
How Asymmetry Helps Load Balancing

Berthold Vöcking
�

International Computer Science Institute
Berkeley, CA 94704-1198

voecking@icsi.berkeley.edu

Abstract

This paper deals with balls and bins processes related to
randomized load balancing, dynamic resource allocation,
and hashing. Suppose � balls have to be assigned to � bins,
where each ball has to be placed without knowledge about
the distribution of previously placed balls. The goal is to
achieve an allocation that is as even as possible so that no
bin gets much more balls than the average. A well known
and good solution for this problem is to choose

�
possible

locations for each ball at random, to look into each of these
bins, and to place the ball into the least full among these
bins. This class of algorithms has been investigated inten-
sively in the past, but almost all previous analyses assume
that the

�
locations for each ball are chosen uniformly and

independently at random from the set of all bins.
We investigate whether a non-uniform and possibly de-

pendent choice of the
�

locations for a ball can improve
the load balancing. Three types of selections are distin-
guished: 1) uniform and independent 2) non-uniform and
independent 3) non-uniform and dependent. Our first re-
sult shows that choosing the locations in a non-uniform way
(type 2) results in a better load balancing than choosing the
locations uniformly (type 1). Surprisingly, this smooth load
balancing is obtained by an algorithm called “Always-Go-
Left” which creates an asymmetric assignment of the balls
to the bins. Our second result is a lower bound on the small-
est possible maximum load that can be achieved by any al-
location algorithm of type 1, 2, or 3. Our upper and lower
bounds are tight up to a small additive constant, showing
that the Always-Go-Left scheme achieves almost the opti-
mal load balancing.

Furthermore, we show that our upper bound can be gen-
eralized to infinite processes in which balls are inserted and
deleted by an adversary.

�
Supported by a grant of the “Gemeinsames Hochschulsonderpro-

gramm III von Bund und Ländern” through the DAAD. This research was
conducted in part while the author was staying at the Heinz Nixdorf Insti-
tute, University of Paderborn, with support provided by the “DFG-Sonder-
forschungsbereich 376”.

1. Introduction

Suppose that we place � balls into � bins by putting each
ball into a bin chosen randomly and uniformly at random.
One of the classical results in probability theory is that this
process terminates with an expected number of �����
	����
�������� ��� ������� � balls in the fullest bin.

Karp, Luby, and Meyer auf der Heide [5] introduced a
variant of this process. They suggest to allow two possible
locations for each ball, chosen independently and uniformly
at random from the set of bins. A simple, parallel algorithm
decides in which of the two possible bins the ball is actually
placed. The algorithm terminates with ��� ������� � � balls in
the fullest bin, w.h.p.1 Thus, providing two choices for each
ball results in an exponential decrease of the maximum load,
i.e., the number of balls in the fullest bin.

More exact results were obtained by Azar, Broder, Kar-
lin, and Upfal [2]. They consider sequential allocation pro-
cesses in which the balls arrive one by one. Each ball
comes with

�����
possible locations, chosen independently

and uniformly at random from the set of bins, and the ball
is placed in the least full among them. They give almost
matching upper and lower bounds on the maximum load of
this genuine allocation process, that is, they show that the
fullest bin gets

������� ��� ������� � ���!� balls, w.h.p.
The applications of this simple balls and bins process

are numerous, e.g., dynamic resource allocation, hashing,
and on-line load balancing. These examples are described
exhaustively in [2].

Our contribution. We investigate what happens to the
maximum load of the sequential allocation process when
the
�

possible locations for each ball are chosen in a non-
uniform and possibly dependent fashion, that is, we still as-
sume that the rules for allocating a ball are the same for all
balls but the

�
possible locations for the same ball may be

chosen non-uniformly and dependent from each other.

1The term “w.h.p.” abbreviates “with high probability”, i.e., with prob-
ability at least "$#&%('*) , where + is an arbitrary constant.

1

The goal is to improve on the results known for the uni-
form process. On the first view, this idea seems strange as
a non-uniform choice of the bins may tend to an uneven
distribution of the balls, resulting in a higher rather than a
lower maximum load. In fact, it is not difficult to prove that,
for the allocation using only one possible location for each
ball, the expected maximum load gets worse when chang-
ing to any non-uniform distribution. We will see, however,
that this intuition is deceptive in the case of more than one
choice for each ball.

We define a sequential allocation scheme to be an al-
gorithm that places one ball after the other and uses the
same rules for each ball. We consider sequential allocation
schemes that place each ball in one out of

�
bins chosen

according to one of the following types of selection.

1) uniform and independent: Each of the
�

locations
of each ball is chosen uniformly and independently at
random from � ��� , where � ���������
	�	�	��
� ��� denotes
the set of bins.

2) (possibly) non-uniform and independent: For ���� � � , the
�
th location of each ball is chosen inde-

pendently at random from � ��� according to an arbitrary
probability distribution ������� ����� � ��� � � .

3) (possibly) non-uniform and (possibly) dependent:
The
�

locations of each ball are chosen at random from
the set � ����� according to an arbitrary probability distri-
bution ����� ��� � � � ��� � � .

We assume that, when a ball is placed, the outcome of the
random choices for the balls that have not yet been placed
is unknown. Regarding the knowledge of already placed
balls, we make different assumptions in our lower and upper
bounds. For the lower bounds, we will allow algorithms
that have full knowledge about the previous assignments of
balls to the bins, whereas the algorithms that yield our upper
bounds use only knowledge about the number of balls in
the
�

locations of the ball to be placed. As a result of our
analyses, we will see that the additional power of having
full knowledge about the distribution of the balls does not
help very much.

We present an upper bound on the maximum load using
a non-uniform but independent allocation scheme (type 2)
that clearly improves upon the (lower and upper) bounds
known for the uniform allocation process (type 1). Further-
more, we prove an almost matching lower bound on the best
possible maximum load that can be achieved by any possi-
bly non-uniform and dependent allocation scheme (type 3).
Hence, we prove that non-uniform probability distributions
can help to reduce the maximum load whereas dependency
among the locations of a ball yields no significant further
improvement.

Main Results. Our upper bound is obtained by the fol-
lowing algorithm. We divide the bins into

�
groups of al-

most equal size, i.e., each group has size
� � ��� � � . These

groups are numbered from 1 to
�
. For each ball, we choose

the
�
th location (� � � � � � uniformly and independently at

random from the
�
th group. The ball is placed in one of the

least full bins among these locations. If there are several lo-
cations with smallest load, the ball is placed in the location
of the leftmost group, i.e., the group with the smallest num-
ber. Because of this asymmetric tie breaking mechanism
our algorithm is called “Always-Go-Left”.

The following theorem reflects the core of our upper
bound. A more general variant of this theorem, e.g., al-
lowing that the number of balls is larger than the number
of bins or considering infinite sequences of insertions and
deletions, is given later. The upper bound is given in terms
related to the Fibonacci numbers. We define ! � �#"*� �$�
for "%� � , and ! � ���!� � � . For " � � we use a recursive
definition, we define ! � �#" � �$& ��('*) ! � �#" � � � . The se-
quence !,+ corresponds to the standard Fibonacci sequence.
We define - � � �/./0214365879 ! � �#"*� . The value -�+ corre-
sponds to the golden ratio (see e.g. [6]). For example,
-�+ � � 	;: � 	4	�	 , -�< � � 	;=?>@	�	4	 , and -BA � � 	DC � 	�	�	 In gen-
eral, -�+FE�-�<�E�-�A 	�	4	 E � , and - �HG �JI ��K)MLON � so that� � � � �#- � � G � � � �!��� ��� � .
Theorem 1 Suppose that � balls are placed sequentially
into � bins using the Always-Go-Left algorithm (type 2).
Then the number of balls in the fullest bin is

� ����� ��� � � ���� - � ��� �����!� , w.h.p.

Our result generally improves upon the one for the uni-
form case because

������� ��� � � � ��� - � �
E ������� ��� ����� . In
particular, the result shows that the influence of

�
on the

maximum load is linear rather than logarithmic as in the
uniform case. But even for the case

� � � , we obtain an
improvement because the Always-Go-Left algorithm yields
maximum load ��	D:PC@	�	�	 �/QPR + � � � � �����!� whereas the max-
imum load in the uniform case is

�/QPR + ��� � � � ���!� .
We point out that the asymmetry used for tie breaking in

our algorithm is important not only for the analysis but for
the result itself. Using a fair tie breaking mechanism, i.e.,
deciding at random which bin gets the ball in case of a tie,
results in a higher maximum load, to be precise, in max-
imum load

� ����� ��� ����� � � ���
� . This (upper and lower)
bound can be shown using a slight variant of the proofs
presented by Azar et al. in [2] for the uniform scheme.
Also combining the asymmetric tie breaking with a uniform
choice of the locations does not help as Azar et al. show that
their uniform allocation scheme with an arbitrary tie break-
ing mechanism is “majorized” by any other uniform alloca-
tion scheme. From this we can conclude that the tie break-
ing mechanism is irrelevant in the uniform case, whereas it
is important in the non-uniform case.

Once we have seen that choosing the locations in a non-
uniform way combined with an asymmetric tie breaking
mechanism reduces the maximum load, it becomes an in-
teresting question whether other kinds of choices for the

�
locations or other schemes for deciding which of these lo-
cations finally gets the ball can improve on this result. The
following theorem answers this question negatively.

Theorem 2 Suppose that � balls are placed sequentially
into � bins using an arbitrary sequential allocation scheme
choosing

�
bins for each ball at random according to an

arbitrary probability distribution on � ���O� (type 3). Then the
number of balls in the fullest bin is

������� ��� � � � ��� - � � � �����!� ,
w.h.p.

Combining Theorem 1 and 2, we conclude that, apart
from some additive constants, the Always-Go-Left al-
gorithm achieves the best possible maximum load, i.e.,������� ��� � � � ��� - � � � � ���!� .
Generalizations. It is also interesting to study variants
of the random allocation process assuming more balls than
bins or even an infinite sequence of insertions and deletions.
We use a combined approach to model both of these vari-
ants. In particular, we assume a possibly infinite sequence� � �) � + 	�	4	 of insertions and deletions of balls. Each in-
sertion corresponds to a ball that has to be assigned to one
of the bins, each deletion specifies one of the previously
inserted balls that is removed from the bin to which it has
been assigned. An allocation algorithm has to serve all al-
locations on-line, that is, the sequence is presented one by
one and a ball has to be placed for each insertion ��� without
knowing future insertions and deletions, i.e., �����) ����� + 	4	�	 .
The sequence is assumed to be oblivious, i.e., it does not
depend on the random choices of the allocation algorithm.

Next we give a generalized version of Theorem 1. Time�
denotes that point of time at which ��� is presented but not

yet served, and a ball is said to exist at time
�

if it has been
inserted but not deleted before

�
.

Theorem 1 (generalized version) Suppose that at most � �� balls exist at any point of time. Then the Always-Go-Left
algorithm yields maximum load

� ����� ��� � � � ��� - � � � ���	� � ,
w.h.p., at any fixed time step

�
.

Assuming only � � � insertions and no deletions, our
model degenerates to the static problem of allocating ��� �
balls to � bins. The corresponding best known upper bound
for the uniform allocation process is

������� ��� ����� � � �	�(� ,
w.h.p., given Azar et al. in [2].

Assuming � � � and that, after � insertions, the se-
quence alternates between deletions of balls that are chosen
uniformly at random from the set of existing balls and in-
sertions of new balls, our model corresponds to the dynamic

problem considered by Azar et al. in [2]. They show an up-
per bound on the maximum load of the uniform allocation
process of

� ����� ��� ����� � �����!� , w.h.p., for any fixed step� G � < .
Assuming � � � and arbitrary insertions and dele-

tions, our model corresponds to the one considered by Cole
et al. in [4, 3]. In [4] they investigate a more complicated
routing problem on butterfly networks. Translating their re-
sults to the simpler problem of placing balls into bins yields
an upper bound of
&� ������� ��� ��� � , for

� � � . This transla-
tion is described explicitly in [3]. Furthermore, they present
an upper bound of

������� ��� ����� � �����!� , which, however,
holds only for a polynomial number of steps. The bound
increases slightly with time in an infinite setting. Applying
our proof techniques to the uniform process we obtain the
following improvement.

Theorem 3 Suppose that at most � � � balls exist at any
point of time. Then using the uniform allocation algorithm
yields maximum load

� ����� ��� ����� � ���	� � , w.h.p., at any
fixed time step

�
.

The rest of the paper is organized as follows. In Sec-
tion 2, we will prove the upper bounds given in the Theo-
rems 1 and 3. We will first analyze the infinite symmetric
scheme (Theorem 3), and then we will show how the analy-
sis changes when considering the asymmetric scheme (The-
orem 1). Finally, in Section 3, we will present the proof for
the lower bound given in Theorem 2.

2. Proof of the Upper Bounds

In this section, we prove the upper bounds given in the
Theorems 1 and 3. We are given an infinite sequence of in-
sertions and deletions of balls, as described in the Introduc-
tion. There are � bins, and the number of balls that exist at
the same time is at most � � � . Each ball is placed in one out
of
�
� �

possible locations. We investigate the maximum
load produced by the symmetric, uniform and the asymmet-
ric, non-uniform allocation process.

In both the symmetric and the asymmetric case, we use
the same kind of analysis, that is, we use witness trees to
bound the probability for the bad event that a bin contains
too many balls. This witness tree is a tree graph the nodes of
which represent balls whose randomly chosen locations are
arranged in a bad fashion. In Section 2.1, we will describe
the construction of a symmetric witness tree for the sym-
metric allocation scheme. In Section 2.2, we will show how
this construction changes in the asymmetric case. Initially,
we make some simplifying assumptions. First, we assume
that all events represented by a witness tree are stochasti-
cally independent. In Section 2.3, we will remove this sim-
plifying assumption and give a common solution for dealing

with dependencies in both the symmetric and the asymmet-
ric case. The second simplifying assumption is that � � � ,
i.e., at most � balls exist at any time. Finally, in Section 2.4
we will extend our proofs to general � .

The witness tree analysis is not a new idea of ours. It has
been introduced by Scheideler, Stemann, and Meyer auf der
Heide in the context of PRAM simulations [7]. Their argu-
ment has been improved by several authors in several arti-
cles, e.g., [1, 3, 4, 8]. Only some of these analyses, however,
deal with the sequential allocation of balls to bins, namely
[3, 4]. They lose some constant factor in the maximum load
whereas our analysis is tight up to an additive constant. Fur-
thermore, we remark that the finite variant of the asymmet-
ric allocation scheme can be analyzed using the techniques
introduced by Azar et al. [2] or Mitzenmacher [9, 10], too.
We prefer the witness tree analysis, however, as it naturally
extends to the case of infinite sequences of adversarial in-
sertions and deletions, which cannot be handled by any of
the other methods so far.

2.1. The witness tree for the symmetric scheme

A witness tree is a logical structure that can be con-
structed in case of a bad event, i.e., when the maximum load
exceeds some threshold value which we will specify later.
Thus an active witness tree is a necessary condition for bad
events. In the following, we will show that the existence of
an active witness tree is unlikely. Consequently, bad events
are unlikely, too.

Definition of a symmetric witness tree. A symmetric
witness tree of order � is a complete

�
-ary tree of height

� with
���

leaf nodes. Each node � in this tree represents a
ball. The assignment of balls to bins has to fulfill the follow-
ing time constraints. Consider a fixed sequence of insertions
and deletions and let

�
denote the fixed time step given in the

theorem. The ball represented by the root node � exists at
time

�
, and each ball represented by a node ���� � exists at

the insertion time of the ball represented by the parent node
of � . Note that the same ball may be represented by several
nodes in the tree.

Each node of the witness tree represents an event that
may occur or not, depending on the random choices for the
locations of the balls. We distinguish between edge and leaf
events.
� Edge event: Consider an edge � � �
	 � �*� with � being

the
�
th child of 	 . The edge � represents the event that

the
�
th location of 	 ’s ball points to the same location

as one of the locations of � ’s ball.

� Leaf event: A leaf node � represents the event that each
of the

�
locations of � ’s ball points to a bin that con-

tains at least three balls at its insertion time.

An edge or a leaf node is activated if the random choices
for the possible locations of the balls come out in such a
way that the corresponding event occurs. The witness tree
is activated if all of its edges and leaf nodes are activated.

Construction of a symmetric witness tree. We use an
active witness tree of order � to represent the bad event that
some of the bins contain more than � � > balls at time

�
.

Assume the allocation process is determined up to time
�
.

Suppose that a bin � holds at least � �
 balls at time
�
. We

show that this implies that there exists an active witness tree
of order � . This tree can be constructed as follows. The root
gets assigned the topmost ball in the bin � , i.e., the ball that
was inserted last into � . The symmetric allocation scheme
ensures that each of the

�
locations of that ball must point to

a bin that contains at least � � > balls at the ball’s insertion
time. The topmost balls in these

�
bins are assigned to the

children of the root. This construction can be continued
recursively until we reach the leaf nodes. Each ball assigned
to a leaf node lies on top of three other balls, and, hence,
each of its

�
locations points to a bin that contains three

other balls at the ball’s insertion time.

Probability for the activation of a symmetric witness
tree. As a bin including more than ��� > balls implies the
existence of an active witness tree of order � , the probabil-
ity that the maximum load is larger than ��� > at some time�

is bounded by the probability that a witness tree of order �
is active. In the following, we calculate a bound on the the
latter probability. During this calculation we do not make
any use of the explicit construction of the witness tree but
only of its formal definition. We point out that drawing to
the construction instead would result in vast dependencies
among the considered events.

The probability that a witness tree of order � is active
is bounded above by the number of different witness trees
multiplied by the probability that any fixed witness trees be-
comes active. In this section, we account only for witness
trees whose nodes represent distinct balls, that is, we as-
sume that each ball occurs at most once in the witness tree.
In Section 2.3 we will show how to deal with witness trees
that may include the same ball for several times.

We start by counting the number of different witness
trees. The number of possibilities to choose the root’s ball is
at most � because, by definition, this ball has to exist at the
considered time

�
, and at most � balls exist at any time. The

ball represented by the root gives us the time step at which
the balls corresponding to the children of the root have to
exist. Hence, the number of possibilities to assign a ball to
one of the children is � , too. Applying this argument level
by level to all nodes in the tree yields that the total num-
ber of possibilities to choose a ball for each of the nodes

is at most ��� with � denoting the number of nodes in the
witness tree.

Next we bound the probability that a fixed witness tree
is activated. The probability that the event represented by
an edge �
	 � �*� occurs is

� �!� because, whatever bin the
�
th

location of 	 points to, the probability that any fixed one of
the
�

locations of � hit that bin is � �!� . Because of our as-
sumption that all balls are distinct, the events for all edges
in the tree are independent, and therefore, the probability
that all of the ��� � edges are activated is � � �!� � � K) . The
probability for the event represented by a leaf node � is at
most >JK�� because each of the

�
locations of � ��� ball has

to point to a bin that contains 3 balls and at any time the
number of these bins is bounded above by ���?> . Note that
the latter bound on the number of bins with load

� > holds
deterministically so that we can assume that the occurrence
of a leaf event does not give any evidence about the dis-
tribution of any other balls than the one represented by the
respective leaf node. Therefore, the probability that all of
the leaf events occur is at most > KB��� � with 	 denoting the
number of leaves in the tree.

Altogether, we can conclude that the probability that
there exists an active symmetric witness tree with distinct
balls at any fixed time

�
is at most

� � �
 ���� � K) � > KB��� � � � � � + � � > KB��� �
� � � � K
�� � � � K����

because � � � 	 , � � � + � >�� , and 	 � ��� . Consequently,
if we choose � � �/QPR � ��Q?R + � � �/QPR � ��� ��� � then the prob-
ability for the existence of a witness tree with distinct balls
is at most ��K
� .

In Section 1.3 we will extend this argument to witness
trees with non-distinct balls. Before, however, we will in-
vestigate how the bound above improves in the case of the
Always-Go-Left algorithm.

2.2. The witness tree for the asymmetric scheme

The witness trees that we will construct for the asymmet-
ric allocation scheme are asymmetric, too. We will see that
the asymmetric trees are much larger than their symmetric
counterparts, resulting in a smaller probability for their ac-
tivation.

Definition of an asymmetric witness tree. An asymmet-
ric witness tree is defined similarly to its symmetric coun-
terpart. The only difference is the topology. It is a Fibonacci
tree, which is defined recursively as follows. � � ���!� and� � � � � consist out of a single node, respectively. � � �#"*� , for

� � " � � , is a rooted tree whose root has " � � chil-
dren which are the roots of the trees � � �#" � �!� ��	4	�	�� � � ���!� ,
from left to right. � � �#" � , for " G � , is a rooted tree
whose root has

�
children which are the roots of the trees� � �#" � �
� �4	�	4	 � � � �#" � � � . The number of leaves in � � �#"*� is

! � �#" � � -
1 K +� . An asymmetric witness tree of order � has

the topology of the Fibonacci tree � � � � � � � �!� . Hence, it
has ! � � � � � � �!� � - ��� � K)� leaves.

The activation of an asymmetric witness tree is defined
analogously to the symmetric case.

Construction of an asymmetric witness tree. Suppose
some of the bins contain more than � � > balls at time

�
.

In this case, we can construct an active, asymmetric witness
tree as follows. To simplify the construction, we define la-
bels for the nodes of the witness tree. Each label is a tuple
��� � � � of two integers � and

�
with � ��� � � and � � � � � .

The labels are not unique. The label of the root is � � � �!� .
For � � � , the children of a node with label ��� � � � have the
labels ��� � � � �!� ��	�	4	 � ��� � �!� � ��� � � � � � �4	�	4	 � ��� � � � � � , from left
to right. The children of a node with label � ��� � � , for

� � > ,
have the labels � �J� � � �!� ��	4	�	 � � ��� �!� . In the construction of
the witness tree we assign balls to the nodes maintaining the
following invariant: A ball � that is assigned to a node with
label ��� � � � was placed into a bin that contained at least � � >
other balls at � ’s insertion time. This bin belongs to group�

(except for the root node for which we do not care about
the group).

The assignment proceeds iteratively, starting with the
root. The root gets assigned the topmost ball in one of the
bins including � �
 balls. For ��� � � � , the

�
th location

of this ball points to a bin that contains at least � � > balls
at time

�
. The topmost ball of location

�
is assigned to that

child with label � � � � � � � . Now assume that we are given a
node � with label ��� � � � whose ball � is allocated to a bin in
group

�
that contains at least �(� > other balls at � ’s insertion

time. For � ��� E � , the � th location of � points to a bin
that contains at least ��� > balls. This is because the Always-
Go-Left scheme prescribes that � would have been placed at
the � th location, otherwise. We assign the topmost ball of
location � to the child � with label ��� � ��� (provided that �
and

�
are sufficiently large such that the respective child ex-

ists). For
� ��� � � , the � th location of � contains at least� � � balls at � ’s insertion time. In this case, we assign the

topmost ball of location � to the child with label ��� � � � ���
(provided that the respective child exists). Obviously, these
assignments fulfill the invariant above.

Probability for the activation of an asymmetric witness
tree. We derive the same bounds on the number of trees
and the probability for the activation of a fixed tree as in the
symmetric case. The number of different witness trees is

� � with � denoting the number of nodes in the tree. The
probability that all edge events occur is at most � � �
� � � K) ,
and the probability that all leaf events occur is > KB��� � with 	
denoting the number of leaves in the tree.

For the bound on the probability of the edge events, we
assume that all groups have exactly the same size. It is not
difficult to see, however, that our analysis is robust against
changes of constant factors in the group sizes. The bound
on the probability for the leaf events may need some further
explanations. Analogously to the symmetric case, at most���?> bins contain three or more balls at any time, but we do
not know how these bins are distributed among the

�
groups.

For � � � � � , let
� � denote the fraction of bins in group�

that contain three or more bins. Then the probability that
all locations of a ball hit one of these bins is � ��(') � � . Since
all groups have size ��� � we get & ��('*) � ��� ��� � � ���?> and,
hence, & ��('*) � � � � �?> . As the product of some positive
variables that sum up to a fixed value is maximized when
the values of all variables are equal, we can conclude that
the probability for a leaf event is � �� '*) � � � > K�� .

Combining the bounds above yields that the probability
that there exists an active asymmetric witness tree with dis-
tinct balls at any fixed time

�
is at most

� � �
 ���� � K) � > KB��� � � � � � + � � > KB��� �
� � � � K
�
� � � � K������ �
	
��

because � � � 	 , � � � + � >�� , and 	 � - � � � K)� . The only
difference to the symmetric case is that the asymmetric tree
is larger and, hence, the number of leaves, 	 , is larger, which
results in a smaller probability for the activation of the tree.
In particular, if we choose � � � �����/QPR + � � ��� ����� ����� � � � ���� - � � � � , the probability for the existence of a witness tree
with distinct balls is at most � K
� .

2.3. Witness trees with non-distinct balls

Until now we have only estimated the probability for the
activation of witness trees with distinct balls. In order to get
a bound on the probability for a high maximum load, it re-
mains to consider trees in which balls may occur more than
once. In this case the events represented by the edges and
leaves are not stochastically independent anymore, which
was an important assumption in the calculations above. To
remove these dependencies, we prune the witness tree such
that only distinct balls remain. Unfortunately, any prun-
ing makes the tree smaller so that the probability for its ac-
tivation may become larger. We compensate this loss by
starting from a larger tree and, additionally, gaining some
probability from each pruning event.

Definition of a full witness tree. A full witness tree of or-
der � includes � symmetric or asymmetric witness trees of
the same order, respectively, as subtrees, where � denotes
a suitable constant. The root of the full witness tree has �
children each of which has only one child. Hence, the root
of the full tree has � grandchildren. Each of these grandchil-
dren is the root of a symmetric or asymmetric witness tree
of order � , respectively. The most important new feature of
the full witness tree is that the balls assigned to the children
of the root are guaranteed to be pairwise distinct. The root
represents the same ball as one of its children, e.g., the ball
of the leftmost child. We define that each ball � assigned to
a child � of the root has a location that points to the same bin
as the root (just as in case of the symmetric or asymmetric
witness tree). Let

��

denote the index of this location, and

choose �
 from � � �4	�	�	�� � ��� � ��� � arbitrarily. Let 	 denote
� ’s only child. Then one of the locations of 	 ’s ball points to
the same bin as the location �
 of � . Below the node 	 our
definitions follow the rules of the symmetric or asymmet-
ric witness tree, respectively. The time constraints among
all balls in the full tree and the activation of the full tree are
defined analogously to the symmetric and asymmetric trees.

Construction of a full witness tree. The full witness tree
is constructed as follows. Suppose some bin � holds holds
� �
 ��� balls at time

�
. Then we assign the � topmost

balls in � to the children of the root, and we assign the ball
of the leftmost child to the root, too. Next we assign balls
to the grandchildren. Consider a ball � assigned to a child �
of the root. One of � ’s locations points to the bin � . Let this
be location

��

. (If there are more than one location pointing

to � , fix one arbitrarily.) Select �
 �� ��
 arbitrarily. At � ’s
insertion time, location �
 points to a bin with at least ��� >
balls. The topmost ball in this bin is assigned to the child of
� . Below this child, the construction is continued as done
for the symmetric or asymmetric witness tree of order � ,
respectively.

Pruning the full witness tree. In order to remove depen-
dencies we inspect the non-root nodes of the full witness
tree in BFS order. Whenever we inspect a node � that rep-
resents the same ball as another node inspected before, we
cut the edge � between � and its parent node and cutoff the
complete subtree rooted at � . The edge � is called a cutoff
edge, and we keep it in our witness structure as evidence
that the ball of the parent node of � shares a location with
a ball represented by another node in the tree. We continue
this process until we have obtained either � cutoff edges
or we have inspected all non-pruned nodes. All inspected,
non-pruned nodes and the cutoff edges are defined to build
the pruned witness tree.

Notice that the pruning does not remove any of the chil-

dren of the root because these nodes represent distinct balls
and they are visited first since we traverse the tree in BFS
order skipping the root. Therefore, if there fewer than �
cutoff edges, one of the � symmetric or asymmetric witness
trees includes only distinct balls. We have bounded above
the probability for the existence of such a witness tree in
the previous sections by �,K � , for any constant � , under the
assumption that � is chosen sufficiently large. Therefore, it
remains only to estimate the probability for the existence of
an active pruned witness tree that includes exactly � cutoff
edges. In the following, we upper-bound this probability
under the assumption that each of the witness trees below
the grandchildren of the root has at most

� � � � �!��� �/QPR + �
nodes. It is easy to check that this number of nodes suf-
fices to obtain probability � K � in the case of a subtree with
distinct balls.

Probability for the activation of a pruned witness trees.
We have to take into account that a pruned witness tree can
have several different topologies. Let � � � ���*� � � �!� ��/QPR + � denote the number of those edges in the full tree that
may become a cutoff edge. The number of different topolo-
gies for the pruned witness tree is at most ��� . Now assume
the topology is fixed. Let � denote the number of non-root
nodes in the pruned witness tree. Then the number of pos-
sibilities to assign balls to the tree nodes is � � . (Recall
that the ball of the root is identical to the ball of its leftmost
child.) Furthermore, the probability that all edge events are
activated is � � �!� � � K) . (Notice that the edge connecting the
root with its leftmost child is active by definition. All other
edge events have probability

� �!� , and these probabilities
are independent as we have truncated all redundant balls.)
Let 	 denote the number of leaves in the pruned tree, i.e.,
the nodes that have no children and are not incident to cut-
off edges. Then, the probability that all leaves are activated
is at most > KB� � � .

Apparently, we obtained almost the same bounds as for
the symmetric and asymmetric witness trees. However, �
and 	 may be much smaller now so that we need to gain
some further probability from the cutoff edges. Each of the
cutoff edges witnesses the event that a ball � represented
by a non-pruned node 	 incident to the cutoff edge shares
some random location with a ball � � of another node 	 � . The
node 	 � was inspected before 	 without being truncated and,
hence, is guaranteed to be included in the pruned tree, too.
The cutoff edge specifies which of the randomly chosen lo-
cations of � hits one of the locations of � � . This location
of � falls into the same bin as one of the location of � � . In
the following we give a bound for the probability of this
event. The number of possibilities to select 	 � and thus � � is
bounded above by the number of nodes in the pruned tree
minus the node 	 itself. This number is upper bounded by
� . The probability that the location of � hits one of the lo-

cations of the fixed ball � � is at most
� �!� . Thus, � � � �
� is

an upper bound on the probability for the event represented
by a cutoff edge.

Notice that the randomly chosen location represented by
the cutoff edge is not considered in any bound on the prob-
ability for the activation of the edge and leaf events. Fur-
thermore, events represented by different cutoff edges are
independent, too. Therefore, we obtain the following up-
per bound on the probability for the existence of a pruned
witness tree with � cutoff edges.

� � � � � �
 �� � � K) � > KB��� � �
 � � �� � �
� � � � + � � > KB��� �
 � + � � <� � �
� � �

 � � � � � � � �
��� �/QPR + � � + � � <� � �
because � � � � � 	 � �(� , � + � > � , and � � � � � � � � �
����/QPR + � � . Since our Theorems are obvious for

�����/QPR � , we
assume

� � �/QPR � . Then the last term in the equation above
is bounded by ��K � �) ��� I) . Combining this result with the
bounds given in the previous sections, we obtain that the
probability that the load exceeds

� � > �
� ���/QPR + � � � � ��� � �������� � > � � �

in the symmetric case, or

� � > �
� ���/QPR + � � � � ��� � ���� � � � - � �
 � � �

in the asymmetric case, is at most �,K � �) ��� I)ML � � K
� , This
completes the proof of Theorem 1 and 3, for � � � .
2.4. More balls than bins

Finally, we extend the above proof to general � , that is,
we assume � � � balls may exist at the same time. The
definitions of the symmetric and asymmetric witness trees
are changed as follows. Each leaf node in the witness tree
represents � balls rather than only one. The locations of
these balls point to bins that contain

� � balls, for constant�
, rather than only > balls.

Under these assumptions, the probability for the exis-
tence of an active witness trees with distinct balls can be
bounded as follows. Let � denote the number of nodes and	 the number of leafs in the tree. Then the number of possi-
bilities to assign balls to the nodes is at most
 ��� �

� � � � �	��� � � � K
� 	

This is because there are ��� � �� � � possibilities to choose the
balls for each leaf node, and ��� � possibilities to choose the
ball for each internal node.

The probability for each edge event is
� �!� . As before,

the tree includes � � � edges. The edges to the leaves,
however, represent � edge events now. Thus, the probabil-
ity for the activation of all edge events is � � �
� � I � K) L � � � K) .
The probability that all of the

�
locations of a ball point

to a bin with
�

balls is
� K�� . However, we cannot ac-

count this probability for all of the balls assigned to the
leaves because, when estimating the probability for the edge
events, we assumed that all balls assigned to the same leaf
node share a random location. Consequently, we have only� � �	� � �!� � � � �
� � � � � � � � independent locations
for the balls at each leaf node. Thus, the probability for the
activation of all leaf nodes is at most

� K � I � � K � �) L .
Combining these bounds, the probability for the exis-

tence of a witness tree with distinct balls is bounded above
by
 � � �

� � � � �	� � � � K � �
 �� � I � K)ML � � � K) � � K � I � ��K � �)ML �
which, for

�
chosen sufficiently large, is bounded above by� � � K � , analogously to the case � � � . The rest of the proof

proceeds as before.

3. Proof of the Lower Bound

In this section, we prove the lower bound given in Theo-
rem 2. Suppose � balls are placed sequentially into � bins
using an arbitrary sequential allocation scheme choosing

�
bins for each ball at random according to an arbitrary proba-
bility distribution � ��� ��� � � � ��� � � . We show that the num-
ber of balls in the fullest bin is

� ����� ��� � � � ��� - � � � �����!� ,
w.h.p.

The major issue in proving this lower bound is that the
possibly dependent random choices for the

�
locations of a

ball are very difficult to handle. As a first step to separate the
effects of different locations, we assume that the allocation
algorithm uses

�
disjoint groups each of which consists of� bins numbered from � to � � � . Obviously, any algorithm�

in the original model (with a total number of � bins) can
be simulated by an algorithm � in the new model (with

� � �
bins) so that the maximum load of � is not larger than the
maximum load of

�
. (Recall that we allow full knowledge

about the distribution of previously placed balls.) Hence,
a lower bound in the model with

� � � bins holds for the
original model with � bins, too.

Let � and �) ��	�	4	���� � denote some positive, real num-
bers. We define an � �
���) ��	�	4	���� � � -allocation to be an as-
signment of at least � balls to at most & � � bins satisfying
the following properties:

� The bins are divided into
�

groups �) ��	4	�	�� � � with� �6� � � � � , for � � � � � .
� Each of the balls is placed into one out of

�
bins chosen

according to an arbitrary, fixed probability distribution
���	�2)�
 � � ��

� � � � ��� � � .

� The balls are assigned one after the other. When a ball
is placed, the random choices for the locations of those
balls that have not yet been placed are unknown.

The maximum load ��� of an � �
���) �4	�	�	�� � � � -allocation is
defined to be the number of balls in the fullest bin. The
aggregate load � is defined by � � & ��('*) �,� with � � de-
noting the number of balls in the fullest bin from the set �2� .
The following lemma gives a lower bound on the aggregate
load of an � � � � ��	�	4	 ��� � -allocation scheme.

Lemma 4 For any � � ��� �4	�	4	 ��� � -allocation scheme, � ������ � ��� ��� - � � ��� ��������� � , w.h.p.

This lemma implies the lower bound given in Theorem 2
because � � � � � � . In the rest of this section we deal with
the proof of this lemma.

We lower-bound the aggregate load by a recursive func-
tion � . Given some positive real numbers ��� ��	4	�	�� � � , we
define � �
��� ��	4	�	�� � � � � � if ��� E�� � , and� �
��� ��	4	�	�� � � � � � � 0�.��

)������ � � �
� � � � � �) ��	4	�	�� � �� �
if ��� � � � , where

� � � � �
���!� +
��� � � � + � �B� � � �� � ���

� � � �

and � �� � � � , for ��� � � ��	�	4	�� � � � � � � .
Lemma 5 Suppose � is sufficiently large. Let� � �) ��	�	4	�� � � � � denote some positive numbers
with � � � � , for

� � � ��� . Then the aggregate load of an
� � � �) ��	�	4	���� � � -allocation is at least � � �
���) ��	4	�	���� � � ,
with probability � � � K
� , for any constant � .

Proof. We prove the lemma by induction, that is, we as-
sume that the lemma holds for any � � � ��	4	�	 � -allocation with� � E � . We allow that the failure probability is slightly
increasing during the induction. In particular, we assume
that the aggregate load of the � � � ��	�	4	 � -allocation is at least� � � � �4	�	4	 � , with probability � � �,K
� � � rather than only
� � � K
� . Notice, however, over all induction steps we lose
only a factor of

��� � in the failure probability since we need
no more than

�/QPR + ��� � induction steps.

Let � denote the set of � balls that have to be placed in
the bins. Each of the balls comes with

�
locations chosen

according to some probability distribution � ���)�
 � � ��

� � � � ��� � � . Let �) denote the set of � � � balls that are
inserted first, and define �6+ � � � �6) . For � � � , we
define

� �� � ��� � � �
��� � � � � � I � �) LON + � � � K)� and � � � ��� � � � � �� � � �

��� � � � � � � � 	

The motivation for these two definitions will become clear
soon. For the time being, it is sufficient to notice that � � G� �� ���!� G � �� � � � 	�	4	 and � G � � ���!� G � � � � � 	�	�	

We will show the following two properties

1) There is a set � �� � � � of size � � �� � ����� , for some � �� � � and � � � , such that each bin from � �� gets
assigned at least � balls from �) .

2) There is a set � � � � + with
� � � � � � � � � � such that

the
�
th location of each ball in � � points to one of the

bins in � �� .
Each of the two properties hold with probability � � � K
� �
 .
The first property requires � � � � , and the second prop-
erty requires � � � ��� � � � .

When proving these properties, we give no other ev-
idence about the randomly chosen locations of the balls
in � � except that their

�
th locations fall into the bins of

� �� . Thus, all these balls choose their locations from
�2)
 � � �
 � � K)
 � ��
 �6� �)
 � � �
 � � according to the
same probability distribution. Suppose we remove all balls
from � ��� � . Then the allocation of the balls in � � is an
� � � � ��� ���) �4	�	�	�� � �� � � � �4	�	4	 ��� � � -allocation with some prob-
ability distribution � � �	�2)
 � � �
 � ��
 � � �
 � � � � ��� � � .
By induction assumption, this allocation has an aggregate
load of at least � � � � � ��� � �) �4	�	4	 � � �� � ��� ��	�	4	 ��� � � , with prob-
ability � � � K �(� � .

The allocation of the balls in � � , however, does not start
with a set of empty bins. Instead it takes place on top of a
plateau of height � produced by the balls from ��) in � �� � ��� .
Therefore, we can conclude that the aggregate load of the
original � �
���) �4	�	�	�� � � � -allocation is at least� � � � � � � � � � �) ��	�	4	���� � K) ��� �� � ��� ��� � �) �4	�	�	�� � � � � (1)

with probability at least � � �,K
� � � � � � � K
� �
 � � � � K
� .
Notice that the fact that the allocation of the balls in � � takes
place on top of the balls in �) and is interleaved with the
allocation of the balls in �6+ � � � does not affect the lower
bound on the aggregate load of the balls in � � because we
assume that the allocation algorithm has global knowledge
so that no kind of advantage can be taken from the other
balls.

For � � � , the lower bound in 1 corresponds exactly to
the recursive description of � � � � � � � �) ��	�	4	���� � � . For � G � ,
the recursion has to be applied repeatedly. In particular, we

have defined � �� � ��� and � � � ��� in such a way that applying
the recursion to the lower bound in 1 repeatedly for � times,
whereby we choose the same

�
in each iteration instead of

using the minimum operator, yields exactly the lower bound
given in the lemma. Hence, the lower bound in 1 implies the
bound in the lemma, and it remains only to prove the two
properties stated above.

Proof of property 1: A bin from the set ��� of group
�

is
called large if the probability that the

�
th location from a

given ball from �) falls into that bin is at least � � � � � � � � .
A ball from �) is called interesting if none of its

�
lo-

cations fall into a small (non-large) bin. The sum of the
probabilities assigned to the small bins from ��� is at most
� � � � �!� � � � � � � � ��E � � � � � � . Hence, the probability that
a ball is not interesting, i.e., at least one of the

�
loca-

tions from a ball in �) points to a small bin, is at most� � � � � � � � � � . Notice that this bound holds regardless of
the dependencies between the random choices of the

�
lo-

cations. Thus, the expected number of interesting balls is
at least

� �) � � � ��� �
 . Applying a Chernoff bound yields
that at least � ��� balls from �) are interesting, with proba-
bility � � ��K
� �
 , under the assumption that � is sufficiently
large, and � � � � .

Next we calculate how many of the large bins in any one
of the

�
groups contain � or more balls. At least one of the�

groups gets a fraction of � � � of the interesting balls, that
is, this group gets at least � � � � � � interesting balls. Let

�
denote this group, and � � � � � � � � denote the number
of interesting balls placed in this group. We have to as-
sume that the � balls are distributed arbitrarily among the
large bins in group

�
because the assignment of the balls

to the groups is done by an unknown mechanism. But in
whatever manner the balls are distributed, at least � � � �
large bins contains at least � of the balls, for some � � � .
(Otherwise, the total number of balls would be smaller than& 5���) � � � � E � .) We fix the appropriate � . Then the
number of large bins from � � with load � or more is at least

� � � �
�

� � � � �
� � �
��� � � � � � I � �) L N + � � � K)� � � �� � � � �

where the second equation follows from the assumption that� � � � . We define � �� to be a subset of size � � �� � of the set
of large bins with load � . Thus property 1 is satisfied.

Proof of property 2: Next we analyze how many balls from
� + have a location pointing to a bin of � �� . The probability
that the

�
th location of a given ball points to one of the bins

in � �� is at least � � �� � ����� � � � � � � � � � � �� � ��� � �
 � � � � � be-
cause these bins are large and, therefore, each of them has
probability at least � � � � � � � � � to be hit.

As
� � + � � � � � the expected number of balls in � � , i.e.,

the set of the balls with a location in � �� , is at least � �

� �� � ��� � � = � � � � � . Applying a Chernoff bound yields that,
with probability at most � � �,K
�(�
 , the number of balls in
� � is at least� � � �� � ���

� � � � � �
� � � � �� � ���
��� � � � � � � � � � � � ��� �

assuming that � is sufficiently large and � � � ��� � � � so
that the Chernoff bound yields the desired result. This equa-
tion shows that property 2 is satisfied and, hence, the proof
of Lemma 5 is completed.

The lower bound on the aggregate load � of an
� � ��� �4	�	4	 ��� � -allocation that we can obtain from Lemma 5
depends on how often we can apply the recursion � until the
��� parameter becomes smaller than � � . In the following
we investigate how ��� ��	4	�	�� � � behave when the recursion
is applied iteratively. Set �

I � L� � � � � � �
I � L� � � , and let

�
I � L� �4	�	�	4� � I

� L� denote the values of ��� �4	�	�	4� � � , respectively,
after the recursion � has been applied

�
times.

Lemma 6 �
I � L� � � ��������� ��� � - �� � ����� � , for some suitable

constant � G � .
Proof. We start by introducing another, simpler recursion,
which we will relate to the original recursion afterwards.
For

� � � , we define a vector � I � L � ��� I � L� ��	4	�	�� � I
� L� � of pos-

itive, real values as follows. We define � I � L � � ����	4	�	�� � � .
For

� � � , we define

�
I � L� � � �	� I � K)ML� � �

I � K)ML� � � , and

�
I � L� � �

I � K) L� K) , for � � ��� � .
Notice that �

I � L� � � �	� I � K)ML� � �
I � K�� K)ML� � � , for

� � � � � ,
which shows that � is related to the Fibonacci numbers ! �
since ! � � � � � � �P! � � � � �!� � ! � � � � � � �!� , for

� � > .
We can expect that these two recursions behave similarly.
In fact, having a closer look to both of these recursion gives
us

�
I � L� �

�

�(' �
�

� ' � ! � � ��� �

�

�(' �
�

� ' � -

� K)� � ���#- �� � �

for any
� � � . In the following, we will use �

I � L� to bound

�
I � L� , that is, we show

�
I � L� � � � ��� � � � K +���
����� � � �	�����$� ��� � - �

� � ����� � �
for some suitable constant � G � , which corresponds to the
bound given in the lemma. In order to prove this relation-
ship between � and � , we need first to show some properties
of � .

Suppose instead of setting � I � L � � �J�4	�	4	 � � � we define
� I � L � � � ����� �4	�	�	�� � � � , for some numbers ��� � ��) �	�	4	 � � � � � . Then one can show by induction

�
I � L� �

�

� ' �
�

� ' � ! � � � � � ���

���)

� ' � ! � � ��� �

�

�(') � �

� KB� � �

� '�� ! � � ��� �

for any
� � � . Thus, �

I � L� is monotonically increasing in ���
and monotonically decreasing in �) �4	�	4	�� � � . Furthermore,
one can observe that exchanging some of the initial values
so that � � E � � �) , for some � � � E � , does not increase
the value of �

I � L� for any
� � � . Another property of � that

can be shown by induction is that

�
I � L� � �

I � L) � � � � � �
I � L� �

for any
� � � . Hence, any vector � � fulfills the property that

we assumed for the initial vector � . Therefore, exchanging
some of the vector components �

I � L) �4	�	4	 � � I
� L� in the

�
th iter-

ation of the recursion does not increase the value of �
I ��� L� ,

for any
� � � �

.

Now consider the vectors
� I � L � � � I � L� �4	�	�	�� � I � L� � defined

by � I � L� � ��Q?R � � � � �/QPR �
� I
� L� �� �/QPR ��� � � � �

for any
� � � and � � � � � . Converting the recursion � to

the
� I � L vectors, we derive the following recursive descrip-

tion of
�
. The initial vector is

� I � L � � ����	4	�	�� � � , and, for� � � ,� I � L� � � � � I � K)ML� � � I � K)ML� I � L � � �� I � L� I � L � � I � L� � ��	 � , and� I � L� � � I � K) L� , for any � � � � ��	/	 � � � � � � � � � � .
Here

� ���!� � � � � � ��	4	�	 are some integers from � � ��	4	�	�� � � which
are controlled by the minimum operator in recursion � .

The recursion
�

differs from the recursion � in only two
aspects. First, the integers

� ���
� � � � � � ��	4	�	 determine which
of the components

� I � L) ��	�	4	�� � I � L� is subtracted from
� I � K)ML�

and then replaced by
� I � L� . In comparison to the � recursion

this mechanism corresponds simply to permuting the com-
ponents

� I � L) �4	�	4	 � � I � L� in iteration
�
. We have seen above

that this does not increase
� I � � L� for any

� � G �
. Second,

we add a positive value of 0.5 to one of the components� I � L) ��	4	�	�� � I � L� in each iteration. Because of the monotonicity

property shown above, this does not increase
� I � � L� for any� � G �

, too.

Consequently,
� I � L� � �

I � L� , for any
� � � . Thus, we can

conclude

�
I � L� � � � ��� � � � K + �
�� ��
� � � ��� � � � K +���
������ � �	�����$� ��� ��- �� � ����� � �

which completes the proof of Lemma 6.

Combining Lemma 5 and Lemma 6 we can derive a
lower bound on the aggregate load � as follows. From
Lemma 5 we can conclude that the aggregate load � of an
� � ��	4	�	���� � -allocation is at least � � � � � � � ��� � . The value of� � � � � � � � � � is equal to the recursion depth. The recursion
ends at the first iteration

�
with �

I � L� E � � . From Lemma

6, we can conclude that �
I � L� � � � �����$� ��� �P- �� � ����� � , for

some suitable constant � . Hence, � satisfies � �������$� ��� �
- �� � ����� � E � � . Solving this equation for � yields

� G �/QPR � �

 ��� �
� � � ����� � � ������� ���� - �

� ��� ��������� � �

which corresponds to the bound given in Lemma 4, and
hence completes the proof of Theorem 2.

4. Acknowledgments

I would like to thank Artur Czumaj and Klaus Schröder
for helpful discussions and Valerie King for suggesting the
name of the algorithm, “Always-Go-Left”.

References

[1] M. Adler, P. Berenbrink, and K. Schröder. Analyzing an
infinite parallel job allocation process. In Proc. of the 6th
European Symposium on Algorithms (ESA), pages 417–428,
1998.

[2] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced al-
locations. In Proc. of the 26th ACM Symp. on Theory of
Computing (STOC), pages 593–602, 1994.

[3] R. Cole, B. M. Maggs, F. Meyer auf der Heide, M. Mitzen-
macher, A. W. Richa, K. Schröder, R. K. Sitaraman, and
B. Vöcking. Randomized protocols for low-congestion cir-
cuit routing in multistage interconnection networks. In Proc.
of the 30th ACM Symp. on Theory of Computing (STOC),
pages 378–388, 1998.

[4] R. J. Cole, A. Frieze, B. M. Maggs, M. Mitzenmacher, A. W.
Richa, R. K. Sitaraman, and E. Upfal. On balls and bins with
deletions. In Proc. of the RANDOM’98, 1998.

[5] R. Karp, M. Luby, and F. Meyer auf der Heide. Effi-
cient PRAM simulation on a distributed memory machine.
In Proc. of the 24th ACM Symp. on Theory of Computing
(STOC), pages 318–326, 1992.

[6] D. E. Knuth. The Art of Computer Programming, Volume 3.
Addison–Wesley, 1998.

[7] F. Meyer auf der Heide, C. Scheideler, and V. Stemann. Ex-
ploiting storage redundancy to speed up randomized shared
memory simulations. In Proc. of the 12th Symp. on Theoret-
ical Aspects of Computer Science (STACS), pages 267–278,
1995.

[8] F. Meyer auf der Heide, K. Schröder, and F. Schwarze. Rout-
ing on networks of optical crossbars. In Proc. of the Euro-
Par’96, pages 299–306, 1996.

[9] M. Mitzenmacher. Load balancing and density dependent
jump Markov processes. In Proc. of the 37th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 213–222,
1996.

[10] M. Mitzenmacher. The Power of Two Choices in Random-
ized Load Balancing. PhD thesis, University of California
at Berkeley, 1996.

