi-Match
input: bipartite G w/ weights
output:

(3.4)
X

M 2⌦

w(M) =
X

M2⌦

Y

e2⌦

w(e)

Note: ⌦ = all matchings in G

#Exact-3-Cover
input: set X = {x1, ..., xn

} & Y ✓
�
Y

3

�

output: # of Z ✓ Y where x 2 X is covered exactly once.

Moving forward we will show #Exact-3-Cover  #Weighted-Bi-Matching  #Weight-Bi-Perf-Match  #d-
Bi-Perf-Match  #(d-1)-Bi-Perf-Match.

note: d in the above context means  d distinct edge weights 6= 1



We begin by constructing a gadget H

⌦ = all matchings of H w(⌦) =
P

M2⌦ w(M) = 4(1 + x3)

take input (x, y) for #Exact-3-Cover for each i 2 X, create verticies v
i

& w
i

and edge e(v
i

, w
i

) with weight
= 1

8i, j, k 2 Y add gadget H and identify V1 with U
i

, V2 with U
j

, and V3 with U
k

the total weight of matchings
in G = 4MS.

Now ⌦ = all matchings in G, ⌦0 ⇢ ⌦ = matchings with cover all V
i

’s.

w(⌦ \ ⌦0) = 0 Take M 2 ⌦ \ ⌦0 and suppose U
i

is not covered in M then W
i

is not covered (U
i

,W
i

) /2 M
and M 0 = MU(U

i

, V
i

) also not that W (M 0) = W (M).

The outcomes of this are:

1. U
i

is not covered in M

2. W
i

is covered in M

M̂ where W
i

is covered M̂ = M̂ \ (U
i

,W
i

)

M̂ 2 b, M̂ 0 2 a,M 2 a,M 2 b

Take M 2 ⌦0 and fix matchings on U
i

’s, ever U
i

has one gadget covering it with x3 edges
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4.3 (0,1)-Perm is #P-Complete

Last time, we claimed that (0,1)-perm is #P-Complete and showed:

1. Given a 0-1 matrix, per(A) = #Bi-Perf-Match.

2. #Exact-3-Cover  #Weighted-Bi-Matching

According to 3.2, we will finish our proof that (0-1)-perm is #P-Complete by showing:

1. #Weighted-Bi-Matching  #Weight-Bi-Perf-Match and

2. #d-Bi-Perf-Match  #(d-1)-Bi-Perf-Match

Our first claim begins with a bipartite graph G = (L [ R, E), where L denotes G’s ”left half” and R denotes
G’s ”right half”.

Let |L| denote the number of vertices in L, |R| denote the number of vertices in R, and k denote an integer
such that: 0  k  min{|L|, |R|}.

Form a graph G0 by adding vertices v1, v2, ..., v|R|�k

connected to each vertex in R and w1, w2, ..., w|L|�k

connected to each vertex in L.

https://www.cc.gatech.edu/~vigoda/7535
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Each matching of size k in G corresponds to (|L|�k)! (|R|�k)! perfect matchings in G0.
Hence, #Weight-Bi-Perf-Match(G0) = (#Weighted-Bi-Match(G)) (|L|�k)! (|R|�k)!.
This proves #Weighted-Bi-Matching  #Weight-Bi-Perf-Match.

To prove our second claim, let A denote the corresponding adjacency matrix for a given graph G; we
want Perm(A). Choose an edge weigh in G other than 0 or 1, call it ↵, to replace in A with a variable x.
Perm(A) is now a degree n polynomial in x.
Now, choose an integer k, 0  k  n, and replace each ↵ weighted edge in A with the F

k

gadget pictured
below for that k.
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Now, Perm(A) is a polynomial in k, and the number of non-1 edge weights in G decreased by one.
By changing the size of the gadget, one can solve p(↵) by evaluating p(k) at 0, 1, ..., n.
Fact: A degree n polynomial is uniquely determined at n + 1 points via Gaussian elimination of its matrix
form (our adjacency matrix A).
This completes the reduction: #d-Bi-Perf-Match  #(d-1)-Bi-Perf-Match. This also completes the proof
that (0,1)-Perm is #P-Complete.

FPRAS = Fully Polynomial Randomized Approximation Scheme
Given a graph, some error tolerance ✏, and the correct output P for an instance of (0,1)-Perm, an FPRAS
produces OUT for (0,1)-Perm in time poly(n, 1

✏

) such that:

(4.5)Pr((1� ✏)|P | OUT  (1 + ✏)|P |) � 3

4

Can we do better? Yes. Run FPRAS multiple times and take the median of the results. How many times
do we need to run FPRAS to attain a success probability � (1� �)?
Let X

i

= 1 if Y
i

2 (1� ✏)|P | or 0 otherwise. Assume the X
i

’s are iid.

(4.6)X̂ =
kX

i=1

X
i

And:

(4.7)E[X̂] � 3k

4

Then:

(4.8)Pr(OUT /2 (1± ✏|P |)  Pr(X <
k

2
)

(if � 1
2 of the trials are ”good”, then the median is ”good”, according to Professor Vigoda)

(4.9)µ =
k✏

4

For some ✏:

(4.10)
3k

4
=

k✏

4

Solving for ✏:

(4.11)✏ =
1

3

Use Cherno↵ Bounds to solve for �:

(4.12)Pr(|x� µ|> ✏µ)  2e
�µ✏2

3
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Setting µ = E[X] gives:

(4.13)

Pr(OUT /2 (1± ✏|P |)

 Pr(|x� µ|� k

4
)

 2e�( 1
3
2)( 3

4 )k(
1
3 )

 2e(
1
9 )(

1
4 )k

 2e
k
36

So if we set:

(4.14)k = 36ln(
2

�
)

We obtain:

(4.15)

Pr(OUT /2 (1± ✏)|P |)

 2e
�36ln( 2

�
)

36

 2e�ln( 2
� )

 2
�

2
= �

So to run FPRAS successfully with error  � takes O(log( 1
�

)) iterations.

FPAUS: Fully Polynomial Almost Uniform Sampler
Generate from a graph and some � > 0 some perfect matching p 2 P from a distribution ⇡.
Satisfies

(4.16)d
t

v(u,⇡)  �

in time

(4.17)poly(n, log(
1

�
))

where u = uniform(P) and:

(4.18)d
t

v = (
1

2
)(
X

x2P

|u(x)� ⇡(x)|= max
S✓P

(u(s)� ⇡(s)))
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