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ABSTRACT

This paper explores an important and relatively unstud-
ied quality measure of a sponsored search advertisement:
bounce rate. The bounce rate of an ad can be informally de-
fined as the fraction of users who click on the ad but almost
immediately move on to other tasks. A high bounce rate can
lead to poor advertiser return on investment, and suggests
search engine users may be having a poor experience follow-
ing the click. In this paper, we first provide quantitative
analysis showing that bounce rate is an effective measure
of user satisfaction. We then address the question, can we
predict bounce rate by analyzing the features of the adver-
tisement? An affirmative answer would allow advertisers
and search engines to predict the effectiveness and quality
of advertisements before they are shown. We propose solu-
tions to this problem involving large-scale learning methods
that leverage features drawn from ad creatives in addition
to their keywords and landing pages.
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1. INTRODUCTION: BOUNCE RATE

Sponsored search advertising allows advertisers to mea-
sure and monitor their return on investment with an un-
precedented level accuracy and detail. There are several
performance metrics advertisers use to monitor the effec-
tiveness of their advertising campaigns, and many of these
metrics are also useful to search engine providers who aim to
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provide users with search advertising that is both relevant
and useful. Among the best known metrics for these pur-
poses is click through rate (CTR) and conversion rate (CvR).
Though less studied, another important metric of advertis-
ing effectiveness is bounce rate, which Avinash Kaushik of
Google Analytics colorfully describes as follows: [17, 18]:

Bounce rate for a page is the number of peo-
ple who entered the site on a page and left right
away. They came, they said yuk and they were
on their way.

Kaushik claims bounce rate is important for advertisers
to monitor because a user who bounces from a site is un-
likely to perform a conversion action such as a purchase. He
suggests that high bounce rates may indicate that users are
dissatisfied with page content or layout, or that the page is
not well aligned to their original query. Although bounce
rate is an intuitive and widely-used metric, it has not been
extensively studied. To our knowledge, this paper is the first
formal investigation of bounce rate in the literature.

To better understand the nature of bounce rates in spon-
sored search advertisements, we devote the first part of this
paper to answering the following fundamental questions with
large-scale data analysis:

e Can we quantify the intuition that bounce rate is an
effective measure of user satisfaction?

e How do bounce rates vary by page language or search
query?

We provide quantitative and qualitative answers to these
questions in Section 3, following formal definitions of bounce
rates and a discussion of observing bounce rates with anony-
mized and non-invasive methods given in Section 2.

Unfortunately, empirically measuring the bounce rate of
an ad requires significant click history. Depending on the
click through rate of the ad, it may require hundreds if not
thousands of impressions before its bounce rate can be ac-
curately estimated. The following question thus motivates
the second portion of this paper:

e Can we effectively predict bounce rates in the absence
of significant historical observation?

An accurate prediction model for bounce rates could al-
low advertisers to determine an ad’s effectiveness with fewer
clicks. Advertisers can use such knowledge to lower their
costs and improve return on investment by more quickly



shutting down ads that are likely to perform poorly. Ad-
ditionally, it could be used by the advertiser to guide the
up front creation of their advertisements and landing pages.
Finally, the model might also help sponsored search systems
quickly estimate user satisfaction of candidate ads.

We tackle this challenge in Sections 4 and 5, in which we
apply two large-scale machine learning approaches and test
a range of feature types for predicting bounce rates. We give
results both for the task of predicting bounce rates on new
(unseen) advertisements and for populations of advertise-
ments over time; additionally, we provide detailed analysis
of the impact of various feature types. As discussed in Sec-
tion 6, this machine learning approach to bounce rate pre-
diction is motivated by prior success in predicting CTR for
sponsored search, as exemplified by Richardson et al. [28].

2. BACKGROUND

This section provides a brief background on sponsored
search, gives a formal definition of bounce rate, and dis-
cusses methods for observing bounce rate non-intrusively.

2.1 Sponsored Search Terminology

Sponsored search is the problem of delivering advertise-
ments in response to search queries on an internet search
engine. In the sponsored search setting, a search engine
user submits a query, such as flat screen television. In
response to this query, the search engine displays a set of al-
gorithmic search results (which are not influenced by adver-
tisers) and a set of advertiser-provided sponsored advertise-
ments. A sponsored advertisement, or ad for short, consists
of creative text, which is a brief (e.g., 3 line) description to
be displayed by the search engine, a keyword, which speci-
fies the query for which the creative is eligible for display,
and a landing page specifying the click destination (such as
a page where the user may buy flat screen televisions). An
ad impression results when the search engine displays the ad
in response to a user query, and a clickthrough results when
the user viewing the ad clicks on it and and visits the ad’s
landing page. In most sponsored search settings, advertisers
pay a small fee to the search engine for each user click, with
the price determined by an auction system. The search en-
gine attempts to select and rank ads in a manner such that
they are relevant and useful to the search engine user.

2.2 Defining Bounce Rate

Recall that, informally, the bounce rate of an advertise-
ment is the fraction of users who click on the ad and im-
mediately move on to other tasks (or bounce from the site).
To formalize this concept, we must have a bounce threshold
© defined, and define the bounce rate of an advertisement
as the fraction of all clickthroughs that result in a bounce
within time ©. Typical values for © range from 5 to 60 sec-
onds; our preliminary analysis showed qualitatively similar
results for a range of values. Within this paper, we use the
same fixed © for all experiments.

2.3 Measuring Bounce Rate

It is easy for advertisers to measure bounce rates of their
advertisements in an anonymous, non-invasive manner, us-
ing aggregate data from the webserver hosting the adver-
tiser’s site. An advertiser might designate a clickthrough as
a bounce if it fails to generate new observable events after
time © following the clickthrough. This methodology may
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incur some false positives, e.g., consider a user who calls the
advertiser rather than continuing to navigate the site.

A search engine provider, on the other hand, can observe
a user’s behavior on the search engine itself, but cannot
make observations after the user has clicked through to an
advertisement. In this situation, a clickthrough might be
classified as a bounce if other events from the user are ob-
served on the search engine within a time © following the
clickthrough. Again, a small number of false positives are
possible for a variety of reasons.

Clearly, any practical method of observing user bounces
is prone to some error. The bounce rates we obtain from
observations are therefore estimates of the true bounce rate.
We expect that such observations lead to estimates that are
strongly correlated with true bounce rate, particularly when
observations are made over a large number of clickthroughs.

3. ANALYSIS OF BOUNCE RATE

In this section, we explore a set of fundamental qualities
connected with bounce rate. The goals of this section are
to quantify the intuition that bounce rate is an effective
measure of user satisfaction and to examine the factors that
cause bounce rates to vary.

3.1 Normalization of Reported Metrics

All values of user-based metrics reported in this paper
(bounce rate and click-through rate) have been been pre-
processed as follows, to protect privacy while allowing re-
peatability. Values in the upper and lower deciles of the
metric were removed from the data set to eliminate outliers,
and then the remaining values were normalized by the differ-
ence between the remaining maximum and minimum value.
This results in each metric being rescaled to the range [0,1].
Popularity metrics for languages, keywords, and categories
were computed similarly, but using the natural log of the
raw frequencies.

3.2 Bounce Rate and Click Through Rate

As described above, one traditional observable measure of
user satisfaction with an ad is its click through rate (CTR) [28].
This is defined as:

CTR = total clicks on the ad

total ad impressions

CTR naturally captures the advertisement’s relevance as
perceived by search engine users. Users who think the ad-
vertisement is relevant to their search will be more likely to
click on that advertisement.

One limitation of CTR is that it fails to capture the user’s
evaluation of the ensuing experience on the landing page
because the landing page is not visible prior to the click;
the only visible information prior to the click is the creative
text. In contrast, bounce rate measures the impact of the
landing page on the user’s behavior.

We compare bounce rate to CTR in Figure 1, which plots
observed bounce rate to observed CTR for several million
sponsored search advertisements shown in response to queries
on google.com during a recent month. This figure shows
a striking trend: advertisements with very low observed
bounce rate have very high CTR. The Pearson correlation
coefficient between bounce rate and CTR is -0.85, indicating
a strong inverse relationship. Thus, if CTR is a good proxy
for user satisfaction, then bounce rate is also a good proxy
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Figure 1: Comparing bounce rates with CTR.
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Figure 2: Comparing bounce rates with expert hu-
man evaluations.

for user satisfaction. This correlation is interesting, since
CTR is based on the user’s evaluation of creative text while
bounce rate depends more on the user’s evaluation of the
landing page. This correlation is not spurious; for contrast,
there is almost no correlation (.003) between an ad’s bounce
rate and its maximum click cost.

There are a few possible interpretations of this correlation.
One interpretation is that advertisers who target their ad-
vertisements carefully also tend to provide goods, services,
or information resulting in high user satisfaction. Another
interpretation is that certain advertisers develop good repu-
tations among users, resulting in a higher likelihood to click
and a lower likelihood of bouncing. A final possibility is that
some users are able to infer the quality of the landing page
from the creative text. For example, some users may sus-
pect that creatives promising Make free money fast! will
be less satisfactory than a creative promoting a Profes-
sional, licensed tax accountant.

3.3 Bounce Rate and Expert Evaluation

To further quantify our intuition that bounce rate is an
effective measure of user satisfaction with sponsored search
advertisements, we gathered expert human evaluation for a
sample of 7,000 advertisements shown on Google Search in a
recent month. These advertisements were randomly sampled
from all advertisements shown, weighted by impressions. We
sampled advertisements in English, Spanish, and six other
languages from continental Europe and Asia.

The advertisements in this sample were rated by expert
human evaluators, who judged each advertisement and rated
it for quality based on expected user satisfaction into one of
four ratings: excellent, good, okay, and bad. The evalua-
tors were given no information about the bounce rates, CTR,
or other predictive information; their judgements were based
solely on the contents of the advertisement landing page.
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Figure 3: Mean bounce rates by language.

The results, shown in Figure 2, show that expert human
evaluation of advertisement quality agree well with implied
user assessment given by bounce rate. The normalized mean
bounce rates for ads in the excellent category were less
than half that of those in the bad category, and there is a
monotonic decrease in bounce rate in each successive rating
bin from bad to excellent. So, bounce rate is well corre-
lated with expert opinion.

3.4 Bounce Rate and Quality Guidelines

Continuing in this vein, we examined the connection be-
tween mean bounce rates and the suggested quality guide-
lines for advertisers in Google Search.! These include sug-
gestions regarding style and technical requirements of ad
text, guidelines about content, and recommendations to help
advertisers ensure their landing pages will satisfy users.

We collected a few thousand advertisements and had ex-
pert human evaluators flag advertisements violating one or
more of the guidelines. The mean bounce rate for the ad-
vertisements that followed the guidelines was 25.4% lesser
than the mean bounce rate for the sample of advertisements
that did not follow these guidelines. A t-test measured this
difference in sample means as significant with p < 0.0001.

3.5 Distribution of Bounce Rates

So far we have seen that bounce rate is a good measure of
observed user satisfaction by a strong correlation to CTR,
and is a good indicator of expected user experience via the
connection to expert human evaluation and quality guide-
lines. To further increase the reader’s intuition regarding
this possibly unfamiliar metric, we explore the distribution
of bounce rates in different groupings: advertisement lan-
guage and query keyword.

Bounce Rates by Language.

We measured observed mean bounce rates for all ads shown
on Google Search in a recent month across 40 languages.
These normalized mean bounce rates are plotted against a
“popularity” score, as described in Section 3.1. These results
are shown in Figure 3.

We observe that mean bounce rates vary significantly by
language. One possible explanation for this observation may
involve market maturity. English language advertisements
(the most popular by our data) have a relatively low bounce
rates, while languages representing emerging markets have
significantly higher bounce rates. Whether this is because
advertisers in established markets produce higher quality

"http://adwords.google.com/support /bin /static.py?
page=guidelines.cs&topic=9271&view=all
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Figure 4: Mean bounce rates by keyword.

advertisements, or because users in emerging markets are
less receptive to online advertisement, is an open question.

Bounce Rates by Keyword.

We also examined the mean bounce rate for 749 keywords,
drawn from a random sample of the multiset of all key-
words on Google Search in a recent month. We plotted
mean bounce rate for each keyword against its popularity
score, and show the results in Figure 4.

This figure shows mean bounce rates vary significantly
by particular keyword. Navigational queries, such as those
containing specific business names, result in very low bounce
rates. Commercial terms, such as books and flights, also
have low bounce rates. Entertainment oriented terms such
as games and chat exhibited much higher bounce rates.

In general, there is a rough inverse relationship between
keyword popularity and mean bounce rate for that keyword.
This may be because the greater competition for these more
popular keywords creates a need for these competing adver-
tisers to achieve higher standards of quality.

4. PREDICTING BOUNCE RATE

Our primary aim in this paper is to predict the bounce rate
of an ad with little to no click history. Formally, we repre-
sent an ad as a triple (q,c, p) consisting respectively of its
keyword, creative, and landing page. Our goal is to predict
a bounce rate close to the true bounce rate Bjate(q,c, p).
Since the true bounce rate has a range of [0,1], this predic-
tion problem fits naturally within a regression framework.

Logistic regression [3] or support vector machine (SVM)
regression [15] with probability estimation [25] for bounce
rate prediction requires a mapping x(-,+,-) — R" from a
query, creative, landing page triple to an n dimensional fea-
ture vector. The feature mapping explored in this paper, as
detailed in Section 4.3, results in a high dimensional space
comprised of millions of features. Furthermore, our training
data sets contain millions of examples. We now review two
methods for dealing with such large data sets: parallelized
logistic regression, and e-accurate SVM regression.

4.1 Logistic Regression

A (binary) logistic regression model consists of a weight
vector w € R™ which is used to make predictions f(-) on the
features x € R™ of a data example using a sigmoid function:

1
Priyx =1, w) = f(x) = 10—

where w - x is the dot product of the weight vector w and
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the input vector x, and yx is the label on x that indicates
a bounce event. Logistic regression is often used in cases
where the expected output is a probability, as its output is
naturally constrained to the range [0,1].

The weight vector w is estimated by maximizing the log
likelihood of f over a set of training data S. Because many
features may be irrelevant, we encourage sparsity using regu-
larization based on an L1-norm penalty on the weight vector:

mj]xelogPr(ny,w) = A|wll1, (1)
xeS

where yx is the true label for example x, ||w||; is the L1-
norm of w, and ) is a regularization term setting the level of
importance to place on finding a sparse model versus finding
a model that minimizes predictive error. In applications of
logistic regression for classification, yx is often drawn from
the binary set {0,1}. If the dataset has ¢;(x) instances of x
with yx = 1 and co(x) instances of x with yx = 0, Equation 1
can be equivalently written as:

>

unique xS
(1 —y)log (1 - Pr(ylx,w))] = Allw|l1, (2)

where y is 0 or 1. In our application we observe the bounce
rate Brate(x) € [0,1] of an ad with feature vector x. We
optimize Equation 2 setting c¢1(x) = Brate(x) and co(x)
1 — Brate(x). Note that this is equivalent to considering
kBrate(x) examples of x with yx = 1 and k(1 — Brate(X))
examples of x with yx = 0, where k is a scaling constant.

This optimization problem may be solved via methods
such as LBFGS [21]; however, for very large data sets, these
methods do not scale well due to large matrix manipulations.
We thus use stochastic gradient descent as a viable alterna-
tive [19], noting that the non-differentiability induced by the
L1 penalty term can be handled by methods similar to trun-
cated gradient descent [20]. To achieve scalability, we use
a parallelized learning algorithm where each machine han-
dles a subset of the data. For a discussion of typical issues
involved in parallelizing stochastic gradient descent, see the
recent talk by Delalleau and Bengio [12].

4.2 c-accurate SVM Regression

SVM Regression is another state of the art method for
regression tasks [29]. However, SVM solvers typically scale
poorly with large training set sizes. We considered the use of
parallelized SVMs, but preferred a faster method that yields
an e-accurate model: the Pegasos (Primal Estimated sub-
GrAdient SOlver for SVM) algorithm [30]. This iterative
SVM solver is especially well-suited for learning from large
datasets. It proposes a method that alternates between two
steps: stochastic sub-gradient descent and projection of the
hypothesis back to the feasible set. This allows for aggressive
updates that achieve convergence to an e-accurate model
within O(1) iterations, rather than the more typical O(z)
requirement. Because this convergence rate does not depend
on the size of the training set, the Pegasos algorithm is well
suited to solving large scale SVM Regression problems.

We use Pegasos to solve the following SVM Regression
optimization problem:

MaXw cy(x) [y log (Pr(y|x, w))

+

min %kuz + 3 log(1+ €™ T 7) 4 log(1 4 e
x€es



Here, X is a regularization parameter, « is a the regression
shift parameter and ||w|| is the L2-norm of w. The SVM
prediction in this formulation is not guaranteed to be in [0,1],
so we use a logistic transform on the SVM output to convert
it to a probability estimate [25].

4.3 Feature Types

To train a model for this task, it is necessary to extract
features from the content of each advertisement. These fea-
tures are summarized in Table 1. We describe additional
details regarding these features here.

The parsed terms were extracted from each content
source using a multi-lingual lexicon, and were scored us-
ing methods similar to TF-IDF. The top ten scoring terms
per source were considered “primary” parsed terms, and the
next forty terms were considered “secondary” and placed in
a distinct feature group. These were each converted to a
binary score using a function §(z) that returns 1 iff z is a
term in the group under consideration, and 0 otherwise.

The related terms were derived from the parsed terms
using a transformation ¢(-), using a proprietary process sim-
ilar to term expansion via latent semantic analysis [11].

Cluster membership shows the strength of similarity
of a given piece of content to a set of topical clusters M,
as determined by a mapping function m(-,-). These topical
clusters M were found by a proprietary process similar to
latent semantic analysis.

Category membership is similar to cluster member-
ship, except that the set of categories V' is drawn from a
semi-automatically constructed hierarchical taxonomy.

Shannon redundancy was intended to give a sense of
how “topical” a particular piece of content is. The idea
here is that pages which are topically focused will have term
distributions much further from uniform than less focused
pages. Note that in the formula given in Table 1, H(p) is
the entropy of the distribution of landing page terms p.

Binary Cosine similarity between content groups gives
a traditional measure of relevance, computed with the stan-
dard dot product and L2-norm || - ||. We use binary scoring
of parsed terms, assigning weights of 1 to each parsed term
appearing in the content and 0 to each non-appearing term.

Binary Kullback-Leibler (KL) divergence, like co-
sine similarity, was intended to provide a traditional term-
based relevance measure. As before, “binary” means that
we assign weights of 1 to all items in the term vector. To
avoid zero probabilities, we smoothed the probability distri-
butions P and Q (i.e. the term vectors) using Good-Turing
discounting [13] before computing the divergence. We also
computed a normalized version of KLD whose range is [0,1],
with the maximum KLD as the normalization factor.

4.4 Evaluation

Given a feature mapping x(q, ¢, p) and a logistic regres-
sion function f(x) : U — [0, 1], we evaluated its performance
on predicting the bounce rate for a previously unseen subset
S C U using the three standard measures: mean absolute
error, mean squared error, and correlation.

Mean Squared Error (MSE). This is given by the sum
of squared deviations between the actual probability value
and the predicted value, on the unseen data S:

1

Lmse = Tar
S|

Z (f(X) — Brate (qa C, p))2

(a,c,p)€S
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Method MSE MAE | Corr.
ADCORPUS1

LoGISTIC REGRESSION 0.0146 | 0.0903 | 0.303
PEGAsOs SVM REGRESSION | 0.0148 | 0.0916 | 0.315
BASELINE 0.0160 | 0.0959 -
ADCORPUS2

LoGI1sTIC REGRESSION 0.0148 | 0.0912 | 0.330
PEGASOS SVM REGRESSION | 0.0149 | 0.0917 | 0.338
BASELINE 0.0165 | 0.0975 -

Table 2: Results for Predicting Bounce Rate. 95%
confidence intervals are on the order of +0.0001 for
MAE and £0.00005 for MSE.

The ideal value for MSE is 0, with larger values showing
more error.

Mean Absolute Error (MAE). This is given by the
sum of absolute deviations between the actual probability
value and the predicted value, on the unseen data S:

I

(a,c,p)eS

Limae = |f(X) — Brate (q7 c, p)l

The ideal value for MAE is 0, with larger values showing
more error. Because we are predicting probabilities in the
range [0,1], MAE emphasizes the impact of large errors in
prediction more than MSE.

Correlation. Pearson’s correlation py(.),s between the
bounce rate predicted by f(-) and true bounce rate across
all examples in the unseen data S is given by:

p > (aqepres S (X)Brate(q, €, P) =[S () BB are ()
s =
7o (1S = 1)os(10Brate ()

where o is standard deviation and p is the observed sample
mean. This correlation coefficient is helpful for detecting the
presence of informative predictions, even in the presence of
shifting and scaling. The ideal value for correlation is 1.0,
with a value of 0 showing no observed correlation.

S. EXPERIMENTAL RESULTS

In this section, we report experimental results showing
that it is, indeed, possible to predict bounce rate using fea-
tures from the advertisement content alone. We show that
these predictions are stable over time, and analyze the im-
pact of specific feature types.

5.1 Data sets

We created two large datasets ADCORPUS]1 and ADCOR-
PUS2, consisting of ads that got at least one click in AdWords
in two disjoint time periods in 2008, where the time period
of ADCORPUS2 was after the time period corresponding to
ADCorpUS]1. Each data set was split randomly into train-
ing and test sets, using standard machine learning evaluation
methodology, with 70% training and 30% test. Each exam-
ple had at least 10 observed clicks, to allow for reasonable
evaluation of true bounce rate in the final evaluation, al-
though most examples has significantly more. The training
and test sets for ADCORPUS] had 3.5 million and 1.5 mil-
lion data points respectively, while the training and test sets
for ADCORPUS2 had 4.8 million and 2 million data points
respectively.




FEATURE TYPE # UNIQUE | VALUES FormuLA NOTES
FEATURES
PARSED KEYWORD TERMS, PRIMARY MILLIONS {0,1} d(x €q) Top 10 SELECTED
PARSED CREATIVE TERMS, PRIMARY MILLIONS {0,1} d(z €c) Top 10 SELECTED
PARSED LANDING PAGE TERMS, PRIMARY MILLIONS {0,1} d(z € p) ToP 10 SELECTED
PARSED KEYWORD TERMS, SECONDARY MILLIONS {0,1} o(xz € q) Top 11-50 SELECTED
PARSED CREATIVE TERMS, SECONDARY MILLIONS {0,1} d(z €c) Top 11-50 SELECTED
PARSED LANDING PAGE TERMS, SECONDARY MILLIONS {0,1} 5(z € p) Top 11-50 SELECTED
RELATED KEYWORD TERMS, PRIMARY MILLIONS {0,1} o(z € ¢(q)) ToP 10 SELECTED
RELATED CREATIVE TERMS, PRIMARY MILLIONS {0,1} d(z € ¢(c)) Top 10 SELECTED
RELATED LANDING PAGE TERMS, PRIMARY MILLIONS {0,1} d(z € ¢(p)) Topr 10 SELECTED
RELATED KEYWORD TERMS, SECONDARY MILLIONS {0,1} o(z € ¢(q)) ToP 11-50 SELECTED
RELATED CREATIVE TERMS, SECONDARY MILLIONS {0,1} d(z € ¢(c)) ToP 11-50 SELECTED
RELATED LANDING PAGE TERMS, SECONDARY MILLIONS {0,1} d(xz € ¢(p)) TopP 11-50 SELECTED
KEYWORD CLUSTER MEMBERSHIP, PRIMARY THOUSANDS R m(q, M) ToP 4 SELECTED
CREATIVE CLUSTER MEMBERSHIP, PRIMARY THOUSANDS R m(c, M) ToP 4 SELECTED
LANDING PAGE CLUSTER MEMBERSHIP, PRIMARY THOUSANDS R m(p, M) ToOP 4 SELECTED
KEYWORD CLUSTER MEMBERSHIP, SECONDARY THOUSANDS R m(q, M) ToP 5-10 SELECTED
CREATIVE CLUSTER MEMBERSHIP, SECONDARY THOUSANDS R m(c, M) Top 5-10 SELECTED
LANDING PAGE CLUSTER MEMBERSHIP, SECONDARY | THOUSANDS R m(p, M) Top 5-10 SELECTED
KEYWORD CATEGORIES, PRIMARY HUNDREDS R m(q,V) TOP 2 SELECTED
CREATIVE CATEGORIES, PRIMARY HUNDREDS R m(c,V) ToP 2 SELECTED
LANDING PAGE CATEGORIES, PRIMARY HUNDREDS R m(p,V) ToP 2 SELECTED
KEYWORD CATEGORIES, SECONDARY HUNDREDS R m(q,V) Top 3-10 SELECTED
CREATIVE CATEGORIES, SECONDARY HUNDREDS R m(c, V) Top 3-10 SELECTED
LANDING PAGE CATEGORIES, SECONDARY HUNDREDS R m(p,V) Topr 3-10 SELECTED
SHANNON REDUNDANCY 1 R — li[;ﬁ))l DISTANCE OF LANDING PAGE
TERM DISTRIBUTION FROM UNIFORM
KEYWORD TO CREATIVE COSINE SIM. 1 [0,1] H(I?”TCH BINARY TERM WEIGHTING
KEYWORD TO LANDING PAGE COSINE SIM. 1 [0,1] W@pu BINARY TERM WEIGHTING
CREATIVE TO LANDING PAGE COSINE SIM. 1 [0,1] HCH'HPH BINARY TERM WEIGHTING
KEYWORD TO CREATIVE KLD 1 R > ey C(z)log g(i) GOOD-TURING TERM SMOOTHING
KEYWORD TO LANDING PAGE KLD 1 R ZZEE P(z)log ggzg GOOD-TURING TERM SMOOTHING
CREATIVE TO LANDING PAGE KLD 1 R > wes P(x)log g(ﬁ) GOOD-TURING TERM SMOOTHING

Table 1: Details of features used for training the bounce rate prediction models.
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Figure 5: Scatter plot of binned predicted bounce
rates versus observed (true) bounce rates for logistic
regression model using all features, on ADCORPUSI.

5.2 Primary Results

For our primary experiment, we tested our parallelized lo-
gistic regression method and Pegasos SVM regression method
against a baseline method of predicting the mean value for
all examples using the train/test splits in ADCORPUS1 and
ADCORPUS2. We used all features described in Section 4.3.

For logistic regression, the A parameter was set to 0.2. For
Pegasos SVM regression, A was set to 0.001. These values
were selected as reasonable default settings, and were not
tuned to the data. (Pilot experiments on similar previous
data sets suggested that results were similar across a range
of A values for logistic regression.)

The parallelized logistic regression was trained on the full
training set, using multiple machines. For the Pegasos al-
gorithm for SVM regression, we used a sample of 250,000
examples randomly selected from the training set so that
the data would fit into 8G of RAM on a single machine, and
ran the algorithm for 25 million iterations. Pegasos training
finished within an hour on the machine, which had 2 cores
(2.2 GHz each).

The results, given in Table 2, show a clear win for the ma-
chine learning approaches over the baseline approach. The
relative improvements over the baseline methods range from
5% to 10% reduction in MAE and MSE. The scatter plot of
predicted bounce rate against true bounce rate, shown in
Figure 5 shows that the predictions are typically more accu-
rate at the lower (more common) end of the spectrum. While
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[ Train | Test [ MSE [ MAE [ Corrg. | Kywp. | Crrv. | LANDPG. | DisTs.
ADpCorpusl | ADCorpuUS1 | 0.0146 | 0.0903 | 0.303 KEYWORD 1 0.339 0.300 0.103
ADCoRrPUS1 | ADCORPUS2 | 0.0150 | 0.0912 | 0.310 CREATIVE - 1 0.435 0.183
ADCORPUS2 | ADCORPUS2 | 0.0148 | 0.0912 | 0.330 LANDING PAGE | - - ! 0.146
ADCOPRUS2 | ADCORPUSL | 0.0146 | 0.0906 | 0.338

Table 3: Results for Predicting Bounce Rates Across
Time.

FEATURE SET MSE MAE | CORR.
ALL 0.0146 | 0.0903 | 0.303
PARSED (Kw+CRr+Lp) 0.0151 | 0.0921 | 0.248
PARSED CREATIVES 0.0153 | 0.0926 | 0.222
RELATED (Kw+CR+LP) 0.0153 | 0.0927 | 0.227
CATEGORIES (Kw+CRr+LP) | 0.0154 | 0.0929 | 0.208
PARSED LANDING PAGE 0.0155 | 0.0932 | 0.198
CLUSTERS (Kw+CR+LP ) 0.0155 | 0.0934 | 0.197
Cos. + SHANRED + KLD 0.0155 | 0.0941 | 0.180
PARSED KEYWORDS 0.0156 | 0.0942 | 0.154

Table 4: Results for Predicting Bounce Rate for Re-
stricted Feature Sets on ADCORPUS] using Logistic
Regression. 95% confidence intervals are on the or-
der of £0.0001 for MAE and £0.00005 for MSE.

the gains made by the machine learning methods may ap-
pear at first as a small improvement, paired t-tests measured
the improvements as significant with p < 1075. Further-
more, if these predictions can be used to improve advertise-
ment conversion rates by similar figures, then the advertisers
will reap a significant increase in return on investment.

These results demonstrate that it is possible to learn to
predict bounce rate from content of the advertisement alone.
Furthermore, we observe that Pegasos SVM regression, train-
ed on a single machine on a subset of the data, gave results
quite close to the parallelized logistic regression method us-
ing the full training data across several machines.

5.3 Stability Over Time

Do these models generalize well into the future, or is their
predictive capability limited to a small time-frame? We ad-
dressed this question by running a stability experiment. We
trained a logistic regression model on the ADCORPUS] train-
ing data, and tested this model on both the ADCORPUS] test
data and the later ADCORPUS2 test data. (We did not sep-
arately test the Pegasos SVM regression, as this had given
nearly identical results to logistic regression in the primary
experiment.)

The results, shown in Table 3, show that the model trained
on ADCORPUS] did not lose its effectiveness on later data
given in ADCORPUS2. The MSE, MAE, and Correlation
values are all quite close. We repeated this experiment in
reverse, training on ADCORPUS2 training data, and test-
ing on ADCORPUS2 and ADCORPUS1 data sets with similar
results, also shown in Table 3. This is evidence that the
models are learning fundamental qualities in advertisements
that do not change dramatically over time.

5.4 Analysis of Features

We have seen that using all of the features described in
Section 4.3 allows bounce rates to be learned effectively.
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Table 5: Correlation between predictions from mod-
els with different feature sources: keywords only,
creatives only, landing pages only, and features us-
ing only the group of cosine similarity, KLD, and
Shannon Redundancy.

Here, we examine the impact of specific feature types in
bounce rate prediction.

We first trained logistic regression models using particular
subsets of all available features, and measured the perfor-
mance of the models using each feature subset. The results
of this are given in Table 4. Not surprisingly, the model
using all features in combination gave best results. How-
ever, the relative performance of feature sub-sets is infor-
mative. Table 4 shows that the parsed term features drawn
from keywords, creatives, and landing pages gives the best
performance of any of the subsets. That is, specific terms
influence bounce rates more strongly than general topics.

Additionally, we observe the counter-intuitive result that
terms from the creative text are more informative than those
drawn from landing pages or keywords. This agrees with
observations from Section 3.2, connecting bounce rate and
CTR. This suggests that advertisers may be able to improve
their bounce rates not only by improving the quality of their
landing page, but also by improving the quality of their cre-
ative text. Finally, note that parsed terms from keywords
are the least informative features, despite the wide variance
in bounce rates by keywords shown in Section 3.5. This sug-
gests that bounce rates are dependent on more than simply
choosing “quality” keywords — they depend equally on the
qualities of the advertisement itself.

We continue this investigation by examining the corre-
lation coefficients computed on the predictions from these
distinct models. Table 5 shows the correlation coefficients
between predictions from models trained on all keyword fea-
tures, all creative features, all landing page features, and
the “distance” features of cosine similarity, Shannon Redun-
dancy, and KLD. We can see that the models using creative
features only and landing page features only are highly cor-
related, supporting the observation that creative texts cap-
ture (or communicate to users) much of the information of
the landing page. Interestingly, the “distance” features give
predictions relatively uncorrelated with the other feature
sources. Similar results are seen in Table 6, which group
features by type rather than by source. This finding may
enable the use of semi-supervised learning methods such as
co-training that require informative but un-correlated fea-
ture sets [4] to exploit un-labeled data.

6. RELATED WORK

To our knowledge, this work is the first detailed study of
bounce rate for sponsored search advertising. It also pro-
vides the first concrete proposal for predicting bounce rates
in the absence of historical clickthrough data. This task is
related to prior work in predicting textual relevance and in
modeling user behavior, as reviewed in the remainder of this
section.



PARSED | RELATED | CLUSTERS | CATEGORIES | DISTANCES.
PARSED 1 0.492 0.444 0.397 0.188
RELATED - 1 0.534 0.499 0.161
CLUSTERS - - 1 0.412 0.127
CATEGORIES - - - 1 0.180

Table 6: Correlation between predictions from models with different feature types.

6.1 Textual Relevance

Among other features, our models for predicting bounce
rates use measures of textual relevance. Such measures have
been studied in the context of the impedance mismatch
problem in contextual advertising, which refers to the mis-
match between the vocabularies of publisher pages and tex-
tual advertisements. Researchers in computational advertis-
ing have suggested various methods to address this issue in
order to design good matching functions between publisher
pages and ads.

Broder et al. [7] found that while training a model to pre-
dict the relevance of an ad to a publisher page, it is useful
to augment “syntactic” features obtained by matching key-
words or phrases between the ad and the page with “seman-
tic features” obtained by categorizing ads and pages into
a commercial taxonomy to calculate their topic similarity.
Their experiments showed that a convex linear combination
of syntactic and semantic features had an improvement over
syntactic features alone, with respect to a “golden ranking”
produced by human relevance judgements.

Murdock et al. [22] showed the benefit of using machine
translation techniques to match text features extracted from
ads to those obtained from publisher pages in order to ad-
dress the impedance problem. They obtained better results
by adding text features from the landing pages of ads, and
improved the ranking of content ads shown on a publisher
page by using a support vector machine (SVM) based rank-
ing model.

Riberio-Neto et al. [27] proposed a Bayesian network-based
approach to impedance coupling, for better matching of ads
to publisher pages in contextual advertising. They also
proposed different strategies for improving relevance-based
matching functions.

Chakrabarti et al. [9] used clicks on contextual ads to learn
a matching function. They trained a logistic model for pre-
dicting ad clicks based on relevance features between the
publisher page and the ad. By training the features of the
logistic model using click logs, they outperformed traditional
page-ad matching functions that use hand-tuned combina-
tions of syntactic or semantic features from the ad or page
text.

Textual relevance has also been used for other problems
in sponsored search. Broder et al. [6] have used terms from
the search results to enhance query terms for selecting ad-
vertisements. They demonstrated that the careful addition
of terms from the web search results (extracting relevant
phrases from search results, using both keyword-level and
topic-level features) to the query terms can improve the
retrieval of relevant ads. Their approach performed bet-
ter when compared to a system that augments the query
terms by phrases extracted from web users’ query rewrites
in search logs. Radlinski et al. [26] also showed that rele-
vance between query and ad text can improve broad match
while optimizing revenue.
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Other notable uses of relevance in computational adver-
tising includes learning when not to show ads. Broder et
al. [5] trained an SVM model using relevance and cohesive-
ness features to address the decision problem of whether or
not to show an ad.

6.2 Modeling User Behavior

Another aspect of our work is modeling user behavior on
ad landing pages. While bounce rate has not been modeled
by researchers in the past, other aspects of user clickthrough
behavior have been studied in the context of evaluating the
quality of both ad and search results.

Ciaramita et al. [10] estimated predicted clickthrough rates
of search ads from textual relevance features. They trained
a logistic model whose features were learned using click-
through data from logs. Their work demonstrated that sim-
ple syntactic and semantic textual relevance features can be
predictive of clickthrough rate.

Piwowarski et al. [24] modeled user clickthrough on search
results using specific click history (e.g., from users) or more
general click history features (e.g., from user communities
or global history).

Agichtein et al. [1] used click behavior to improve search
ranking. They observed that while individual clicks may be
noisy, aggregating clicks to get overall statistics (e.g., click-
through rate) gives reliable estimates that can be used to
re-rank search results for queries and get quality improve-
ments. Agichtein et al. [2] also developed a model for re-
lating user behavior to relevance, proposing a simple linear
mixture model for relating observed post-search user behav-
ior to the relevance of a search result.

Huffman et al. [14] examined the connection between search-
result relevance in web search and users’ session-level satis-
faction. They found a strong relationship between the rel-
evance of the first query in a user session and the user’s
satisfaction in that session, and built a model that predicts
user satisfaction by incorporating features from the user’s
first query into a relevance model. Their models were eval-
uated using relevance judgements of human raters.

Carterette et al. [8] have used click information to eval-
uate the performance of search results — they proposed a
model for predicting relevance of a search result to a user
using clickthrough information. Such a model would be use-
ful for evaluating search results for which human relevance
judgments have not been obtained yet.

Pandey et al. [23] proposed a multi-arm bandit approach
with dependent arms for more accurate clickthrough predic-
tion, using historical observation along with other features
such as textual similarity between ads.

7. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated through quantitative and
qualitative analysis that bounce rate provides a useful as-
sessment of user satisfaction for sponsored search advertising



that complements other quality metrics such as clickthrough
and conversion rates. We described methods of estimating
bounce rate through observing user behavior, and have pro-
vided extensive analysis of real world bounce rate data to
develop the reader’s understanding of this important met-
ric. We have also shown that even in absence of substantial
clickthrough data, bounce rate may be estimated through
machine learning when applied to features extracted from
sponsored search advertisements and their landing pages.
These improvements in predictions over baseline methods
were statistically significant, and would be sufficient to drive
solid gains in advertiser return on investment assuming they
translate into improved conversion rates. We continue to
pursue additional improvements in estimation accuracy, and
believe one promising avenue for improvement is the use of
link-based or other non-textual features.

In closing, we note that while bounce rate can be useful
for identifying ad quality problems, bounce rate alone does
not immediately suggest what actions an advertiser can take
to address them. In future work, we intend to study how
advertisers might best act on bounce rate information in
order to improve their advertising return on investment.
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