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ABSTRACT
User browsing information, particularly their non-search re-
lated activity, reveals important contextual information on
the preferences and the intent of web users. In this paper, we
expand the use of browsing information for web search rank-
ing and other applications, with an emphasis on analyzing
individual user sessions for creating aggregate models. In
this context, we introduce ClickRank, an efficient, scalable
algorithm for estimating web page and web site importance
from browsing information. We lay out the theoretical foun-
dation of ClickRank based on an intentional surfer model
and analyze its properties. We evaluate its effectiveness for
the problem of web search ranking, showing that it con-
tributes significantly to retrieval performance as a novel web
search feature. We demonstrate that the results produced
by ClickRank for web search ranking are highly competi-
tive with those produced by other approaches, yet achieved
at better scalability and substantially lower computational
costs. Finally, we discuss novel applications of ClickRank in
providing enriched user web search experience, highlighting
the usefulness of our approach for non-ranking tasks.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Theory

Keywords
ClickRank, aggregate user behavior, intentional surfer model,
learning to rank, web search

1. INTRODUCTION
Knowledge discovery and mining of user behavior data

on the web promises major improvements in several key as-
pects of web search. Usage information associated with web
search, such as aggregated user activities on search engine
result pages, has been a valuable source of information for
learning and recognizing query intents. Studies of search
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engine query logs [36, 35, 2, 37, 1, 25] and web search click-
through data [9, 20, 21, 3, 33] have demonstrated significant
improvements in retrieval quality, even when the activities
examined are limited to actions on search result pages only
– a relatively small fraction of a user’s activity online.

By effectively incorporating information on all web user
activities, search engines gain insights into user preferences
and intents, and improve both retrieval performance and
user experience. First, analysis of all user actions provides
a more robust estimate of user perceived importance associ-
ated with web pages and sites [26]. We discuss this aspect in
more details later on. Second, search engines face the chal-
lenge of prioritizing and adapting their computing resources
under practical constraints in crawling, indexing, and query
processing [4]. In this context, the relative attention a web
page receives from all users provides an intuitive and user-
centric optimization criterion, and is responsive to evolving
user behaviors. As a large amount of web content emerges
and refreshes within a shorter time interval than a typical
crawling and indexing cycle of a search engine [31], discover-
ing popular content and adapting crawling schedules based
on the degree of usage may prove to be an effective and
agile policy. Finally, another challenging area for search en-
gines is access to the deep (or invisible) web – the fraction
of the web that is dynamically generated and not directly
accessible to automated crawlers [17]. Their coverage can
substantially improve by leveraging large-scale user brows-
ing history, which collectively reveals some of the hidden
URLs, providing gateways to their content.

In this paper, we focus on using the large amount of knowl-
edge gained from computational analysis of user browsing
behavior by: (1) leveraging all browsing actions; and (2) de-
veloping models that incorporates rich context within logical
units of user activity—user sessions. Our main contribution
is ClickRank, a novel algorithm we propose for estimating
web page and web site importance, which is based on these
two key notions. ClickRank first estimates a local impor-
tance value for every page or site in each user browsing ses-
sion, based on the implicit preference judgments of the user
in the session context. It then aggregates these local values
over all sessions of interest to create a global ranking.

We evaluate this approach in three important areas of
web search. Our first experiment is on the traditional task of
website ranking, where we show that results from ClickRank
are competitive against state-of-the-art approaches, includ-
ing PageRank [32] and the recently proposed BrowseRank [26],
and yet obtained at significantly lower computational costs.
In the second experiment, we demonstrate the novelty and
effectiveness of ClickRank in web page ranking together with
several hundred state-of-the-art web search features, includ-
ing those computed from page visit counts and the link struc-
ture of the web graph. In this large-scale test, we formulate
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the task of learning the optimal ranking model as an ad-
ditive regression problem using gradient boosted decision
trees, and quantify the variable importance of ClickRank in
direct comparison with other features. Finally, we demon-
strate ClickRank in a system that mines and presents recent,
popular pages to web search users as dynamic quicklinks in
search result summaries.

The structure of this paper is as follows. Section 2 reviews
related work. In Section 3, we present important character-
istics of general web sessions, and describe in details our
approach to session mining by incorporating contextual in-
formation in session representation. In Section 4, we intro-
duce the ClickRank algorithm, and describe how we com-
bine it with existing approaches for the task of web search
by learning an optimal web search ranking model. We com-
prehensively evaluate ClickRank in three core web search
applications in Section 5 and conclude in Section 6.

2. RELATED WORK
PageRank [32], HITS [23], and TrustRank [16] are rep-

resentative link analysis algorithms for computing author-
itative sources using the link structure of the web graph,
and have been widely used in web search as measures of
relative importance of web pages. The well-known PageR-
ank algorithm, for instance, considers a link from a source
page to another as an explicit endorsement of the destination
page in perceived page quality, and uses only the static link
structure of the web as input. Based on the assumption of
a random surfer model and the first-order Markov process,
PageRank computes the stationary probability distribution
for the web link graph iteratively, resulting in the World’s
largest matrix computation [29].

A number of problems are commonly associated with link
analysis algorithms. First, user browsing behaviors are driven
by intents, and they significantly deviate from the random
surfer model that PageRank is based on. A recent study
on real network traffic [28] demonstrated that user visita-
tion patterns differs considerably from that approximated by
the uniform surfing behavior model used in PageRank. Sec-
ond, static modeling of the link structure favors old pages,
because a new page is less likely to be linked to within a
short period of time, even if it has very good quality. Third,
link structures are prone to manipulation as adversarial links
can be generated to artificially inflate ranking more quickly
than quality links that typically originate in manual editing.
Last, as the web grows at an explosive speed1, computing
page importance at the web scale by link analysis becomes
very computationally expensive [24], even through various
optimization schemes [8, 27].

As a logical unit of general user web experience, a web
session contains rich information on the preferences and the
intent of the users within a short-to-medium time frame. It
is a particularly important subject for the search and data
mining communities because of its generality across all cat-
egories of web activities. However, there exists very little
study on general non-search browsing data. Prior literature
related to sessions [39, 38, 5, 6, 12] focuses almost exclu-
sively on search trails within query sessions. However, as we
will present in Section 3, search-related activities account
for less than 5% of overall user activity online. Analysis of

1
While the first Google index in 1998 had 26 million pages, this num-

ber officially reached 1 trillion mark as of July 25, 2008 [15].

web sessions in a general setting broadens the user behavior
models with richer contextual information from the entire
spectrum of actions, and is key to new web search appli-
cations that aim to provide enriched user search experience
centered around users’ interests.

A new page importance ranking algorithm called BrowseR-
ank [26] has recently been proposed. BrowseRank makes
two significant contributions. First, it uses the more reli-
able input of user behavior data, computing a user browsing
graph, rather than a web link graph. Second, BrowseRank
models the random walk on the user browsing graph by a
continuous-time Markov process. BrowseRank has shown
better ranking performance compared with link analysis al-
gorithms at the expense of higher computational costs.

Study on search trails in query sessions is the subject in
a few recent works. Dramatic differences in user interaction
behaviors with a search engine are reported in [39]. The
idea of identifying popular end points of search trails as
query-dependent feature is discussed in [38] for improving
web search interaction. A recent study [5] shows improved
retrieval quality using post-search browsing activities over
alternative data sources that contain only the end points of
search trails or clickthrough logs. Also, the study suggests
that post-search browsing behavior logs provide strong sig-
nal for inferring document relevance for future queries.

3. MINING WEB SESSIONS
We define a web session as a logical unit of time-ordered

user browsing activities, representing a single span of user
interactions with a web browser. The concept of session in
our study is generalized to all categories of web activities,
while studies related to search log or search clickthrough
data consider a session simply as a set of search queries and
largely ignore all other activities.

3.1 Session Identification
A user’s browsing history is commonly accessible from sev-

eral sources, for instance, the ISP or other gateway to the
web [28] or clients installed on the user’s environment [39].
In this study, we use information logged by the Yahoo! Tool-
bar, a browser add-on that assists users with quick access
to various web tasks. The toolbar logs user activities for a
subset of users who opted in for this data collection during
installation. Each log entry is a tuple of {cookie, times-
tamp, URL, referral URL, event attribute list}. The cookie
is a unique, anonymous client identifier that expires and re-
freshes after a pre-defined time period. The URL is the
identifier of the page being accessed and the referral URL is
the URL from which the user access the current URL. The
event attribute list is composed of various metadata associ-
ated with the activity. For the experiments in this paper,
the browsing data consisted of over 30 billion anonymous
events, across millions of unique Yahoo! users, collected
over 6 months in 2008.

To segment web activities into sessions, we first use the
referral URL → current URL structure to reconstruct the
entire chain of browsing activities per user. This scheme en-
sures that, for users who are multitasking (e.g., those having
multiple browser windows or tabs open), we group activ-
ities associated with different tasks into separate sessions
rather than interleaving them together. Next, we partition
the time-ordered user events using two boundary conditions.
First, we start a new session from the current event if there
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Figure 1: Distribution of session lengths (left) and session durations (right) in web-scale user browsing logs.

Table 1: Key characteristics of general web sessions.

Average events per session 9.1

Standard deviation of events per session 24.5

Average session duration (seconds) 420.3

Standard deviation of session duration (seconds) 1068.0

Sessions per user per day 15.5

Percentage of search sessions 4.85%

is more than 30 minutes of inactivity between the current
event and its immediately preceding event. Second, a new
session starts if the current event entry does not have a re-
ferral URL. This typically happens when the user launches a
new web browser, or clicks on a link in a non-browser source
(e.g . in a text file).

Our session segmentation approach requires only one-pass
scanning over the data. While this is a simple mechanism,
a recent study on finding logical sessions from query logs [6]
has shown that in vast majority (92%) of the cases, a session
segmentation method based on timeout threshold gives iden-
tical scores to an advanced and computationally expensive
algorithm [6], when both are compared with human judged
sessions using the objective Rand index [34]. For the small
fraction of remaining sessions that are difficult for the ad-
vanced algorithm, the timeout-based method gives merely
marginally degraded performance of 1.4%.

3.2 Session Characteristics
Table 1 summarizes the key characteristics of general web

session. Figure 1 shows the probability distributions of the
number of events in a session and session duration, respec-
tively. The number of events in a web session approximately
follows a power law distribution. Its mean and standard
derivation are 9.1 and 24.5, respectively, demonstrating that
a web session contains significantly richer activity context
and diversity than a search session, which reportedly con-
sists of an average of 5 events [5]. In addition, search sessions
(those containing at least one query sent to one of the ma-
jor web search engines) constituted 4.85% of overall sessions,
signaling again that focusing on them may lead to a biased
view in downstream analysis [30].

The session duration graph shows two different power law
behaviors across the timeout threshold of 1, 800 seconds. On
average, a web session lasts 420.3 seconds, with the stan-

Figure 2: Probability distribution of web page oc-
currence in analyzed user browsing logs.

dard deviation of 1068.0 seconds, demonstrating its short-
to-medium time range coverage of user activities.

It is important to study the sparseness of content among
the 30 billion events used in our study. We discover a total
of 3.1 billion unique URLs. To remove individual bias, we
consider web pages that are clicked by more than 5 users,
which include a total of 48.5 million web pages. Figure 2
shows the distribution of web page occurrence in analyzed
user browsing logs.

3.3 Session Clustering
Mining user sessions at the web scale is particularly im-

portant for learning and recognizing user behavior patterns
associated with structured intents. We employ several clus-
tering approaches to discover web sessions driven by differ-
ent intents and learn their statistical characteristics. Due to
space constraint, we focus our discussion on one representa-
tive clustering effort in this section.

In this experiment, we mapped each URL to an event cat-
egory based on five high-level intents—search, email, infor-
mation/reference, rich content (e.g . social networking and
multimedia), and shopping. We computed the histogram
representation of a session by the distribution of number of
events over the intent categories. While certain temporal in-
formation is discarded, we will see in next section that this
histogram representation preserves adequate discriminating
power for the clustering purpose, and still being compact for
the large amount of data.
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Table 2: Unsupervised clustering of session histograms reveals various Web user browsing patterns. Signifi-
cant features associated with each cluster are highlighted in bold.

Cluster Centroid
Feature Entire Data 1 2 3 4 5 6 7 8 9 10

Dimension Mean / Standard Deviation 29.8% 16.6% 14.3% 11.9% 11.0% 4.7% 4.6% 3.5% 2.1% 1.5%

Search 23.63 / 37.71 0.35 98.43 1.19 2.35 2.33 56.18 41.52 52.23 6.46 0.09

Mail 16.81 / 34.98 0.07 0.66 97.25 0.39 0.42 1.29 51.79 0.70 9.79 0.07

Information 12.26 / 30.85 0.04 0.27 0.39 1.03 96.50 24.58 2.65 0.50 5.97 0.02

Content 34.31 / 45.69 99.42 0.37 0.64 0.45 0.36 0.64 0.95 45.25 60.51 99.54

Shopping 12.85 / 31.60 0.08 0.24 0.41 95.67 0.29 16.92 2.60 0.86 16.84 0.06

Events 9.06 / 24.53 11.14 2.89 5.66 6.25 5.33 4.24 5.38 4.26 7.84 151.68

Duration 420.30 / 1067.99 532.49 261.4 303.85 235.78 298.91 228.40 455.58 218.01 439.78 4237.65

To reliably associate a visit to each URL with an inter-
pretable type, we used human categorizations of the top
1, 200 most popular web sites to map events to intents.
While coverage achieved this way was reasonable at 41%
for all events, we augmented these categorizations using
heuristics that map from URLs to likely intents; for exam-
ple, URLs of the format shopping.*.com/* were mapped to
shopping intent, and so on.

Within each session, a browsing event was labeled either
as unknown, or assigned to one of these five intent cate-
gories described above. We then computed the distribution
of events over the six intent labels (i.e., including the un-
known class), and discarded those sessions that contain more
than 80% of unknown events, as they cannot be reliably
clustered. Finally, we smoothed each normalized intent his-
togram of the remaining sessions by evenly distributing the
weight associated with the unknown class to all the other
five bins in the histogram.

The final session histogram is a 7 dimensional feature vec-
tor. The first 5 dimensions correspond to the normalized
intent histogram, with their sum equal to 100. The last 2
dimensions correspond to the number of events in the session
and the session duration in seconds, respectively.

To gain further insights on the spread in session histograms,
we used principle component analysis (PCA) to reduce the
dimensionality. PCA seeks projections onto a low-dimensional
linear subspace that best preserves the data scatter in a
least-squares sense [13]. The 3D view of session histogram
shown in Figure 3 demonstrates the heterogeneity as the
histogram data covers a broad continuum of activity space.
Among the first 6 eigenvalues that are all significant, the
first eigenvalue is dominant.

3.4 Session Interpretation
A meaningful interpretation to sessions is key to under-

standing the context of activities on general, unconstrained
user behavior data. Table 2 summarizes the unsupervised
session histogram clustering results using k-means algorithm
with k = 10. These clusters are ordered based on the cluster
size. Significant features that give clear indication of cluster
attributes in Table 2 are highlighted in bold.

Various intent-driven web browsing patterns clearly emerge
from statistical properties of the clusters. The top 5 clus-
ters correspond to coherent sessions of rich content browsing,
search, email, shopping, and information, respectively. For
instance, the center of cluster 1, with 29.8% of entire data,

Figure 3: Visualization of session histograms in 3D
by dimensionality reduction using PCA.

contains 99.42% rich content browsing. Typically, these are
interactions of users with social networking sites, such as
Facebook and MySpace. Its cluster-wise standard deviation
of 2.82% along this feature dimension is significantly smaller
than the standard deviation of 45.69% for the entire data.

Clusters revealing more sophisticated user behaviors are
also evident in Table 2. These interesting patterns include
browsing web search results without a click (cluster 2), col-
lecting information during shopping (cluster 6), visits to rich
content web site through navigational queries (cluster 8),
and prolonged activities in social networking sites (cluster
10, note the average session duration).

These observations demonstrate that even a simple ap-
proach to session representation—as distributions over high-
level classes—can provide the search engine with valuable in-
formation, such as the distribution over the types of content
that users are likely to access (useful for crawling schedul-
ing as well as for ranking purposes). If we apply filter to
the entire set of sessions and preserve only those containing
search queries, we can further observe what queries often
lead to a particular session type (e.g., a shopping session)
and optimize the user experience for that.

4. USING BROWSING INFORMATION FOR
WEB SEARCH

In this section, we present a novel web search ranking al-
gorithm, ClickRank, that combines different notions of user
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preferences mined from browsing sessions. The ClickRank
algorithm provides a robust estimate of the importance of
web pages and websites without explicitly constructing a
web graph; its relatively low computational cost make it
particularly useful for web search ranking purposes. We also
describe how ClickRank can be incorporated with a large set
of other ranking features for learning a ranking model.

4.1 ClickRank
A web session contains several contextual indicators of

user preferences among the visited web pages. Intuitively,
users tend to browse content that they perceive as important
in the context of their informational need. This makes the
dwell time on a web page an important endorsement of the
user’s interest level in it. The click order within a general
trail of user activities is also important: accessing one web
page before another in the session may be interpreted as
a preference signal coming from the user. ClickRank aims
to combine these signals to determine a local importance
value for each page within a session, and then aggregate the
importance values over all sessions of interest.

We start by computing local importance values within
each session. The ClickRank of a web page pi in a given
web session sj is a function of several indicators within the
session context—the dwell time on the page, the page load
time, the rank of pi in the ordered set of all visited URLs,
and the frequency of occurrence in the session. We define
the local ClickRank function as

ClickRank(pi, sj) =
∑

pi∈sj

wr(i, sj)wt(p, sj)I(p = pi), (1)

where wr(i, sj) is a weight function induced on the rank
of the event i in session sj , and wt(p, sj) is a weight func-
tion computed from the set of temporal attributes associ-
ated with the browsing of page pi. I() denotes the indicator
function.

We define the weight function wr() for an event i in rank
r(i) of a session sj with a total of nj events as

wr(i, sj) =
2(nj + 1− r(i))

nj(nj + 1)
, (2)

where r(i) ∈ {1, . . . , nj} and wr(i, sj) is a monotonically
decreasing function w.r.t. the rank of the event within a
session i. The function choice for wr() is motivated by mea-
surements of implicit user preference judgements through
eye tracking experiments [21], which show decreasing rela-
tive attention devoted to ordered clicks in navigational and
informational tasks. Note that the sum of wr(i, sj) over a
given session sj is always equal to 1, i.e.,

∑nj

i=1 wr(i, sj) = 1.
For a set of web sessions S = (s1, . . . , sk) across users and

over a period of time, we aggregate the ClickRank values as

ClickRank(p,S) = AGGRs∈S [ClickRank(p, s)], (3)

where ClickRank(p, s) is the local ClickRank function de-
fined in (1) given an instance of observed sessions, and AGGR
denotes an aggregation function, such as summation or av-
eraging, over all sessions of interest. In the following exper-
iments, we use summation as the aggregation function.

Finally, the ClickRank of a website w for a set of ses-
sions S is simply the sum of the ClickRank values of all
pages in S that are part of the site: ClickRank(w,S) =∑

p∈w ClickRank(p,S). Note that using a sum implicitly

models both the importance (as evidenced by ClickRank
values of individual pages) and the size of the website – the
amount of pages that it consists of.

4.2 Theoretical Analysis
Our formulation of ClickRank has a theoretical interpre-

tation based on an intentional surfer model. A web session
can be viewed as a logical sequence of hops through the hy-
perlink structure of the web. At each step, a user selects
what she judges as most relevant as the next click, based on
a variety of features such as the attractiveness of content in
the context of the use’s activity, her prior knowledge, and so
on. The user further indicates her interest through various
temporal attributes, such as the time devoted to the page
or whether it was visited multiple times. This process con-
tinues throughout the duration of the session, until the user
starts another journey on the web.

More concretely, the local ClickRank function defines a
random variable Xi

j : Ω → R+
0 associated with the web page

pj , given an observed session si. Xi
j is bounded for all prac-

tical purposes, so E(Xi
j) < ∞ and var(Xi

j) < ∞. Denote
the set of random variables associated with the web page pj

over the entire set of observed sessions S = (s1, . . . , sk) by
{X1

j , X2
j , . . ., Xk

j }, and assume they are independent and

identically distributed. As k →∞, 1
k

∑k
i=1 Xi

j converges to

E(Xi
j) a.s. by the strong law of large numbers.

We can establish bounds on a ClickRank-induced function
in a probabilistic setting by the following theorems.

Theorem 1. Let f : R → [0, +∞) be a non-negative func-
tion, then

P[f(X) ≥ a] ≤ E(f(X))

a
for all a > 0.

Theorem 2. If f : R → [0, +∞) is a non-negative func-
tion taking values bounded by some number M , then

P[f(X) ≥ a] ≥ E(f(X))− a

M − a
whenever 0 ≤ a < M.

Simply put, as the volume of these web browsing sessions
analyzed by ClickRank reaches a sizable sample of the entire
web traffic, the rank computed by ClickRank for each page
converges to its true rank according to a usage criterion.

4.3 Application to Ranking
As a query-independent feature, ClickRank can be incor-

porated into a document ranking process in several ways [10].
One particular framework that has recently become promi-
nent, is the learning to rank approach to information re-
trieval, which aims to apply machine-learning algorithms to
derive a ranking function from data. In a machine-learned
ranking framework, a large variety of features are used to
model a query and a document. Query features can be its
length or frequency in a search log, and document features
can be term statistics or, in the case of web documents, the
number of incoming HTML links. Machine learned ranking
provides a convenient approach for quantitatively evaluating
the effectiveness of ClickRank as a novel feature on top of a
large collection of existing ranking features.

We learn the ranking model using the functional regression
framework of gradient boosting [14], which expresses the
solution to the ranking function as additive expansion of M

1041



parameterized functions

f∗(x) =

M∑
i=0

fm(x) ≡
M∑

i=0

βmh(x;am), (4)

where f0(x) is an initial guess, and [fm(x)]M1 are incremental
functions (or ”boosts”). In Equation(4), each incremental
function fm(x) can be further factored as the product of a
base learner h(x;am) and corresponding coefficient βm.

The idea of gradient boosting is to sequentially fit a pa-
rameterized function to current residuals by least-squares
criterion at each iteration

yim = −[
∂Ψ(yi, f(xi))

∂Ψ(f(xi))
]f(x)=fm−1(x) (5)

and

am = arg min
a,β

N∑
i=1

[yim − βh(xi;a)2], (6)

where N is the number of training samples. The optimal
coefficient βm is computed by line search

βm = arg min
β

N∑
i=1

Ψ(yi, fm−1(xi) + βh(xi;am)). (7)

We use decision tree as the base learner h(x;am) in (4),
where it is parameterized by the splitting variables and cor-
responding split points. At each iteration m, a decision
tree partitions the entire feature space into disjoint regions
[Rlm]Ll=1 and predicts based on the region that contains the
observed feature vector x as

h(x; [Rlm]L1 ) =

L∑
i=1

ylmI(x ∈ Rlm). (8)

Gradient boosted decision trees (GDBT) produce compet-
itive, highly robust, interpretable procedures in regression
and classification [14], and are particularly useful for set-
tings with large amounts of data and a dense feature space.

4.4 Relation to graph-based models
ClickRank has a number of advantages over approaches

that estimate the web page authority from explicit graph
formulations, such as PageRank and BrowseRank. First,
ClickRank is data driven, and does not embed assumptions
on the traversing scheme over the web. Second, it is signifi-
cantly more computationally efficient: local ClickRank val-
ues are inexpensive to calculate and can be derived indepen-
dently for each session. This makes ClickRank well-suited to
distributed computation (e.g., the MapReduce computation
paradigm [11] that was used for the experiments in this pa-
per), as well as memory friendly. Furthermore, addition of
new data requires only incremental computation of new lo-
cal ClickRank values on the newly logged web sessions, and
combining with those from existing sessions, rather than re-
computation of the entire model (such as would be needed by
PageRank and BrowseRank). This is particularly important
for the processing of web-scale user browsing information,
which is constantly changing.

5. EXPERIMENTS
We demonstrate the effectiveness of ClickRank algorithm

in three core aspects of web search—site ranking, page rank-

Table 3: Top-ranked sites with different algorithms

Rank PageRank BrowseRank ClickRank

1 adobe.com myspace.com yahoo.com
2 wordpress.com msn.com google.com
3 w3.org yahoo.com myspace.com
4 miibeian.gov.cn youtube.com live.com
5 statcounter.com live.com youtube.com
6 phpbb.com facebook.com facebook.com
7 baidu.com google.com msn.com
8 php.net ebay.com friendster.com
9 microsoft.com hi5.com pogo.com
10 mysql.com bebo.com aol.com
11 mapquest.com orkut.com microsoft.com
12 cnn.com aol.com wikipedia.org
13 google.com friendster.com ebay.com
14 blogger.com craigslist.org craigslist.org
15 paypal.com google.co.th hi5.com
16 macromedia.com microsoft.com go.com
17 jalbum.net comcast.net ask.com
18 nytimes.com wikipedia.org google.co.th
19 simplemachines.org pogo.com comcast.net
20 yahoo.com photobucket.com orkut.com

ing, and mining new, popular web pages. In our experi-
ments, we assume that the dwell time on a page and the
page load time are two independent random processes and
define the temporal weight function in (1) as

wt(p, s) = (1− e−λ1td)e−λ2tlI(t(p) ∈ T ), (9)

where td and tl are the normalized dwell time on the page
and page load time w.r.t. the entire session. t(p) is the
timestamp of the event, and T denotes the time range.

In the following experiments, we used the same 6 months
of aggregate user browsing logs collected from the Yahoo!
toolbar. In total, the data contains more than 3.3 billion
web sessions. These sessions contain 16.3 million unique
websites, and 3.1 billion unique web pages.

5.1 Site Ranking
We computed the ClickRank for each website and ordered

them by this value. We list the top-ranking 20 sites com-
puted with ClickRank, and compare them to those com-
puted by PageRank2 and BrowseRank3. Results are listed
in Table 3, following the same convention used in [26].

On the task of site ranking, our results confirm the same
finding reported in [26] that link analysis algorithms like
PageRank have a strong bias towards sites with higher de-
gree of inlinks and do not necessarily reflect the degree of
actual usage. This is a fundamental limitation of the web
link graph, from which PageRank and other link-based au-
thority estimation algorithms are derived.

The computed site ranked lists by both ClickRank and
BrowseRank algorithms are surprisingly similar, with a to-
tal of 18 overlapping entries among the top 20 sites. Both
ranked lists correlates better with web users’ informational
need compared to PageRank, as they are both computed
over user behavior data. Some ranking differences between
BrowseRank and ClickRank in this table can be attributed
to their data source. BrowseRank is computed over a set

2
Using the web link graph as constructed by the Yahoo! crawler.

3
This list is included from the reported list in [26] on a total of 5.6

million websites.
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Figure 4: Distribution of discretized ClickRank
score over a large collection of judged documents.

of users who installed the Live toolbar, and are presumably
users of live.com and msn.com services; similarly, ClickRank
is computed over a set of Yahoo! users.

One key difference between the results produced by Click-
Rank and BrowseRank is that ClickRank consistently ranks
the starting point of user’s web experience higher. One of
the major search engines, ask.com, does not even appear
among top 20 sites produced by BrowseRank.

ClickRank has a significantly lower computational cost
than PageRank or BrowseRank. ClickRank requires only
one pass through the data, and does not require building in-
termediate graphs and solving stationary probability distri-
butions. This also allows for rapid adaptation of ClickRank
values to new content: as noted earlier, new browsing infor-
mation that is collected does not require recomputation over
entire data. The overall running time of our implementation
of ClickRank algorithm in ranking of the 16.3 million web-
sites in this section and 3.1 billion web pages for the page
ranking test in the next section are 56 minutes and 1 hour
32 minutes, respectively, using the map-reduce framework
on 300 Hadoop nodes. To our best knowledge, these are the
best published run times for page importance ranking on a
web scale.

In a realistic, production-grade search engine environment,
it is important to minimize the footprint of every relevance
feature used by the ranking model so that latency and mem-
ory requirements are met. Often, float numeric values are
compressed or discretized into a small dynamic range that
can be represented with as few bits as possible. To this end,
and to evaluate the ranking performance of ClickRank as
deployed in a production system, we quantize the computed
ClickRank score for each web page into an unsigned byte
within the range of [0, . . . , 255]. The distribution of these
values are shown in Figure 4.

5.2 Page Ranking

5.2.1 Evaluation Methodology
We comprehensively evaluated the page ranking perfor-

mance of ClickRank in conjunction with several hundred
additional features used in commercial search engines. To
gain further insights, we quantified the search improvement
from ClickRank with a state-of-the-art baseline system, and
measured its relative variable significance against this large
pool of ranking features. This evaluation scheme gives more
realistic, quantitative results in contrast to common pub-
lished evaluations using limited feature set as baselines. For
instance, [26] employs the single feature of BM25 [22] as the
relevance baseline in their evaluation.

We used discounted cumulative gain (DCG) and normal-
ized discounted cumulative gain (NDCG), two widely used
search engine relevance measures [18, 19], to quantitatively

evaluate ranking performances. Given a query and a ranked
list of returned documents in response to the query, the
DCG(K) score for the query is computed as

DCG(K) =

K∑
k=1

gk

log2(1 + k)
, (10)

where gk is the weight for the document at rank k. A five-
grade score is assigned to each document based on its degree
of relevance.

We trained ranking models using gradient boosted deci-
sion trees on the baseline system with all existing features,
and on the alternative system that includes one additional
ClickRank feature. Training and test data is partitioned
through cross-validation. We used identical parameter set-
tings in all the following comparison experiments.

To quantify the relative importance Si of each individual
input ranking feature xi, we used the following measure of
variable importance for decision trees [7]

S2
i =

1

M

M∑
m=1

L−1∑
n=1

wlwr

wl + wr
(yl − yr)

2I(vt = i), (11)

where vt is the splitting variable at the non-terminal node
n, yl, yr are the means of the regression responses in the
left and right subtrees respectively, and wl, wr are the cor-
responding sums of the weights.

5.2.2 Data Preparation
In this experiment, we used a set of randomly sampled

9, 041 queries from a search log. For each query, 5–20 web
pages have been independently judged by a panel of editors
and assigned with one of the five relevance scores.

5.2.3 Results and Discussion
The usage of ClickRank as an additional relevance feature

brings 1.02%, 0.97%, 1.11%, and 1.331% web search im-
provements in DCG(1), DCG(5), DCG(10), and NDCG,
respectively, on top of a state-of-the-art ranking model—
a model already incorporating hundreds of features derived
from content (e.g ., anchor, title, body, and section), from
the link structure of the web, from search engine query logs,
and from other sources. The reported gains are strongly
statistically significant.

The gains in retrieval performance from ClickRank on top
of a competitive search engine are summarized in Table 4.
These improvements are very substantial in the context of
commercial web search: our strong baseline incorporates a
feature set of several hundred signals tuned over a long pe-
riod of time. In addition, 81.2% out of over 9, 000 queries
are affected in the alternative experiment, demonstrating
the generality of ClickRank. Furthermore, we observe higher
improvements on long queries in Table 4, which are typically
much more challenging for search engines. We show search
improvements across different query lengths in Figure 5.

We experimented with several variants of ClickRank, and
observed that it consistently ranks among the top features
in variable significance as calculated by (11). For exam-
ple, in the experiment shown in Figure 5 and Table 4, the
ClickRank feature is ranked 25th in variable importance
among several hundred other features, significantly higher
than the highest-ranking feature derived from page visit
counts (ranked 56th) and a feature based on a propaga-
tion of authority through the link graph (ranked 108th).
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Table 4: ClickRank delivers statistically significant web search improvements over a state-of-the-art baseline.

Query Number of Affected Improvements in Significance Test

Length Queries Queries DCG(1) DCG(5) DCG(10) NDCG p-value

1 1484 1232 0.448% 0.713% 1.002% 0.378% 5.33× 10−2

2 2992 2450 0.560% 0.993% 1.121% 1.071% 4.65× 10−4

3 2153 1722 1.618% 1.076% 1.406% 2.177% 1.10× 10−4

4+ 2412 1937 0.918% 0.861% 0.784% 1.433% 1.61× 10−5

All 9041 7341 1.020% 0.966% 1.105% 1.331% 9.98× 10−5

Figure 5: Search improvements from ClickRank for
different query lengths.

These results demonstrate the significance of session-based
web importance estimation and show that ClickRank cap-
tures novel user preference knowledge not identified through
other modeling techniques.

5.3 Mining Dynamic Quicklinks
Many web search engines supply a set of “quicklinks” –

direct access links to certain pages within the site, in addi-
tion to the search result itself. For example, while the top
result for the navigational query “ebay” is www.ebay.com, it
also contains quick access links to popular destination within
ebay.com, such as“Motors”(links to motors.ebay.com),“Half
Books” (links to half.ebay.com), and so on. Typically, these
quicklinks are pointers to frequently visited destinations within
the host mined from query or clickthrough logs. This method,
however, has two major limitations. First, query logs do not
contain user activities beyond the scope of interactions with
search engines, which account for the vast majority (more
than 95%, as we showed earlier) of real web traffic. Second,
results computed from query logs have a strong bias towards
old, navigational links within the site since they receive more
clicks within the visibility range of search engines.

We demonstrate a novel application of ClickRank for dis-
covering and displaying dynamic quicklinks in web search
results through recency ranking. The idea is to adapt the
time range for the indictor function in Equation (9) w.r.t.
the content refresh rate found by web crawlers. In addition
to normal search results, the system displays highly ranked
web pages computed by ClickRank as quicklinks to the user.

Figure 6 shows search results with discovered quicklinks
by the system in response to the query of “beijing olympic
2008” on two days during summer Olympic Games 2008, us-
ing the time range of 24 hours. Quicklinks mined by Click-
Rank are displayed side by side with the most frequently

(a) Search results with quicklinks for August 10, 2008

(b) Search results with quicklinks for August 16, 2008

Figure 6: Dynamic quicklinks discovered using
ClickRank by recency ranking.
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clicked navigational links. The quicklinks effectively capture
the event highlights, while the most frequently clicked nav-
igational links remain unchanged. The quicklink results by
ClickRank are more meaningful in suggesting content that
are of potential interest to web users, than those that reflect
the structural property of the website.

6. CONCLUSIONS
In this paper, we explored the direction of mining gen-

eral user browsing information for discovering session models
driven by structured user intents, and proposed user pref-
erence models that incorporate rich session context for web
search ranking. We presented characteristics of general web
browsing sessions and revealed interesting user behavior pat-
terns mined from sessions. We introduced ClickRank, an ef-
ficient, scalable algorithm for estimating web page and web-
site importance based on user preference judgments mined
from session context. ClickRank is based on a data-driven
intentional surfer model, and is empirically shown to be an
effective and novel ranking feature even on top of a highly
competitive baseline system employing hundreds of ranking
features. We also discussed the advantages of ClickRank
over existing importance ranking approaches. ClickRank is
effective and efficient to compute, delivering highly corre-
lated ranking results compared to the state-of-the-art ap-
proach that utilize browsing data. We also demonstrated
a promising application that mines dynamic quicklinks for
enhancing web user experience.

These promising results, together with earlier findings from
user browsing data in web search trails, highlight the great
potential of data-driven user behavior modeling at the web
scale. As the amount of web traffic continues to grow ex-
ponentially, we expect that explicit information about user
behavior online will play an increasingly prominent role in
web search and in the modeling of user intents.
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