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Abstract

Let G be a graph with maximum degree ∆(G). In this paper we prove that if the girth
g(G) of G is greater than 4 then its chromatic number, χ(G), satisfies

χ(G) ≤ (1 + o(1))
∆(G)

log ∆(G)

where o(1) goes to zero as ∆(G) goes to infinity. (Our logarithms are base e.)
More generally, we prove the same bound for the list-chromatic (or choice) number:

χ
l
(G) ≤ (1 + o(1))

∆(G)

log ∆(G)

provided g(G) > 4.

1 Introduction

In this paper we are focusing on Vizing’s question [29] concerning a possible “Brooks’ theorem
for sparse graphs”:

Find a best possible upper bound for the chromatic number χ(G) of a graph G with girth g(G)
at least 4 in terms of the maximum degree ∆(G) of G,

where the girth g(G) is the length of shortest cycles of G.
For general graphs G, ∆(G) + 1 is a trivial upper bound on χ(G). Brooks’ Theorem [7]

gives an exact description of the graphs achieving this bound (the connected ones are just the
complete graphs and odd cycles). It is natural to expect that Brooks’ bound is very weak
for graphs without small cycles or large complete subgraphs, say for graphs of large degree
without C

h
or Kr-subgraphs (h, r fixed).

The first non-trivial result in this direction was discovered independently by Borodin and
Kostochka [5], Catlin [8] and Lawrence [18]: For K4-free G,

χ(G) ≤ (3/4)(∆(G) + 2).

For triangle-free G (i.e. K3-free), this was improved slightly (10 years later!) by Kostochka
[17], who gave the bound

χ(G) ≤ (2/3)∆(G) + 2. (1)
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This remains the best upper bound known for Vizing’s problem, a rather remarkable situation,
since the bound (1) differs only by the factor 2/3 from the trivial upper bound.

On the other hand, it is now well-known (see e.g. [4]) that there are graphs G of arbitrarily
large girth with

χ(G) ≥ C
∆(G)

log ∆(G)
, (2)

where C is a constant. The best constant up to date is asymptotically 1/2 as ∆(G) goes to
infinity. (Our logarithms are base e.)

We may consider how close the lower bound in (2) is to the truth. The situation here is
quite analogous to that for independence number. (Recall that the independence number α(G)
of a graph G is the maximum size of a set of pairwise nonadjacent vertices.) The independence
and chromatic numbers are connected by the obvious relation

χ(G) ≥ |V (G)|/α(G). (3)

For independence number, the classic result of Turán [28] may be stated as

α(G) ≥ |V (G)|/(t + 1),

where t = t(G) is the average degree of G.
Turán’s Theorem is sharp when G is the disjoint union of complete graphs of order t + 1.

On the other hand, Ajtai, Komlós and Szemerédi [2] (see also [1]) proved for triangle free G

α(G) = Ω(
|V (G)| log t

t
), (4)

and Shearer [24] improved this to

α(G) ≥ (1 − o(t))
|V (G)| log t

t

(both bounds as t goes to infinity). These bounds are best possible up to the value of the
constant since there are graphs G of arbitrarily large girth with

α(G) ≤ (2 + o(t))
|V (G)| log t

t
.

While the inequality (3) is very weak in general, it is close to the truth in many natural
situations, suggesting again that the lower bound in (2) might give the correct order of growth
for χ. (Note one cannot bound chromatic number in terms of average degree.)

Provided g(G) ≥ 5, we prove that the lower bound in (2) gives the correct order of magni-
tude. In fact our result is more general. Define the list-chromatic number (or choice number)
χ

l
(G) of a graph G to be the minimum integer k such that for every assignment of a set S(v)

of k colors to every vertex v of G, there is a legal coloring of G that assigns to each vertex v
a color from S(v) (see e.g. [3], [10], or [30]).

Our main result is:

Theorem 1.1 Let G be a graph. If g(G) ≥ 5 then

χ
l
(G) ≤ (1 + o(1))

∆(G)

log ∆(G)

where o(1) goes to zero as ∆(G) goes to infinity.

2



As a corollary of this theorem we have:

Corollary 1.2 Let G be a graph. If g(G) ≥ 5 then

χ(G) ≤ (1 + o(1))
∆(G)

log ∆(G)

where o(1) goes to zero as ∆(G) goes to infinity.

The basic approach is via the so-called “semirandom” method, some version of which seems
to have been first used in [2]. Subsequent, more developed applications were in many papers,
e.g. [16], [22] [11], [21] and [14]. See also [12] and [13] for fairly detailed discussions of these
developments. The method here is close to that of [14].

In section 2 we sketch the proof of Theorem 1.1. In section 3 we introduce our basic
parameters and algorithms, and prove Theorem 1.1 modulo the proof of our Main Lemma on
the behavior of these parameters under a random coloring. The Main Lemma says roughly
that the behavior of our basic parameters under an appropriate random coloring procedure is
highly predictable. There are two parts to this: showing that expected values behave properly;
and showing that the parameters are concentrated near their expectations.

Section 4 deals with the Main Lemma at the level of expectations. To prove high concentra-
tions near means of the random variables (in Main Lemma), we develop Azuma-Hoeffding-type
martingale inequalities in Section 5, which are thought to be of independent interest. Finally
we prove the Main Lemma (the concentration results) in last two sections using these inequal-
ities.

2 Sketch of Methods (Semirandom Methods)

In this section we give a rough idea of the proof of Theorem 1.1. Let G be a graph with girth
at least 5 and maximum degree D. Further, suppose we have a set S(v) of size s ≈ D/ log D
assigned to every vertex v in G. We call S(v) the set of legal colors for v. Our object is
to find a S-legal coloring on V (G), that is, a function from V (G) to the set of all colors
Γ := ∪v∈V (G)S(v) such that for all v, τ(v) ∈ S(v) and τ(v) 6= τ(w) if v ∼

G
w.

In each stage of our algorithm we will color some set, say X, of uncolored vertices so that
the new set X together with the set of already colored vertices is legally colored. Our goal is
to reach a situation in which the maximum degree of the graph induced by uncolored vertices
is less than the minimum over uncolored v of |S(v)\{color of w : w ∼ v, w is colored}|. Once
we achieve this goal it is enough for us to color the uncolored vertices greedily.

Before telling how to choose such a set X and a legal coloring on it we would like to
introduce the following notation: For W ∈ V (G) and sets S(w) of legal colors for w ∈ W ,
define for v ∈ V (G)

NW (v) = {w ∈ W : w ∼
G

v}, dW (v) = |NW (v)|
NW (v; γ) = {w ∈ NW (v) : γ ∈ S(w)}, dW (v; γ) = |N(v; γ)| . (5)

Also for a set A ⊂ V (G), we write

NW (A) = {w ∈ W : w ∼
G

v for some v ∈ A } .
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When W = V (H) for an induced subgraph H of G we write NH(v) etc.. Usually we do not
write the subscript W (or H) if the identity of W (or H) is obvious.

The induced subgraph of G on W ⊆ V (G) is denoted by G[W ]. For the rest of this section
we use “≈” to mean approximately equal, deferring precise statements to the next section.

We give a rough version of our coloring algorithm only for the “canonical case” that the
graph G is D-regular and all S(v) are the same. In general, the idea is similar, but we need
some auxiliary structures (see the last part of this section) to make the evolution as in canonical
case. (Note that it is no loss of generality to assume G is D-regular.)

Fix a small θ > 0. First, we define parameters: α0 = β0 = 1 and for L = D/s ≈ log D

αi+1 := exp(−θβie
−θβi)αi

βi+1 := (1 − (θ/L)e−θβi)βi (6)

i = 0, 1, · · ·.

Our first algorithm is:

Algorithm 1 (idea)

Initially we set H0 = G, T0(v) = S(v), t0 = |T0(v)| = s and i = 0.

(Step 1) In general at the beginning of each stage we will have Hi the subgraph of G induced by
the set of uncolored vertices, a list Ti(v) of still-legal colors for each v ∈ V (Hi). The properties
we seek to maintain are

di(v) ≈ βiD

ti(v) ≈ αis

di(v; γ) ≈ αiβiD

for all v ∈ V (Hi) and γ ∈ Ti(v). (Note these are obvious initially, i.e. i=0.)
Assuming these properties hold, we define the random coloring τi according to

Pr(τi(v) = γ) =











p
i
:= θ/(α

i
D) if γ ∈ Ti(v)

1 − p
i
|Ti(v)| if γ = Λ

0 otherwise

(note that pi|Ti(v)| ≈ αis(θ/αiD) ≈ θ/ log D < 1) independently of all other colors τi(w), and
set

Xi = {v ∈ V (Hi) : τi(v) 6= Λ, v ∼
Hi

w ⇒ τi(v) 6= τi(w)} .

For the next stage, we should consider the induced subgraph Hi+1 := Hi[V (Hi) \ Xi] and
the sets Ti+1(v) of still legal colors for each v ∈ V (Hi)

1, defined in the obvious way:

Ti+1(v) = Ti(v) \ {τi(w) : w ∈ Xi, w ∼
Hi

v}.

Also let t
i+1(v) = |Ti+1(v)|.

1It is enough for us to consider these sets only for v ∈ V (Hi+1), but it is convenient to consider them for all
v ∈ V (Hi).
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We then want

di+1(v) ≈ βi+1D

ti+1(v) ≈ αi+1s (7)

di+1(v; γ) ≈ αi+1βi+1D

The definitions of αi+1 and βi+1 come from analyzing the (probable) behavior of the
parameters under the random coloring specified above. Namely,

αi+1/αi ≈ Pr(γ ∈ Ti+1(v)) (γ ∈ Ti(v)), (8)

βi+1/βi ≈ Pr(w ∈ V (Hi+1)) (w ∈ V (Hi)). (9)

(These are not hard to see, but for (8) we need the fact that the girth of Hi is at least 5.)
Furthermore,

α
i+1βi+1/(α

i
β

i
) ≈ Pr(γ ∈ Ti+1(w), w ∈ V (Hi+1)), (γ ∈ Ti(w)) (10)

reflecting the idea that the events “γ ∈ Ti+1(w)” and “w ∈ V (Hi+1)” are almost independent.

Once we have Xi and τ
i

satisfying the properties (7), we proceed to

(Step 2) Set i = i + 1 and go to step 1.
The number of stages will be

a := min{i : βi ≤ D−θ/(2L)} (11)

(note that a is some power of log D).

The goal of the above algorithm is to reach a situation in which each color degree d(v; γ) is
small enough relative to t(v). (See (13) below.) To achieve this goal the role of θ is important
though it is somewhat technical. Note that for v ∈ V (Hi)

Pr(v ∈ X) = Pr(τ(v) 6= Λ)Pr(τ(w) 6= τ(v) ∀w ∼ v|τ(v) 6= Λ).

and that as θ increases the first factor of the right hand side increases but the second factor
decreases. Thus some optimization of θ is in order.

What is left now is to prove that the properties (7) are feasible, that is,

Pr(“(7) happens”) > 0. (12)

To prove (12), we will consider the following three steps:

(a) Prove the properties (7) at the level of expectations.
(b) Prove that the random variables di+1(v) etc. are highly concentrated near their means.
(c) Prove (12) using (b) and the Lovász Local Lemma. (Here it is very easy to show that we
have enough independence for the local lemma.)

Parts (a) and (c) are not hard. The only hard part is (b). Though the martingale in-
equalities of [23], [15], and [14] are quite powerful, we cannot use them directly for d′(v; γ). In
Section 5 we will develop some martingale inequalities which are useful in our situation.
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After running the above algorithm a times we will have

da(v; γ) <∼ D−θta(v)/2 (13)

by the definition of a. We then run the following more efficient algorithm which prevents
excessive error accumulation. Actually, we may not expect any nice behavior of di(v; γ) (i > a)
since these might be too small to disregard error terms. Thus we need a new phase:

Algorithm 2 (idea)

We randomly color all remaining vertices as in Step 1 with p
i

= 1/ti(v) (i ≥ a). (We may
delete colors from the larger Ti(v)’s so that all ti(v)’s are equal.) It turns out that in this
phase the degrees will shrink rapidly while the numbers t(v) remain almost constant.

More precisely, the properties we will have are:

di(v) <∼
1

2
D1−(i−a+1)θ (14)

ti(v) ≈ αas . (15)

i = a, ..., b where b := a + θ−1 + 3. (Note that for i = a these are obvious by the definition of
a. Also, it turns out that we can not run this algorithm more than θ−1 + 3 times since the
expected degrees E[d

b+1
(v)], if possible, might be smaller than error terms.) To prove these

we do not need any information about d(v; γ) other than (13).
Assuming (14) and (15) it is clear that we can achieve our main goal (i.e d

b
(v) < t

b
(v) for

all uncolored v) provided
α

b
s ≥ D2θ , (16)

which is possible by choosing suitable θ.

In the general (i.e. non-canonical) case, we do not have (7). Instead, we will have

di(v) <∼ βiD

ti(v) >∼ αis (17)

di(v; γ) <∼ αiβiD

for all v ∈ V (Hi) and γ ∈ Ti(v).
The first two properties are in our favor. For example, we may throw away some colors

from Ti(v) so that ti(v) ≈ αis. But the last property may cause some trouble in the next
stage. Roughly speaking, the reason is that we cannot control the ti(v)’s well if some color
degrees are small and the others are relatively big. To avoid such problems we add some new
(artificial) vertices to Hi. These extra vertices are used to force the ti(v)’s (for v ∈ V (Hi)) to
behave as in the canonical case, and are then discarded before the beginning of the next stage.

For each v ∈ V (Hi), γ ∈ Ti(v) with di(v; γ) < di, we add di − di(v; γ) new vertices
{w1 , ..., wdi−di(v,γ)

} =: A(v; γ) all joined to v. (The precise value of di ≈ αiβiD will be given

below.) For each of these new vertices w
j
, we add di − 1 more new vertices {u

(j)
1

, ..., u
(j)

di−1
} =:

B(v; γ, w
j
) all joined to w

j
. Finally, set Ti(z) = {γ} for all z ∈ A(v; γ)∪∪di−di(v,γ)

j=1 B(v; γ, w
j
).

All sets {A(v; γ)}(v,γ) and {B(v; γ, w
j
)}(v,γ,j) must be mutually disjoint.

From now on, we write Ĥi = Ĥi(di) for the extended graph just defined. Also, we write
N̂i(v), N̂i(v; γ) etc. for NĤi

(v), NĤi
(v; γ) etc. (see (5)). Note that if each di(v; γ) is at most

di then d̂i(v; γ) = di for all v ∈ V (Hi) ∪ N̂(V (Hi)) with γ ∈ Ti(v).
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3 Main Lemma

In this section we define our parameters and algorithms precisely, and give the proof of Theorem
1.1 modulo our Main Lemma (Lemma 3.3) on the behavior of our random coloring procedure.

First, we need some parameters. Let 0 < η < 1, and then choose 0 < θ < 0.1 with θ−1 an
integer and δ such that

1

2
(1 + ηeθ + 2θ) < δ < 1 . (18)

Set ∆(G) = D and L = η log D. Also, let µ0 = ν0 = 1 and for i = 0, 1, ...
(

µi+1

νi+1

)

=

(

1 βi

1/L 1 + βi/L

)(

µi

νi

)

(these parameters are to be used to control the error terms precisely), where as in (6), α0 =
β0 = 1 and

αi+1 := exp(−θβie
−θβi)αi

βi+1 := (1 − (θ/L)e−θβi)βi .

Furthermore, for notational convenience set

a := min{i : βi ≤ D−θ/(2L)} ,

and for i = 0, 1, ...a

∆i := βi(1 + νiD
δ−1)D

ti := αi(1 − µiD
δ−1)D/L (19)

di := αiβi(1 + νiD
δ−1)D

except
da := D−θta . (20)

As mentioned in the previous section, we use a two-part coloring procedure to prove that

χ
l
(G) ≤ bt0c ≤ D/L . (21)

Notice that to prove Theorem 1.1 it is enough to prove this for each fixed η and large enough
D.

Suppose we are given sets S(v) of size t0, v ∈ V (G). (Of course, we should really write
bt0c here.) First we describe Algorithm 1 which colors many of the vertices of G and leaves an
(induced) subgraph in which the color degrees are significantly smaller than the sizes of the
sets of legal colors.

Algorithm 1

Initially we set H0 = G, T0(v) = S(v), and i = 0. We run the following Steps a times.

(Step 1) Define the random coloring τi from V (Ĥi), Ĥi = Ĥi(di), to the set of all colors
according to

Pr(τi(v) = γ) =











p
i
:= θ/(αiD) if γ ∈ Ti(v)

1 − p
i
|Ti(v)| if γ = Λ

0 otherwise
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independently of the other colors τi(w). Also set

Xi = {v ∈ V (Ĥi) : τi(v) 6= Λ, v ∼ w in Ĥi ⇒ τi(v) 6= τi(w)}
Ti+1(v) = Ti(v) \ {τi(z) : z ∈ Xi, z ∼ v in Ĥi } .

and Hi+1 = Hi[V (Hi) \ Xi].

The properties we want are:

di+1(v) ≤ ∆i+1

ti+1(v) ≥ ti+1 (22)

di+1(v; γ) ≤ di+1

for all v ∈ V (Hi) and γ ∈ Ti(v) except

da(v; γ) ≤ αaβa(1 + νaD
δ−1)D.

Define an event Qi = { (22) holds ∀v ∈ V (Hi) and γ ∈ Ti(v) }. As mentioned, we need to
show

Pr(Qi) > 0 . (23)

Supposing (23) is established, we choose τi so that (22) holds and proceed to Step 2.

(Step 2) Discard some colors, if necessary, from the sets Ti+1(v) (v ∈ V (Hi+1)) so that
|Ti+1(v)| = ti+1. (By this modification di+1(v; γ) never increases.)

(Step 3) If i < a − 1 then set i = i + 1 (i.e. replace Hi by Hi+1 etc.) and go to Step 1. Stop
otherwise.

We will show below that values of µa, νa satisfy

µaD
δ−1, νaD

δ−1 = o(1), (24)

where o(1) tends to zero as D tends to infinity. Thus by βa ≤ D−θ/(2L) we have

∆a ≤ D−θ(1 + νaD
δ−1)D/(2L) (25)

da ≤ (2/3)D−θta (cf. (20)). (26)

We now continue with a modified algorithm better suited to the current values of our
parameters. First, set b := a + θ−1 − 3 and for i = a, · · · , b

∆i+1 = (1 + 1/ log D)D−θ∆i

ti+1 = (1 − 2D−θ)ti

di+1 = D−θti+1 .

We run the following steps c := θ−1 − 3 times.

Algorithm 2

Initially, i = a.
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(Step 1) Do step 1 of the first algorithm with p
i
= 1/ti. (Note p

i
ti(v) = 1 for v ∈ V (Hi).)

The properties we seek are:

di+1(v) ≤ ∆i+1

ti+1(v) ≥ ti+1 (27)

di+1(v; γ) ≤ di+1

for all v ∈ V (Hi) and γ ∈ Ti(v). Note that the last inequality is trivial since by (26)

di+1(v; γ) ≤ da(v; γ) ≤ D−θti+1 (28)

(because the number of stages is less than the fixed constant θ−1). Define an event Qi = {
(27) holds ∀v ∈ V (Hi) and γ ∈ Ti(v) }. Again, we need to show

Pr(Qi) > 0 . (29)

Supposing (29) is established, we choose τi so that (27) holds and proceed to Step 2.

(Step 2) As in Algorithm 1.

(Step 3) If i < a + θ−1 − 4 then set i = i + 1 and go to step 1. Otherwise, stop.

Notice that once
d

b
(v) < t

b
(v) for all v ∈ V (H

b
) (30)

we may color the remaining vertices greedily. So to prove (21) (for large enough D), we just
need to prove (23), (29), (24) and (30). We first dispose of the last two of these and then turn
to the more difficult (23) and (29).

Lemma 3.1

αa ≥ D−ηeθ

(31)

max{µa, νa} = Do(1), (32)

where o(1) goes to zero as D goes to infinity. In particular, we have (24).

Proof. Since
αi = exp(−θβi−1e

−θβi−1)αi−1 ≥ exp(−θβi−1)αi−1

we have

αa ≥ exp(−θ
a−1
∑

i=0

βi) .

On the other hand, since

βi = (1 − (θ/L)e−θβi−1)βi−1 ≤ (1 − (θ/L)e−θ)βi−1 ≤ (1 − (θ/L)e−θ)i (33)

we have
a−1
∑

i=1

βi ≤
∞
∑

i=0

(1 − θe−θ/L)i = eθL/θ ,
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which implies

αa ≥ exp(−θ
a−1
∑

i=0

βi) ≥ exp(−θeθL/θ) = D−ηeθ

.

To prove (32), let us define a1 to be the maximum i such that βi > L−2. Then by (33), we
have

a1 ≤ 2θ−1eθL log L .

Note that, trivially,
(

µa1

νa1

)

≤
(

1 1
1/L 1 + 1/L

)a1
(

1
1

)

(meaning, as usual, that µa1
(resp. νa1

) is at most the first (resp. second) component of the
right hand side). Similarly we have

a ≤ eθL(log D + θ−1 log(2L)) + 1 ,

and
(

µa

νa

)

≤
(

1 1/L2

1/L 1 + 1/L3

)a−a1
(

µa1

νa1

)

since βi ≤ L−2 for i > a1 . Furthermore, the matrices
(

1 1
1/L 1 + 1/L

)

,

(

1 1/L2

1/L 1 + 1/L3

)

have diagonal Jordan forms with eigenvalues approximately 1±1/
√

L, 1±1/(L
√

L) respectively,
and these with the above bounds on a, a1 imply

max{µa1
, νa1

} ≤ 2
√

L(1 + 2/
√

L)a1 = Do(1)

and
max{µa, νa} ≤ 2L(1 + 2/(L

√
L))aDo(1) = Do(1).

2

Proof of Theorem 1.1 Suppose now that we have run Algorithm 2 c times. Then by (24)
and (25)

∆
b

= (1 + 1/ log D)cD−cθ∆a ≤ exp(c/ log D)D−(c+1)θD/L ≤ D2θ .

On the other hand, by (24), (31) and (18) we have

t
b

= (1 − 2D−θ)cta ≥ (1 − 2D−θ)cαaD/(2L) ≥ 1

3
D−ηeθ

D/L > D2θ . (34)

Thus we are done.

2

We have already mentioned in Section 2 the methods to be used in proving (23) and (29).
The following lemmas are precise statements. We will prove them in last two sections.

From now on, we fix i ∈ [b] := {1, ..., b} and for simplicity, we do not write the subscript
i (i.e. H = Hi, d(v) = di(v), α = αi etc.). Also, we write H ′, α′ etc. for Hi+1, αi+1 etc.
(respectively).
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Lemma 3.2 For v ∈ V (H) and γ ∈ T (v),

E[d′(v)] = (1 − pt(1 − p)d)d(v) ≤ (1 − pt(1 − p)d)∆,

E[t′(v)] = (1 − p(1 − p)d)dt + O(1),

E[d′(v; γ)] ≤ (1 − p(1 − p)d)d(1 − pt(1 − p)d)d + O(1).

The proof of Lemma 3.2 is quite straight forward. Our main lemma is:

Lemma 3.3 (Main Lemma)

Pr(d′(v) − E[d′(v)] ≥ ∆1/2 log ∆) ≤ exp(−(log ∆)2/4) (35)

Pr(t′(v) − E[t′(v)] ≤ −t1/2 log t) ≤ exp(−(log t)2/2) (36)

Pr(d′(v; γ) − E[d′(v; γ)] ≥ d1/2(log d)2) ≤ 3D2 exp(−1

2
log d log log d) (37)

Our proof will give bounds on the probabilities in (35), (36) of other direction — e.g.

Pr(d′(v) − E[d′(v)] ≤ −∆1/2 log ∆) ≤ exp(−(log ∆)2/4)

— but we restrict the formal statement to the values we will actually use.
Once the above lemmas are proved, it is easy to prove (23) and (29). Before doing so, we

summarize some inequalities already established. Here we write x � y if there is a constant
ε > 0 depending only on θ, δ and η such that xDε ≤ y.

δ − 1 >
1

2
(ηeθ + 2θ − 1) by (18) (38)

tj > D1−ηeθ−o(1) � D2θ ∀ j ∈ [b] by (34) and (18) (39)

βj > D−θ−o(1) ∀ j ∈ [a] by the definition of a (40)

1

αjD
< Dηeθ−1 � Dδ−2θ−1 ∀ j ∈ [a] by (31) and (18) (41)

Moreover, by (40) and (39)

dj ≥ D−θ−o(1)tj > D1−ηeθ−θ−o(1) � Dθ ∀ j ∈ [b] (42)

and by the definitions of ∆b−1, ∆a and b = a + θ−1 − 3 for all j = 1, 2, ..., b − 1

∆ ≥ ∆b−1 ≥ (1 + 1/ log D)b−1−aD−θ(b−1−a)∆a ≥ D−θ(θ−1−4)D1−θ−o(1) � D2θ . (43)

Proofs of (23) and (29). For each v ∈ V (H) consider the event Qv that we do not have
the required properties for v, that is,

Qv = {d′(v) > E[d′(v)] + ∆1/2 log ∆}
⋃

{t′(v) < E[t′(v)] − t1/2 log t}
⋃

{d′(v; γ) > E[d′(v; γ)] + d1/2(log d)2 for some γ ∈ T (v) }

Since (by (43), (39) and (42))
min{∆, t, d} > Dθ
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Lemma 3.3 implies , e.g., (since D is large)

Pr(Qv) ≤ 3tD2 exp(−(θ/3) log D log log D) ≤ D3 exp(−(θ/3) log D log log D) .

Furthermore, note that the event Qv is independent of all events {Qw} for which the
distance between v and w is more than 6 (since for all v, d′(v), t′(v) and all d′(v; γ)’s are
determined by the values of τ on vertices within distance 3 of v). Thus the Lovász Local
Lemma [9], (see also [27]) together with the inequalities

4D6Pr(Qv) ≤ D6D3 exp(−(θ/3) log D log log D) < 1 ∀v ∈ V (H)

guarantees
Pr(

⋂

v∈V (H)

Q̄v) > 0 .

Therefore, (using the values in Lemma 3.2) we can find a coloring τ on V (H) such that for
every v and γ ∈ T ′(v)

d′(v) ≤ (1 − pt(1 − p)d)∆ + ∆1/2 log ∆

t′(v) ≥ (1 − p(1 − p)d)dt − t1/2 log t − O(1) (44)

d′(v; γ) ≤ (1 − p(1 − p)d)d(1 − pt(1 − p)d)d + d1/2(log d)2 + O(1) .

Thus to show (22), (27) we just have to show that the inequalities in (44) imply those in (22)
if we are in Algorithm 1 and those in (27) if we are in Algorithm 2.

We analyze the two cases separately. In Algorithm 1 we have two kinds of error terms other
than the trivial errors O(1). The first kind is from accumulation of errors in the expectations.
(Note that t and d already contain such error terms.) The other kind is, of course, from
concentration errors (∆1/2 log ∆ etc.). As will appear below, we have chosen the parameters
— see (18) — so that the errors of the first type dominate those of the second. Though not
hard, the estimates are somewhat complicated and tedious. We will frequently use (41)-(43).

Suppose first that we are in Algorithm 1. Let us recall

pd = θβ(1 + νDδ−1) ≤ 0.11, pt = θ(1 − µDδ−1)/L ≤ 0.1 (45)

We claim

(1 − pt(1 − p)d) − (1 − (θ/L)e−θβ) ≤ (θ/L)(µ + θβν)Dδ−1 + θβp (46)

0 ≤ exp(−θβe−θβ) − (1 − p(1 − p)d)d ≤ θβνDδ−1 (47)

For (46), since 1 − p ≥ e−p−p2
we have

1 − pt(1 − p)d ≤ 1 − pte−pde−p2d

≤ 1 − pte−pd(1 − p2d) by e−p2d ≥ 1 − p2d

≤ 1 − pte−pd + θβp by (45) and (24).

Now set
f(x, y) = 1 − (θ/L)(1 − x)e−θβ(1+y) .
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If 0 < x, y < 0.1 then by Taylor’s theorem

f(x, y) − f(0, 0) ≤ fx(0, 0)x + fy(0, 0)y = (θ/L)e−θβx + (θ2β/L)e−θβy ≤ (θ/L)(x + θβy)

since all second order derivatives are non positive (for 0 < x, y < 0.1). Setting x = µDδ−1 and
y = νDδ−1, we have (46).

For the upper bound of (47), consider

(1 − p(1 − p)d)d ≥ (1 − pe−pd)d

≥ exp(−pde−pd − p2de−2pd)

≥ (1 − p2de−2pd) exp(−pde−pd)

≥ exp(−pde−pd) − p . (48)

Set h(y) = −θβ(1 + y)e−θβ(1+y). Then by the similar argument we have

h(y) − h(0) ≥ h′(0)y = (−θβe−θβ + θ2β2e−θβ)y ≥ −(θβ − θ2β2)y , (49)

for 0 < y < 0.1. Moreover, we have by (40) and (41)

p � θ2β2Dδ−1 , (50)

(note p = θ/(αD) here). Again setting y = νDδ−1 we finally have

(1 − p(1 − p)d)d ≥ exp(h(y)) − p by (48)

≥ exp(h(0) − (θβ − θ2β2)y) − p by (49)

≥ exp(−θβe−θβ)(1 − (θβ − θ2β2)y) − p

≥ exp(−θβe−θβ) − (θβ − θ2β2)νDδ−1 − p

≥ exp(−θβe−θβ) − θβνDδ−1 by (50),

which is exactly what we want for the upper bound.
Note that the upper bound is quite tight. Thus we may easily modify the estimation to

show the lower bound. We leave this to the reader.
Now we claim the following to control the second kind of errors.

∆1/2 log ∆ + p∆ ≤ (θ/L)(µ + θβν)Dδ−1∆ (51)

t1/2 log t + O(1) ≤ θβνDδ−1t (52)

d1/2(log d)2 + pd + O(1) ≤ (θ/L)(µ + θβν)Dδ−1d . (53)

We already saw p is small enough in (50). Thus it is enough for us to show

max{∆−1/2, β−1t−1/2, d−1/2} � Dδ−1.

(We can not disregard β here because it can be as small as D−θ/(2L).) For (51), it is enough
for us to note that by (40) and (38)

∆−1/2 ≤ (βD)−1/2 ≤ D(θ−1)/2+o(1) � Dδ−1 .

Similarly, we have by (39), (40) and (38)

β−1t−1/2 ≤ D(ηeθ+2θ−1)/2+o(1) � Dδ−1 .
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Finally, by (42) and (38)

d−1/2 ≤ D(ηeθ+θ−1)/2+o(1) � Dδ−1 ,

which completes the proof of our claims.
Using the above claims and the fact that β/β′ is almost 1, we have

d′(v) ≤ (1 − (θ/L)e−θβ)∆ + 2(θ/L)(µ + θβν)Dδ−1∆

≤ β′(1 + νDδ−1)(1 + 2(β/β′)(θ/L)(µ + θβν)Dδ−1)D

≤ β′(1 + (ν + (3θ/L)(µ + θβν))Dδ−1)D

≤ β′(1 + (ν + (µ + βν)/L)Dδ−1)D

= β′(1 + ν ′Dδ−1)D .

Here we do not have to be so careful about the product of the error terms since we already
know µ, ν = Do(1). Similarly,

t′(v) ≥ α′(1 − (µ + βν)Dδ−1)D/L = α′(1 − µ′Dδ−1)D/L

d′(v; γ) ≤ α′β′(1 + (ν + (µ + βν)/L)Dδ−1)D = α′β′(1 + ν ′Dδ−1)D .

Suppose now we are in Algorithm 2. Then since (1 − p)d ≥ 1 − pd = 1 − D−θ we have

1 − pt(1 − p)d = 1 − (1 − p)d ≤ D−θ

and
(1 − p(1 − p)d)d ≥ (1 − p)d ≥ 1 − D−θ .

Since by (43)

∆−1/2 < D−(3θ−o(1))/2 = D−θD−θ/2+o(1) � D−θ/(log ∆ log D)

we have

d′(v) ≤ D−θ∆ + ∆1/2 log ∆

≤ (1 + Dθ∆−1/2 log ∆)D−θ∆

≤ (1 + 1/ log D)D−θ∆ = ∆′(= ∆i+1) .

Similarly, by (39), we have

t′(v) ≥ (1 − D−θ)t − t1/2 log t

= (1 − D−θ − t−1/2 log t)t

≥ (1 − 2D−θ)t = t′(= ti+1) .

2
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4 Expectations

In this section we prove Lemma 3.2. Let us recall the lemma.

Lemma 3.2 (restatement) For v ∈ V (H) and γ ∈ T (v),

E[d′(v)] = (1 − pt(1 − p)d)d(v), (54)

E[t′(v)] = (1 − p(1 − p)d)dt + O(1), (55)

E[d′(v; γ)] ≤ (1 − p(1 − p)d)d(1 − pt(1 − p)d)d + O(1). (56)

Proof. (a) For degrees,
E[d′(v)] =

∑

w∈N(v)

(1 − Pr(w ∈ X)) .

But

Pr(w ∈ X) =
∑

γ∈T (w)

Pr(τ(w) = γ, τ(z) 6= γ ∀z ∈ N̂(w; γ))

= tp(1 − p)d .

Therefore, we have (54).

(b) For the number of legal colors,

E[t′(v)] =
∑

γ∈T (v)

Pr(γ ∈ T ′(v)).

On the other hand, for fixed v and γ ∈ T (v), we have γ ∈ T ′(v) if and only if there is no
w ∈ N̂(v) for which the event

Aw := {τ(w) = γ, τ(z) 6= γ ∀z ∼ w}

happens. If we condition on τ(v) 6= γ, then, since g(G) ≥ 5, the event Aw (w ∈ N̂(v; γ)) are
independent, and we have

Pr(γ ∈ T ′(v)|τ(v) 6= γ) =
∏

w∈N̂(v;γ)

Pr(Āw)|τ(v) 6= γ)

= (1 − p(1 − p)d−1)d (57)

Thus since Pr(τ(v) = γ) = p,

Pr(γ ∈ T ′(v)) = Pr(τ(v) = γ)Pr(γ ∈ T ′(v)|τ(v) = γ)

+ Pr(τ(v) 6= γ)(1 − p(1 − p)d−1)d

= (1 − p(1 − p)d−1)d + O(p)

= (1 − p(1 − p)d)d + O(p) , (58)

which (since pt ≤ 1) gives (55).
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(c) For color degree,

E[d′(v; γ)] =
∑

w∈N(v;γ)

Pr(w 6∈ X, γ ∈ T ′(w))

=
∑

w∈N(v;γ)

(Pr(γ ∈ T ′(w)) − Pr(γ ∈ T ′(w), w ∈ X)) .

We claim
Pr(γ ∈ T ′(w), w ∈ X) ≥ pt(1 − p)d(1 − p(1 − p)d)d + O(p). (59)

Since we know Pr(γ ∈ T ′(w)) = (1 − p(1 − p)d)d + O(p) and pd ≤ 0.11 (see (45)), (56) follows
if we prove (59).

To do so, we need only consider the case τ(w) 6= γ, since the other case has the probability
p. First note that since w ∈ X implies τ(w) 6= Λ we have

Pr(γ ∈ T ′(w), w ∈ X)

=
∑

γ′∈T (w)\{γ}

Pr(τ(w) = γ′)Pr(γ ∈ T ′(w), w ∈ X|τ(w) = γ′) + O(p)

= p
∑

γ′∈T (w)\{γ}

Pr(w ∈ X|τ(w) = γ′)P (γ ∈ T ′(w)|w ∈ X, τ(w) = γ′) + O(p)

= p(1 − p)d
∑

γ′∈T (w)\{γ}

P (γ ∈ T ′(w)|w ∈ X, τ(w) = γ′) + O(p).

Thus it is enough to show that

Pr(γ ∈ T ′(w)|w ∈ X, τ(w) = γ′) ≥ (1 − (1 − p)d)d + O(p) (60)

Without the extra condition “w ∈ X”, we may easily prove (60) as in (57). On the other
hand, the extra condition is nothing but τ(z) 6= γ′ for all z ∈ N̂(w; γ′) and does not affect the
mutual independence of events “τ(z) = γ”. The only change required here is replacement of
p = Pr(τ(z) = γ) by

p(z) := Pr(τ(z) = γ|τ(z) 6= γ′) =

{

p/(1 − p) if z ∈ N̂(w; γ′)

p if z 6∈ N̂(w; γ′)

Then as in (57)

Pr(γ ∈ T ′(w)|w ∈ X, τ(w) = γ′) =
∏

z∈N̂(w;γ)

(1 − p(z)(1 − p)d−1).

Since p(z) = p + O(p2) we have (60).

2

5 Martingales

In this section, we develop Azuma-Hoeffding-type martingale inequalities which form the basis
for our proofs of high concentrations of the random variables d′(v), t′(v), and d′(v; γ) near their
expectations. For general probability theory and martingales, see e.g. [6], [19] and [27].
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Here we define finite martingales briefly:

Let Y be a random variable and B0, B1, ..., Bn a non-decreasing sequence of σ-fields on a
probability space, where B0 is the trivial σ-field (i.e. B0 = {∅, Whole Set}). Suppose Y is
Bn-measurable, that is,

E[Y |Bn] = Y .

Then the martingale generated by Y with respect to {Bi}n
i=0 is the sequence

{Yi := E[Y |Bi]}n
i=0 .

Note that Y0 = E[Y ], Yn = Y and

E[Yi|Bi−1] = Yi−1 ∀ i = 1, 2, ..., n (61)

(actually, (61) is the general definition of martingales). Also, we define martingale difference
sequence

Zk := Yk − Yk−1 for k = 1, ..., n,

and set Z :=
∑n

k=1 Zk = Y − E[Y ].

From now on when we refer martingales we always assume that {Bi}, Zi’s etc. are taken
for granted. We first introduce the following lemma from [15].

Lemma 5.1 Let {Yi}n
i=0 be a martingale. Suppose that

E[eωZk |Bk−1] ≤ Ck ∀k = 1, ..., n (62)

for some positive ω and C1, ..., Cn. Then

(a) E[eωZ ] ≤
n
∏

k=1

Ck and

(b) Pr(Y − E[Y ] ≥ λ) ≤ e−ωλ
n
∏

k=1

Ck

for all real number λ.

Proof. First, note that (a) implies (b) since Z = Y − E[Y ] and

Pr(Z ≥ λ) = Pr(eωZ ≥ eωλ) ≤ e−λωE[eωZ ]

by Markov’s inequality. For (a), we show

E[eω(Z1+···+Zk)] ≤
k
∏

l=1

Cl

for all k = 1, ..., n by induction. If k = 1,

E[eωZ1 ] = E[E[eωZ1 |B0]] ≤ C1
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For k > 1 using the induction hypothesis,

E[eω(Z1+···+Zk)] = E[E[eω(Z1+···+Zk)|Bk−1]]

= E[eω(Z1+···+Zk−1)E[eωZk |Bk−1]]

≤ E[eω(Z1+···+Zk−1)Ck]

≤
k
∏

l=1

Cl .

2

As mentioned in Section 2, we need something a little more general than Lemma 5.1 which
allows the bounds (62) to fail occasionally.

Lemma 5.2 If there are Ak−1 ∈ Bk−1 such that

E[eωZk |Bk−1]1Āk−1
≤ Ck ∀k = 1, 2, · · · , n (63)

with Ck ≥ 1 for all k, then

Pr(Y − E[Y ] ≥ λ) ≤ e−λω
n
∏

k=1

Ck + Pr(
n−1
⋃

k=0

Ak).

When the Pr(Ak) is small enough we may roughly speak of Ck as an “essential upper
bound” on E[eωZk |Bk−1].

Proof. First we define a stopping time

σ(x) =











min{k|x ∈ Ak} if x ∈
n−1
⋃

k=0

Ak

n otherwise.

Then by the Optional Sampling Theorem (see e.g. [6]), the sequence {Yk∧σ}n
k=0 is a martingale,

where, as usual, k ∧ σ := min{k, σ}. In particular, we have for Y ′ = Yn∧σ

E[Y ′|Bk] = Yk∧σ ∀k = 0, · · · , n. (64)

In particular E[Y ′] = E[Y ].
Furthermore, for Z ′

k := E[Y ′|Bk] − E[Y ′|Bk−1] = Yk∧σ − Y(k−1)∧σ, we know

Z ′
k =

{

0 if σ ≤ k − 1
Yk − Yk−1 = Zk if σ ≥ k .

Thus we have

eωZ′
k = eωZ′

k1{σ≤k−1} + eωZ′
k1{σ≥k} = 1{σ≤k−1} + eωZk1{σ≥k} .

Since {σ ≤ k − 1}, {σ ≥ k} ∈ Bk−1, {σ ≥ k} ⊆ Āk−1 and Ck ≥ 1,, we have

E[eωZ′
k |Bk−1] = 1{σ≤k−1} + E[eωZk |Bk−1]1{σ≥k} ≤ Ck .
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Therefore, by Lemma 5.1 we have

Pr(Y ′ − E[Y ′] ≥ λ) ≤ e−ωλ
n
∏

k=1

Ck ,

which implies the result since E[Y ′] = E[Y ] and Y ′ = Yn∧σ = Yn = Y except on {σ < n} =
∪n−1

k=0Ak.

2

Of course if we know, say, |Zk| ≤ c
k

on Āk−1 then we can take Ck = eωc
k or eω2c

2

k
/2 (by

E[Zk|Bk−1] = 0) in (5.2). But if (on Āk−1) Zk is only rarely near its maximum, then we should
be able to do better. A typical example for us (and also, e.g., in [14], [15]) is that Zk takes
only two values, say

Zk =

{

c
k

on Bk

c′
k

on B̄k

for some low probability set Bk ∈ Bk. In this case, if Bk is independent of Bk−1 then
E[Zk|Bk−1] = 0 implies that c′

k
is small (no more than c

k
Pr(Bk) in absolute value). This

situation is described in the next lemma.

Lemma 5.3 Suppose that there is a set I ⊆ [n], such that

|Zk|1Āk−1
≤ ck1Bk

+ c
k
Pr(Bk), ∀k ∈ I (65)

Zk1Āk−1
≤ c

k
∀k ∈ J := [n] \ I (66)

for some constants ck, and some sets Ak−1 ∈ Bk−1 and Bk independent of Bk−1. Then we
have for all positive ω with ω maxk∈I{ck} ≤ 1

6

Pr(Y − E[Y ] ≥ λ) ≤ Pr(
n−1
⋃

k=0

Ak) + exp(−ω(λ −
∑

k∈J

ck) + 3ω2
∑

k∈I

c2
kPr(Bk)).

Proof. By Lemma 5.2 it is enough to show that

E[eωZk |Bk−1]1Āk−1
≤ e3ω2c2

k
Pr(Bk) for k ∈ I (67)

and
E[eωZk |Bk−1]1Āk−1

≤ eωck for k ∈ J . (68)

Note that (68) is immediate from (66), we really only need to prove (67).
For (67), set V = Zk1Āk−1

, B = Bk−1, ck = c, Bk = B and b = Pr(B) (for fixed k ∈ I).
Then

E[eωZk |Bk−1]1Āk−1
= E[1Āk−1

eωZk |Bk−1] ≤ E[eωV |B] .

Also we know
E[V |B] = E[Zk1Āk−1

|Bk−1] = E[Zk|Bk−1]1Āk−1
= 0 . (69)
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Thus by (69) and (65) we have

E[eωV |B] =
∞
∑

j=0

E[ωjV j |B]/j!

≤ 1 + ωE[V |B] +
1

2

∞
∑

j=2

ωjE[|V j | |B]

≤ 1 +
1

2

∞
∑

j=2

ωjcjE[(1B + b)j |B] .

On the other hand, since

E[(1B)j−l|B] =

{

b if l 6= j
1 if l = j

.

(since Bk is independent of Bk−1), we have

E[(1B + b)j |B] =
j
∑

l=0

(

j
l

)

E[bl(1B)j−l|B]

=
j
∑

l=0

(

j
l

)

bl+1 + (bj − bj+1)

= b(1 + b)j + bj(1 − b) .

Furthermore, since ωc ≤ 1/6 and b ≤ 1

∞
∑

j=2

ωjcjE[(1B + b)j |B] =
∞
∑

j=2

ωjcj(b(1 + b)j + bj(1 − b))

= b
∞
∑

j=2

ωjcj(1 + b)j + (1 − b)
∞
∑

j=2

ωjcjbj

=
bω2c2(1 + b)2

1 − ωc(1 + b)
+

(1 − b)ω2c2b2

1 − ωcb

Thus

∞
∑

j=2

ωjcjE[(1B + b)j |B] ≤ bω2c2 (1 + b)2 + b(1 − b)

1 − ωc(1 + b)

= bω2c2 1 + 3b

1 − ωc(1 + b)

≤ 6bω2c2 .

Therefore
E[eωV |B] ≤ 1 + 3bω2c2 ≤ exp(3bω2c2) .

2
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6 More Lemmas

In the previous section, we developed martingale inequalities which are useful when we know
nice (essential) upper bounds on Zk = E[Y |Bk] − E[Y |Bk−1]. It is relatively easy to find nice
upper bounds if the random variable Y has the typical form

Y = Y (τ1 , τ2 , ..., τn)

where τ1 , τ2 , ..., τn are mutually independent random variables such that for every k the σ-field
generated by τ1 , τ2 , ..., τk

is exactly Bk. As all examples we require will look like this, we
restrict our attention to such Y ’s from now on.

For
τ := (τ1 , τ2 , ..., τn) and τ ′ := (τ ′

1
, τ ′

2
, ..., τ ′

n),

define equivalence relations ≡k by

τ ≡k τ ′ if and only if τ
j

= τ ′
j

for all j ∈ [n] \ {k}.

Lemma 6.1 With the above notation, suppose for some k ∈ [n] there is a random variable W
such that

|Y (τ) − Y (τ ′)| ≤ W (τ) + W (τ ′) whenever τ ≡k τ ′. (70)

Then
|Zk| ≤ E[W |Bk] + E[W |Bk−1] .

(Recall Zk = E[Y |Bk] − E[Y |Bk−1].)

Proof. First note that for fixed κ = (κ1 , ..., κn)

E[Y |Bk−1](κ) =
∑

γ
k
,···,γn

Y (κ1 , · · · , κk−1
, γ

k
, · · · , γn)Pr(τ

k
= γ

k
, · · · , τn = γn),

and

E[Y |Bk](κ) =
∑

γ
k+1

,···,γn

Y (κ1 , · · · , κk
, γ

k+1
, · · · , γn)Pr(τ

k+1
= γ

k+1
, · · · , τn = γn)

=
∑

γ
k
,···,γn

Y (κ1 , · · · , κk
, γ

k+1
, · · · , γn)Pr(τ

k
= γ

k
, · · · , τn = γn)

since
∑

γ
k

Pr(τ
k

= γ
k
, · · · , τn = γn) = Pr(τ

k+1
= γ

k+1
, · · · , τn = γn). Thus by (70) we have

|Zk(κ)| = |(E[Y |Bk] − E[Y |Bk−1])(κ)|
≤

∑

γ
k
,···,γn

|Y (κ1 , · · · , κk
, γ

k+1
, · · · , γn) − Y (κ1 , · · · , κk−1

, γ
k
, · · · , γn)|

× Pr(τ
k

= γ
k
, · · · , τn = γn)

≤
∑

γ
k
,···,γn

(W (κ1 , · · · , κk
, γ

k+1
, · · · , γn) + W (κ1 , · · · , κk−1

, γ
k
, · · · , γn))

× Pr(τ
k

= γ
k
, · · · , τn = γn)

= E[W |Bk](κ) + E[W |Bk−1](κ) .
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Now we come back our own problem. Before developing some inequalities of the form (70),
we introduce more convenient notation: For V (Ĥ) := {v1 , v2 , ..., vn} we write τ

k
:= τ(v

k
),

k ∈ [n]. We will specify the order of the vertices later depending on our purpose. From now
on, Bk is the σ-field generated by τ1 , · · · , τk

and B0 is the trivial σ-field that consists of the
empty set and the whole set. We also write

N̂k := N̂(v
k
), Tk := T (v

k
), T ′

k := T ′(v
k
) and N̂

γ

k := N̂(v
k
; γ) .

(Notice that Tk is in fact Ti(vk
).)

We define new random variables

Qjk(τ) =

{

1 if v
j

∼ v
k

and τ
j

= τ
k

6= Λ
0 otherwise.

and

R
γ

jk
(τ) =

{

1 if (1) τ
k

= γ, and (2) v
j

∼ v
k

or ∃ v
l
∈ N̂

γ

j ∩ N̂
γ

k · 3 · τ
l
= γ

0 otherwise.

Remark 1. If j 6= k then |N̂ γ

j ∩ N̂
γ

k | ≤ 1 because g(Ĥ) ≥ 5. Thus the second condition of
(2) is very strong in most cases.

2. We could replace the condition v
l
∈ N̂

γ

j ∩ N̂
γ

k by v
l
∈ N̂j ∩ N̂k, since the requirement τ

l
= γ

then forces v
l
∈ N̂

γ

j ∩ N̂
γ

k .

As we saw in Section 4, our random variables are sums of 0-1 random variables. We first
consider the 0-1 random variables.

Lemma 6.2 Suppose τ ≡k τ ′. Then we have

|1{vj 6∈X}(τ) − 1{vj 6∈X}(τ
′)| ≤ Qjk(τ) + Qjk(τ

′) + 1{j=k} (71)

|1{γ∈T ′
j
}(τ) − 1{γ∈T ′

j
}(τ

′)| ≤ R
γ

jk
(τ) + R

γ

jk
(τ ′) (72)

and

|1{vj 6∈X,γ∈T ′
j
}(τ) − 1{vj 6∈X,γ∈T ′

j
}(τ

′)|
≤ Qjk(τ) + Qjk(τ

′) + R
γ

jk
(τ) + R

γ

jk
(τ ′) + 1{j=k} (73)

for γ ∈ Tj.

Proof. (a) For (71) suppose

1{vj 6∈X}(τ) − 1{vj 6∈X}(τ
′) = 1 .

Then we claim
Qjk(τ) + 1{j=k} ≥ 1 ,
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which means
1{vj 6∈X}(τ) − 1{vj 6∈X}(τ

′) ≤ Qjk(τ) + 1{j=k} . (74)

Proof of claim. First note that

1{v
j
6∈X}(τ) = 1 ⇒ τ

j
= Λ or τj = τ

l
for some v

l
∈ N̂j and

1{vj 6∈X}(τ
′) = 0 ⇒ τ ′

j
6= Λ and τ ′

j
6= τ ′

l
, for all v

l
∈ N̂j .

We consider two cases.
(1) If τ

j
6= τ ′

j
then k = j. Thus 1{j=k} = 1.

(2) Suppose τ
j

= τ ′
j
(6= Λ). Then we know τ

j
6= Λ and there is v

l
∈ N̂j such that τ

j
= τ

l
6= τ ′

l
.

Thus l = k and τ
j

= τ
k

6= Λ i.e. Qjk(τ) = 1.

Similarly, we may have

1{v
j
6∈X}(τ

′) − 1{v
j
6∈X}(τ) ≤ Qjk(τ

′) + 1{j=k} ,

which completes the proof.

(b) For (72) suppose that
1{γ∈T ′

j
}(τ) − 1{γ∈T ′

j
}(τ

′) = 1 .

Then we claim
R

γ

jk
(τ) + R

γ

jk
(τ ′) ≥ 1 .

Proof of claim. First we have

1{γ∈T ′
j
}(τ) = 1 ⇒ ∀v

l
∈ A := {v

l
∼ v

j
: τ

l
= γ} ∃ vq ∼ v

l
· 3 · τq = γ and

1{γ∈T ′
j
}(τ

′) = 0 ⇒ ∃v
l
∈ A′ := {v

l
∼ v

j
: τ ′

l
= γ} · 3 · τ ′

q 6= γ ∀ vq ∼ v
l
.

We again consider two cases.
(1) If A′ \ A 6= ∅ then it is clear by τ ≡k τ ′ that A′ \ A = {v

k
}. Thus v

j
∼ v

k
and τ ′

k
= γ by

the definition of A′. This means R
γ

jk
(τ ′) = 1.

(2) Suppose A′ ⊆ A. Then take v
l
∈ A′ such that τ ′

q 6= γ for all vq ∼ v
l
. Since v

l
is also in A

(⇒ τ
l
= γ), we know there is vq0

∼ v
l

such that τq0
= γ. Thus it is clear to see that q0 = k

and so R
γ

jk
(τ) = 1. (Note that this includes the case k = j.)

Similarly, we have the same claim when the other case happens, which completes the proof.

(c) The inequality (73) follows from (71) and (72) via the triangle inequality, since

|1{vj 6∈X,γ∈T ′
j
}(τ) − 1{vj 6∈X,γ∈T ′

j
}(τ

′)|
≤ |1{vj 6∈X}(τ) − 1{vj 6∈X}(τ

′)| + |1{γ∈T ′
j
}(τ) − 1{γ∈T ′

j
}(τ

′)| .

2

Finally we have the following easy lemma.
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Lemma 6.3 If v
j

∼ v
k

and j > k then we have

E[Qjk|Bk] = p1{τ
k
∈Tj}

E[Qjk|Bk−1] = p2|Tj ∩ Tk| .

Also, if all vertices in N̂j follow v
k

then we have

E[R
γ

jk
|Bk] ≤ p|N̂ γ

j ∩ N̂
γ

k |1{τ
k
=γ} (≤ 1{τ

k
=γ})

E[R
γ

jk
|Bk−1] ≤ p2|N̂ γ

j ∩ N̂
γ

k |1{γ∈Tk} (≤ p1{γ∈Tk})

with equality unless j = k.

Proof. Suppose v
j

∼ v
k

and j > k. Then

E[Qjk|Bk] = Pr(τ
k

= τ
j

6= Λ|Bk) .

Since τ
j

is independent of Bk, we get

Pr(τ
k

= τ
j

6= Λ|Bk) =

{

p if τ
k

∈ Tj

0 otherwise.

And since τ
k

is independent of Bk−1, it is clear that

E[Qjk|Bk−1] = E[E[Qjk|Bk]|Bk−1]

= pE[1{τ
k
∈Tj}|Bk−1]

= p2|Tj ∩ Tk| .

For the second part, suppose all vertices in N̂j follow v
k
, in particular v

k
6∼ v

j
. Then

E[R
γ

jk
|Bk] = Pr(∃v

l
∈ N̂

γ

j ∩ N̂
γ

k · 3 · τ
l
= γ|Bk)1{τ

k
=γ}

≤ p|N̂ γ

j ∩ N̂
γ

k |1{τ
k
=γ} (75)

since

Pr(∃v
l
∈ N̂

γ

j ∩ N̂
γ

k · 3 · τ
l
= γ|Bk) = Pr(∃v

l
∈ N̂

γ

j ∩ N̂
γ

k · 3 · τ
l
= γ)

≤ p|N̂ γ

j ∩ N̂
γ

k | .

And
E[R

γ

jk
|Bk−1] = p2|N̂ γ

j ∩ N̂
γ

k |1{γ∈Tk} . (76)

Furthermore, in (75), we have equality whenever |N̂ γ

j ∩ N̂
γ

k | = 0 or 1, which happens unless

j = k (since g(Ĥ) ≥ 5).

2
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In what follows we will treat concentrations of the random variables d′(v), t′(v) and d′(v; γ)
separately. Since we would like to apply Lemma 5.3 the main goal is to establish inequalities of
the form (65) or (66). In most cases Ak = ∅ and I = [n], but in the proof of the concentration
result for d(v; γ) we use Lemma 5.2 essentially (i.e. Ak 6= ∅ in some cases) and I is no longer
[n]. In each case we first choose the order of vertices carefully. Next we apply lemmas 6.1 and
6.2, and analyze the resulting upper bounds case by case (using Lemma 6.3 in most cases).
Again in the the proof of the concentration result for d(v; γ), we need to consider R

γ

jk
under

more complicated conditions, which will be developed in Section 7.3.
In the following section we always assume

τ ≡k τ ′

when k is clear.

7 Proof of the Main Lemma

In this section we prove (35), (36) and (37) in the Main Lemma.

7.1 Degrees

Fix v1 = v ∈ V (H). Since N̂(N(v)) ∩ N(v) = ∅ by g(Ĥ) ≥ 5, we may label all vertices so that

N̂(N(v)) \ {v} = {v2 , ...., vm−1} and N(v) = {vm, ..., vn}

(recall N(v) = {w ∈ V (H) : w ∼ v}). Note that v
j

6= v
k

if j 6= k since g(Ĥ) ≥ 5. Our random
variable Y is, of course,

Y = d′(v) =
∑

w∈N(v)

1{w 6∈X} =
n
∑

j=m

1{v
j
6∈X} .

We do not even define the order of the other vertices because Y does not depend on their
colors.

We look for inequalities of the form (70). For τ ≡k τ ′ we easily see that by (71)

|Y (τ) − Y (τ ′)| ≤
n
∑

j=m

|1{v
j
6∈X}(τ) − 1{vj 6∈X}(τ

′)|

≤
n
∑

j=m

(Qjk(τ) + Qjk(τ
′) + 1{j=k}) .

and by Lemma 6.1 we have

|Zk| ≤
n
∑

j=m

(E[Qjk|Bk] + E[Qjk|Bk−1] + 1{j=k}) . (77)

Now we claim that
Pr(Y − E[Y ] ≥ λ) ≤ exp(−(log ∆)2/4)

where λ := ∆1/2 log ∆.
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First recall

pt ≤ 1 (by the definition of p) pd ≤ 0.11 (by (45) or (28)). (78)

We consider three cases to get inequalities of the form (65). In what follows, we always assume
m ≤ j ≤ n.
(Case 1) k = 1
Then using Lemma 6.3, (77) and the fact that |N(v; γ)| ≤ |N̂(v; γ)| = d for all γ ∈ T (v), we
have

|Z1| ≤ p
n
∑

j=m

(1{τ1∈Tj} + p|Tj ∩ T1|

= p(|N(v; τ1)| + ptd)

≤ p(d + ptd) ≤ 2pd

Therefore, we have
|Z1| ≤ 2pd ≤ 1 = 1/2 + 1/2,

i.e.
c1 = 1/2, P r(B1) = 1. (79)

in terms of parameters in (65).

(Case 2) 2 ≤ k ≤ m − 1.
In this case there is only one j (m ≤ j ≤ n), say j(k), such that v

j
∼ v

k
. By (77) and Lemma

6.3 we have
|Zk| ≤ p1{τ

k
∈Tj(k)} + p2|Tk ∩ Tj(k)| .

That is, for (65) we may take Bk := {τ
k

∈ Tj(k)} and

c
k

= p and Pr(Bk) = p|Tk ∩ Tj(k)| . (80)

(Case 3) m ≤ k ≤ n,
Since v

k
∼ v and v

j
∼ v we know v

k
6∼ v

j
. Thus all Q terms in (77) disappear. Therefore, we

have
|Zk| ≤ 1 i.e. c

k
= 1/2 and Pr(Bk) = 1 . (81)

Therefore, by (79), (80) and (81), we know that

3ω2
n
∑

k=1

c2
k
Pr(Bk) = 3ω2(

1

4
+ p3

m−1
∑

k=2

|Tk ∩ Tj(k)| +
1

4
|N(v)|) .

Furthermore,
|N(v)| ≤ ∆
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and by (78)

p3
m−1
∑

k=2

|Tk ∩ Tj(k)| ≤ p3
n
∑

j=m

∑

v
k
∈N̂j

|Tk ∩ Tj |

= p3
n
∑

j=m

∑

v
k
∈N̂j

∑

γ∈Tj

1{γ∈Tk}

= p3
n
∑

j=m

∑

γ∈Tj

∑

v
k
∈N̂j

1{γ∈Tk}

≤ p3∆td < p∆ . (82)

Finally, setting ω = λ/(2∆) and using Lemma 5.3 we have

Pr(Y − E[Y ] ≥ λ) ≤ exp(−ωλ + ω2∆) = exp(−(log ∆)2/4) .

7.2 Sizes of sets of legal colors

We define an order similar to that of the previous section. Fix v ∈ V (H) and set v1 = v and

N̂2(v) = {v2 , ..., vm−1}, N̂(v) = {vm, ..., vn} ,

where, in general, for a subset (or vertex) A of V (Ĥ)

N̂0(A) = A and N̂ j(A) := N̂(N̂ j−1(A)) \
j−1
⋃

l=0

N̂ l(A) for l = 1, 2, · · · .

Notice that by the definition

N̂ j(A) ∩ A = ∅ for all j = 1, 2, .... (83)

We do not define any order on the other vertices because they are irrelevant.
If we set

Y = −t′(v1) = −
∑

γ∈T1

1{γ∈T ′
1} ,

then for τ ≡k τ ′ we have by (72)

|Y (τ) − Y (τ ′)| ≤
∑

γ∈T1

|1{γ∈T ′
1}(τ) − 1{γ∈T ′

1}(τ
′)|

≤
∑

γ∈T1

(R
γ

1k
(τ) + R

γ

1k
(τ ′)) .

Hence by Lemma 6.1
|Zk| ≤

∑

γ∈T1

(E[R
γ

1k
|Bk] + E[R

γ

1k
|Bk−1]) . (84)

We claim
Pr(Y − E[Y ] ≥ λ) ≤ exp(−(log t)2/2)

for λ := t1/2 log t.
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Again we first consider three cases.
(Case 1) k = 1
Then by (84), Lemma 6.3 and the fact that |N̂ γ

k | = d, we have

|Z1| ≤ pd
∑

γ∈T1

(1{τ1=γ} + p) ≤ 1

i.e.
c1 = 1/2, P r(B1) = 1 . (85)

in terms of the parameters in (65).
(Case 2) 2 ≤ k ≤ m − 1
Then there is only one element in N̂1 ∩ N̂k, say vj(k). By (84) and Lemma 6.3 (using j(k) > k)
we have

|Zk| ≤
∑

γ∈T1

(p|N̂ γ

1
∩ N̂

γ

k |1{τk=γ} + p2|N̂ γ

1
∩ N̂

γ

k |1γ∈Tk
)

=
∑

γ∈T1

(p1{γ∈Tj(k)}1{τk=γ} + p21{γ∈Tj(k)}1{γ∈Tk})

= p1{τ
k
∈T1∩Tj(k)} + p2|T1 ∩ Tj(k) ∩ Tk| .

Thus we may say Bk := {τk ∈ T1 ∩ Tj(k)} and

c
k

= p, Pr(Bk) = p|T1 ∩ Tj(k) ∩ Tk|. (86)

(case 3) m ≤ k ≤ n
Then by (84) and Lemma 6.3 we have

|Zk| ≤
∑

γ∈T1

(1{τk=γ} + p1{γ∈Tk}) = 1{τk∈T1} + p|T1 ∩ Tk| ,

that is, Bk := {τ
k

∈ T1} and

c
k

= 1, P r(Bk) = p|T1 ∩ Tk| . (87)

Now by (85), (86) and (87), we have

3ω2
n
∑

k=1

c2
k
Pr(Bk) = 3ω2(

1

4
+ p3

m−1
∑

k=2

|T1 ∩ Tj(k) ∩ Tk| + p
n
∑

k=m

|T1 ∩ Tk|) .

Moreover, by (78) we have

p
n
∑

k=m

|T1 ∩ Tk| = pdt ≤ 0.11t
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and

p3
m−1
∑

k=2

|T1 ∩ Tj(k) ∩ Tk| ≤ p3
∑

v
j
∈N̂1

∑

v
k
∈N̂j

∑

γ∈T1

1{γ∈Tj∩Tk}

= p3
∑

γ∈T1

∑

v
j
∈N̂

γ

1

∑

v
k
∈N̂j

1{γ∈Tk}

= p3td2 ≤ 1 .

So setting ω = λ/t and using Lemma 5.3, we have

Pr(Y − E[Y ] ≥ λ) ≤ exp(−ωλ + ω2t/2) = exp(−(log t)2/2) .

2

7.3 Color degrees

As we saw before, this case is a combination of the preceding two cases. One might guess
that the upper bound we try to get is more and less the sum of the two previous upper
bounds. However, our situation here is somewhat different so that we need a more subtle and
complicated analysis. The reason will be briefly explained after we order vertices.

Fix v ∈ V (H) and γ ∈ T (v). Set

{v1 , ..., vh−1
} = N̂2(N(v; γ))

{v
h
, ..., v

l−1
} = N̂(N(v; γ)) ∩ {z ∈ V (Ĥ) : γ 6∈ T (z)}

{v
l
, ..., vm−1} = N̂(N(v; γ)) ∩ {z ∈ V (Ĥ) : z 6= v, γ ∈ T (z)}

{vm , ..., vn−1} = N(v; γ)

and vn = v. Also set

Y = d′(v; γ) =
∑

z∈N(v;γ)

1{z 6∈X, γ∈T ′(z)} =
n−1
∑

j=m

1{vj 6∈X, γ∈T ′
j
} .

Then as in the previous sections for τ ≡k τ ′ we have

|Y (τ) − Y (τ ′)| ≤
n−1
∑

j=m

|1{vj 6∈X, γ∈T ′
j
}(τ) − 1{vj 6∈X, γ∈T ′

j
}(τ

′)|

≤
n−1
∑

j=m

Qjk(τ) + Qjk(τ
′) + R

γ

jk
(τ) + R

γ

jk
(τ ′) + 1{j=k} ,

and so by Lemma 6.1

|Zk| ≤
n−1
∑

j=m

E[Qjk|Bk] + E[Qjk|Bk−1] + E[R
γ

jk
|Bk] + E[R

γ

jk
|Bk−1] + 1{j=k} . (88)

For the Q terms we may use the same estimation as in Section 7.1. However for the R
terms we need new analysis. Shortly speaking, one (possibly main) reason is that we must
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take account into edges between vertices U := {v
l
, · · · , vm−1}. For example, it may happen

that there is a vertex v
k

in U such that almost all vertices in N
γ

k
are in U and precede v

k
.

Furthermore, it seems to be impossible to find a suitable order to avoid this kind of problem.
Thus we are considering essential maximums. The next two lemmas are presented mainly for
this purpose.

First we define new (random) sets

A
γ

k
= A

γ

k
(τ) := {v

i
∈ N̂

γ

k : 1 ≤ i ≤ k − 1, τ
i
= γ}

C
γ

k
= C

γ

k
(τ) := {v

i
∈ N̂

γ

k : k ≤ i ≤ n, τ
i
= γ} .

Then it easy to see that for v
k

∈ N̂j

R
γ

jk
= 1{τ

k
=γ} (89)

and for v
k

6∈ N̂j

R
γ

jk
≤ (|N̂ γ

j ∩ A
γ

k| + |N̂ γ

j ∩ C
γ

k |)1{τ
k
=γ} .

Furthermore, since A
γ

k
∈ Bk−1 ⊂ Bk and C

γ

k
is independent of Bk, we have

E[|N̂ γ

j ∩ A
γ

k
| |Bk] = |N̂ γ

j ∩ A
γ

k
|

E[|N̂ γ

j ∩ C
γ

k
| |Bk] ≤ p|N̂ γ

j ∩ N̂
γ

k | .

Thus for v
k

6∈ N̂j , we have

E[R
γ

jk
|Bk] ≤ (|N̂ γ

j ∩ A
γ

k| + p|N̂ γ

j ∩ N̂
γ

k |)1{τ
k
=γ} . (90)

The next lemma is easy to get using the above inequalities.

Lemma 7.1 With the notation as above we have

n−1
∑

j=m

E[R
γ

jk
|Bk] ≤











c
k
1{τ

k
=γ} if 1 ≤ k ≤ h

(2 + |Aγ

k
|)1{τ

k
=γ} if h ≤ k ≤ m − 1

1 + pd if m ≤ k ≤ n − 1

where for 1 ≤ k ≤ h

c
k

= c
γ

k
:= p |

n−1
⋃

j=m

N̂
γ

j ∩ N̂
γ

k | .

Proof. For 1 ≤ k ≤ h we know N̂
γ

j ∩ A
γ

k
= ∅ since the all vertices in N̂

γ

j follow v
k
. Also it is

easy to see that

p
n−1
∑

j=m

|N̂ γ

j ∩ N̂
γ

k | = p|
n−1
⋃

j=m

N̂
γ

j ∩ N̂
γ

k | = c
k

(≤ pd) (91)

because the sets in the sum are disjoint by g(Ĥ) ≥ 5. Thus by (90) we have

n−1
∑

j=m

E[R
γ

jk
|Bk] ≤ p

n−1
∑

j=m

|N̂ γ

j ∩ N̂
γ

k |1{τ
k
=γ} = c

k
1{τ

k
=γ}
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On the other hand, for h ≤ k ≤ m − 1 there is only one j between m and n − 1 such that
v

k
∈ N̂j . Hence by (89), (90) and (91) we get

n−1
∑

j=m

E[R
γ

jk
|Bk] ≤ (1 +

n−1
∑

j=m

|N̂ γ

j ∩ A
γ

k
| + pd)1{τ

k
=γ}

≤ (2 + |Aγ

k
|)1{τ

k
=γ}

again because of the disjointness of the sets.
Finally, for m ≤ k ≤ n − 1 we know that if j 6= k then N̂j ∩ N̂k = {vn}, which also means

N̂j ∩ A
γ

k
= ∅. Thus by (90), we get

n−1
∑

j=m

E[R
γ

jk|Bk] ≤ E[Rγ
kk|Bk] + (d − 1)p1{τk=γ} ≤ 1 + pd .

2

In the above lemma, the size of A
γ

k
can be as large as d. But the size is essentially small

enough for our purpose. (Note that E[|Aγ

k
|] ≤ pd ≤ 0.11.) The following lemma gives the

exact meaning of this.

Lemma 7.2 For all γ0 ∈ Tk, we have

Pr(|Aγ0

k
| ≥ log d) ≤ d exp(− log d log log d)

Proof. Set Y ′ = |Aγ0

k
|. For ω′ = log log d we get

E[exp(ω′Y ′)] ≤ E[exp(ω′
∑

vi∈N̂
γ0
k

1{τi=γ0})]

=
∏

vi∈N̂
γ0
k

E[exp(ω′1{τi=γ0})]

≤ (1 − p + peω′

)d

≤ exp(pdeω′

)

≤ exp(eω′

) = d .

Thus using Markov inequality we have

Pr(Y ′ ≥ log d) = Pr(exp(ω′Y ′) ≥ exp(ω′ log d))

≤ d exp(−ω′ log d) .

2

Now we claim for λ := d1/2(log d)2,

Pr(Y − E[Y ] ≥ λ) ≤ exp(−1

2
log d log log d) (92)

using Lemma 5.3. That is, we first show that (65) and (66) with appropriate c
k
’s, Bk’s, Ak−1’s

which satisfy the conditions in Lemma 5.3.
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We consider five cases. In what follows we always assume m ≤ j ≤ n − 1.

(Case 1) 1 ≤ k ≤ h − 1
Note that j 6= k, and by (83) vj 6∼ vk for all m ≤ j ≤ n−1. Thus all Q terms in (88) disappear
as well as the term 1{j=k}. By (88) and Lemma 7.1, we have

|Zk| ≤ c
k
1{τ

k
=γ} + pc

k
1{γ∈Tk} .

(Case 2) h ≤ k ≤ l − 1
By γ 6∈ Tk, all R terms in (88) disappear. Furthermore because there is only one j, say j(k),
such that v

k
∼ v

j
, we have

|Zk| ≤ p1{τk∈Tj(k)} + p2|Tj(k) ∩ Tk| (≤ 2p) . (93)

as in the Case 2 of Section 7.1.
Hence Bk := {τk ∈ Tj(k)} and

ck = p, Pr(Bk) = p|Tj(k) ∩ Tk| . (94)

(Case 3) l ≤ k ≤ m − 1
Let j(k) as in (Case 2). Then we have the same bound in (93) for Q terms. Now we set

Ak−1 := {τ : |Aγ

k
(τ)| ≥ log d} ∈ Bk−1 .

Then by (88) and Lemma 7.1 we have

|Zk|1Āk−1
≤ 2p + (2 + log d)1{τ

k
=γ} + p(2 + log d) ≤ (4 + log d)1{τ

k
=γ} + p(4 + log d) .

Hence we may say that Bk := {τ
k

= γ} and

c
k

= 4 + log d, Pr(Ak−1) ≤ a
k
, P r(Bk) = p (95)

where ak := exp(−d log d log log d) (see Lemma 7.2).

(Case 4) m ≤ k ≤ n − 1
Note that vj 6∈ N̂k and for k 6= j, N̂j ∩ N̂k = {vn} (m ≤ j ≤ n − 1). So all Q terms disappear.
Therefore, by (88) and Lemma 7.1, we get

|Zk| ≤ 2 + 2pd + 1 ≤ 4 (96)

That is, c
k

= 2 and Pr(Bk) = 1.

(Case 5) k = n
For

Mn(τ) := max
γ0∈Tn

{|Aγ0

n
(τ)|} ,

we define
An−1 := {τ : Mn(τ) ≥ log d} ∈ Bn−1 .

Then it is easy to check by Lemma 7.2 that

Pr(An−1) ≤ td exp(− log d log log d) .
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We now claim
Zn1Ān−1

≤ 2 + log d ,

that is, J = {n} and
cn = 2 + log d (97)

in terms of parameters in Lemma 5.3.

Proof of claim. For Q terms, note that

n−1
∑

j=m

Qjn(τ) =
n−1
∑

j=m

1{τ
j
=τn 6=Λ}(τ) ≤ Mn(τ)

and
m
∑

j=c

E[Qjn|Bn−1] ≤ pd ≤ 1

Hence by (88) we have

|Zn|1An−1
≤ log d + 1 +

n−1
∑

j=m

(1{τn=γ} + p)

≤ log d + 1 + d1{τn=γ} + pd

= 2 + log d + d1{τn=γ} (98)

If τn 6= γ then we get
|Zn|1An−1

≤ 2 + log d .

When τn = γ, the upper bound in (98) is no longer good. Actually the (essential) maximum
of |Zn| is quite big. (Note that p is not so small.) But we can find a nice essential upper bound
of Zn. To do so we need a lemma, which is to be proved later. Our result is an easy corollary
of the lemma.

Recall that it is enough for us to consider only the case τn = γ.

Lemma 7.3 With the same notation as above, suppose τ ≡n τ ′ and τn = γ. Then for
m ≤ j ≤ n − 1

1{vj 6∈X,γ∈T ′
j
}(τ) − 1{vj 6∈X,γ∈T ′

j
}(τ

′) ≤ 1{τ
j
=γ}(τ) . (99)

Corollary 7.4 If τn = γ then
Zn1An−1

≤ log d .

Proof. We use the same method in the proof of Lemma 6.1. For τ = (τ1, ..., τn−1 , γ) we know

Zn(τ) = Y (τ) − E[Y |τ1 , ..., τn−1 ]

=
∑

γ′∈Tn∪{Λ}

(Y (τ) − Y (τ ′))Pr(τn = γ′)

=
∑

γ′∈Tn∪{Λ}

n−1
∑

j=m

(1{v
j
6∈X,γ∈T ′

j
}(τ) − 1{v

j
6∈X,γ∈T ′

j
}(τ

′))Pr(τn = γ′)
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where τ ′ = (τ1, ..., τn−1 , γ
′). Thus by Lemma 7.3 we have

Zn1An−1
≤

∑

γ′∈Tn∪{Λ}

n−1
∑

j=m

1{t
j
=γ}1An−1

Pr(τn = γ′)

=
n−1
∑

j=m

1{t
j
=γ}1An−1

∑

γ′∈Tn∪{Λ}

Pr(τn = γ′)

=
n−1
∑

j=m

1{τj=γ}1An−1
≤ log d .

2

We now have

3ω2
n−1
∑

k=1

c2
k
Pr(Bk) = 3ω2(p

h−1
∑

k=1

c2
k
1{γ∈Tk} + p3

l−1
∑

k=h

|Tj(k) ∩ Tk|

+ p
m−1
∑

k=l

(4 + log d)2 +
n−1
∑

k=m

4) .

Also, it is easy to check that

p3
l−1
∑

k=h

|Tj(k) ∩ Tk| ≤ p3td2 ≤ 1, p
m−1
∑

k=l

(4 + log d)2 ≤ pd2(4 + log d)2 ≤ 0.12d(log d)2 ,

and

p
h−1
∑

k=1

c
k

21{γ∈Tk} = p3
h−1
∑

k=1

|
n−1
⋃

j=m

N̂
γ

j ∩ N̂
γ

k |21{γ∈Tk}

≤ p3d
h−1
∑

k=1

|
n−1
⋃

j=m

N̂
γ

j ∩ N̂
γ

k |1{γ∈Tk}

≤ p3dd2d = p3d4

since the last sum is less than the number of edges between ∪n−1
j=mN̂

γ

j and its neighbors v
k

with
γ ∈ Tk.

Hence setting ω = d−1/2 and using Lemma 5.3 (recall λ = d1/2(log d)2) we have

Pr(Y − E[Y ] ≥ λ) ≤ exp(−ω(λ − 2 − log d) + 3ω2(p3d4 + 1 + 0.12d(log d)2 + 4d))

+ Pr(
m−1
⋃

k=l

Ak−1 ∪ An−1)

≤ exp(−1

2
(log d)2) + (d3 + td) exp(− log d log log d)

≤ exp(− log d log log d/2) .

2
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We complete the proof of the Main Lemma by proving Lemma 7.3.

Proof of Lemma 7.3. First recall vn ∼ vj . We consider two cases.
If vn ∈ X(τ) (i.e. 1{vn∈X}(τ) = 1) then since τn = γ, we have γ 6∈ T ′

j(τ) (i.e. 1{γ∈T ′
j
}(τ) =

0), which implies
1{vj 6∈X,γ∈T ′

j
}(τ) = 0 .

Thus the left hand side of (99) is less than 0 while 1{τj=γ} ≥ 0.
If vn 6∈ X(τ) then it is easy to see

γ 6∈ T ′
j(τ) if and only if ∃vi ∈ N̂j ∩ X(τ) s.t. τ

i
= γ

if and only if ∃vi ∈ N̂j ∩ X(τ ′) s.t. τ ′
i = γ

if and only if γ 6∈ T ′
j(τ

′)

because τ ≡n τ ′ and g(Ĥ) ≥ 5. That is, 1{γ∈T ′
j
}(τ) = 1{γ∈T ′

j
}(τ

′).

Thus by (74) we have

1{vj 6∈X,γ∈T ′
j
}(τ) − 1{vj 6∈X,γ∈T ′

j
}(τ

′) = (1{vj 6∈X}(τ) − 1{vj 6∈X}(τ
′))1{γ∈T ′

j
}(τ)

≤ Qjn(τ) = 1{τj=γ} .

2

8 Further discussion

Our result (Theorem 1.1) gives the correct order of magnitude for both chromatic and list-
chromatic numbers (cf. (2)). However, the original question regarding triangle-free graph (i.e.
girth at least 4) is still open. Here we (J. Kahn and the author) would like conjecture that the
same result holds for girth 4:

Conjecture 8.1 Let G be a graph. If g(G) ≥ 4 then

χ
l
(G) ≤ (1 + o(1))

∆(G)

log ∆(G)

where o(1) goes to zero as ∆(G) goes to infinity.

Remark Recently, R. Häggkvist said that A. Johansson and S. McGuiness had just (inde-
pendently) proved our result and were pretty sure that for girth 4 they could show χ(G) =
O(∆(G)/ log ∆(G)) and χ

l
(G) = o(∆(G)).

Acknowledgments The author is very grateful to Professor J. Kahn for Lemma 5.2 which
was jointly obtained with him.
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