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4.1 Introduction

In this lecture we’ll use the coupling method to get a priori bounds on the mixing time
of various Markov chains. Our first example generates a random spanning tree. We then
introduce the path coupling framework which simplifies our work. Finally, we apply path
coupling to analyze a Markov chain for generating a random k-colorings of a graph.

4.2 Random Spanning Trees

4.2.1 Introduction

Given an undirected graph G = (V, E) we are interested in generating a spanning tree of
G uniformly at random. A spanning tree is a subset S ⊂ E such that |S| = |V | − 1 and
S contains no cycles, thus S has a unique path between every pair of vertices. Let Ω(G)
denote the set of spanning trees of G.

It is convenient to transform G to a directed graph
←→
G , and look at arborescences of G.

From G, we form
←→
G by replacing each edge (u, v) by a pair of anti-parallel edges −→uv and

−→vu. An arborescence rooted at a vertex r of a directed graph is a subset S of edges, such
that |S| = |V | − 1 and every vertex, except r, has exactly one edge directed away from it,

thus S forms a tree rooted at r and all edges pointing towards r. Let Ωr(
←→
G ) denote the

arborescences rooted at r.

It suffices to consider arborescences rooted at any vertex.

Lemma 4.1 For G = (V, E), r ∈ V , there is a bijection between Ω(G) and Ωr(
←→
G ).

Proof: For a spanning tree S, form its associated arborescence by simply pointing all edges
towards r (observe there is a unique way of doing this). For the reverse direction, given
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an arborescence, simply remove the orientations and the resulting undirected edges form a
spanning tree.

4.2.2 Markov chains

For simplicity, let us assume G is a d-regular graph.

Here is a simple Markov chain MC on the set of all arborescences Ω(
←→
G ) =

⋃
v∈V Ωv(

←→
G ).

From Xt ∈ Ω(
←→
G ) with root u,

• Choose a random neighbor v of u.

• Let −→vw denote the unique edge oriented away from v in Xt. Set

X ′ = Xt \ −→vw
⋃−→uv.

Thus, X ′ is an arborescence rooted at v.

• Let

Xt+1 =

{
X ′ with probability 1/2

Xt otherwise.

Since the graph is regular, the chain is symmetric. The “self-loop” probability of 1/2 (i.e.,
staying at the same state) ensures the chain is aperiodic. Therefore, the chain is ergodic and

the unique stationary distribution is uniformly distributed over Ω(
←→
G ).

The above chain was originally analyzed by Broder and Aldous. Propp and Wilson [5]
introduced a slight variant of the above chain which we’ll use.

Given a root r ∈ V , the following chainMCr has state space Ωr(
←→
G ). From Yt ∈ Ωr(

←→
G ),

• Run the chain MC with initial state X0 = Yt. Stop at the first time t′ > 0 where

Xt′ ∈ Ωr(
←→
G ). In words, stop as soon as the root returns to r.

• Set Yt+1 = Xt′ .

Exercise 4.2 For a regular graph G, prove that the stationary distribution of MCr is uni-

formly distributed over Ωr(
←→
G ).
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4.2.3 Analysis

To analyze the mixing time we’ll bound the coupling time of the chain. For every pair

(Yt, Y
′
t ) ∈ Ωr(

←→
G )2, we’ll define a coupling (Yt, Y

′
t ) → (Yt+1, Y

′
t+1). The following lemma

shows how the time till the chains couple gives a bound on the mixing time.

Lemma 4.3 Given a coupling (Yt, Y
′
t ) → (Yt+1, Y

′
t+1) for all (Yt, Y

′
t ) ∈ Ωr(

←→
G )2, such that

for all X0, Y0 ∈ Ω, there exists a time T where

Pr ( XT 6= YT | X0, Y0 ) ≤ 1/4,

then
Tmix(1/4) ≤ T.

This Lemma, with slightly different language, was proven in Lecture 2.

We will bound the first time T the chains couple via the cover time. The cover time of a
graph G is the number of steps till a random walk on G visits every vertex at least once.
Denote this as Tcover.

Lemma 4.4 (Propp and Wilson [5])

E ( T ) ≤ 4E ( Tcover ) .

Proof: Denote the Hamming distance (or the difference) between the pair of chains by

H(Yt, Y
′
t ) = |Yt \ Y ′

t |.

Once H(Yt, Y
′
t ) = 0 the chains have coupled. It will be straightforward to bound the time

till the distance reaches zero.

The coupling is the obvious choice. A step Yt → Yt+1 of MCr involves a sequence of
transitions X0 → X1 . . . Xt′−1 → Xt′ of chain MC. Call this sequence an excursion. Both
chains Yt, Y

′
t use the identical excursion.

Consider the effect of an excursion on the resulting arborescence Yt+1. Say vertex v 6= r

is visited during the excursion, if Xs ∈ Ωv(
←→
G ) for some time s < t′ (i.e., the root moved

to v for some intermediate arborescence). For the last such time s, let w denote the next
root. Thus, we know −→vw ∈ Xs+1 and −→vw ∈ Xt′ (since it’s the last visit to v). This implies
−→vw ∈ Yt+1. Similarly, −→vw ∈ Y ′

t+1. Thus, if a vertex v 6= r is visited during an excursion, then
the two chains agree on the edge coming out of v, i.e., −→vw ∈ Yt+1 and −→vw ∈ Y ′

t+1.

Therefore, once every vertex is visited on some excursion, the two chains are identical on
every edge. The expected time till every vertex is visited is the cover time. Running at most
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a further cover time brings us back to the root r. There is an extra factor of two coming
from the “self-loop” probability of 1/2 in the definition ofMC. This proves the lemma.

We can then bound the mixing time

Tmix(1/4) ≤ 16E ( Tcover ) ,

by Markov’s inequality.

4.2.4 Cover time

We conclude with a few final remarks about the cover time. For any graph, Feige [2, 3]
proved

n log n ≤ E ( Tcover ) ≤ O(|V ||E|).

For some specific class of graphs, such as a random graph, more precise results are known.

4.3 Path Coupling

In the above example the distance is non-increasing. Typically things are not that easy, and
even defining a good coupling can be complicated. The following lemma of Bubley and Dyer
[1], known as the path coupling lemma, significantly simplifies the definition and analysis of
a coupling.

Before stating and proving the lemma we need some basics about couplings.

4.3.1 Composing Couplings

Consider a coupling α of µ (on Ω1) with ν (on Ω2), and a coupling β of ν with ω (on Ω3).
Define their composition as, for all x ∈ Ω1, z ∈ Ω3,

γ(x, z) = (α ◦ β)(x, z) :=
∑
y∈Ω2

α(x, y)β(y, z)

ν(y)
.

Alternatively, we can construct γ algorithmically in the following manner. First, sample
(X, Y ) from α. Given (X, Y ) = (x, y), we then sample (Y, Z) from β conditional on Y = y.
We output (X, Z).

Exercise 4.5 Prove γ is a coupling of µ with ω.
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4.3.2 Statement of Lemma

Consider a Markov chain on Ω. The path coupling lemma says it suffices to define and
analyze a coupling for pairs in a subset of Ω × Ω assuming the subset “connects” the state
space.

Lemma 4.6 (Bubley and Dyer [1]) Let S ⊆ Ω × Ω such that (Ω, S) is connected. For
(X, Y ) ∈ Ω×Ω, define dist(X, Y ) as the shortest path length between X and Y in the graph
(Ω, S). (Thus, if (X, Y ) ∈ S, then dist(X, Y ) = 1.)

• If there exists β < 1, and for all (Xt, Yt) ∈ S a coupling (Xt, Yt) → (Xt+1, Yt+1) such
that

E ( dist(Xt+1, Yt+1 | Xt, Yt ) ≤ βdist(Xt, Yt), (4.1)

then

Tmix(ε) ≤
log(dmax/ε)

1− β
, (4.2)

where dmax is the diameter of the graph (Ω, S).

• If (4.1) holds with β = 1 and there exists α > 0 such that for this coupling for all
(Xt, Yt) ∈ Ω2,

Pr ( dist(Xt+1, Yt+1) 6= dist(Xt, Yt) | Xt, Yt ) ≥ α

then

Tmix(ε) ≤ d
edmax

2

α
edlog(1/ε)e,

Proof: We’ll only prove the β < 1 case.

We first construct a coupling for all (Xt, Yt) ∈ Ω × Ω which satisfies (4.1). We do this
by simply “composing” couplings along a shortest path between Xt and Yt. Let Z0

t =
Xt, Z

1
t , . . . , Z

j
t = Yt, j = dist(Xt, Yt) denote an arbitrary such shortest path.

From the hypothesis of the lemma we know

E
(

dist(Zi
t+1, Z

i+1
t+1 | Zi

t , Z
i+1
t

)
≤ βdist(Zi

t , Z
i+1
t ).

We then have

E ( dist(Xt+1, Yt+1 | Xt, Yt ) ≤
∑

1≤i<j

E
(

dist(Zi
t+1, Z

i+1
t+1 | Zi

t , Z
i+1
t

)
≤ β

∑
i

dist(Zi
t , Z

i+1
t )

= βdist(Xt, Yt)
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Inductively we have

Pr ( Xt 6= Yt | X0, Y0 ) ≤ E ( dist(Xt, Yt) | X0, Y0 )

≤ βtdmax

≤ ε for t ≥ log(dmax/ε)/(1− β),

where the last inequality uses that log(1/β) > 1− β.

4.4 Random Graph Colorings

For G = (V, E), let Ω = {1, 2, . . . , k}V . Let N(v) denote the neighbors of vertex v. The
following Markov chain is known as the Glauber dynamics. From Xt ∈ Ω,

• Choose z uniformly at random from V , and c uniformly at random from {1, . . . , k}.

• For all w 6= z, set Xt+1(z) = Xt(z).

• If no neighbors of z have color c (i.e., c 6∈ Xt(N(z))), then set Xt+1(z) = c, otherwise
set Xt+1(z) = Xt(z).

A proper k-coloring is an assignment σ ∈ Ω such that all adjacent vertices receive different
colors.

Exercise 4.7 Let ∆ denote the maximum degree of G. Prove that when k > ∆ + 1 the
stationary distribution of the above Glauber dynamics is uniformly distributed over proper
k-colorings.

We’ll prove fast convergence via path coupling. We begin with following theorem.

Theorem 4.8 Let ∆ denote the maximum degree of G. If k > 3∆, then

τ(ε) ≤ nk ln(n/ε).

Proof: Let S denote the pairs of colorings which differ at exactly one vertex. Consider a
pair of such colorings (Xt, Yt) ∈ S where Xt(v) 6= Yt(v), say Xt(v) = cX and Yt(v) = cY .

The coupling is simply the identity coupling. Both chains attempt to update the same vertex
z to the same color c. Observe that only updates with z ∈ N(v) and c ∈ {cX , cY } might
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succeed or fail in exactly one chain. All other updates succeed or fail in both chains. Thus,
these are the only updates which might increase the distance.

The only updates which might decrease the distance are successful recolorings of v. Since
there are at most ∆ colors in the neighborhood of v, there are at least k−∆ available colors
for v.

Combining these contributions, we have, for (Xt, Yt) ∈ S,

E ( dist(Xt+1, Yt+1) | Xt, Yt ) ≤ 1 +
1

kn
(2∆− (k −∆)) ≤ 1− 1/kn,

for k > 3∆.

Plugging this bound into the path coupling lemma proves the theorem.

Modifying the above coupling we can achieve the following improvement.

Theorem 4.9 (Jerrum [4]) If k > 2∆, then

τ(ε) ≤ nk ln(n/ε).

Proof: The set S remains the same, we simply modify the coupling slightly. If Xt attempts
to recolor a neighbor w of v to color cX , then Yt attempts to recolor w to cY . Similarly, if
Xt attempts to recolor w ∈ N(v) to cX , then Yt attempts to recolor w to cX . In all other
cases, Xt and Yt attempt to modify the same vertex to the same color.

Observe that w ∈ N(v) can not receive color cX in Xt (since this is v’s color), and w can
not receive cY in Yt. Thus, such a coupled update has no effect on the pair of colorings.
Therefore, there are at most ∆ coupled recolorings which might increase the distance –
attempting to recolor w ∈ N(v) to cY in Xt and to cX in Yt.

We now have

E ( dist(Xt+1, Yt+1) | Xt, Yt ) ≤ 1− 1

kn
(∆− (k −∆)) ≤ 1− 1/kn,

for k > 2∆.

Exercise 4.10 Why in the above proof did we need the Glauber dynamics to be defined on
the set {1, . . . , k}V , instead of just on the set of proper k-colorings? We need it in order to
claim that the distance increases by at most one (instead of two) after we attempt to recolor
w ∈ N(v) to cY in Xt and to cX in Yt.
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