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1 Introduction

The main topic of this lecture is to show the intimate relationship between random sam-
pling and approximate counting. One consequence is that an efficient algorithm for random
sampling yields an efficient randomized approximation algorithm to an associated counting
problem. Our running examples will clarify the type of sampling and counting problems.

2 Chernoff bounds

Throughout the course we will make use of Chernoff inequalities. There are many references
which give a nice introduction to these topics, e.g., see [3, 6, 1].

Theorem 1 (Chernoff). Let X,..., X, be independent, identically distributed {0,1}-
random variables where p = E ( X; ). For all e < 3/2,

Pr < ‘Z X; —pn‘ > epn) < 2exp(—€’pn/3).

This is a simplified version of slightly stronger bounds, with more complicated expressions
on the right-hand side.

3 Definitions of FPRAS and FPAUS

We can view a general counting problem (e.g., computing the permanent or computing the
partition function of the Ising model) as computing a function f : ¥* — N, where ¥ is a
finite alphabet used to encode problem instances (e.g., the input matrix we’d like to compute
the permanent of).
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Our goal is a fully polynomial randomized approximation scheme, known as an FPRAS.
Given an input x € X*, error parameter € > 0 and confidence parameter 0 < § < 1, our goal
is to compute OQUT such that

Pr((1—¢€)f(z) <OUT < (1+¢€)f(x))>1-09,

in time polynomial in |z|, ¢! and log(1/9).

It suffices to achieve the above with § = 1/4. The following algorithm then boosts the error
probability to arbitrary §. Run k = 16log(2/d) trials with error probability 1/4, obtaining
outputs 41, ..., yr. Let m be the median of these k values. The value m achieves the desired
error probability. To see this, let

XZ:{ 1 ify € (e f(z)

0 otherwise

Note, E( > X; ) > 3k. Then,

Pr(még(l+ef(z)) < Pr(ZXZ-<k/2>
< Pr(|ZX,;—E(ZXi)|>k/4)
< 26—k2/16k
< 0,

where the penultimate inequality follows by Chernoft’s inequality.

For sampling problems, we aim for a fully polynomial almost uniform sampler (FPAUS).
Given an instance x € X*, a sampling problem is looking to output from a distribution
(perhaps the uniform distribution or the Gibbs distribution) over the set of solutions to x.
Let m denote the desired distribution. We will settle for an approximation to .

For distributions p, 7w on €, the total variation distance between p and 7 (which is one-half
the Ly distance), is given by

dry (p, 7 Z () = ()] = max p(4) = 7(A).
xeﬂ

Our goal is an algorithm which generates solutions from some distribution p such that

dry (p, ) <6,

in time polynomial in the input size |z| and log(1/§). We call such a sampler an FPAUS.
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4 Equivalences

The notions of counting and sampling are closely related. The following table summarizes
the implications. An arrow indicates that if you can do the tail, then you can do the head.

Exact Counter == Exact Sampling

U \
Approximate Counter (FPRAS) <= Approximate Sampling (FPAUS)

The equivalence between an FPRAS and FPAUS was first proved by Jerrum, Valiant and
Vazirani [5]. These implications are for self-reducible problems (see [5]). We won’t define
self-reducibility, instead we will present a specific example which clearly demonstrates the

notion. Our running example will be matchings (not necessarily perfect) of a graph. Let
G = (V, E) be a graph, and let M(G) be the set of matchings of G.

5 FPRAS < FPAUS

We now prove that approximate counting reduces to approximate sampling.

Lemma 2. Given an FPAUS for sampling matchings of an arbitrary graph, then we can
construct an FPRAS for estimating |M(G)|.

Proof. Consider G = (V, E) which we want to estimate |[M(G)|. Let ¢ denote the desired
approximation factor and 0 the desired error probability, i.e., we want to find an estimate
OUT such that

Pr( |OUT — |M(G)|| = el M(G)] ) <.

Arbitrarily order the edges as F = {ej,es,...,e,}. Let Go = G denote the input graph,
and let G; = (V,E;_1 \ &), = 1,...,m. We can write the number of matchings of G as a
telescoping product:

IM(Go)| MGy [M(Gms)
IM(G1)| [M(G2)] " [M(Gr)

M(@)] = Mm@,

Note, the final term is trivial since G,, is the empty graph. Each term in the telescoping
product can be accurately estimated using the exact sampler. Let

MGy

P m@nr

Then, .
Mm@ =] -
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Since M(G;11) € M(G;) we have p; < 1. This also gives a simple way to estimate p;, just
generate random matchings from G; and count the fraction which are also matchings of G;.

The number of samples needed to accurately estimate p; depends on the range of p;. Observe,
IM(Gi) \ M(Gi)| < [M(Gisa)l,
and
M(G;) N M(Gi1) © M(Gia).

These two observations imply p; > 1/2. Thus, we will need very few samples to closely
estimate p;.

We can not sample from exactly the uniform distribution over M(G;), but we can sample
from a distribution close to uniform. Set n = ¢/12m, and we will run the FPAUS on G;
so that the samples are with variation distance < 7 of the uniform distribution. Draw s
random samples (with parameter 1) from our FPAUS for M(G;). Let ¢; denote the number
of samples in M(Gy41). Let
pi=E(q).
We have
Pi =S i S pit ).

Our aim is to estimate p; within a factor (1+€/3m) with probability > 1—4/m, then this will
give a (1 % €) approximation of | M(G)| with probability > 1 — 4. By Chernoff’s inequality,

Pr(|q — wi| > wie/12m ) < §/m,

for
s = O ((m/e)*log(2m/$)) .

We can conclude that with probability > 1 — ¢, for all 7, we have
pi(1 —€/3m) < ¢q; < pi(1+¢€/3m).

Since (1 —¢/3m)™ > (1 —¢) and (1 +€¢/3m)™ < (1 + €), then for
1
ouT = || -,

we have

Pr(OUT ¢ (1+¢€)|M(G)|) <.
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Note in the above proof, the total number of samples needed is O*(m?) ignoring the log
factors and the dependence on e. It turns out that by using Chebyshev’s inequality, only
O*(m?) samples are needed in total. This reduces the running time for the FPRAS we
are constructing. The interesting aspect of the proof using Chebyshev’s is that we apply
Chebyshev’s for the random variable OUT. However it does not work out if we apply
Chebyshev’s for each ¢;. This approach was first done by Dyer and Frieze [2], who used it
to improve the running time of the FPRAS for estimating the volume of a convex body.

For the improvement using Chebyshev’s inequality see Jerrum’s monograph [4, Chapter 3].

6 FPAUS < FPRAS

We first show the trivial reduction from exact sampling to exact counting.

Lemma 3. Given an algorithm which exactly computes the number of matchings of an
arbitrary graph G = (V, E) in time polynomial in |V|, we can then construct an algorithm
which outputs a (uniformly) random matching of an arbitrary graph G = (V, E) in time
polynomial in |V|.

Proof. Choose an arbitrary e = (u,v) € E. Let G; = (V,E \ e), and let G5 denote the
induced subgraph on V' \ {u,v}. For a matching M of G, either e ¢ M and M is also a
matching of G, or e € M and M \ e is a matching of GG5. Since the reverse implication also
holds, we have

IM(G)] = [M(GL)| + IM(G)l.

Let R denote a random matching from M(G). Thus,

M(Gs)|
Pr(eeR) = :
IM(G)| + [M(Go)
Therefore, we can recursively construct R by considering one edge at a time. O

We now show the more interesting reduction from approximate sampling to approximate
counting.

Lemma 4. Given an FPRAS for estimating the number of matchings, we can then construct
an FPAUS for generating a random matching.

The proof we present follows the approach in Sinclair [7].

Proof. Let us first assume that we have a deterministic algorithm to estimate the number of
matchings of any graph G within a factor (1 & €) in time polynomial in |G| and 1/e. Let §
denote the desired error probability for the FPAUS. Let n = n3.
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We first show a scheme which, upon successful completion, generates matchings uniformly at
random, but will only successfully complete with some probability > 1/2. By then running
the procedure until the first time it successfully completes, then at most log(1/9) trials will
suffice with probability > 1 — 4.

The basic scheme is the same approach as in the proof of Lemma 3. Let G* denote the graph
considered in stage i of that algorithm (i.e., we've decided to include or not include i — 1
edges so far). Let e; denote the current edge under consideration, and let G} and G% denote
the corresponding subgraphs. In each stage, we use our deterministic approximate counter
to estimate |M(G3)|, IM(()GY)| and | M(G?)| within factors (1 £ n) where 7 is defined with
respect to the original input graph G. For each edge e; considered, we may overestimate the
probability for including or not including e; in our recursive algorithm by at most a factor

14

— <1+ 21)? < exp(47).
-7

For a matching N, let p(/N) denote the probability that the algorithm from the proof of
Lemma 3 outputs IV using the approximate estimates returned by the approximate counter.
Our goal is to output N with probability 1/|Q2| where Q = M(G). The recursive algorithm
has at most |E| < n? rounds, hence

exp(4n’n)
p(N) < ol

Suppose after running the recursive algorithm, and ending at matching N, we then outputed
N with probability paccept(N) = (19p(N))~! and with probability 1 — Paccept (V) just
called this run of the algorithm a failure and tried the entire recursive algorithm again.
Then, note that the probability of outputting N is p(IN )paccept(N ) = 1/|Q| as desired. And
the probability of the algorithm succeeding (i.e., outputting N) is > exp(—4n?n) > (1—1/n)
for n sufficiently large, which is clearly > 1/2.

The only catch is that we don’t know paccept (V). The quantity p(IN) we do know. We
also can compute a reasonable estimate of [2|. We just run our deterministic approximate

counter and get an estimate of |M(G)| = || within a factor (1 £ 7). Call our estimate S.
Since || < S(1 + n) it suffices to output N with probability

1
p(N)ISI(1+n)

Then the probability of outputting N is (|S|(1+7))~!, which is the same for all N, and one
can check that the probability of the algorithm succeeding is still > 1/2.

Now it remains to consider a randomized approximate counter. Let 20 denote the desired
error probability for the FPAUS we are constructing. Let ¢’ = §/3n% We will use the same
approach as above, and just account for the error probabilities.
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For each call of the FPRAS to estimate |[M(GY)|, [M(()GY)| and |M(G?)| we will set the
desired error probability to §’. Since there are at most 3n? calls to our FPRAS, with prob-
ability > 1 — ¢, all of the estimates are within a factor (1 &+ 7). Hence, with probability
> 1 — 4, after < log(1/0) trials of the above algorithm, with probability > 1 — § we will
generate a matching uniformly at random. Hence, with probability > 1—2J, we can generate
a random matching in time polynomial in |G| and log(1/J). Regardless of what is outputted
with the remaining probability of < 24, we are generating a matching from a distribution
that is within variation distance < 2§ of the uniform distribution. O
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