Proving Flow Security of Sequential Logic via
Automatically-Synthesized Relational Invariants

Hyoukjun Kwon, William Harris, Hadi Esameilzadeh
Georgia Institute of Technology
hyoukjun@gatech.edu, {wharris, hadi} @cc.gatech.edu

Abstract—Due to the proliferation of reprogrammable hard-
ware, core designs built from modules drawn from a variety
of sources execute with direct access to critical system resources.
Expressing guarantees that such modules satisfy, in particular the
dynamic conditions under which they release information about
their unbounded streams of inputs, and automatically proving
that they satisfy such guarantees, is an open and critical problem.

To address these challenges, we propose a domain-specific
language, named STREAMS, for expressing information-flow poli-
cies with declassification over unbounded input streams. We also
introduce a novel algorithm, named SIMAREL, that given a core
design C' and STREAMS policy P, automatically proves or falsifies
that C satisfies P. The key technical insight behind the design
of SIMAREL is a novel algorithm for efficiently synthesizing
relational invariants over pairs of circuit executions.

We expressed expected behavior of cores designed indepen-
dently for research and production as STREAMS policies and
used SIMAREL to check if each core satisfies its policy. SIMAREL
proved that half of the cores satisfied expected behavior, but
found unexpected information leaks in six open-source designs:
an Ethernet controller, a flash memory controller, an SD-card
storage manager, a robotics controller, a digital-signal processing
(DSP) module, and a debugging interface.

I. INTRODUCTION

As the demand for computation increases [22], the gains from
general-purpose processors continue to diminish [21, 25, 63].
To address this challenge, research in both academia and
industry has begun to focus on developing programmable
accelerators [12, 13, 37, 42, 51, 52]. Among programmable
accelerators, Field-Programmable Gate Arrays (FPGAs) pro-
vide large gains in performance and energy efficiency. In
particular, Microsoft has deployed FPGA’s in its data centers
to accelerate its web-search service, Bing [51]. Intel recently
acquired a major FPGA vendor for 16.7 billion USD to
integrate FPGAs in their data-center products and develop new
platforms for Internet of Things (IoT) devices [28]. Commercial
products that integrate general-purpose cores (i.e., circuit design
modules) with FPGAs have already been released by major
chip producers [3, 65] and IoT design platforms based on
FPGA’s are becoming available to crowds of developers [17].

While FPGAs could provide significant benefits for designing
next-generation systems, they present novel security issues that
have not been adequately addressed. In particular, to implement
highly optimized FPGA controllers, a host system typically
provides direct read and write privileges to an FPGA. With
such privileges, an FPGA can access critical system resources
such as memory, the system bus, and even on-chip network
devices without mediation from the operating system. As a

consequence, an FPGA containing a security vulnerability,
perhaps due to aggressive manual optimization, could constitute
a critical target for leaking sensitive information throughout
a host system. Moreover, practical core designs consist of
complex submodules developed independently by multiple
sources. If a single, commonly-used module leaks information
in an unexpected way, it can affect the information-flow security
of all cores designed to use it.

Approaches that track the flow of information dynamically
in hardware [35, 61] are not well-suited for running on repro-
grammable hardware, on which resources are tightly limited.
Approaches that statically analyze if there is any potential
flow of information between data containers like program
variables or wires in a hardware design [24, 43-45] often
cannot be applied to such designs, which are often expected
to release sensitive information under particular conditions.
Hardware description languages that express allowed flows
with declassification [35, 36, 68] require either reimplementing
a target core in a new language or embedding security-related
descriptions in appropriate positions in the source code of
target core.

In this work, we propose a novel automatic approach for
verifying that a given core satisfies desired a information-flow
guarantee. Our approach consists of (1) a domain-specific
language of information-flow policies, named STREAMS, as
external documents expressed purely in terms of the interface
of a given module and (2) a novel automatic verifier, named
SIMAREL, that proves or falsifies that a given sequential core
design satisfies a given STREAMS policy.

The key technical challenge in developing our approach
was to design a verifier that can automatically synthesize a
proof that a core satisfies an information-flow policy with
declassification; such proofs are known to be expressible as
relational invariants [15]. Automatic verifiers for information
flow with declassification that construct the self-composition
of program [7, 59] cannot directly be applied to verify
systems that may read an unbounded stream of inputs over an
execution, such as sequential circuits (see §IV-C). Constructions
of relational invariants as invariants of a product program
conventionally require semi-manual constructions of a product
program as a subset of the Cartesian product of a program
paired with itself [6].

To address this challenge, we developed a novel automatic
verifier for relational properties of sequential cores, named
SIMAREL, based on symbolic model-checking. SIMAREL

avoids verifying the product construction of a given core by
using a novel procedure that efficiently proves the correctness
of all pairs of core runs up to a bounded length and inspects
the proof to determine if it contains a proof of the correctness
of the core.

To evaluate if STREAMS and SIMAREL can aid the design
of secure cores, we used them to express and attempt to verify
expected information-flow policies of 12 FPGA cores developed
independently for research and production systems. The cores
included both applications that would typically be used to
process sensitive information, and optimized implementations
of control subsystems.

SIMAREL proved that six cores satisfied their policies and
found unexpected information leaks in the other six cores,
including an Ethernet controller and a robotics controller (see
§V). We investigated each core identified be SIMAREL as
insecure and determined that their leaks are caused by subtle
design mistakes made by either the original designer of a
component core or a designer who integrated multiple core
modules. Our results indicate that critical cores often are not
adequately designed to account for the security requirements
of modular designs run on reprogrammable hardware, and that
our approach can significantly aid in the development of secure
cores.

The rest of this paper is organized as follows. §II illustrates
our approach by example. §III reviews previous work on which
our approach is based. §IV describes our approach in detail.
§V presents the results of verifying information-flow security
of a set of cores of critical applications and subsystems. §VI
compares our approach to related work, and §VII concludes.

II. OVERVIEW

In this section, we discuss the attack model under which
we assume that systems execute, and illustrate by example
the problem that we consider and our approach. In §II-A,
we describe an I/O management core of a storage-card
controller, named iomanager, from the open-source repos-
itory opencores.org. In §II-B, we express the information-
flow requirements of iomanager as a policy ModalRecall
in our language STREAMS. In §II-C, we illustrate how our
information-flow verifier SIMAREL automatically verifies that
iomanager satisfies ModalRecall.

A. An I/O manager for external storage

External storage cards are prevalent in smart phones, digital
cameras, and drones equipped with cameras. Even if the storage
card is secure, the interface logic that reads and writes data
to the card can still contain security vulnerabilities. Such a
vulnerability can leak important and personal images from the
card’s host device.

The OpenCores design repository contains an SD card I/O
manager for the host side of a card controller, which we refer
to as iomanager. iomanager takes a target address and data
from another FPGA core and a read or write command. When
iomanager receives a read command, it generates a read control
signal specific to the SD card and relays input data from the

module sd_controller_wb (
wb_clk_i, wb_set_i, wb_recall_i, wb_arg_ty, wb_data_i // ins:

// output port:
output reg [31 : 0] wb_data_o;
6 // internal registers:

1
2
3)
4
5

7 reg [31 : 0] argument_reg;
8 reg [31 : 0] cmd_setting_reg;
9 reg [31 : 0] status_reg;

10 // update registers to store input values
11 always @(posedge wb_clk_i) begin
12 if(wb_set_i)

13 case (wb_arg_ty)

14 ‘argument : argument_reg <= ...wb_data_i...

15 ‘ command : cmd_setting_reg <= ...wb_data_i...
16 ‘status_reg : status_reg <= ...wb_data_i...

17 e

18 endcase

19 end

20 // output values in stored registers
21 always @(posedge wb_clk_i) begin
2 if(wb_recall_i)

23 case (wb_arg_ty)

24 ‘argument : wb_data_o <= argument_reg

25 ‘command : wb_data_o <= cmd_setting_reg
26 ‘status : wb_data_o <= status_reg

27 // further, but non-exhaustive, cases

28 endcase

29 end

30 endmodule

Fig. 1: An I/O management core for SD card controllers, iomanager,
given as a fragment of Verilog code.

card. When iomanager receives a write command, it generates
a write control signal specific to the SD card, along with the
data to be written.

The complete implementation of iomanager consists of nine
Verilog modules with 3,673 lines of Verilog code. Each module
implements a state machine that generates specific control
signals. Some state machines have as many as 10 states.
Because iomanager has direct access to the SD card and has
a complex and stateful implementation, it is a prime target for
security attacks.

Figure 1 contains a simplified excerpt from one of the
submodules of iomanager; the complete implementation of
the submodule alone consists of 310 lines of Verilog. The
submodule takes as input a clock signal wb_clk_i, a sig-
nal to store data wb_set_i, a signal to recall data stored
wb_recall_i, an argument-type field on wb_arg_ty, and a data
value on wire wb_data_i. iomanager outputs a data value on
register wb_data_o (line 5). Internal registers argument_reg,
cmd_setting, and status_reg store the last argument, com-
mand, and status set, respectively (lines 7—9).

When iomanager receives a signal on wb_set_i (lines 12),
it checks the argument type passed in wb_arg_ty (line 13).
Depending on the argument type, iomanager stores a value
computed from wb_data_i in one of its internal registers (line
13—18). When the input wire wb_recall_i is set (line 22),
iomanager checks the argument type passed in (line 23). If
the input type matches some expected constant value, the set
of which do not span the range of all possible values for
wb_arg_ty, then iomanager copies the appropriate value from
an internal register (line 23—28). recall is set when an agent
intends to load the last value that it stored when issuing a
command (lines 23—30).

opencores.org

levels public < sensitive
default level public
wb_data_i has sensitive
Irecall => public

B W N

Fig. 2: An information-flow policy for iomanager, written in
STREAMS, named ModalRecall.

B. A policy for the I/0O manager

One of the primary goals of our work is to develop
techniques that specify and verify that a hardware design
releases information-flow securely. We assume that an attacker
can directly observe inputs and outputs of a core design on
particular wires on particular steps of execution, designated
in information-flow policies in our language. In practice, an
attacker can do so by implementing a hardware module that
snoops the output ports of other hardware components and leaks
the information. Designers on FPGA systems typically allow
modules from mutually-untrusting developers to co-habitate
on a single module to minimize design cost.

Our attack model does not require any assumption on the
source of a design itself. In practice, a developer may want
to verify the security of a design reused or shared from a
benevolent but imperfect source. However, in principle, a
developer may also want to verify the security of a design
provided by an untrusted source, which may contain a Hardware
Trojan. Our policies can express expected properties of such
systems as well.

One information-flow policy that iomanager is expected to
satisfy is that it should only reveal the value provided on
its input wires on runs in which recall is set. If iomanager
satisfied such a policy, then it could be used in contexts where
only a particular agent can send the recall signal to review its
history until it relinquishes control and the state of iomanager
is reset. Such a policy, while simple to formulate and referring
to a relatively small component of the complete interface of
iomanager, cannot be enforced by other hardware information-
flow languages without specifying the entire design of the
system in the language [36], due to the fact that it can only be
satisfied by checking a dynamic condition on program inputs.
In general, such policies also rely on maintaining correct state
related to sensitive information.

In this work, we introduce a policy language, STREAMS,
that can express such policies for cores implemented in a
conventional hardware description language. Figure 2 contains
a STREAMS policy for iomanager, named ModalRecall, that
expresses the above requirements for iomanager that were
stated informally. We define the complete syntax and semantics
of STREAMS in §IV-A, but the intuition behind the use
of its constructs in ModalRecall can be understood without
a complete definition. In particular, ModalRecall contains
a definition of two levels of sensitive information, public
and sensitive, with sensitive denoting information that is
strictly more sensitive than public information (line 1). Thus,
information that the core receives over a sensitive input
wire cannot, by default, be revealed on a public output wire.
ModalRecall contains a declaration that each wire that is not

explicitly labeled is public (line 2), and an explicit labeling
of output wire wb_dat_i as sensitive (line 3). However,
ModalRecall also contains a directive specifying that wires
labeled public must reveal public inputs only on steps when
recall is not set (line 4).

C. Checking flow-security of the I/O manager

Unfortunately, iomanager in fact does not satisfy
ModalRecall, and as a result may leak information read
over wire wb_data_i over wire wb_data_o without receiving
an appropriate signal on recall. The cause of the leak in
iomanager is a result of inexhaustive case logic for determining
the values output to wb_data_o (Figure 1, lines 21—26). In
particular, iomanager checks wb_arg_ty against values that
it expects to read, but does not check wh_arg_ty against all
possible values, which could conceivably be provided by an
arbitrary environment. Furthermore, each output register, in
particular wb_data_o, also acts as an implicit storage register.
When Verilog matches a register in a case statement and none
of the provided cases match, then the circuit does not update
any storage registers involved in the case statement. As a
result, if an attacker without the authorization to signal recall
sends a value for wb_arg_ty that does not match any of the
values checked in lines 21—26, then iomanager will provide
the last value that it output, which could potentially have been
computed from information read on wb_data_i.

In this work, we present, along with our policy language
STREAMS, a verification algorithm SIMAREL that takes a core
C and a STREAMS policy F' and either proves that C' satisfies
F or provides a counterexample that proves that C' does not
satisfy F. The key property of STREAMS that enables the
design of SIMAREL is that, by definition of STREAMS (see
§IV-A), a core C satisfies a STREAMS policy F' if each pair of
runs of C satisfies a suitable relational property. A significant
consequence of this design choice is that if a given core does
not satisfy a given flow policy F, there is a pair of runs of C
that demonstrate the violation.

In the case of iomanager and ModalRecall, a pair of runs of
iomanager that violates ModalRecall is any pair of runs that
(1) read different values only on register wb_data_i, (2) do
not read in their last step an enabling signal on recall, and
(3) produce different values on output wire wb_data_o.

SIMAREL uses this feature of STREAMS to search for
examples that prove that a policy is violated. In particular,
for iteratively larger step bounds n, SIMAREL constructs a
propositional formula ¢,, for which each model defines a pair
of runs of C' that violate F' and runs a SAT solver on ¢,,. If
the solver finds a model, then SIMAREL returns the model as
a counterexample for C' and F' (see §1V-B5).

Given iomanager and ModalRecall, SIMAREL constructs
a formula that characterizes all pairs of runs of iomanager
of length two and finds a counterexample for iomanager
and ModalRecall as two runs whose values for wb_data_i,
recall, and wb_data_o satisfy each of the above conditions.
In particular, one of the runs takes as input a control signal
that is not explicitly matched in Figure 1 lines 23—28.

The fact that each STREAMS policy defines a property over
all pairs of runs of a core also guides how SIMAREL verifies that
a correct core does satisfy a given flow policy. Let iomanager’
be iomanager as given in Figure 1, but patched to include a
default case for the case statement at lines 23—28 that sets
wb_data_o low. The combined state of each pair of runs of
iomanager’, extended with an auxiliary variable InsEq that
tracks if the two runs have read equal values over wb_clk_i,
wb_set_i, and wb_arg_ty, always satisfies a key relational
invariant. In particular, the invariant establishes that after any
pair of runs, if InsEq holds, and in the next step of each run,
the run does not read a high signal on recall, then the two
runs will send equal values to wb_data_o.

The above fact is in fact an inductive relational invariant
of all pairs of runs of ioman’, extended with InEq. When
SIMAREL is given a core C, such as ioman’, that satisfies a
given flow policy F', then SIMAREL verifies that C satisfies
F by proving for iteratively larger bounds n that all pairs of
runs of C' of length up to n satisfy F. SIMAREL inspects the
invariants obtained in such proofs to determine if they are in
fact inductive proofs that C' satisfies F', and if so determines
that C satisfies F' (see §IV-B3).

III. BACKGROUND

In this section, we review previous work on which our
work is based. In §III-A, we establish basic definitions of the
hardware systems that we will consider. In §III-B, we review
definitions and fundamental results from propositional logic.

A. Hardware core design

We will describe an approach for specifying and verifying
the flow security of sequential hardware core designs with
direct physical access to sensitive and public input and output
channels. Our work is motivated in particular by the recent
development of Field Programmable Gate Arrays (FPGAs),
which are integrated circuits designed to be programmed and
reconfigured by users or a designer after the chip is fabricated.
The design of an FPGA core is generally specified in a
Hardware Description Language (HDL), such as Verilog. In this
work, we assume that our verifier has access to a description
of a given circuit in an HDL. This description is a circuit that
will be implemented using the pre-fabricated logic elements
of the FPGA.

FPGAs can interact with their host system over a rich
interface that allows them to read information from and send
it to memory and critical system devices such as network
controllers. In practical deployments, a single FPGA unit
commonly is programmed with multiple colocated cores that
perform computation on behalf of multiple mutually-untrusting
users. To present our approach, we assume that there are fixed
sets of propositional variables that model, for a given core,
the input wires to the core (denoted I), output wires from the
core (denoted 0), and persistent state of the core (denoted Q).
The union of the spaces of I and 0 is the space of I/O wires,
denoted I0s = I U 0. The union of the space of I/O wires and

state registers is denoted Wires = IOs U Q. The space of all
cores is denoted Cores.

For each C € Cores, the transition relation of C' defines
how in each step, C uses its current state and input to
update its state and generate an output. For each space of
propositional variables X (i.e., a vocabulary), we denote the
space of all evaluations of X as Evals|X] = X — B. The
initial states Initsc C Evals[q] are the states in which C
may begin a run. The transition relation of C' is a binary
relation pc C (Evals[I] x Evals[Q]) x (Evals[q] x Evals[0]).
For I € Evals[1], Q,Q" € Evals[q, and O € Evals[0],
we denote the fact ((I,Q),(Q',0)) € pc alternatively as
(1,Q) —c (Q',0).

A run is a sequence of triples of input evaluations, states,
and output evaluations; i.e., the space of runs is Runs =
(Evals[1] x Evals[q] x Evals[0])*. A trace is a sequence of
pairs of input and output evaluations; i.e., the space of traces
is denoted Traces = (Evals[1] x Evals[0])*. For Iy,..., I, €
Evals[1], Qq,...,Q» € Evals[q], and Oy, ..., 0, € Evals|o],
let (Ip,Qo,O0), .-, (I, Qn,0,) be such that Qy € Initsg
and for each 0 < ¢ < mn, it holds that ([;,Q;) —c¢
(Qi+1,0i41). Then (lo, Qo, Oo), -, (I, Qn,Oy) is a run
of C and (Iy,Oy), ..., (In,0y) is a trace of C.

B. Propositional logic

For each vector of propositional variables X, we denote the
space of Boolean formulas over X as Forms[X]. We denote a
disjoint set of variables corresponding to the variables in X
as X'. For all vectors of propositional variables X and Y of
equal size and each formula ¢ € Forms[X], we denote ¢ with
each variable in X replaced with its corresponding variable
in Y as ¢[Y/X]. For each ¢ € Forms[X], we denote ¢[Y/X]
alternatively as [Y]. For each ¢ € Forms[X] and assignment
o : X — B, we denote the fact that o satisfies ¢ as o F .
For all propositional formulas g, ..., ¢,, ¢ € Forms[X], if
each satisfying assignment of formulas ¢y, ..., ¢, is also a
satisfying assignment of ¢, then g, ..., , entail p, denoted
P05 -+ Pn ':SD

In general, checking if a given propositional formula is
satisfiable or checking if a given set of propositional formulas
entail a given propositional formula is NP-complete in the
combined size of the formulas. However, in practice, many
instances of SAT that arise in hardware verification can be
solved efficiently using well-studied heuristics [18, 19]. We
present SIMAREL as using a generic SAT decision procedure,
referred to as ISSAT.

1) Modeling core semantics in logic: For each C' € Cores,
the initial states of C' (see §III-A) are represented as the
propositional formula Islnitc € Forms[q]. The transition
relation of C, p¢, (see §I1I-A) is represented as a propositional
formula o € Forms[I,Q,Q,0]. For each evaluation o; €
Evals[I], each evaluation oo € Evals[0] of output variables,
and all evaluations of state variables 0¢, 0 € Evals[q], if
(0’1, UQ) —C (O'Q/, 0'0), then o7y, 0Q,0Q 00 Fe.

Stream :=(Lvs < Lvs)*(I0s has Lvs)*(Conds => Lvs)* (1)
Conds:=I OP 1 | =Conds | Conds A Conds (2)

Fig. 3: Syntax of STREAMS, defined over spaces of levels Lvs and
input wires I, introduced in §III-B1.

2) Interpolation: An interpolant I of mutually-unsatisfiable
formulas ¢g and ¢, is a formula that explains their mutual
unsatisfiability in their common vocabulary.

Definition 1. For all vocabularies X and Y and formulas
o € Forms[X] and p1 € Forms[Y'] such that v, p1 |= False,
an interpolant of o and @1 is a formula I € Forms[X NY]
such that (1) o =1 and (2) 1,1 = False.

For all formulas ¢ and ¢, that are mutually unsatisfiable,
o and 7 have an interpolant. It is unknown whether there is
interpolant of size less than exponential in the combined sizes
of ¢y and ¢1. However, in practice, SAT solvers can often
generate interpolants of size close to the size of their input
formulas [39, 41]. SIMAREL is defined using a procedure ITP
that, given two mutually-unsatisfiable SAT formulas ¢, and
(1, returns an interpolant of g and (.

IV. TECHNICAL APPROACH

In this section, we give a language STREAMS for expressing
information-flow policies of cores (§IV-A). We then give an
algorithm SIMAREL for verifying that a given core satisfies a
given STREAMS policy (§IV-B).

A. A policy language for flow security of sequential cores

1) Syntax: The syntax of STREAMS is given in Figure 3
as a grammar in Extended Bachus Normal Form (EBNF). In
particular, a policy is (1) a sequence of clauses that declare
a flows-to relation over levels, (2) a sequence of clauses that
each binds an I/O wire to a level, and (3) a sequence of clauses

that each associate a level with an enabling condition (Eqn. 1).

A condition is a Boolean combination of binary predicates over
input wires (Eqn. 2). The space of operations OP contains
standard bitwise comparisons.

2) Semantics: The semantics of STREAMS define if a given
core satisfies a given STREAMS policy. The level declarations
of a STREAMS policy F' define a flows-to relation over levels.
Let the relation —C Lvs X Lvs be such that for all levels
Lo,L1 € Lvs, if Ly < L1 € F, then Ly — L. For each
w € I0s and L € Lvs such that w has L € F', w has level L
in F, denoted Lv[F](w) = L. For each condition En € Conds
and level L € Lvs such that En => L is in F', L has enabling
condition En in F, denoted alternatively as En[F, L]. For F to
be well-formed, — must be a partial order and the has-level
and enabling-condition relations must be functions. For the rest
of the paper, we only consider policies that are well-formed.

For the remainder of this section, let C € Cores, F €

STREAMS, and L € Lvs be a fixed core, flow policy, and level.

Let the set of all input wires with L' € Lvs in F such that
L' —* L be denoted Lvins, and let the set of all output wires
with such a level be denoted LvOuts.

For each trace t (§11I-A), the subtrace of ¢ visible at L in
F' is the sequence of all input-output pairs in ¢ in which the
input satisfies the enabling condition of L in F.

Definition 2. For t,t' € Traces, let t' be the maximal subse-
quence of t such that for each i € Evals[I] and o € Evals[0]
with (i,0) € t', it holds that i - En[F,L]. Then t' is the
subtrace of t visible at L in F.

Traces ty and t¢; are input-equivalent at level L in F' if their
corresponding inputs are equal at each input wire that flows
to L in F.

Definition 3. Let to,t1 € Traces with n = |tg| = |t1| be such
that for each 0 < k < n, and ig,i; € Evals[I] and 0,01 € 0
with (ig,00) = to[k] and (i1,01) = t1[k], and each input wire
w € Lvlns, it holds that io(w) = i1 (w). Then tg and t1 are
input equivalent at L in F.

Output equivalence is defined similarly.
C satisfies F' at L if all of its traces with visible subtraces
at L that are input equivalent at L are output-equivalent at L.

Definition 4. If for all to,t; € Traces|C| with subtraces t|,
and ty visible at L in F (Defn. 2) that are input equivalent
at L (Defn. 3), t{, and t} are output-equivalent at L, then C
satisfies F' at L.

The fact that C satisfies F' at L is denoted C' -, F. If for
each I’ € Lvs, C' . F, then C satisfies F. For the remainder
of this paper, we will only consider the problem of determining
if a given core satisfies a given flow policy at a given level, in
order to simplify the presentation.

Our definition of policy satisfaction models an attacker who
can directly observe the outputs of a circuit C' at each step
in which a condition does not satisfy an enabling condition.
The attacker succeeds if they can distinguish two sequences of
input-equivalent traces using only such observations. Note that
the attacker can only observe the output at particular steps, not
the time taken by C' to generate such outputs.

Our actual implementation of SIMAREL supports a richer
syntax with several constructs that are useful for expressing
a policy succinctly. In particular, the full language supports
clauses that bind all wires to a default level and a default
semantics that sets the enabling condition of each level not
set explicitly to be True. Conditions can also be defined over
inputs received in previous time steps of execution.

B. Verifying policy satisfaction

1) Relational invariants: SIMAREL, given C, F', and L, de-
termines if C' - F. SIMAREL operates on symbolic relations
over a vocabulary that models pairs of circuit runs, denoted as
run O and run 1. The relation is represented as a formula over
variables that model the current state of each run in the pair,
along with auxiliary variables InEq and OutEq that track if the
subtraces of the runs visible at L in F' are input-equivalent and
output-equivalent, respectively. The space of auxiliary variables
is denoted Eqs = InEq U OutEq. The space of symbolic

relations is denoted SymRels = Forms[Wires, Wiresy, Eqs|.
The enabling condition of L in F' is denoted En.

Indexed relational invariants are a map from pairs of step
indices to symbolic relations that soundly model (1) the initial
condition of C, (2) & (3) steps on inputs not visible at L in
F, and (4) steps in a pair of runs on inputs visible at L in
F, for pairs of runs of length up to k. The space of indexed
symbolic relations is denoted ldxRels = N x N < SymRels.

Definition 5. Let I € IdxRels be such that (1)
IsInite[Q], IsInite[@q], InEq, OutEq = 1(0, 0)
(2) fori < k—1and j < k such that (i, j), (i+1, j) € Dom(I)
(where Dom(I) denotes the domain of I),
I(Zvj)7 wC[Im Qo, QE)]? _'En[IO] ': I(Z + 17])[06/00]
(3) fori < kand j < k—1 such that (i, j), (i, j+1) € Dom(I),
I(i’j)awC[Ilv Q, Q/l]v _'En[Il] ': I(Zaj + 1)[0/1/01]
(4) for i,j5 <k — 1 such that (i,j),(i+ 1,7+ 1) € Dom(I),
I(ivj>7 wC[IO’ Qo; 06]a wC[Ilﬁ Q1, Qll]’
En[Io], En[11], (InEq A Lvlnsg = Lvins; = InEq’),
(OutEq A LvOutsg = LvOuts; = OutEq’) |=
I(i+ 1,5 +1)[ah, @1, Eas']
Then I are indexed relational invariants.

The space of indexed relational invariants is denoted IdxInvs.

For I € ldxInvs, if (1) I contain a symbolic relation for
the initial index O paired with itself and (2) for each pair of
indices 7 and j, either I(7,j) entails the relation at a distinct
pair of indices or the successor of steps (¢,7) in run 0 or run
1 is defined by I, then I are inductive indexed invariants.

Definition 6. Let I € |dxInvs be such that (1) (0,0) € Dom([)
and (2) there is some anti-symmetric C C (N x N) x (N x N)
such that for each i,j € N such that (i,j) € Dom(I), either
(a) there are some i, j' € N such that ((i,7), (i',7')) € C and
1(3,3) b= 17", '), () (i+1,5) € Dom(I), or (¢) (i,j +1) €
Dom(I). Then I are inductive indexed relational invariants.

Indexed relational invariants [satisfy F' at L if they map
each pair of indices to a symbolic relation that implies that
along all pairs of runs, if inputs are equivalent at L in F, then
outputs are equivalent at L in F.

Definition 7. Let I € ldxInvs be such that for all i,j5 < k
such that (i,j) € Dom(I),

I(7,7), Lvinsy = Lvins; |= LvOutsy = LvOuts;
Then I satisfies F' at L.

For I € ldxInvs, the fact that [satisfies F' and L is denoted
Ik F.

Inductive relational invariants of C' that satisfy F' at L are
evidence that C satisfies F' at L (see §A, Lemma 4). As a
result, SIMAREL proves or disprove that C' satisfies F' at L
by searching for inductive indexed relational invariants that
satisfy I at L.

2) Verification algorithm: Alg. 1 contains pseudocode for
SIMAREL, which given C € Cores, F' € STREAMS, and L €
Lvs, determines if C satisfies ' at L. SIMAREL defines a
recursive procedure SIMREC that takes a natural number k and
returns either (1) False to denote that C' does not satisfy F' at

Input :C € Cores, F' € STREAMS, L € Lvs
Output: Decision as to whether C' 1, F.

1 Procedure SIMAREL (C, F, L)

2 Procedure SIMREC(k)

3 switch CHK(C, F, L, k) do

4 case Unsafe: return False ;

5 case I € |dxRels:

6 if HASIND(I) then return True ;
7 else return SIMREC(k + 1) ;

8 end

9 endsw

10 return SIMREC(0) ;
Algorithm 1: SIMAREL: given C' € Cores, F' € STREAMS,

and L € Lvs, determines if C' +, F.

L for some pair of runs of length no less than k or (2) True
to denote that C' satisfies F' at L (line 2—Iline 9). SIMAREL
calls SIMREC on 0 and returns the result (line 10).

SIMREC, given input k, runs a procedure CHK on C, F,
L, and k which returns either Unsafe to denote that C' does
not satisfy F' at L on all pair of runs of length k£ or indexed
relational invariants up to k that satisfy F' (line 3). The design of
CHK is given in §IV-B3. If CHK returns Unsafe, then SIMREC
returns that C' does not satisfy F' at L (line 4).

Otherwise, if CHK returns indexed relational invariants [
that satisfy F" at L, then SIMREC runs procedure HASIND on 1.
If HASIND returns that I contain inductive indexed relational
invariants, then SIMREC returns that C satisfies F' at L (line 6;
the implementation of HASIND is given in §IV-B4). Otherwise,
SIMREC recurses on k + 1 and returns the result (line 7).

3) Finding indexed relational invariants up to a bound:
CHK, given k € N, attempts to construct indexed relational
invariants I from the results of a series of interpolation queries
(§1I-B, Defn. 1), defined as follows. For each n € {0,1} and
j <k, let I;»’ model the values read by run 7 in step j, and let
Qj model the state of run n after taking step j.

For all i,j < k, the symbolic relation in I at ¢ and j is
constructed from an interpolant of two formulas: (1) the pre-
formula at (i,j), denoted ¢, ;, and (2) the post-formula at
(i,4), denoted 90:7' Each pair of i steps of run 0 and j steps
of run 1 correspoﬁds to a model of ¢; ;, defined casewise on ¢
and j as follows. ¢ is the initial condition of C' instantiated
on the state variables of (1) run 0 and (2) run 1, combined with
(3) the fact that initially, the (empty) visible suffixes of all pairs
of runs after O steps are input-equivalent and output-equivalent
in Flat L. Le., ‘P(Io is

(1)lsInitc[Q)] A (2)lIsInite[Qg] A (3)InEqq o A OutEqq g
For pairs of indices (i,7) # (0,0) € N x N, ; is defined as
follows. For each 0 <i,5 < k — 1, InvisStep?yj relate (1) the
states of run 0 after ¢ steps and run 1 after j steps, combined
with (2) the semantics of run 0 taking a step, on (3) inputs
invisible at L to the resulting states after run O takes ¢ + 1

steps and run 1 takes j steps. Le., InvisStep?j is
(1G5 +1) A 2)eled, 104,20]1A
(3)—En[19,] AEas;yy i1 = Eas; 11
InvisStep; ; is defined symmetrically. For 0 < ¢ < k—1, ;14 o
is InvisStep?yO. For 0 <j <k—1, ¢q ;44 is InvisStep(l)’j.
VisStepsi,j relates (1) the states after ¢ steps of run 0 and j
steps of run 1, combined with the semantics of (2) run 0 and
(3) run 1 taking a step on (4) inputs visible at in F' at L to

states after run O takes ¢ 4 1 steps and run 1 takes j + 1 steps.

Le., VisStepsm» is
(DI, 5) A (2)0eled, 1241, Q1) A (B)Ye Q) T4, QG]A
(4)En[1?}4] A En[Tj]A
(InEq; ; A Lvins) ; = Lvlns;_‘_1 = InEq; ;1 j11)A
(OutEq; ; A LvOuts?+17j+1 = LvOuts}_,rLjJrl =
OutEa; 1y 541)

For 0 <i,j <k—1, ¢ 4118

InvisStep?yj+1 \% InvisStepL_Lj V VisSteps; ;

Each suffix of run O after step ¢ and run 1 after step j of
runs that do not satisfy F' at L corresponds to a model of the
post-formula @Ij, defined as follows. Each suffix of run n
from step j to step k corresponds to a model of the formula
Rest]:

/\ (e} [Q;'L’a I;'le Q?/—i-l]
J<j'<k-1
Each pair of suffixes that correctly updates Eqs corresponds
to a model of UpdEgs, ;, defined as follows. Updlnlnvisgj
constrains that if at steps ¢ and j (of runs 0 and 1), runs 0 and
1 have read input streams equivalent at L and run 0 next reads
an input invisible at L, then at ¢ 4+ 1 and j, the runs have read
input streams equivalent at L:

InEq, ; A —\En[I?_H] = InEq;
UdenInvis;j constrains InEgq, ; and InEq, ;,; symmetrically
to model steps of run 1.

UpdInVis; ; constraints that if runs 0 and 1 both next read
inputs visible at L, then at ¢+ 1 and j + 1, the runs have read
input streams equivalent at L. Le., UpdInVis, ; is

InEq, ; A En[I{,] AEn[I}] A Lvins), | = Lvlns;_H =
InEq; ;1 541

UpdOutlnvis symmetrically constrain

1,9
OutEgq, ;. UpdEgs, ; is
/\ UdenInvis?yj A UdeutInvisaj/\
i<i’'<n—1
Jj<j'<n
/\ UdenInvisl{j A UdeutInvisZ{j/\
i<i’'<n
Ji<j'<n—1

/\ UpdinVis, ; A UpdOutVis, ;

i<i’<n-—1
Jj<j'<n—1
Each pair of suffixes that satisfy F' at L after each step

corresponds to a model of PolSat; ;, defined as
/\ InEq;, ,, = Outkg;,
i<i’'<n,j<j'<n
The complete post-formula gtoj is:
Rest! A Rest} A UpdEgs; ; A —PolSat; ;

and UpdOutVis; ;

1 gt
»J

Input : 7 € ldxInvs

Output: Decision as to whether I contains inductive
indexed relational invariants.

1 Procedure HASIND(I)

2 Procedure HASINDAUX(O, D)

3 if O =(then return True ;

4 ((¢,7),0") :== CHOOSE(O) ;

5 if (i,7) ¢ Dom(I) then return False ;

6 D' :=DU{(i,4)};

7 if \VV{I(i,5) EI(',j") | (i,5/) € D} then

8 | return HASINDAUX(O', D’)

9

end
10 to := HASINDAUX(O' U{(i + 1,5)},D’) ;
1 t1 := HASINDAUX(O' U {(4,7 + 1)}, D’) ;

12 return (o V(1 ;

13 | return HASINDAUX({(0,0)},0) ;
Algorithm 2: HASIND: given I € ldxInvs, returns whether
or I contains inductive indexed relational invariants.

CHK first runs ISSAT on ¢g o A ¢ . and if ISSAT returns
that the formula is satisfiable, returns Unsafe. Otherwise, CHK
iteratively computes relational invariants for each 0 <i,7 <n
in any topological ordering of the space of pairs in Zjy X Zj.
In each iteration, CHK sets I(4, j) to be ITP(¢p; ;, cpj:j)[Qo, Q.

The correctness of SIMAREL is supported by the fact that,
given k € N, if CHK returns Unsafe, then C does not satisfy
F at L (§B, Lemma 5), and otherwise returns indexed relations
that prove that all pairs of runs of C' up to length k satisfy F'
at L (§B, Lemma 6).

4) Finding inductive indexed relational invariants: HASIND
(Alg. 2), given I € IdxRels, returns whether or not I contains
inductive indexed relational invariants. HASIND contains a
procedure HASINDAUX (Alg. 2, line 2—Iline 12) that, given
obligation and discharged pairs of indices O, D C N x N,
returns whether I contains inductive indexed relational invari-
ants that must contain O and may contain any elements in D.
HASIND runs HASINDAUX on obligations consisting of only
0 paired with itself and no discharged pairs, and returns the
result (line 13).

HASINDAUX, checks if O is empty, and if so, returns True
(line 3). Otherwise, if O is not empty, then HASINDAUX
removes a pair of indices (7, j) from O to generate obligations
O’ (line 4), and checks if (i,7) have invariants in I; if not,
then HASINDAUX returns False (line 5).

Otherwise, if (i, j) have invariants in I, then HASINDAUX
extends D with (i, j) to generate discharged pairs D’ (line 6),
and checks if there are indices (i, j/) such that I (7, j) entails
I(i',4") (line 7); if so, then HASINDAUX recurses on O’ and
D', and returns the result (line 8).

Otherwise, if there are no such indices i’ and j/, HASIN-
DAUX recurses on O" extended with index pair (i + 1, j)
and D’ (line 10), recurses on O’ extended with index pair
(i,j+ 1) and D’ (line 11), and returns True if either recursive
call returns True (line 12).

HASIND soundly determines if given indexed relational

invariants contain inductive indexed relational invariants (§A,
Lemma 7).

5) Synthesizing policy violations: To simplify the presen-
tation of SIMAREL, we have presented it as an algorithm
that takes a given core C, flow policy F, and level L and
returns only a decision as to whether C' satisfies F' at L. Our
actual implementation of SIMAREL, when given a core C' that
does not satisfy F' at level L, returns a counterexample that
witnesses non-satisfaction, represented as a pair of runs of C
that are input-equivalent at L, but not output-equivalent at L.
In particular, if CHK runs ISSAT on ¢g o A cp({o and ISSAT
determines that the formula has a model m, then CHK returns
the pair of runs of C' that correspond to m.

C. Discussion
SIMAREL is a sound flow verifier.
Theorem 1. [f SIMAREL(C, F, L) = True, then C -, F.

For a proof of Thm. 1, see §D.
SIMAREL is also a complete flow verifier.

Theorem 2. [f SIMAREL(C, F, L) = False, then C t/}, F.

In principle, SIMAREL will eventually terminate on any
given core C' and flow policy F'. Termination follows from the
observation that each circuit is a finite-state machine. Thus if
SIMAREL considers a sufficiently large number n of steps, it
will either find a pair of runs of C that do not satisfy F', or
it will synthesize invariants that imply that each pair of runs
of length less than n must reach some state in a cycle. Such
a cycle manifests in SIMAREL as inductive indexed relational
invariants. The maximum number of steps that SIMAREL may
need to consider is bounded by the number of pairs of states
in a given circuit (i.e., by [22/Q]). In practice, when SIMAREL
successfully verifies flow security or finds a policy violation,
it typically finds a proof of pairs of runs up to a bound that it
significantly lower than the maximum number of steps required
to verify a core.

One approach for verifying that a program P satisfies a
property F' over a bounded number of runs is to verify that the
self-composition of P, denoted P? satisfies a safety property
F?2 derived from F [7, 59]. In particular, (1) P? reads an initial
state and stores it in variables varsg. (2) P2 runs P on the
initial state and stores the final result in variables vars). (3)
P? reads a second initial state and stores it in variables varsy.
(4) P? runs P on the second initial state and stores the result
in variables vars). A safety verifier is then run to determine
if P? satisfies F2 = pp[varsg,vars;] = vars) = vars).

Self-composition can potentially verify the flow security of
programs that take a bounded vector of inputs, such as a finite
tuple of bounded integers. However, applying the approach
to verify flows that operate over unbounded streams of inputs
would be non-trivial: a key operation of the self-composition
is to sequentially store two complete copies of its input and
test them under a relational predicate only after executing a
second run of the program.

The inability of self-composition to verify flow-security of
programs that operate over unbounded inputs implies that it
cannot be directly adapted to verify non-trivial flow security
properties of sequential hardware circuits, all of which operate
on unbounded streams of inputs. Moreover, we found that
the technique could not be directly applied to verify the flow
security of any of the cores and flow policies that we collected
from sources of actual cores (§V), including the example core
and policy introduced in §II.

V. EVALUATION

We performed an empirical evaluation of our approach
to answer the following research questions. (1) Can the
information-flow security requirements of practical, security-
critical cores be expressed in STREAMS? (2) If practical,
security-critical cores and their flow policies are given to
SIMAREL, can SIMAREL efficiently either verify that the cores
satisfy their policies or generate inputs on which they do not?

In summary, our results answer the above questions positively.
We used STREAMS to express the flow requirements of 12
open-source cores drawn from different application domains
and hosted on the open-source repositories OpenCores [47]
and AxBench [1], and used SIMAREL to attempt to either
verify the flow security of the cores or find flow vulnerabilities.
SIMAREL verified flow security of six modules and found flow
vulnerabilities in six other modules.

The sources of the found vulnerabilities are either in the
implementation of particular modules from individual sources
(in five cases) or in logic that integrates modules from multiple
sources (in one case). Such sources of vulnerabilities are critical
concerns in the design of FPGA’s, which typically rely on
reusing cores from different sources to implement complex
system-level functionality, or which attempt to optimize a
core after integrating multiple cores. These results not only
shows the efficacy of our approach but also the necessity
of our solution at a time when FPGAs are being deployed
and integrated in both data centers and embedded devices.
We also implemented patches that address the vulnerabilities
found using our technique and have submitted the patches to
OpenCores and AxBench.

A. Methodology

We implemented SIMAREL by extending the ABC hardware
model checker [10] to solve interpolation queries and check for
inductive proofs, as described in §IV-B. The input to ABC is
a low-level logic representation of the core in Berkeley Logic
Interchange Format (BLIF) [9]. We used the Yosys open source
synthesis tool [64] to generate the BLIF file from the high-level
Verilog description of the cores.

We collected a set of open-source cores from OpenCores
and AxBench. the features of the benchmarks are summarized
in Table I. OpenCores is a large collection of open-source
hardware cores; a wide verity of customers already deploy
the cores that it hosts [48]. AxBench is another open source
repository of cores developed in hardware-design research [1].

Benchmark Features Policy Features Performance

Name Domain Origin (Vlégi(l:og) g[fj)l(k:‘) Levels | Clauses || Secure Tgr)le 1(\1/{23
Wishbone flash cntrl. Embedded Comp. 129 7 2 1 0.18 12
SD card controller Storage mgmt. 4,080 36 2 11 26.05 652
UART Debugging opencore 253 6 2 1 No 0.16 23
Ethernet controller Comm. controller 205 2 2 1 1.10 29
AntiLog2 DSP 110 3 2 1 0.69 27
F-kinematics Robotics axbench 18,282 1,755 2 4 44,151 1,010
Wishbone flash cntrl. (patch) | Embedded Comp. 130 7 2 1 0.26 15
SD card controller (patch) Storage mgmt. 4,147 36 2 11 39.85 650
UART (patch) Debugging opencore 267 927 2 1 Yes 6.27 310
Ethernet controller (patch) Comm. controller 223 2 2 1 1.19 29
AntiLog2 (patch) DSP 122 3 2 1 2.29 30
F-kinematics (patch) Robotics axbench 18,426 1,823 2 4 - - -
Reed-Solomon Error correction 4,054 119 2 1 254.44 765
RR arbiter H/W controller 268 0.3 2 1 0.11 16
Gaussian noise gen. DSP opencore 1,064 26 2 , 278 o2
Interrupt controller System controller 248 2 2 1 es 1.16 57
FIR-filter Communication 101 191 2 1 1.77 66
Sobel filter Tmage processing | “0oneh /6| 404) T 339 146

TABLE I:

The results of our evaluation. Under heading “Benchmark Features,’

il

column “Name” contains the name of the benchmark;

column “Origin” contains the benchmark’s origin of development; column “LoC” contains the number of lines of Verilog code and BLIF
code for the benchmark core’s design. Under the heading “Policy Features”, column “Levels” contains the number of levels used in the
policy; “Clauses” contains the number of allows and prohibits. Under the heading “Performance”, column “Time” contains the time SIMAREL
consumed for each benchmark; column “Mem.” contains the peak amount of memory that SIMAREL used.

The benchmarks we collected implement complete hardware
cores and follow industry standards. Thus, they are suitable for
integration with other cores inside an FPGA for industrial
purposes. To measure the complexity of each benchmark,
we counted the number of lines of code (LoC) of both the
original Verilog file and synthesized BLIF file. Because a core’s
BLIF file represents the actual physical structure of hardware
synthesized, the size of the BLIF file is a more consistent
metric of complexity than Verilog, which describes the core at
comparatively high level.

For each benchmark core, we wrote an information-flow
policy in STREAMS that describes on which inputs the core
may release a information about its sensitive inputs, based on
the core’s documentation. We wrote policies using an extension
of STREAMS as described in §IV-A that additionally supports
references to values read in a time step that is some constant
offset before the current step. We then checked that each
core satisfies its corresponding policy by running SIMAREL
on the target core and policy. For each benchmark, we ran
SIMAREL on a machine running as its operating system Linux
Ubuntu with kernel 3.16.0-38-generic. The machine used for
benchmarks contains an Intel Core i7 4720HQ processor that
runs at 2.4 GHz and contains 8 GB of memory.

B. Results

In this section, we describe insecure benchmark cores that
STREAMS specified, the STREAMS policy that we wrote for
the cores, and the results of running SIMAREL on the cores
and their policies. We omit the SD card controller example
because we discussed it in §II.

1) Insecure benchmarks:

a) Wishbone flash memory controller: The Wishbone flash
memory controller implements a critical subsystem that enables
an FPGA to access the main storage of an embedded platform,

which can be, for example, an 0T device. The inputs to the
Wishbone controller are read or write commands and addresses
generated by other modules in the FPGA. The output is the
control signals that let the flash storage perform the FPGA’s
read or write commands. The core implements a finite state
machine with 16 states that generates the control signals.

We wrote a STREAMS policy that only allows information
to flow from the input data port to flash when the controller
receives a write-enable signal. If the controller does not satisfy
this policy, several attacks are feasible. In particular, a malicious
circuit processing sensitive information on the FPGA can use
the Wishbone flash controller to leak the information to the
flash storage. Also, when the FPGA implements a processor,
software executing on the processor that polls the write data
can gain the complete information about the data written.

SIMAREL found that the controller does not satisfy such a
policy in less than a second. The results confirm that each of
the attacks given above is indeed feasible.

b) Universal asynchronous receiver/transmitter: A Uni-
versal Asynchronous Receiver Transmitter (UART) is a widely
used serial communication mechanism [46]. UART connects
systems with different clock domains using a shift register,
which prevents unexpected data loss from clock timing synchro-
nization failure during data exchange. UART prepares data for
transmission or retrieval using units that serialize and deserialize
messages. Some UART modules, including the module that
we analyzed, provide an interface for collecting debugging
information from systems. Given that debuggers typically are
granted near-complete access to a system’s internal data, it
is critical that the module satisfies expected requirements for
information flow. In a network router design, for instance, the
debug interface may leak the routing table entries that decide
where the router sends packets. Thus, attackers may track the
paths of packets and identify the senders and receivers.

We wrote a STREAMS policy that specifies that a given
UART module must not reveal read data except on intended
clock cycles. If the module violates the policy, then an attacker
can observe internal data in a system, even after the system has
reverted to perform normal operations. SIMAREL revealed this
vulnerability using our STREAMS. We found that the leak is
due to incomplete case-handling logic, similar to the vulnerable
code for the SD card controller discussed in §II.

c) Ethernet controller: Modern FPGAs typically include
a physical Ethernet port. However, they usually do not include
a built-in Ethernet controller. Thus, FPGA cores that require
Ethernet functionality often use a third-party Ethernet controller
developed independently.

We analyzed an Ethernet-controller core with several submod-
ules. In particular, the receive (RX) module transfers incoming
data from outside of the system to the host. Because such
a module is typically shared by many users, it should only
provide information read in the most recent step to the system
agent issuing the current request. If the core does not satisfy
such a policy, then an attacker could learn information read
from the network in the past. That is, adversaries can access
data previously sent to other users.

We expressed the above information-flow policy as a
STREAMS policy and ran SIMAREL to determine if the RX
module satisfies the given policy. SIMAREL determined that
the module does not satisfy the policy, which indicates that
the RX module leaks the incoming data from the network to
the future time slots.

d) Forward kinematics for a robot arm: The forward
kinematics core takes the angles of the joints of a robot
arm and computes the coordinates of the end-point of the
arm by solving kinematics equations. In particular, the core
implements trigonometric functions and arithmetic operations.
The trigonometric functions are implemented as hard-coded
lookup tables. The arithmetic operations are implemented
using fast, optimized implementations developed in Aoki
Laboratories [31].

The core is pipelined into two stages, which means that it
generates an output for the input from the two clock cycles
before the current cycle. Hence, we wrote a policy that specifies
that only the input from the two clock cycles before the
current cycle may flow to the output. SIMAREL found inputs
on which the core does not satisfy the given policy. With
further investigations, we observed that the core’s output is
not initialized immediately and generates a large value under
a reset signal. As a result, an attacker can jerk the robot arm
by continuously commanding the module to reset since output
value directly affects the movement of the robot arm.

We identified that logic containing the vulnerability is in
a multiplier module deeply nested in the core. We compared
the multiplier in the core to the original implementation of
the multiplier provided by Aoki Laboratories [31]. From the
comparison, we found that the designer of the forward kine-
matics core made such an unintended vulnerability during the
optimization by pipelining. However, the optimized multiplier
leaks partial information about its arguments if they satisfy a

10

particular arithmetic constraint. Our experience analyzing the
forward kinematics module indicates that the integration and
optimization of even mature modules can result in unexpected
information leaks.

e) Antilogarithm operation: Computing the antilogarithm
(antilog) of a number is one of the most frequent operations
in scientific computing and multimedia applications [49]. If a
module that implements such a frequent operation leaks any
information, it will compromise the security of many cores
that include the module. In addition, because operands in such
an operation can be sensitive numeric values in many settings,
a malicious anti algorithm core can be one of the major source
of information leak in hardware design with the core.

We analyzed an open-source module that computes antilog-
arithms in two cycles. We wrote a STREAMS policy that only
allows the information flow from input data received two
cycles before the current cycle to the output. Otherwise, an
attacker can observe partial information about the history of the
values passed to this module. That is, an attacker could infer
information about previous values provided to the operator or
infer how frequently operator has been invoked.

We ran SIMAREL on the core and discovered it leaks
information about previous input values after computing and
outputting the desired result. We identified that the module does
not support reset and as a result, an attacker can easily observe
information about previous inputs. While resetting the state of
a module after each computation is a natural operation, it is not
supported by the module and is not upheld by default operation.
As a result, an attacker can easily observe information about
inputs given in previous invocations.

2) Secure benchmarks: We now describe the core designs
and policies on which we evaluated SIMAREL.

a) Round-robin arbiter: An arbiter manages multiple
requests to access a hardware resource such as a bus, buffer, or
I/O port. The arbiter ensures that only one requester at a time
gains access to the shared resource. The round-robin arbiter
ensures fairness by granting access based on a round-robin
schedule. The router has dedicated grant signal wires for each
requester. When it decides a winner, than the grant signal wire
for the winner becomes active.

When no agent requests to access a resource, the arbiter
should not reveal any information about the agents that were
granted access to the resource in previous rounds. If the arbiter
does not satisfy such a policy, then an agent that should not have
access to any information about the resource, and in particular
cannot request to access it, can still learn information about the
resource, in particular how often other agents have accessed it.
E.g., an attacker could count the number of requests made to
access a motion sensor and estimate how many people visited
a location under surveillance.

We wrote a STREAMS policy that formalizes the above
policy. SIMAREL verified that the arbiter module satisfies the
policy in less than a second.

b) Gaussian noise generator for random number gen-
eration: Generating a large number of normally distributed
random samples is a crucial process in molecular dynamics

simulation or financial modeling [32]. A Gaussian noise
generator implemented in hardware can improve the efficiency

and performance of these modeling and simulation applications.

We analyzed a core that takes a one-bit request signal and
outputs random number.

We wrote a STREAMS policy that checks if the core
enumerates the random numbers independent of the number of
request signal. The request signal generates an output signal
that indicates the validity of current output. Such a valid signal
is common in hardware design for communication protocols
between modules, especially when generating requested data
takes longer than one cycle. Without the valid signal, the
requester does not know if the incoming data is the requested
data or intermediate data. Without the independence property,
the random number generator contains an information leak.
That is, an attacker can count the number of requests and infer
information about the application. SIMAREL verified that the
core satisfies its policy.

¢) Reed-Solomon decoder for bitwise error correction: A
Reed-Solomon code is an error correcting code (ECC), which
contains redundant data to correct possible errors during data
communications [53]. This error correction system has been
an industry standard for a long time and is used for CDs and
DVDs [11], RAID systems [50], and other communication
protocols [33].

We analyzed a core that implements a Reed-Solomon decoder
as provided on OpenCores. This core takes encoded data as well
as several control and enable signals, and generates decoded
data. If the core does not receive an enable signal, it should

not leak any information from its input ports to the output port.

If the core does not satisfy such a policy, an attacker could
use the module as a passthrough channel to leak privileged
information when the enable signal is not set.

We wrote a STREAMS policy that expresses the above policy.

SIMAREL successfully verified that the module satisfied the
given STREAMS policy.

d) Programmable interrupt controller: Interrupts are
fundamental communication mechanism in modern computer
systems. Programmable interrupt controllers manage events
generated by different units. Critical I/O devices such as storage
and networking interfaces usually depend on such controllers
to communicate with a host system.

We analyzed an open-source core that implements an
interrupt controller that can service up to eight hardware
components. The interrupt request from hardware components
at the previous cycle should only affect whether the core
sends an interrupt signal to the CPU depending on the enable
signal. Simultaneously, the CPU’s interrupt mask should be
clear, and there should not be previously triggered pending
interrupts. If the core does not satisfy such a policy, then an
attacker could stall the processor by continuously injecting
void interrupt signals. Moreover, because the CPU prioritizes
interrupts over normal execution, such a vulnerability could
potentially compromise the security of the entire system.

We wrote a STREAMS policy that formalizes the above
policy. SIMAREL verified that the module satisfies the above

11

policy.

e) Edge detection in images using Sobel filter: The Sobel
filter takes a greyscale image as input and identifies pixels
depicting edges in the image. The Sobel filter slides a three-by-
three window over the image, and estimates the gradient of the
center with respect to the neighboring pixels. In other words,
the algorithm performs a two-dimensional convolution over the
image to calculate the gradient. If the gradient is greater than
a threshold, the filter identifies the pixel as part of an edge.

The implementation of a Sobel filter that we analyzed is a
prime target for attacks that might corrupt the memory (e.g.,
out-of-bound accesses) because it directly accesses its host’s
physical memory without mediation from the operating system.
Such a design is common in the FPGA design since the ability
to perform direct accesses is critical for the efficiency of the
module.

We wrote a STREAMS policy that specifies that information
from the accessible region of memory should only flow to the
specified output region. Such design is common in the FPGA
design since the ability to perform direct accesses is critical for
the efficiency of the module. Users can configure the prohibited
region in the input image of the Sobel filter implementation.

We wrote a STREAMS policy specifying that information
from the accessible region should only flow to the output. For
instance, some region inside the input image might belong to
kernel memory segment if a wrong image pointer is applied
or an attacker intentionally places a pointer near the memory
border. In such cases, the filter should exclude such region
during its operation. We ran SIMAREL on the design, and
SIMAREL proved that the design satisfies the policy.

f) Digital filter for radio communication: A Finite Im-
pulse Response (FIR) filter is one of the primary types of
filters used in Digital Signal Processing (DSP). FIR filters are
commonly used for communicating with Bluetooth devices.
We analyzed a design for a FIR filter available in the AxBench
repository [1]. The FIR filter takes an eight-bit signal as input
and chooses a frequency for radio communication based on the
signal. The filter samples the input signal over four consecutive
clock cycles. The filter then calculates a linear combination of
the four samples using a sequence of addition and multiplication
operations.

We wrote a STREAMS policy that specifies that the FIR
module may only sample an input signal for at most four clock
cycles. Alternatively, the attacker can cause an endpoint to
send information on a chosen frequency that is under their
control. We ran SIMAREL on the design of the FIR filter using
the above policy, and it proved that the filter indeed satisfies
the policy.

3) Patches for insecure benchmarks: We have implemented
patches for benchmarks that SIMAREL determined were in-
secure. SIMAREL proved that our patches for five insecure
benchmarks satisfy the STREAMS policy we wrote. SIMAREL
took slightly more time on the patches to verify the security
under given STREAMS policies than the original vulnerable
circuits. This is natural since patches do not involve any policy

300

200

100

Execution Time (s)

10 20 30

Time Window Size (Cycles)
Fig. 4: Time time window of an information-flow policy for the Sobel
filter versus the time taken by SIMAREL to verify flow-security of

the filter.

40 50

violations that interrupts the model checker. Thus the model
checker runs until it finishes proving satisfaction.

One of the patches for forward kinematics could not be
verified within one hour. It generates an extraordinarily large set
of variables and clauses even in the first step of model checking.
In particular, it generated 45,882 variables and 169,648 clauses
at the first step, about four times as large as the second largest
core with 14,063 variables and 47,721 clauses. In addition,
the multiplier has 1,469 module definitions and there are even
more number of instances of those modules. Such complexity
dramatically increases the complexity as the size of generated
BLIF file for forward kinematics core indicates. Due to this
complexity, the model checker will require tremendous time
to give an answer if the model checker does not find any bug
or proof within a few steps.

C. Execution time as a function of policy features

The performance of SIMAREL does not appear to depend
directly on the size of a given core design or policy. E.g., the
patched SD card controller and Reed-Solomon decoder have
similar sizes, but SIMAREL uses significantly more time to
verify the decoder.

Based on our experience using SIMAREL, we suspect that
a key factor in determining its performance is the number
of cycles across which the policy relates input or output
values, which we refer to as the policy’s time window. To
explore the relationship between a policy’s time window and
the performance of SIMAREL, we wrote a tunable policy for
the Sobel filter that compares values across a parameterized
number of steps of its execution. We varied the size of time
window in the policy and measured the resulting verification
time of SIMAREL.

Figure 4 shows the results of the evaluation. The execution
time increases along a super-linear progression with the time
window of the given policy.

VI. RELATED WORK

a) Checking information flow in hardware: Several hard-
ware description languages and hardware designs have been
proposed for tracking the flow of information throughout a
hardware system [35, 60, 61]. The strength of such approaches
is that they can track the taint of information through large
hardware cores. However, such approaches are not an ideal

12

solution for checking information flow through FPGA circuits
for two key reasons. First, space on an FPGA is a precious
resource, and thus any approach that induces area overhead
is not desirable. Second, most practical FPGA cores must,
under particular conditions, release predicates about their
sensitive information under particular conditions. Our approach
to checking flow in FPGA cores was designed to directly
address these constraints. SIMAREL is completely static, thus
inducing no runtime overhead, and reasons about conditional
release policies accurately using an automatic theorem prover.

Other hardware description languages, such as Caisson,
extend traditional hardware description languages with mecha-
nisms for describing state machines [36]. Similar to STREAMS,
Caisson can be used to express some information flow policies
involving timed release of information. The key distinction of
our approach from Caisson is that our approach can be used to
verify critical flow properties of cores written in a conventional
hardware design language and integrated from multiple sources,
accompanied by a relatively small flow policy.

A hardware design can be written in SecVerilog [68] and
type-checked to prove that it conditionally releases sensitive
information. A programmer can only prove flow security by
labeling all registers in the design that may store such infor-
mation with dependent labels. In our approach, a programmer
only needs to declare expected conditional flows from input to
output. Then, SIMAREL automatically infers suitable relational
invariants over all internal state. For example, the STREAMS
policy for the Ethernet controller contains only one label
ordering and one clause clause. However, the same policy
could be enforced in SecVerilog would require three dependent
labels on three registers, in addition to 22 labels on other wires
and registers. An interesting direction for future work could be
to automatically extract valid dependently-typed designs from
the relational invariants synthesized by SIMAREL.

Star-logic [60] is a combination of static and dynamic
information flow checking used during software-hardware co-
design. It automatically generates a GLIFT [61] dynamic
information tracking circuit based on a security lattice given
by a programmer. Star-logic tests the information flow of a
target system considering target software. That is, it tests all
the possible execution cases of the target software. Star-logic
is designed, and well-suited, to verifiably enforce strict non-
interference. However, its label-based system cannot be applied
to verify conditional release of sensitive information.

Hardware description languages and analyses have been
proposed for detecting and mitigating timing attacks in hard-
ware [16, 30, 67, 68]. Previous work has also proposed
attacks and analyses for determining if an FPGA core leaks
sensitive information through the power that it uses [57, 58].
These approaches primarily address flow-checking problems
that are orthogonal to the one that we consider in this
work. However, while it is feasible that approaches developed
originally to mitigate timing channels could be adapted to
reason about partial release, the language-based approaches
developed in previous work require extensive annotations from
core developers. In contrast, SIMAREL is fully automatic.

b) Verifying conditional information release: A taint-
tracking analysis takes a labeling of the system’s inputs as
tainted or untainted and determines how tainted information
explicitly flows through program memory over an execution.
Systems have been proposed that track the flow of tainted values
at runtime [20, 56] or statically [23]. Taint-tracking analyses
are well-suited for analyzing programs, which often use distinct
regions of memory operated on by distinct program regions to
handle sensitive or insensitive data. Similarly, such approaches
are likely well-suited to analyze large, fixed hardware cores
that may allocate different logical units accessed with different
channels to perform operations on sensitive or insensitive
data. However, such approaches cannot be easily adapted
or extended to precisely analyze cores for FPGA’s, which
typically treat the same input channel as a source of sensitive
or insensitive information, depending on application-specific
conditions on input values. When applied to analyze such
cores, such analyses would raise a prohibitive number of false
positives. SIMAREL is designed to precisely verify flow safety
for policies that express conditions on input data under which
sensitive information should be declassified. SIMAREL verifies
such cores and policies by finding inductive relational invariants
over pairs of core states, using precise symbolic techniques to
avoid such inaccuracies.

Several lines of work have pursued generalizing strict
non-interference to enable the expression of the release
of partial information about sensitive inputs that may be
declassified [5, 34, 55, 62, 66]. Policy languages and pro-
gramming languages have been proposed that generalize non-
interference by extending it with mechanisms that can be used
to express under what conditions sensitive information can
be declassified, to what channels it may be declassified, and
after what program operations it may be declassified [55].
Such policy languages are related in their goal to STREAMS,
in particular approaches that are formalized as equivalence
relations over system states [4]. However, many of the above
languages [34, 62, 66] were developed originally as extensions
to program type systems [5]; adapting the concepts developed
for such languages to specify properties of hardware systems
has not been fully developed. The conditioned directives in
STREAMS in particular are similar to features in such languages
that define after what actions information may be declassified.
The key distinction between STREAMS and such languages
is that in STREAMS, conditions can be arbitrary conditions
expressed in propositional logic, but such policies can be
verified fully automatically by SIMAREL.

Previous work has also developed proof calculi for proving
general relational properties of multiple program executions,
founded on relational Hoare-logic [8]. Relational Hoare logic
provides a powerful framework for proving rich properties of
programs, which need not necessarily use bounded storage.
However, it does not provide techniques for inferring proofs in
the system automatically. Our approach is related, in that we
view our policy-satisfaction problem as verifying a property
over all pairs of program runs. However, our approach is
restricted to a much more limited domain than that addressed by

13

relational Hoare logic, namely sequential circuits that operate
over a bounded space of memory. Focusing on this domain
has enabled us to develop a fully automatic prover.

Previous work has shown that the problem of verifying
that a program P satisfies a two-trace property () can be
reduced to verifying that the self-composition of P satisfies
a safety property derived from @ [7, 59]. Self-composition is
primarily applicable to verifying the flow safety of programs
that do not operate over input streams; as a result, it is
not directly applicable to verifying conditional information
release of sequential circuits with bounded storage (see §IV-C).
Previous work has proposed that relational properties of
two programs Py and P; can be verified by constructing a
suitable product program of Py and P; and deriving inductive
invariants of the product [6]. SIMAREL, which considers pairs
of runs of a circuit, uses a similar observation. However,
previous work assumes that product programs are constructed
manually, whereas SIMAREL verifies the flow security of
circuits automatically.

c) Symbolic verification: Several model checkers have
been proposed that attempt to efficiently verify a core or
program by modeling the transition relation of the system as a
symbolic formula [14, 38, 41]. In particular, several approaches
have been proposed for finding a proof that a core satisfies
a specification by synthesizing interpolants that prove that
particular executions of the system are correct [27, 29, 39].
Interpolation problems have been introduced that accurately
model the problem of proving the safety of intraprocedural
traces [40], and interprocedural traces [26], to find flow-
sensitive invariants [2], and to simultaneously prove that
multiple traces of a program satisfy a given safety property [54].

SIMAREL is similar to the above approaches, in that it
proves that a give core C is flow-secure by generalizing
from proofs that bounded runs of C' are flow-secure, which
are synthesized from interpolants. However, unlike the above
approaches, SIMAREL checks if a given core satisfies a property
defined over all pairs of runs. As a result, SIMAREL synthesizes
a proof that all pairs of runs up to a bound are flow secure,
using a novel procedure (§IV-B1) that cannot be efficiently
simulated using techniques proposed in the above work.

VII. CONCLUSION

We have presented a policy language, named STREAMS, for
expressing information flow policies with declassification for
sequential core designs. We have also presented an automatic
verifier, named SIMAREL, that determines if a given core design
satisfies a given STREAMS policy. Proving that a given system
satisfies such a property amounts to synthesizing invariants of
a suitable product system. SIMAREL finds relational invariants
for such a system efficiently by using a novel procedure for
efficiently synthesizing relational invariants that prove the flow
security of all pairs of runs of a system up to a bounded length.

We have written policies in STREAMS for cores that
implement several application and control subsystems. We used
SIMAREL to determine that several open-source cores satisfy
expected information flow policies. We also used it to prove

that other designs, in particular a flash controller, an SD card
controller, a robotics controller, a DSP module, a debugging
interface, and an Ethernet controller, allow surprising leaks of
sensitive information.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful
comments and feedback. We also thank David Heath and
Amir Yazdanbakhsh for their close and ongoing collaboration
on related work. This work was supported in part by NSF
awards CNS # 1526211, CCF # 1553192, ECCS # 1609823;
Semiconductor Research Corporation contract # 2015-TS-2636;
and gifts from Google, Qualcomm, and Microsoft.

(1]
(2]
(3]
(4]

(3]

(6]
(71
(8]
(91
(10]

(11]

(12]

(13]

[14]
[15]

[16]

(17]

(18]
[19]

[20]

[21]

REFERENCES

AxBench: approximate computing benchmarks. http://axbench.
org, 2016.

A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig interpre-
tation. In SAS, 2012.

Altera Corporation. Altera SoCs. http://www.altera.com/devices/
processor/soc-fpga/overview/proc-soc-fpga.html, 2016.

A. Askarov and A. Sabelfeld. Gradual release: Unifying
declassification, encryption and key release policies. In SP,
2007.

A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive
declassification policies and modular static enforcement. In SP,
2008.

G. Barthe, J. M. Crespo, and C. Kunz. Relational verification
using product programs. In FM, 2011.

G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information
flow by self-composition. In CSFW, 2004.

N. Benton. Simple relational correctness proofs for static
analyses and program transformations. In POPL, 2004.

U. Berkeley. Berkeley logic interchange format (BLIF). Oct
Tools Distribution, 2:197-247, 1992.

R. K. Brayton and A. Mishchenko. ABC: an academic industrial-
strength verification tool. In CAV, 2010.

H.-C. Chang, C. B. Shung, and C.-Y. Lee. A Reed-Solomon
product-code (RS-PC) decoder chip for DVD applications. SSC,
36(2):229-238, 2001.

E. S. Chung, J. D. Davis, and J. Lee. LINQits: Big data on
little clients. In ISCA, 2013.

E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: An in-fabric
memory architecture for FPGA-based computing. In FPGA,
2011.

E. M. Clarke, K. L. McMillan, S. V. A. Campos, and V. Hartonas-
Garmhausen. Symbolic model checking. In CAV, 1996.

M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal
of Computer Security, 18(6), 2010.

B. Coppens, 1. Verbauwhede, K. D. Bosschere, and B. D. Sutter.
Practical mitigations for timing-based side-channel attacks on
modern x86 processors. In SP, 2009.

Crowd Supply. Snickerdoodle dev board boasts arm proces-
sor with onboard FPGA. https://www.crowdsupply.com/krtkl/
snickerdoodle, 2016.

L. M. de Moura and N. Bjgrner. Z3: an efficient SMT solver.
In TACAS, 2008.

N. Eén and N. Sorensson. An extensible sat-solver. In SAT,
2003.

W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. Sheth. TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In OSDI, 2010.
H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger. Dark silicon and the end of multicore scaling.
In ISCA, 2011.

14

(22]

(23]

[24]
[25]
[26]
[27]

(28]

(29]
(30]

(31]

(32]

(33]
(34]

(35]

(36]

(37]

(38]
(39]
(40]
(41]

(42]

[43]
[44]
[45]
[46]

[47]
(48]

(49]

J. Gantz and D. Reinsel. Extracting value from
chaos. http://www.emc.com/collateral/analyst-reports/idc-
extracting-value-from-chaos-ar.pdf.

M. 1. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard. Information flow analysis of android applications
in droidsafe. In NDSS, 2015.

J. Graf, M. Hecker, M. Mohr, and G. Snelting. Tool demonstra-
tion: Joana. In POST, 2016.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward
dark silicon in servers. In MICRO, 2011.

M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants.
In POPL, 2010.

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan.
Abstractions from proofs. In POPL, 2004.

Intel Corporation. Intel completes acquisition of Al-
tera. https://newsroom.intel.com/news-releases/intel-completes-
acquisition-of-altera/, 2015.

R. Jhala and K. L. McMillan. Interpolant-based transition relation
approximation. In CAV, 2005.

P. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In CRYPTO, 1996.

A. laboratory. ARITH project: High-level design methodology
for integer/Galois-field arithmetic circuits for embedded systems.
http://www.aoki.ecei.tohoku.ac.jp/arith/.

D.-U. Lee, J. D. Villasenor, W. Luk, and P. H. Leong. A hardware
Gaussian noise generator using the Box-Muller method and its
error analysis. IEEE Computers, 55(6):659-671, 2006.

H. Lee. A high-speed low-complexity Reed-Solomon decoder
for optical communications. TCAS-11, 52(8):461-465, 2005.

P. Li and S. Zdancewic. Downgrading policies and relaxed
noninterference. In POPL, 2005.

X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong. Sapper:
a language for hardware-level security policy enforcement. In
ASPLOS, 2014.

X. Li, M. Tiwari, J. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf. Caisson: a hardware description language
for secure information flow. In PLDI, 2011.

D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh,
J. Kim, and H. Esmaeilzadeh. Tabla: A unified template-based
framework for accelerating statistical machine learning. In HPCA,
2016.

K. L. McMillan. Applying SAT methods in unbounded symbolic
model checking. In CAV, 2002.

K. L. McMillan. An interpolating theorem prover. In TACAS,
2004.

K. L. McMillan. Lazy abstraction with interpolants. In CAV,
2006.

K. L. McMillan. Interpolants and symbolic model checking. In
VMCAI, 2007.

T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh,
L. Ceze, and M. Oskin. SNNAP: Approximate computing on
programmable socs via neural acceleration. In HPCA, 2015.
A. C. Myers. JFlow: Practical mostly-static information flow
control. In POPL, 1999.

A. C. Myers and B. Liskov. A decentralized model for
information flow control. In SOSP, 1997.

A. C. Myers and B. Liskov. Complete, safe information flow
with decentralized labels. In SP, 1998.

J. Norhuzaimin and H. Maimun. The design of high speed
UART. In AEMC, pages 306-310, 2005.

opencores.org. http://opencores.org/project, 2016.
opencores.org. http://opencores.org/project,opencores,
announcement, 2016.

S. Paul, N. Jayakumar, and S. P. Khatri. A fast hardware
approach for approximate, efficient logarithm and antilogarithm
computations. /EEE VLSI, 17(2):269-277, 2009.

http://axbench.org
http://axbench.org
http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html
http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html
https://www.crowdsupply.com/krtkl/snickerdoodle
https://www.crowdsupply.com/krtkl/snickerdoodle
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
http://www.aoki.ecei.tohoku.ac.jp/arith/
http://opencores.org/project
http://opencores.org/project,opencores,announcement
http://opencores.org/project,opencores,announcement

[50]

(51]

(52]

[53]

[54]
[55]

(561

(571

(58]

(591

[60]

[61]

[62]

[63]

[64]
[65]
[66]
[67]
[68]

J. S. Plank et al. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Softw Pract Exp., 27(9):995—
1012, 1997.

A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Con-
stantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P.
Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati,
J. Kim, S. Lanka, J. R. Larus, E. Peterson, S. Pope, A. Smith,
J. Thong, P. Y. Xiao, and D. Burger. A reconfigurable fabric for
accelerating large-scale datacenter services. In ISCA, 2014.

A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sun-
dararajan. CHiMPS: A high-level compilation flow for hybrid
CPU-FPGA architectures. In FPGA, 2008.

I. S. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of the society for industrial and applied
mathematics, 8(2):300-304, 1960.

P. Riimmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants
for horn-clause verification. In CAV, 2013.

A. Sabelfeld and D. Sands. Dimensions and principles of
declassification. In CSFW-18, 2005.

E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In
SP, 2010.

F. Standaert, S. B. Ors, J. Quisquater, and B. Preneel. Power
analysis attacks against FPGA implementations of the DES. In
FPL, 2004.

F. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and
J. Quisquater. Power analysis of FPGAs: How practical is the
attack? In FPL, 2003.

T. Terauchi and A. Aiken. Secure information flow as a safety
problem. In SAS, 2005.

M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hard-
ekopf, R. Kastner, F. T. Chong, and T. Sherwood. Crafting a
usable microkernel, processor, and I/O system with strict and
provable information flow security. In ISCA, 2011.

M. Tiwari, H. M. G. Wassel, B. Mazloom, S. Mysore, F. T.
Chong, and T. Sherwood. Complete information flow tracking
from the gates up. In ASPLOS, 2009.

J. A. Vaughan and S. Chong. Inference of expressive declassifi-
cation policies. In SP, 2011.

G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation
cores: Reducing the energy of mature computations. In ASPLOS,
2010.

C. Wolf. Yosys open synthesis suite. http://www.clifford.at/
yosys/.

Xilinx, Inc. All programmable SoC. http://www.xilinx.com/
products/silicon-devices/soc/, 2016.

S. Zdancewic and A. C. Myers. Robust declassification. In
CSFW-14, 2001.

D. Zhang, A. Askarov, and A. C. Myers. Language-based control
and mitigation of timing channels. In PLDI, 2012.

D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A hardware
design language for timing-sensitive information-flow security.
In ASPLOS, 2015.

15

APPENDIX

Let C € Cores, F' € STREAMS, and L € Lvs be fixed for the
remainder of this section, as in §IV. In this section, we provide a
correctness proof of SIMAREL by proving results concerning C, F,
and L.

A. Indexed invariants as evidence of policy satisfaction

Relational invariants of C' are a symbolic relation that (1) is entailed
by the initial condition of C' and (2) combined with the semantics of
taking a step in each of two copies of state, entail itself.

Definition 8. Let Ro, R1 € SymRels be such that:

IsInitc[Qo], IsInitc[Q1], InEq, OutEq = Ro V R1 - (3)
R07¢C[107007Q€J]7_'En[1—0] ': C))
(Ro V R1)[00/Q]
R17¢C[Ilaol7oll]7"En[Il] ': (5)
(Ro V R1)[01/01]
Ro Vv Rlawc[l—m Qo Q{)}? 1/)0[117 Qs Qll]v
En[Io], En[Il],
(InEq A Lvinsg = Lvlns; = InEq’),
(OutEq A LvOutsp = LvOuts; = OutEq’) &= (6)

Ro V Ri[, @1, Eqs']
Then (Ro, R1) are inductive relational invariants of C.

Relational invariants R satisfy F' at L if R, combined with the
assumption that two arbitrary input streams visible at L are equivalent,
imply that the resulting output streams visible at L are equivalent.

Definition 9. For R € SymRels such that R,InEq |= OutEq, R
satisfies F' at L.

The fact that R satisfies F' at L is denoted R 1, F.
Inductive relational invariants of C' that satisfy F' at L are evidence
that C satisfies F' at L.

Lemma 1. [f there are Ry, R1 € SymRels such that (Ro, R1) are
inductive relational invariants (Defn. 8) and Ro NV Ri1 b1 F, then
C 1 F (Defn. 4).

Proof. (Sketch) The claim can be established directly by double
induction on the pairs of runs of C. The inductive step follows from
the inductive hypothesis and the definitions of inductive relational
invariants (Defn. 8) and policy satisfaction by inductive relational
invariants (Defn. 9). O

For I € IdxRels, let R? be
\/{I(i,j) | i,5 €N, (i,j), (i +1,5) € Dom(I)}
Let R} be
\/{1(i,5) | 4,5 €N, (i,5), (4,5 + 1) € Dom(I)}

Lemma 2. For I € ldxinvs, (RY, R}) are inductive relational
invariants (Defn. 8).

Proof. (Sketch) Apply the definition of inductive relational invariants
(Defn. 8). Eqn. 3 holds by the fact that IsInitc entails 1(0,0) (§IV-B1,
Defn. 5) and the definition of R} and R}. For Eqn. 4—Eqn. 6 are
proven by applying the fact that R} and R} are disjunctions of clauses
indexed in I, and applying the fact that each clause in I satisfies an
analogous condition, by Defn. 5. O

Lemma 3. For I € ldxRels, if I 1, F, then R®V R} 1, F.

Proof. R? and R} are disjunctions of clauses. For each such clause
C, C,Lvinsg = Lvins; = LvOutsg = LvOuts;. Thus, R?, Lvinsg =
Lvins; = LvOutsy = LvOutsy, and similarly for RY. Thus RV v
R} k1 F, by Defn. 9. O

If C has inductive indexed relational invariants that satisfy F' at
L, then C satisfies F' at L.

http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
http://www.xilinx.com/products/silicon-devices/soc/
http://www.xilinx.com/products/silicon-devices/soc/

Lemma 4. [f there are I € |ldxInvs such that I are inductive indexed
relational invariants of C' (Defn. 6) and I -1, F (Defn. 7), then
C 1 F (Defn. 4).

Proof. (R}, R}) are inductive invariants, by Lemma 2. RV R} b1, F,
by Lemma 3. Thus, C' 1, F', by Lemma 1.

B. Correctness of CHK

The following lemmas concerning CHK are sufficient to prove the
soundness and completeness of SIMAREL.

Lemma 5. For k € N, if CHK(k) = Unsafe, then C /1, F.

Proof. (Sketch) If CHK(k) = Unsafe, then ¢g o A ap&o has a model
m, by the definition of CHK (§IV-B3). The interpretation of the
variables 19, ¥, and 09 defines a run 7o of C' that starts in an initial
state, by the use of Islnitc in g, and the use of Rest] in @3‘70.
Similarly, the interpretation of the variables Izl, Q%, and 0} defines a
run 71 of C.

There are some indices 4,5 < k such that InEq; ; holds and
OutEq; ; does not hold. It can be established by induction on step
indices that the interpretations of 17 and I]1~ that satisfy the enabling
condition of L in F' are equal, but the interpretations of 0? and Ojl-
are not equal. As a result, run O up to ¢ and run 1 up to j are runs
of C' on inputs that are equivalent at L that result in outputs that are
not equivalent at L. Thus, C' does not satisfy F' at L. O

CHK, given k, only returns relational invariants if they are indexed
relational invariants of C, F', and L that prove that C satisfies I at
L up to k.

Lemma 6. For k € N, if I = CHK(k) € ldxRels, then (1) I €
IdxInvs (Defn. 6) and (2) I 1 F' (Defn. 7).

Proof. (Sketch) Conclusion (1) follows by induction on the topologi-
cal ordering T of Zj, X Zj, in which CHK finds relational invariants.
The claim established by induction is that at the current indices ¢ and
J, I restricted to all pairs of indices in T up to (4, j) are inductive
relational invariants. The base case and inductive case both follow
from the construction of ¢, ; and <p;fj (§IV-B3) and the definition of
interpolants (§111-B2, Defn. 1).

Conclusion (2) follows by induction on the topological ordering
of Zi x Zi. The claim established by induction is that the current
indices ¢ and 7, at all indices 7', j' such that (i, ') occurs before (3, 5)
in T, I(i,5') combined with Lvinsg = Lvlnsi, entails LvOutsg
LvOuts;. The claim is established in the inductive step by using the
definition of ¢, in particular PolSat; ;. O

C. Correctness of HASIND

The following lemma concerning HASIND is sufficient to prove
correctness of SIMAREL.

Lemma 7. For I € |dxRels, if HASIND(I) = True, then I € ldxInvs
(Defn. 6).

Proof. Proof by induction on the evaluation of HASINDAUX run
on obligations O and discharged pairs D. The claim established by
induction is that I, restricted to the index pairs in D and extended
with indexed symbolic relations that contain O, are inductive indexed
invariants. For the base case, HASIND is called on {(0,0)} and 0
(Alg. 2), which combined with the definition of inductive relational
invariants (Defn. 6), implies the claim.

For the inductive case, for each set of obligations O and discharged
indices D on which HASIND is called, it calls itself recursively on
a set of obligations O’, construted as O with some pair of indices
(i,7) removed. If I(i,j) entails I(i’,5") for some i’,5" € N and
(¢,j") € D, then HASIND calls itself recursively on O’ and D’
(Alg. 2, line 8). In this case, the claim is established by Defn. 6,
clause (a). Otherwise, HASIND calls itself recursively on O’ extended
with the successor of (7,) in run 0 (Alg. 2, line 10) or run 1 (Alg. 2,

16

line 11). In these cases, the claim is established by Defn. 6, clauses
(b) and (c), respectively.

HASIND returns True, which it implies that it was evaluated on
the empty set of obligations, by Alg. 2. This fact, combined with the
claim established by induction, implies that I € ldxInvs. O

D. Correctness of SIMAREL
A proof of Thm. 1 is as follows.

Proof. If SIMAREL(C, F,L) = True, then for some k£ € N and
I € ldxRels, I = CHK(C, F,L,k), by Alg. 1. I satisfies F at
L by Lemma 6. HASIND(Z) = True, by Alg. 1. I are inductive
indexed relational invariants, by Lemma 7. C satisfies F' at L, by
Lemma 4. O

	Introduction
	Overview
	An I/O manager for external storage
	A policy for the I/O manager
	Checking flow-security of the I/O manager

	Background
	Hardware core design
	Propositional logic
	Modeling core semantics in logic
	Interpolation

	Technical Approach
	A policy language for flow security of sequential cores
	Syntax
	Semantics

	Verifying policy satisfaction
	Relational invariants
	Verification algorithm
	Finding indexed relational invariants up to a bound
	Finding inductive indexed relational invariants
	Synthesizing policy violations

	Discussion

	Evaluation
	Methodology
	Results
	Insecure benchmarks
	Secure benchmarks
	Patches for insecure benchmarks

	Execution time as a function of policy features

	Related work
	Conclusion
	Appendix
	Indexed invariants as evidence of policy satisfaction
	Correctness of Chk
	Correctness of HasInd
	Correctness of Simarel

