
CS 7535 Markov Chain Monte Carlo Methods Fall 2017

Lecture 3: August 29
Lecturer: Prof. Eric Vigoda Scribes: Hunter Oehrtman

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

3.1 Permanent in #P-Complete

• NP: Decision Problems - yes/no answers. 9witness

• #P: Counting Problems - how many witnesses?

NP-problem: X = ⌃⇤ ⇥ ⌃⇤ ! {0, 1}

1. X(I,W) can be computed in poly-time

2. 9 poly-time p(x) where if X(I,W) = I then |W | p(|I|)

#P-problem: f
x

(I) = |{W : X(I,W) = 1}|

Definition 3.1 Parsimonious - preserves the number of solutions

A ✓ B is parsimonious if f
A

(I) = f
B

(g(I))
note: I for A, g(I) for B

We will cover the following reductions: #SAT is #P-complete #3SAT is #P-complete
 #Exact-3-Cover is #P-complete #Permanent is #P-complete

For some n⇥ n matrix A:

(3.1)det(A) =
X

�2Sn

sgn(�)
Y

i2[n]

A(i,�(i))

(3.2)per(A) =
X

�2Sn

Y

i2[n]

A(i,�(i))

For some 0-1 matrix A where edges are edge(r
i

, c
j

) $ A(i, j) = 1
i.e. no connections within the same row/column

If we have a 0-1 matrix then the per(A) = # of perfect matching in bipartite G
A

3-1

https://www.cc.gatech.edu/~vigoda/7535

3-2 Lecture 3: August 29

3.2 (0-1)-perm is #P-complete

(0-1)-perm = #Bi-Perf-Match
input: bipartite G
output: |P |= # of perfect matchings

Perm = #Weight-Bi-Perf-Match
input: bipartite G with edge weights
output:

(3.3)
X

p 2}

w(P) =
X

p2}

Y

e2P

w(e)

#Weighted-Bi-Match
input: bipartite G w/ weights
output:

(3.4)
X

M 2⌦

w(M) =
X

M2⌦

Y

e2⌦

w(e)

Note: ⌦ = all matchings in G

#Exact-3-Cover
input: set X = {x1, ..., xn

} & Y ✓
�
Y

3

�

output: # of Z ✓ Y where x 2 X is covered exactly once.

Moving forward we will show #Exact-3-Cover #Weighted-Bi-Matching #Weight-Bi-Perf-Match #d-
Bi-Perf-Match #(d-1)-Bi-Perf-Match.

note: d in the above context means d distinct edge weights 6= 1

We begin by constructing a gadget H

⌦ = all matchings of H w(⌦) =
P

M2⌦ w(M) = 4(1 + x3)

take input (x, y) for #Exact-3-Cover for each i 2 X, create verticies v
i

& w
i

and edge e(v
i

, w
i

) with weight
= 1

8i, j, k 2 Y add gadget H and identify V1 with U
i

, V2 with U
j

, and V3 with U
k

the total weight of matchings
in G = 4MS.

Now ⌦ = all matchings in G, ⌦0 ⇢ ⌦ = matchings with cover all V
i

’s.

w(⌦ \ ⌦0) = 0 Take M 2 ⌦ \ ⌦0 and suppose U
i

is not covered in M then W
i

is not covered (U
i

,W
i

) /2 M
and M 0 = MU(U

i

, V
i

) also not that W (M 0) = W (M).

The outcomes of this are:

1. U
i

is not covered in M

2. W
i

is covered in M

M̂ where W
i

is covered M̂ = M̂ \ (U
i

,W
i

)

M̂ 2 b, M̂ 0 2 a,M 2 a,M 2 b

Take M 2 ⌦0 and fix matchings on U
i

’s, ever U
i

has one gadget covering it with x3 edges

3-3

Lectures 4: August 31 4-1

CS 7535 Markov Chain Monte Carlo Methods Fall 2017

Lecture 4: August 31
Lecturer: Prof. Eric Vigoda Scribes: Kristian Eberhardson

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

4.3 (0,1)-Perm is #P-Complete

Last time, we claimed that (0,1)-perm is #P-Complete and showed:

1. Given a 0-1 matrix, per(A) = #Bi-Perf-Match.

2. #Exact-3-Cover #Weighted-Bi-Matching

According to 3.2, we will finish our proof that (0-1)-perm is #P-Complete by showing:

1. #Weighted-Bi-Matching #Weight-Bi-Perf-Match and

2. #d-Bi-Perf-Match #(d-1)-Bi-Perf-Match

Our first claim begins with a bipartite graph G = (L [R, E), where L denotes G’s ”left half” and R denotes
G’s ”right half”.

Let |L| denote the number of vertices in L, |R| denote the number of vertices in R, and k denote an integer
such that: 0 k min{|L|, |R|}.

Form a graph G0 by adding vertices v1, v2, ..., v|R|�k

connected to each vertex in R and w1, w2, ..., w|L|�k

connected to each vertex in L.

https://www.cc.gatech.edu/~vigoda/7535

4-2 Lecture 4: August 31

Each matching of size k in G corresponds to (|L|�k)! (|R|�k)! perfect matchings in G0.
Hence, #Weight-Bi-Perf-Match(G0) = (#Weighted-Bi-Match(G)) (|L|�k)! (|R|�k)!.
This proves #Weighted-Bi-Matching #Weight-Bi-Perf-Match.

To prove our second claim, let A denote the corresponding adjacency matrix for a given graph G; we
want Perm(A). Choose an edge weigh in G other than 0 or 1, call it ↵, to replace in A with a variable x.
Perm(A) is now a degree n polynomial in x.
Now, choose an integer k, 0 k n, and replace each ↵ weighted edge in A with the F

k

gadget pictured
below for that k.

Lectures 4: August 31 4-3

Now, Perm(A) is a polynomial in k, and the number of non-1 edge weights in G decreased by one.
By changing the size of the gadget, one can solve p(↵) by evaluating p(k) at 0, 1, ..., n.
Fact: A degree n polynomial is uniquely determined at n + 1 points via Gaussian elimination of its matrix
form (our adjacency matrix A).
This completes the reduction: #d-Bi-Perf-Match #(d-1)-Bi-Perf-Match. This also completes the proof
that (0,1)-Perm is #P-Complete.

FPRAS = Fully Polynomial Randomized Approximation Scheme
Given a graph, some error tolerance ✏, and the correct output P for an instance of (0,1)-Perm, an FPRAS
produces OUT for (0,1)-Perm in time poly(n, 1

✏

) such that:

(4.5)Pr((1� ✏)|P | OUT (1 + ✏)|P |) � 3

4

Can we do better? Yes. Run FPRAS multiple times and take the median of the results. How many times
do we need to run FPRAS to attain a success probability � (1� �)?
Let X

i

= 1 if Y
i

2 (1� ✏)|P | or 0 otherwise. Assume the X
i

’s are iid.

(4.6)X̂ =
kX

i=1

X
i

And:

(4.7)E[X̂] � 3k

4

Then:

(4.8)Pr(OUT /2 (1± ✏|P |) Pr(X <
k

2
)

(if � 1
2 of the trials are ”good”, then the median is ”good”, according to Professor Vigoda)

(4.9)µ =
k✏

4

For some ✏:

(4.10)
3k

4
=

k✏

4

Solving for ✏:

(4.11)✏ =
1

3

Use Cherno↵ Bounds to solve for �:

(4.12)Pr(|x� µ|> ✏µ) 2e
�µ✏2

3

4-4 Lecture 4: August 31

Setting µ = E[X] gives:

(4.13)

Pr(OUT /2 (1± ✏|P |)

 Pr(|x� µ|� k

4
)

 2e�(1
3
2)(3

4)k(
1
3)

 2e(
1
9)(

1
4)k

 2e
k
36

So if we set:

(4.14)k = 36ln(
2

�
)

We obtain:

(4.15)

Pr(OUT /2 (1± ✏)|P |)

 2e
�36ln(2

�
)

36

 2e�ln(2
�)

 2
�

2
= �

So to run FPRAS successfully with error � takes O(log(1
�

)) iterations.

FPAUS: Fully Polynomial Almost Uniform Sampler
Generate from a graph and some � > 0 some perfect matching p 2 P from a distribution ⇡.
Satisfies

(4.16)d
t

v(u,⇡) �

in time

(4.17)poly(n, log(
1

�
))

where u = uniform(P) and:

(4.18)d
t

v = (
1

2
)(
X

x2P

|u(x)� ⇡(x)|= max
S✓P

(u(s)� ⇡(s)))

References

	Permanent in #P-Complete
	(0-1)-perm is #P-complete
	(0,1)-Perm is #P-Complete

